Effects of lidar coverage and field plot data numerosity on forest growing stock volume estimation
Forest parameter estimation is required to support the sustainable management of forest ecosystems. Currently, forest resource assessment is increasingly linked to auxiliary information obtained from remote sensing (RS) technologies. In forest parameter estimation, airborne laser scanning (ALS) data...
Saved in:
Published in | European journal of remote sensing Vol. 55; no. 1; pp. 199 - 212 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cagiari
Taylor & Francis
31.12.2022
Taylor & Francis Ltd Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
ISSN | 2279-7254 2279-7254 |
DOI | 10.1080/22797254.2022.2042397 |
Cover
Abstract | Forest parameter estimation is required to support the sustainable management of forest ecosystems. Currently, forest resource assessment is increasingly linked to auxiliary information obtained from remote sensing (RS) technologies. In forest parameter estimation, airborne laser scanning (ALS) data have been demonstrated to be an invaluable source of information. However, ALS data are often not available for the entire forest area, whereas images from multiple satellite systems offer new opportunities for large-scale forest surveys. This study aims to assess and estimate the contribution of field plot data and ALS data along with Landsat data to the precision of growing stock volume (GSV) estimates. We compared different approaches for model-assisted estimation of mean forest GSV per unit area using different proportions of field sample data, ALS cover data, and wall-to-wall Landsat data. Model-assisted estimators were used with NFI sample data in an Italian study area using 10 RS predictors, specifically the seven Landsat 7 ETM+ bands and three fine-resolution metrics based on ALS-derived canopy height. We found that relative to the standard simple expansion estimator, the model-assisted estimators produced relative efficiency of 1.16 when using only Landsat data and relative efficiencies as great as 1.33 when using increasing levels of ALS coverage. |
---|---|
AbstractList | Forest parameter estimation is required to support the sustainable management of forest ecosystems. Currently, forest resource assessment is increasingly linked to auxiliary information obtained from remote sensing (RS) technologies. In forest parameter estimation, airborne laser scanning (ALS) data have been demonstrated to be an invaluable source of information. However, ALS data are often not available for the entire forest area, whereas images from multiple satellite systems offer new opportunities for large-scale forest surveys. This study aims to assess and estimate the contribution of field plot data and ALS data along with Landsat data to the precision of growing stock volume (GSV) estimates. We compared different approaches for model-assisted estimation of mean forest GSV per unit area using different proportions of field sample data, ALS cover data, and wall-to-wall Landsat data. Model-assisted estimators were used with NFI sample data in an Italian study area using 10 RS predictors, specifically the seven Landsat 7 ETM+ bands and three fine-resolution metrics based on ALS-derived canopy height. We found that relative to the standard simple expansion estimator, the model-assisted estimators produced relative efficiency of 1.16 when using only Landsat data and relative efficiencies as great as 1.33 when using increasing levels of ALS coverage. |
Author | Giannetti, Francesca Vangi, Elia Chirici, Gherardo McRoberts, Ronald E. Francini, Saverio D'Amico, Giovanni |
Author_xml | – sequence: 1 givenname: Giovanni orcidid: 0000-0002-2341-3268 surname: D'Amico fullname: D'Amico, Giovanni email: giovanni.damico@unifi.it organization: Environment and Forestry (Dagri), University of Florence – sequence: 2 givenname: Ronald E. surname: McRoberts fullname: McRoberts, Ronald E. organization: University of Minnesota – sequence: 3 givenname: Francesca orcidid: 0000-0002-4590-827X surname: Giannetti fullname: Giannetti, Francesca organization: Environment and Forestry (Dagri), University of Florence – sequence: 4 givenname: Elia orcidid: 0000-0002-9772-2258 surname: Vangi fullname: Vangi, Elia organization: University of Molise – sequence: 5 givenname: Saverio orcidid: 0000-0001-6991-0289 surname: Francini fullname: Francini, Saverio organization: Environment and Forestry (Dagri), University of Florence – sequence: 6 givenname: Gherardo orcidid: 0000-0002-0669-5726 surname: Chirici fullname: Chirici, Gherardo organization: Environment and Forestry (Dagri), University of Florence |
BookMark | eNqFUUtrnCEUlZBC0iQ_oSB0PanP-ZRuWkLaBgLdNGu5vganjk79nIT593UyCZQuWhcq955zvMfzFp2WWgJC7yi5pkSRD4xNemJSXDPC2NgE43o6QeeH-uLQOP3jfoau5nlNxlKETEqfI3sbY3B9xjXinDw07OpjaLAKGIrHMYXs8TbXjj10wGW3Ca3Oqe9xLTjWFuaOV60-pbLCc6_uJ36seYDwaKQN9FTLJXoTIc_h6uW8QA9fbn_cfFvcf_96d_P5fuGEpH1hOQcHyjqhlJQiCL2US8FACFBUqugisTraqCfrtQDJvIzaaqes1YFSwS_Q3VHXV1ibbRvPt72pkMxzobaVgdaTy8Fw6qwFR8QESxG8VRbkEJWaaAaO86H1_qi1bfXXbngx67prZYxv2CS4onyp9UB9PKLc-JO5hWhc6s-ee4OUDSXmkJF5zcgcMjIvGQ22_Iv9OvP_eJ-OvFRGABt4qi1702Gfa4sNikvzMPhPid__w6sK |
CitedBy_id | crossref_primary_10_1093_forestry_cpad041 crossref_primary_10_1080_22797254_2024_2334717 crossref_primary_10_3390_s22052015 crossref_primary_10_36930_40350103 |
Cites_doi | 10.1109/JSTARS.2012.2227299 10.1139/x98-166 10.1080/02827581.2017.1416666 10.1016/j.rse.2011.07.002 10.1016/J.JAG.2019.101959 10.1016/S0034-4257(01)00290-5 10.1139/cjfr-2014-0203 10.1109/TGRS.2010.2068574 10.3334/ORNLDAAC/1146 10.1016/j.rse.2017.09.036 10.3832/ifor3648-014 10.3390/rs8060469 10.1016/j.rse.2019.01.019 10.1080/01431160701736489 10.1016/j.foreco.2016.07.007 10.3390/rs10111832 10.1016/j.rse.2016.07.007 10.1016/j.rse.2019.02.015 10.1016/j.rse.2018.05.016 10.14214/sf.1567 10.1016/j.rse.2012.11.024 10.4060/ca9825en 10.1016/j.foreco.2014.07.025 10.1080/07038992.2014.945827 10.1016/j.rse.2006.03.003 10.1016/j.rse.2021.112307 10.1093/forestry/cpw041 10.1016/j.rse.2016.10.022 10.1016/j.rse.2017.03.026 10.1016/j.rse.2005.01.010 10.1080/02827580410019553 10.1016/j.rse.2015.11.012 10.1016/j.jag.2012.10.002 10.1007/s13595-016-0590-1 10.5558/tfc84807-6 10.1186/s40663-020-00277-6 10.1016/j.rse.2016.07.027 10.1016/j.rse.2015.11.010 10.1016/j.rse.2019.04.006 10.1080/07038992.2016.1207484 10.1080/22797254.2020.1806734 10.1080/01431161.2021.1899334 10.1016/j.rse.2017.06.031 10.1016/S0034-4257(01)00330-3 10.3390/rs11161906 10.1016/j.jag.2017.11.013 10.1080/17538947.2014.990526 10.1016/j.rse.2017.10.007 10.1139/cjfr-2015-0077 10.3390/rs9080766 10.1155/2012/436537 10.1007/978-1-4612-4378-6 10.1016/j.rse.2017.04.004 |
ContentType | Journal Article |
Copyright | 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022 – notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 0YH AAYXX CITATION 3V. 7TG 7XB 8FD 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH H8D KL. L7M M2O MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.1080/22797254.2022.2042397 |
DatabaseName | Taylor & Francis Open Access CrossRef ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central ProQuest Central Student ProQuest Research Library Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest One Academic UKI Edition ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2279-7254 |
EndPage | 212 |
ExternalDocumentID | oai_doaj_org_article_31cbbac047a64edb8ba5d9459092ac33 10_1080_22797254_2022_2042397 2042397 |
Genre | Research Article |
GroupedDBID | .4S 0YH 5VS 8G5 AAHBH ABUWG ACGFS ADBBV ADMLS AEGXH AENEX AEUYN AFKRA ALMA_UNASSIGNED_HOLDINGS ARCSS AZQEC BCNDV BENPR BPHCQ CCPQU DWQXO EBS GNUQQ GROUPED_DOAJ GUQSH H13 KQ8 M2O M4Z M~E PHGZT PIMPY PQQKQ PROAC RNS TDBHL TFW TUS AAYXX CITATION PHGZM 3V. 7TG 7XB 8FD 8FK H8D KL. L7M MBDVC PKEHL PQEST PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c451t-b33aca8bc488554e4965642a44a8158fcf0b9fbf97bd94a52d5f9b9c8bb9e1143 |
IEDL.DBID | BENPR |
ISSN | 2279-7254 |
IngestDate | Wed Aug 27 01:16:38 EDT 2025 Mon Jun 30 12:23:03 EDT 2025 Tue Jul 01 05:25:59 EDT 2025 Thu Apr 24 23:08:09 EDT 2025 Thu Apr 03 03:04:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/4.0/: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-b33aca8bc488554e4965642a44a8158fcf0b9fbf97bd94a52d5f9b9c8bb9e1143 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0669-5726 0000-0002-4590-827X 0000-0001-6991-0289 0000-0002-2341-3268 0000-0002-9772-2258 |
OpenAccessLink | https://www.proquest.com/docview/2743813699?pq-origsite=%requestingapplication%&accountid=15518 |
PQID | 2743813699 |
PQPubID | 3933194 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2743813699 crossref_citationtrail_10_1080_22797254_2022_2042397 doaj_primary_oai_doaj_org_article_31cbbac047a64edb8ba5d9459092ac33 crossref_primary_10_1080_22797254_2022_2042397 informaworld_taylorfrancis_310_1080_22797254_2022_2042397 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-31 |
PublicationDateYYYYMMDD | 2022-12-31 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | Cagiari |
PublicationPlace_xml | – name: Cagiari |
PublicationTitle | European journal of remote sensing |
PublicationYear | 2022 |
Publisher | Taylor & Francis Taylor & Francis Ltd Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd – name: Taylor & Francis Group |
References | e_1_3_2_28_1 e_1_3_2_49_1 e_1_3_2_20_1 e_1_3_2_41_1 e_1_3_2_43_1 e_1_3_2_24_1 e_1_3_2_45_1 e_1_3_2_26_1 e_1_3_2_47_1 e_1_3_2_62_1 e_1_3_2_60_1 e_1_3_2_16_1 e_1_3_2_39_1 e_1_3_2_9_1 e_1_3_2_18_1 e_1_3_2_7_1 e_1_3_2_31_1 e_1_3_2_10_1 e_1_3_2_33_1 e_1_3_2_52_1 e_1_3_2_12_1 e_1_3_2_35_1 e_1_3_2_58_1 e_1_3_2_14_1 e_1_3_2_37_1 e_1_3_2_56_1 e_1_3_2_3_1 e_1_3_2_50_1 e_1_3_2_27_1 e_1_3_2_29_1 e_1_3_2_42_1 e_1_3_2_21_1 e_1_3_2_44_1 e_1_3_2_23_1 e_1_3_2_46_1 e_1_3_2_25_1 e_1_3_2_48_1 e_1_3_2_61_1 e_1_3_2_40_1 Tabacchi G. (e_1_3_2_53_1) 2007 e_1_3_2_17_1 e_1_3_2_38_1 e_1_3_2_8_1 e_1_3_2_19_1 e_1_3_2_2_1 e_1_3_2_30_1 e_1_3_2_55_1 e_1_3_2_11_1 e_1_3_2_32_1 e_1_3_2_6_1 e_1_3_2_13_1 e_1_3_2_34_1 e_1_3_2_59_1 e_1_3_2_4_1 INFC (e_1_3_2_22_1) 2004 e_1_3_2_15_1 e_1_3_2_36_1 e_1_3_2_57_1 Tabacchi G. (e_1_3_2_54_1) 2011 e_1_3_2_51_1 Cochran W. G. (e_1_3_2_5_1) 1977 |
References_xml | – ident: e_1_3_2_8_1 – ident: e_1_3_2_37_1 doi: 10.1109/JSTARS.2012.2227299 – ident: e_1_3_2_17_1 doi: 10.1139/x98-166 – ident: e_1_3_2_24_1 doi: 10.1080/02827581.2017.1416666 – ident: e_1_3_2_36_1 doi: 10.1016/j.rse.2011.07.002 – ident: e_1_3_2_3_1 doi: 10.1016/J.JAG.2019.101959 – ident: e_1_3_2_43_1 doi: 10.1016/S0034-4257(01)00290-5 – ident: e_1_3_2_6_1 doi: 10.1139/cjfr-2014-0203 – ident: e_1_3_2_19_1 – start-page: 36 year: 2004 ident: e_1_3_2_22_1 article-title: Il disegno di campionamento. Inventario Nazionale delle Foreste e dei Serbatoi Forestali di Carbonio. MiPAF - Direzione Generale per le Risorse Forestali Montane e Idriche, Corpo Forestale dello Stato publication-title: ISAFA, Trento – ident: e_1_3_2_45_1 doi: 10.1109/TGRS.2010.2068574 – ident: e_1_3_2_31_1 doi: 10.3334/ORNLDAAC/1146 – ident: e_1_3_2_33_1 doi: 10.1016/j.rse.2017.09.036 – ident: e_1_3_2_7_1 doi: 10.3832/ifor3648-014 – ident: e_1_3_2_62_1 doi: 10.3390/rs8060469 – ident: e_1_3_2_2_1 doi: 10.1016/j.rse.2019.01.019 – ident: e_1_3_2_21_1 doi: 10.1080/01431160701736489 – volume-title: Sampling techniques year: 1977 ident: e_1_3_2_5_1 – ident: e_1_3_2_32_1 doi: 10.1016/j.foreco.2016.07.007 – start-page: 413 volume-title: Inventario Nazionale delle Foreste e dei Serbatoi Forestali di Carbonio year: 2007 ident: e_1_3_2_53_1 – ident: e_1_3_2_50_1 doi: 10.3390/rs10111832 – ident: e_1_3_2_34_1 doi: 10.1016/j.rse.2016.07.007 – ident: e_1_3_2_60_1 doi: 10.1016/j.rse.2019.02.015 – ident: e_1_3_2_14_1 doi: 10.1016/j.rse.2018.05.016 – ident: e_1_3_2_25_1 doi: 10.14214/sf.1567 – ident: e_1_3_2_23_1 doi: 10.1016/j.rse.2012.11.024 – ident: e_1_3_2_9_1 doi: 10.4060/ca9825en – ident: e_1_3_2_35_1 doi: 10.1016/j.foreco.2014.07.025 – start-page: 415 volume-title: Stima del volume e della fitomassa delle principali specie forestali italiene, Equazioni di previsione, tavole del volume e tavole della fitomassa arborea epigea year: 2011 ident: e_1_3_2_54_1 – ident: e_1_3_2_58_1 doi: 10.1080/07038992.2014.945827 – ident: e_1_3_2_15_1 doi: 10.1016/j.rse.2006.03.003 – ident: e_1_3_2_61_1 doi: 10.1016/j.rse.2021.112307 – ident: e_1_3_2_39_1 – ident: e_1_3_2_41_1 doi: 10.1093/forestry/cpw041 – ident: e_1_3_2_46_1 doi: 10.1016/j.rse.2016.10.022 – ident: e_1_3_2_10_1 doi: 10.1016/j.rse.2017.03.026 – ident: e_1_3_2_26_1 doi: 10.1016/j.rse.2005.01.010 – ident: e_1_3_2_44_1 doi: 10.1080/02827580410019553 – ident: e_1_3_2_18_1 doi: 10.1016/j.rse.2015.11.012 – ident: e_1_3_2_40_1 doi: 10.1016/j.jag.2012.10.002 – ident: e_1_3_2_49_1 doi: 10.1007/s13595-016-0590-1 – ident: e_1_3_2_59_1 doi: 10.5558/tfc84807-6 – ident: e_1_3_2_28_1 doi: 10.1186/s40663-020-00277-6 – ident: e_1_3_2_47_1 doi: 10.1016/j.rse.2016.07.027 – ident: e_1_3_2_4_1 doi: 10.1016/j.rse.2015.11.010 – ident: e_1_3_2_55_1 doi: 10.1016/j.rse.2019.04.006 – ident: e_1_3_2_57_1 doi: 10.1080/07038992.2016.1207484 – ident: e_1_3_2_13_1 doi: 10.1080/22797254.2020.1806734 – ident: e_1_3_2_12_1 doi: 10.1080/01431161.2021.1899334 – ident: e_1_3_2_16_1 doi: 10.1016/j.rse.2017.06.031 – ident: e_1_3_2_38_1 doi: 10.1016/S0034-4257(01)00330-3 – ident: e_1_3_2_27_1 doi: 10.3390/rs11161906 – ident: e_1_3_2_42_1 doi: 10.1016/j.jag.2017.11.013 – ident: e_1_3_2_29_1 doi: 10.1080/17538947.2014.990526 – ident: e_1_3_2_48_1 doi: 10.1016/j.rse.2017.10.007 – ident: e_1_3_2_51_1 doi: 10.1139/cjfr-2015-0077 – ident: e_1_3_2_56_1 doi: 10.3390/rs9080766 – ident: e_1_3_2_11_1 – ident: e_1_3_2_30_1 doi: 10.1155/2012/436537 – ident: e_1_3_2_52_1 doi: 10.1007/978-1-4612-4378-6 – ident: e_1_3_2_20_1 doi: 10.1016/j.rse.2017.04.004 |
SSID | ssj0000800789 |
Score | 2.29007 |
Snippet | Forest parameter estimation is required to support the sustainable management of forest ecosystems. Currently, forest resource assessment is increasingly... |
SourceID | doaj proquest crossref informaworld |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 199 |
SubjectTerms | Airborne laser scanning Airborne lasers Airborne sensing Estimators Forest ecosystems Forest management Forest resources Forest surveys Forests growing stock volume Landsat landsat 7 ETM Landsat satellites Lidar Mathematical models National Forest Inventory Parameter estimation Remote sensing Satellite imagery Strategic management Sustainability management |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3NTx0hEMBJ46W9GFvb-Kw1HLxuZR-wwLFtakyTetLEG2EGUNuXfUbXg_99-XrmVRO9eN0sYTIMMENmfkPIgYgyRKF4h5G7TrjQd3pA6JgHhkINGAqn4PfJcHwmfp3L87VWXzknrOKBq-IOeY8ADplQbhDBgwYnvRHSMDN3yAvnkxm2Fkz9aX6Q0mZVsqPZYSblqXl5RpnnAqwMvlP_XUaF2f-IWPrkhC7XztEW2Wz-Iv1W5XxP3oTxA3nbWpdf3m8TqPzhW7qMdHHl3Q3FnJWZjgnqRk9Lhhq9XiwnmpNB6ZjrLXOi1j1djjSJkOakFykWT1cYTY4g_qX1wKIZv1HrGj-Ss6Ofpz-Ou9Y4oUMh-6kDzh06DZh2Z3IXQmbCpzjDCeF0L3XEyMBEiEZBUqWTcy-jAYMawIQUIPFPZGNcjmGHUAOeYfDR94oJUArCILGPUnvkwgQ1I2KlQYuNKp6bWyxs3-CjK8XbrHjbFD8jXx-GXVesxksDvuflefg5U7HLh2QrttmKfclWZsSsL66dyqNIrB1M0ujnBdhbWYJt2_zWppA-eTx8MGb3NeT7TN7lKStHco9sTDd34UvyeSbYL-b9Dw94_AM priority: 102 providerName: Directory of Open Access Journals – databaseName: Taylor & Francis Open Access dbid: 0YH link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHOBS8RQLBfnANZDEdhwfC2q1QoITleBkecZ2QaySajc99N8zdpxVC6IcOCbKOPbY87JmvmHsjYwqRKlFhVG4SrrQVH2HUNUeapS6w5BxCj597tZn8uNXtWQT7kpaZYqh4wwUkXV1Em4HuyUj7l0CvdNtvhFpUy1VwrDTd9m9VpO9oSNdf1vvr1mSQ6R7s9Tu_I36hlXK4P2_QZf-oaqz_Tl9yA6L48iP551-xO6E4TG7X3qYf796wmAGIt7xMfLND--2HFN6JukLTivlOVWNX2zGiaesUD6kwsuUsXXFx4HTFOif_JyCcrJlnDxC_MlnzcUTDsdc4PiUnZ2efPmwrkoHhQqlaqYKhHDoekASU_IbQgKHp4DDSen6RvURYw0mQjQavJFOtV5FAwZ7ABMoUhLP2MEwDuE54wZ8jcFH3-hagtYQOoVNVL1HIU3QKyYXDlos8OKpy8XGNgWFdGG8TYy3hfEr9nZPdjHja_yL4H3anv3HCR47vxi357ZImxUNAjispXadDB56cIoWqExtWodCrJi5vrl2yrcjcW5lQtS3T-BoOQm2yPvOUmxPro_ojHnxH0O_ZA_S44wjecQOpu1leEU-zwSv86n-BQq7-CQ priority: 102 providerName: Taylor & Francis |
Title | Effects of lidar coverage and field plot data numerosity on forest growing stock volume estimation |
URI | https://www.tandfonline.com/doi/abs/10.1080/22797254.2022.2042397 https://www.proquest.com/docview/2743813699 https://doaj.org/article/31cbbac047a64edb8ba5d9459092ac33 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwELZgObSXqk91C6x86DXFWdtxfECoINCqUldVVSR6ijx-0IpVsl3SA_8ej-NsXxK9JnEeY3temfk-Qt6KIH0Qihc2cFMI48uiriwUzAGzQlXWJ5yCj8tqcSk-XMmrHbIce2GwrHLUiUlRu85ijvwoRk_RuPBK65P1jwJZo_Dv6kihYTK1gjtOEGO7ZC-qZMkmZO_0fPnp8zbrgv6RqvXYylOzI0TQU_OUXpljYxYC4qk_jFTC8v8LyfQfzZ3M0cVT8iT7kfT9MPHPyI5vn5NHmdL8290LAgMu8S3tAl19d2ZDLVZrRvVBTetoqlyj61XXUywSpS32YWIB1x3tWhpfIT6TXscYPZo2Gh1Ee0MHRUYRlmPod3xJLi_Ov5wtikyoUFghy74Azo01Ndi4a6Mb4RErPsYfRghTl7IONjDQAYJW4LQwcu5k0KBtDaB9DJz4KzJpu9a_JlSDY9a74ErFBCgFvpK2DLJ2lgvt1ZSIUYKNzWjjSHqxasoMSjoKvkHBN1nwU_JuO2w9wG38b8ApTs_2YkTLTge6zXWTN1_DSwtgLBPKVMI7qMHI-IFSMz03lvMp0b9PbtOnZEkYmE3i6Idf4GBcCU3e_rfNr8X65uHT--Qx3mxAjjwgk37z0x9GL6eHGdllXxezvIBnKVdwD_xI-08 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9lAuiKdYKOADHEOT2I7tQ4UotNrSdoVQK_Vm_GwRq2TZDar2z_Hb8CTO8pLKqdckdpyxPTOezHwfQi9pYD5QTjIbiM6o9kUmKmuy3JncUl5Z3-EUnEyryRn9cM7ON9CPoRYG0ioHndgpatdYiJHvxNNTNC6kkvLN_FsGrFHwd3Wg0NCJWsHtdhBjqbDjyK-u4hFuuXv4Ps73q7I82D99N8kSy0BmKSvazBCirRbGxqUcbasHAPXolGtKtSiYCDbkRgYTJDdOUs1Kx4I00gpjpI-nCRL7vYU2KQRQRmhzb3_68dM6ygP-GBdyKB0S-Q4g9vGyC-eUUAgGAHz8D6PYcQf8hZz6j6XozN_BXXQn-a34bb_Q7qENX99HW4lC_XL1AJkeB3mJm4BnX5xeYAvZoVFdYV073GXK4fmsaTEkpeIa6j4hYWyFmxrHIcR34otFcxVNKY4Oqf2Ke8WJAQakr698iM5uRLSP0Khuav8YYWlcbr0LruA5NZwbXzFbBCacJVR6PkZ0kKCyCd0cSDZmqkggqIPgFQheJcGP0et1s3kP7_G_BnswPeuHAZ27u9AsLlTa7IoU1hhtc8p1Rb0zwmgWP5DJXJbaEjJG8vfJVW0XnAk9k0psff0AtoeVoJK6Wapfm-PJ9bdfoK3J6cmxOj6cHj1Ft6HjHrVyG43axXf_LHpYrXmeljFGn2965_wEy7w3FA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSMAFlZfY0oIPXAPJ2o7tI9CullfFgUpwsjxju0WsktVueui_x3acFQ8BB65JJonHnvE31sw3hDzjQfjAJaswMFtx65tKtQhV7aBGLlv0mafgw2m7PONvP4spm3Bb0ipTDB1Goojsq5Nxr12YMuJeJNI7Oc8nIvNUS5U47OR1ckOoCM_jkq6_LHfHLAkQSaWn2p0_Sf-0K2Xy_l-oS39z1Xn_WeyTOwU40pfjTN8l13x3j9wqPcwvru4TGImIt7QPdPXV2Q3FlJ4Z_QWNI6U5VY2uV_1AU1Yo7VLhZcrYuqJ9R-MvxG_S8xiUx72MRkSI3-jouWji4RgLHB-Qs8XJp9fLqnRQqJCLZqiAMYtWAUYzjbjBJ3L4GHBYzq1qhAoYatABgpbgNLdi7kTQoFEBaB8jJfaQ7HV95x8RqsHV6F1wjaw5SAm-FdgEoRwyrr2cET5p0GChF09dLlamKSykk-JNUrwpip-R5zux9civ8S-BV2l6dg8neux8od-cm2JthjUIYLHm0rbcO1BgRRyg0LWeW2RsRvSPk2uGfDoSxlYmUfrvP3A4rQRT7H1rYmwfoQ9rtT74j1c_JTc_Hi_M-zen7x6T2-nOSCl5SPaGzaU_ivBngCd5gX8H_Tn6wg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+lidar+coverage+and+field+plot+data+numerosity+on+forest+growing+stock+volume+estimation&rft.jtitle=European+journal+of+remote+sensing&rft.au=D%E2%80%99Amico%2C+Giovanni&rft.au=McRoberts%2C+Ronald+E.&rft.au=Giannetti%2C+Francesca&rft.au=Vangi%2C+Elia&rft.date=2022-12-31&rft.issn=2279-7254&rft.eissn=2279-7254&rft.volume=55&rft.issue=1&rft.spage=199&rft.epage=212&rft_id=info:doi/10.1080%2F22797254.2022.2042397&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_22797254_2022_2042397 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2279-7254&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2279-7254&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2279-7254&client=summon |