Patient-ventilator asynchrony classification in mechanically ventilated patients: Model-based or machine learning method?

•Patient-ventilator asynchrony (PVA) detection methods have variable performance.•A rule-based and machine learning (ML) method is used to classify 7 types of PVA.•Class activation mapping heatmaps improve ML result explicability.•Rule-based approach achieves better PVA classification performance an...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine Vol. 255; p. 108323
Main Authors Ang, Christopher Yew Shuen, Chiew, Yeong Shiong, Wang, Xin, Ooi, Ean Hin, Cove, Matthew E, Chen, Yuhong, Zhou, Cong, Chase, J. Geoffrey
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.10.2024
Subjects
Online AccessGet full text
ISSN0169-2607
1872-7565
1872-7565
DOI10.1016/j.cmpb.2024.108323

Cover

Abstract •Patient-ventilator asynchrony (PVA) detection methods have variable performance.•A rule-based and machine learning (ML) method is used to classify 7 types of PVA.•Class activation mapping heatmaps improve ML result explicability.•Rule-based approach achieves better PVA classification performance and robustness.•Potential for real-time continuous monitoring of PVA with improved transparency. Patient-ventilator asynchrony (PVA) is associated with poor clinical outcomes and remains under-monitored. Automated PVA detection would enable complete monitoring standard observational methods do not allow. While model-based and machine learning PVA approaches exist, they have variable performance and can miss specific PVA events. This study compares a model and rule-based algorithm with a machine learning PVA method by retrospectively validating both methods using an independent patient cohort. Hysteresis loop analysis (HLA) which is a rule-based method (RBM) and a tri-input convolutional neural network (TCNN) machine learning model are used to classify 7 different types of PVA, including: 1) flow asynchrony; 2) reverse triggering; 3) premature cycling; 4) double triggering; 5) delayed cycling; 6) ineffective efforts; and 7) auto triggering. Class activation mapping (CAM) heatmaps visualise sections of respiratory waveforms the TCNN model uses for decision making, improving result interpretability. Both PVA classification methods were used to classify incidence in an independent retrospective clinical cohort of 11 mechanically ventilated patients for validation and performance comparison. Self-validation with the training dataset shows overall better HLA performance (accuracy, sensitivity, specificity: 97.5 %, 96.6 %, 98.1 %) compared to the TCNN model (accuracy, sensitivity, specificity: 89.5 %, 98.3 %, 83.9 %). In this study, the TCNN model demonstrates higher sensitivity in detecting PVA, but HLA was better at identifying non-PVA breathing cycles due to its rule-based nature. While the overall AI identified by both classification methods are very similar, the intra-patient distribution of each PVA type varies between HLA and TCNN. The collective findings underscore the efficacy of both HLA and TCNN in PVA detection, indicating the potential for real-time continuous monitoring of PVA. While ML methods such as TCNN demonstrate good PVA identification performance, it is essential to ensure optimal model architecture and diversity in training data before widespread uptake as standard care. Moving forward, further validation and adoption of RBM methods, such as HLA, offers an effective approach to PVA detection while providing clear distinction into the underlying patterns of PVA, better aligning with clinical needs for transparency, explicability, adaptability and reliability of these emerging tools for clinical care.
AbstractList Patient-ventilator asynchrony (PVA) is associated with poor clinical outcomes and remains under-monitored. Automated PVA detection would enable complete monitoring standard observational methods do not allow. While model-based and machine learning PVA approaches exist, they have variable performance and can miss specific PVA events. This study compares a model and rule-based algorithm with a machine learning PVA method by retrospectively validating both methods using an independent patient cohort. Hysteresis loop analysis (HLA) which is a rule-based method (RBM) and a tri-input convolutional neural network (TCNN) machine learning model are used to classify 7 different types of PVA, including: 1) flow asynchrony; 2) reverse triggering; 3) premature cycling; 4) double triggering; 5) delayed cycling; 6) ineffective efforts; and 7) auto triggering. Class activation mapping (CAM) heatmaps visualise sections of respiratory waveforms the TCNN model uses for decision making, improving result interpretability. Both PVA classification methods were used to classify incidence in an independent retrospective clinical cohort of 11 mechanically ventilated patients for validation and performance comparison. Self-validation with the training dataset shows overall better HLA performance (accuracy, sensitivity, specificity: 97.5 %, 96.6 %, 98.1 %) compared to the TCNN model (accuracy, sensitivity, specificity: 89.5 %, 98.3 %, 83.9 %). In this study, the TCNN model demonstrates higher sensitivity in detecting PVA, but HLA was better at identifying non-PVA breathing cycles due to its rule-based nature. While the overall AI identified by both classification methods are very similar, the intra-patient distribution of each PVA type varies between HLA and TCNN. The collective findings underscore the efficacy of both HLA and TCNN in PVA detection, indicating the potential for real-time continuous monitoring of PVA. While ML methods such as TCNN demonstrate good PVA identification performance, it is essential to ensure optimal model architecture and diversity in training data before widespread uptake as standard care. Moving forward, further validation and adoption of RBM methods, such as HLA, offers an effective approach to PVA detection while providing clear distinction into the underlying patterns of PVA, better aligning with clinical needs for transparency, explicability, adaptability and reliability of these emerging tools for clinical care.
•Patient-ventilator asynchrony (PVA) detection methods have variable performance.•A rule-based and machine learning (ML) method is used to classify 7 types of PVA.•Class activation mapping heatmaps improve ML result explicability.•Rule-based approach achieves better PVA classification performance and robustness.•Potential for real-time continuous monitoring of PVA with improved transparency. Patient-ventilator asynchrony (PVA) is associated with poor clinical outcomes and remains under-monitored. Automated PVA detection would enable complete monitoring standard observational methods do not allow. While model-based and machine learning PVA approaches exist, they have variable performance and can miss specific PVA events. This study compares a model and rule-based algorithm with a machine learning PVA method by retrospectively validating both methods using an independent patient cohort. Hysteresis loop analysis (HLA) which is a rule-based method (RBM) and a tri-input convolutional neural network (TCNN) machine learning model are used to classify 7 different types of PVA, including: 1) flow asynchrony; 2) reverse triggering; 3) premature cycling; 4) double triggering; 5) delayed cycling; 6) ineffective efforts; and 7) auto triggering. Class activation mapping (CAM) heatmaps visualise sections of respiratory waveforms the TCNN model uses for decision making, improving result interpretability. Both PVA classification methods were used to classify incidence in an independent retrospective clinical cohort of 11 mechanically ventilated patients for validation and performance comparison. Self-validation with the training dataset shows overall better HLA performance (accuracy, sensitivity, specificity: 97.5 %, 96.6 %, 98.1 %) compared to the TCNN model (accuracy, sensitivity, specificity: 89.5 %, 98.3 %, 83.9 %). In this study, the TCNN model demonstrates higher sensitivity in detecting PVA, but HLA was better at identifying non-PVA breathing cycles due to its rule-based nature. While the overall AI identified by both classification methods are very similar, the intra-patient distribution of each PVA type varies between HLA and TCNN. The collective findings underscore the efficacy of both HLA and TCNN in PVA detection, indicating the potential for real-time continuous monitoring of PVA. While ML methods such as TCNN demonstrate good PVA identification performance, it is essential to ensure optimal model architecture and diversity in training data before widespread uptake as standard care. Moving forward, further validation and adoption of RBM methods, such as HLA, offers an effective approach to PVA detection while providing clear distinction into the underlying patterns of PVA, better aligning with clinical needs for transparency, explicability, adaptability and reliability of these emerging tools for clinical care.
Patient-ventilator asynchrony (PVA) is associated with poor clinical outcomes and remains under-monitored. Automated PVA detection would enable complete monitoring standard observational methods do not allow. While model-based and machine learning PVA approaches exist, they have variable performance and can miss specific PVA events. This study compares a model and rule-based algorithm with a machine learning PVA method by retrospectively validating both methods using an independent patient cohort.BACKGROUND AND OBJECTIVEPatient-ventilator asynchrony (PVA) is associated with poor clinical outcomes and remains under-monitored. Automated PVA detection would enable complete monitoring standard observational methods do not allow. While model-based and machine learning PVA approaches exist, they have variable performance and can miss specific PVA events. This study compares a model and rule-based algorithm with a machine learning PVA method by retrospectively validating both methods using an independent patient cohort.Hysteresis loop analysis (HLA) which is a rule-based method (RBM) and a tri-input convolutional neural network (TCNN) machine learning model are used to classify 7 different types of PVA, including: 1) flow asynchrony; 2) reverse triggering; 3) premature cycling; 4) double triggering; 5) delayed cycling; 6) ineffective efforts; and 7) auto triggering. Class activation mapping (CAM) heatmaps visualise sections of respiratory waveforms the TCNN model uses for decision making, improving result interpretability. Both PVA classification methods were used to classify incidence in an independent retrospective clinical cohort of 11 mechanically ventilated patients for validation and performance comparison.METHODSHysteresis loop analysis (HLA) which is a rule-based method (RBM) and a tri-input convolutional neural network (TCNN) machine learning model are used to classify 7 different types of PVA, including: 1) flow asynchrony; 2) reverse triggering; 3) premature cycling; 4) double triggering; 5) delayed cycling; 6) ineffective efforts; and 7) auto triggering. Class activation mapping (CAM) heatmaps visualise sections of respiratory waveforms the TCNN model uses for decision making, improving result interpretability. Both PVA classification methods were used to classify incidence in an independent retrospective clinical cohort of 11 mechanically ventilated patients for validation and performance comparison.Self-validation with the training dataset shows overall better HLA performance (accuracy, sensitivity, specificity: 97.5 %, 96.6 %, 98.1 %) compared to the TCNN model (accuracy, sensitivity, specificity: 89.5 %, 98.3 %, 83.9 %). In this study, the TCNN model demonstrates higher sensitivity in detecting PVA, but HLA was better at identifying non-PVA breathing cycles due to its rule-based nature. While the overall AI identified by both classification methods are very similar, the intra-patient distribution of each PVA type varies between HLA and TCNN.RESULTSSelf-validation with the training dataset shows overall better HLA performance (accuracy, sensitivity, specificity: 97.5 %, 96.6 %, 98.1 %) compared to the TCNN model (accuracy, sensitivity, specificity: 89.5 %, 98.3 %, 83.9 %). In this study, the TCNN model demonstrates higher sensitivity in detecting PVA, but HLA was better at identifying non-PVA breathing cycles due to its rule-based nature. While the overall AI identified by both classification methods are very similar, the intra-patient distribution of each PVA type varies between HLA and TCNN.The collective findings underscore the efficacy of both HLA and TCNN in PVA detection, indicating the potential for real-time continuous monitoring of PVA. While ML methods such as TCNN demonstrate good PVA identification performance, it is essential to ensure optimal model architecture and diversity in training data before widespread uptake as standard care. Moving forward, further validation and adoption of RBM methods, such as HLA, offers an effective approach to PVA detection while providing clear distinction into the underlying patterns of PVA, better aligning with clinical needs for transparency, explicability, adaptability and reliability of these emerging tools for clinical care.CONCLUSIONThe collective findings underscore the efficacy of both HLA and TCNN in PVA detection, indicating the potential for real-time continuous monitoring of PVA. While ML methods such as TCNN demonstrate good PVA identification performance, it is essential to ensure optimal model architecture and diversity in training data before widespread uptake as standard care. Moving forward, further validation and adoption of RBM methods, such as HLA, offers an effective approach to PVA detection while providing clear distinction into the underlying patterns of PVA, better aligning with clinical needs for transparency, explicability, adaptability and reliability of these emerging tools for clinical care.
ArticleNumber 108323
Author Chase, J. Geoffrey
Wang, Xin
Ooi, Ean Hin
Cove, Matthew E
Ang, Christopher Yew Shuen
Chen, Yuhong
Chiew, Yeong Shiong
Zhou, Cong
Author_xml – sequence: 1
  givenname: Christopher Yew Shuen
  surname: Ang
  fullname: Ang, Christopher Yew Shuen
  organization: School of Engineering, Monash University Malaysia, Selangor, Malaysia
– sequence: 2
  givenname: Yeong Shiong
  surname: Chiew
  fullname: Chiew, Yeong Shiong
  email: chiew.yeong.shiong@monash.edu
  organization: School of Engineering, Monash University Malaysia, Selangor, Malaysia
– sequence: 3
  givenname: Xin
  surname: Wang
  fullname: Wang, Xin
  organization: School of Engineering, Monash University Malaysia, Selangor, Malaysia
– sequence: 4
  givenname: Ean Hin
  surname: Ooi
  fullname: Ooi, Ean Hin
  organization: School of Engineering, Monash University Malaysia, Selangor, Malaysia
– sequence: 5
  givenname: Matthew E
  surname: Cove
  fullname: Cove, Matthew E
  organization: Division of Respiratory & Critical Care Medicine, Department of Medicine, National University Health System, Singapore
– sequence: 6
  givenname: Yuhong
  surname: Chen
  fullname: Chen, Yuhong
  organization: Intensive Care Unit, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
– sequence: 7
  givenname: Cong
  surname: Zhou
  fullname: Zhou, Cong
  organization: Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
– sequence: 8
  givenname: J. Geoffrey
  surname: Chase
  fullname: Chase, J. Geoffrey
  organization: Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39029417$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1v1DAQxS1URLeFf4ADypFLFn8kTlIhIVTxJRXBAc7WxJmwXhw72N6i_Pd4m5ZDD4XLjDR6v6fRe2fkxHmHhDxndMsok6_2Wz3N_ZZTXuVDK7h4RDasbXjZ1LI-IZss6kouaXNKzmLcU0p5Xcsn5FR0lHcVazZk-QrJoEvldR7GQvKhgLg4vQveLYW2EKMZjc4q7wrjign1Dlw-WLsUdxAOxbz6xIvisx_Qlj3EfM1uE-idcVhYhOCM-5Ed0s4Pb56SxyPYiM9u9zn5_v7dt8uP5dWXD58u316VuqpZKgEFRZAgNTY1Ss46FMNIsW4bZLIFHFhdV3k3EkYm-5GKrpO66yoNA616cU7E6ntwMyy_899qDmaCsChG1TFItVfHINUxSLUGmamXKzUH_-uAManJRI3WgkN_iErQlrdCNKLN0he30kM_4fDX_S7kLOCrQAcfY8Dx_x5o70HapJsWUgBjH0ZfryjmWK8NBhV17kbjYALqpAZvHsYv7uHampvGf-LyL_gPqaTN0w
CitedBy_id crossref_primary_10_1016_j_cmpb_2025_108685
Cites_doi 10.1007/s00134-016-4423-3
10.1177/14759217231160271
10.1016/j.cmpb.2021.106601
10.1186/s12874-019-0681-4
10.1186/s40560-021-00565-5
10.1016/j.cmpb.2021.106300
10.1016/j.aucc.2020.11.008
10.1016/j.comcom.2021.07.009
10.1186/cc13063
10.1186/s12938-023-01165-0
10.4187/respcare.04750
10.1097/CCM.0000000000002849
10.1186/s13613-024-01259-5
10.1183/23120541.00075-2017
10.1016/j.compbiomed.2022.106275
10.1186/s13054-024-04845-y
10.1016/j.jbi.2019.103364
10.3390/s21124149
10.1016/j.compbiomed.2021.104249
10.1007/s00134-007-0681-4
10.2214/AJR.18.20331
10.1007/s10518-017-0190-y
10.1007/s00134-012-2493-4
10.1590/s1806-37562017000000185
10.12989/sss.2015.16.1.163
10.1186/cc10309
10.1186/s40635-019-0234-5
10.1038/s41598-018-36011-0
10.4187/respcare.07404
10.1371/journal.pone.0039932
10.3414/ME17-02-0012
10.1038/s41598-017-15052-x
10.1016/j.cmpb.2020.105912
10.1016/j.cmpb.2021.106057
10.14778/3007263.3007285
10.1016/j.compbiomed.2022.105225
10.1016/j.compbiomed.2020.103721
10.1016/j.ijmedinf.2021.104469
10.3390/bioengineering10101163
10.1016/j.measurement.2023.113597
10.1007/s00134-006-0301-8
10.1186/s12859-021-04354-7
10.4187/respcare.05949
10.1016/j.compbiomed.2021.105022
10.1097/CCM.0000000000003256
10.3389/fmedt.2022.782756
10.1109/EMBC.2015.7319591
10.1016/j.cell.2018.02.010
10.1016/S2589-7500(19)30058-5
10.1007/s10439-021-02854-4
10.1038/s41390-024-03064-z
10.4187/respcare.05593
10.1007/s00134-015-3692-6
10.1186/s12938-022-00986-9
10.1016/j.aiopen.2022.11.003
10.14778/2733004.2733024
10.1016/j.ifacol.2018.11.610
10.1016/j.ifacsc.2023.100236
10.1111/mice.12108
10.1007/s10877-022-00900-7
10.1016/j.ifacol.2023.10.1111
10.1007/s41019-020-00130-4
10.2174/1389202922666210705124359
10.1016/j.ymssp.2016.07.030
10.1016/j.ifacol.2021.10.276
10.1186/s12916-019-1426-2
10.1007/s00134-007-0767-z
10.1016/j.bspc.2023.105251
10.1038/s41746-018-0029-1
10.1371/journal.pone.0254841
10.1016/j.cmpb.2018.02.007
10.1002/9781119857433.ch17
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2024 The Author(s)
– notice: Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOI 10.1016/j.cmpb.2024.108323
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
ExternalDocumentID 10.1016/j.cmpb.2024.108323
39029417
10_1016_j_cmpb_2024_108323
S016926072400316X
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
~HD
6I.
AACTN
AAFTH
ABTAH
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c451t-ae30ea6a6ce75e6219e3df0e587e168aed15548ae76af16bf03996c994cad04b3
IEDL.DBID UNPAY
ISSN 0169-2607
1872-7565
IngestDate Tue Aug 19 19:48:19 EDT 2025
Sat Sep 27 19:46:16 EDT 2025
Wed Feb 19 02:09:37 EST 2025
Wed Oct 01 03:21:48 EDT 2025
Thu Apr 24 23:05:22 EDT 2025
Tue Dec 03 03:45:16 EST 2024
Tue Oct 14 19:36:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Hysteresis loop analysis
Rule based methods
Convolution neural network
Mechanical ventilation
Patient–ventilator asynchrony
Machine learning
Language English
License This is an open access article under the CC BY license.
Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-ae30ea6a6ce75e6219e3df0e587e168aed15548ae76af16bf03996c994cad04b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.cmpb.2024.108323
PMID 39029417
PQID 3082833738
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1016_j_cmpb_2024_108323
proquest_miscellaneous_3082833738
pubmed_primary_39029417
crossref_primary_10_1016_j_cmpb_2024_108323
crossref_citationtrail_10_1016_j_cmpb_2024_108323
elsevier_sciencedirect_doi_10_1016_j_cmpb_2024_108323
elsevier_clinicalkey_doi_10_1016_j_cmpb_2024_108323
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
2024-Oct
20241001
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chong (bib0034) 2021; 54
Miglani, Kumar (bib0070) 2021; 178
Blanch (bib0002) 2015; 41
Rabiepour, Zhou, Chase (bib0043) 2023
de Wit (bib0059) 2009; 37
Tabebordbar (bib0080) 2020; 5
Rajkomar (bib0068) 2018; 1
Sottile (bib0026) 2018; 46
Obeso (bib0032) 2023; 86
Guy (bib0049) 2022; 142
Souza Leite (bib0005) 2020; 15
Ang (bib0053) 2022; 215
Stolfi, Castiglione (bib0067) 2021; 22
Zhou (bib0041) 2017; 84
Chiew, Y.S., et al., Automated logging of inspiratory and expiratory non-synchronized breathing (ALIEN) for mechanical ventilation. Vol. 2015. 2015.
Lou (bib0069) 2019; 1
Lee (bib0054) 2021; 49
Mulqueeny (bib0018) 2007; 33
Petkovic (bib0066) 2018; 23
Zhou (bib0040) 2015; 16
Park (bib0065) 2023; 10
Zhou, Chase, Rodgers (bib0042) 2017
Habehh, Gohel (bib0075) 2021; 22
Aquino Esperanza (bib0012) 2020; 65
de Haro (bib0057) 2018; 46
Longhini (bib0010) 2017; 3
Iwana, Uchida (bib0052) 2021; 16
Pan (bib0030) 2021; 21
Kelly (bib0064) 2019; 17
Han (bib0077) 2022; 3
Mulqueeny (bib0015) 2009
Sidey-Gibbons, Sidey-Gibbons (bib0073) 2019; 19
Thille (bib0060) 2006; 32
Kyo (bib0001) 2021; 9
Zhang (bib0006) 2020; 120
Wang (bib0074) 2020; 102
Sinderby (bib0020) 2013; 17
Beitler (bib0058) 2016; 42
Holanda (bib0003) 2018; 44
Newberry (bib0013) 2016
Blanch (bib0019) 2012; 38
See (bib0007) 2021; 34
Sauer (bib0023) 2024; 14
Zhou (bib0039) 2015; 30
Kermany (bib0063) 2018; 172
Tandan (bib0076) 2021; 131
Sun (bib0078) 2014; 7
Ossai, Wickramasinghe (bib0029) 2021; 150
G.C (bib0083) 2015
Zhou (bib0051) 2017; 15
Loo, N.L., et al., A Machine learning model for real-time asynchronous breathing monitoring. IFAC-PapersOnLine, 2018. 51(27): p. 378–383.
Sun (bib0047) 2023; 56
de Haro (bib0004) 2019; 7
Knopp (bib0050) 2021; 208
de Haro (bib0033) 2024; 28
Glaab (bib0082) 2012; 7
Rehm (bib0025) 2018; 57
Chong, Belteki (bib0036) 2024
Gutierrez (bib0016) 2011; 15
Younes (bib0017) 2007; 33
Chase (bib0048) 2023
Philbrick (bib0062) 2018; 211
Adams (bib0022) 2017; 7
Sun (bib0046) 2023; 37
Iqbal (bib0071) 2022; 4
Tabebordbar (bib0079) 2019
Ramirez (bib0009) 2017; 62
van de Kamp (bib0035) 2024
Subirà (bib0011) 2018; 63
Mure (bib0072) 2016
Zhou (bib0037) 2022; 21
Bakkes (bib0027) 2020; 2020
Chen (bib0038) 2023; 22
Haynes (bib0084) 2017; 62
Pan (bib0028) 2021; 204
Sun (bib0045) 2022; 141
Chen (bib0031) 2023; 222
Ang (bib0061) 2024; 29
Zhou (bib0044) 2021; 199
Milo, Novgorodov, Tan (bib0081) 2016; 9
Chiew (bib0014) 2018; 157
Ang (bib0055) 2022
Marchuk (bib0056) 2018; 8
Ramirez, Arellano (bib0008) 2017; 4
Tandan (10.1016/j.cmpb.2024.108323_bib0076) 2021; 131
Tabebordbar (10.1016/j.cmpb.2024.108323_bib0079) 2019
Chen (10.1016/j.cmpb.2024.108323_bib0038) 2023; 22
Aquino Esperanza (10.1016/j.cmpb.2024.108323_bib0012) 2020; 65
Lee (10.1016/j.cmpb.2024.108323_bib0054) 2021; 49
Sun (10.1016/j.cmpb.2024.108323_bib0078) 2014; 7
Gutierrez (10.1016/j.cmpb.2024.108323_bib0016) 2011; 15
de Wit (10.1016/j.cmpb.2024.108323_bib0059) 2009; 37
G.C (10.1016/j.cmpb.2024.108323_bib0083) 2015
van de Kamp (10.1016/j.cmpb.2024.108323_bib0035) 2024
Zhou (10.1016/j.cmpb.2024.108323_bib0042) 2017
Stolfi (10.1016/j.cmpb.2024.108323_bib0067) 2021; 22
Younes (10.1016/j.cmpb.2024.108323_bib0017) 2007; 33
Zhou (10.1016/j.cmpb.2024.108323_bib0040) 2015; 16
Han (10.1016/j.cmpb.2024.108323_bib0077) 2022; 3
Mulqueeny (10.1016/j.cmpb.2024.108323_bib0018) 2007; 33
Haynes (10.1016/j.cmpb.2024.108323_bib0084) 2017; 62
de Haro (10.1016/j.cmpb.2024.108323_bib0004) 2019; 7
Sun (10.1016/j.cmpb.2024.108323_bib0047) 2023; 56
Obeso (10.1016/j.cmpb.2024.108323_bib0032) 2023; 86
Zhou (10.1016/j.cmpb.2024.108323_bib0037) 2022; 21
Pan (10.1016/j.cmpb.2024.108323_bib0030) 2021; 21
Zhou (10.1016/j.cmpb.2024.108323_bib0051) 2017; 15
Chong (10.1016/j.cmpb.2024.108323_bib0034) 2021; 54
Sun (10.1016/j.cmpb.2024.108323_bib0046) 2023; 37
Blanch (10.1016/j.cmpb.2024.108323_bib0019) 2012; 38
Sidey-Gibbons (10.1016/j.cmpb.2024.108323_bib0073) 2019; 19
Kyo (10.1016/j.cmpb.2024.108323_bib0001) 2021; 9
Ramirez (10.1016/j.cmpb.2024.108323_bib0008) 2017; 4
Adams (10.1016/j.cmpb.2024.108323_bib0022) 2017; 7
Zhou (10.1016/j.cmpb.2024.108323_bib0044) 2021; 199
Rehm (10.1016/j.cmpb.2024.108323_bib0025) 2018; 57
Rabiepour (10.1016/j.cmpb.2024.108323_bib0043) 2023
Milo (10.1016/j.cmpb.2024.108323_bib0081) 2016; 9
See (10.1016/j.cmpb.2024.108323_bib0007) 2021; 34
Pan (10.1016/j.cmpb.2024.108323_bib0028) 2021; 204
Chong (10.1016/j.cmpb.2024.108323_bib0036) 2024
Kermany (10.1016/j.cmpb.2024.108323_bib0063) 2018; 172
Glaab (10.1016/j.cmpb.2024.108323_bib0082) 2012; 7
Iwana (10.1016/j.cmpb.2024.108323_bib0052) 2021; 16
Sun (10.1016/j.cmpb.2024.108323_bib0045) 2022; 141
Mure (10.1016/j.cmpb.2024.108323_bib0072) 2016
Zhou (10.1016/j.cmpb.2024.108323_bib0039) 2015; 30
Ang (10.1016/j.cmpb.2024.108323_bib0053) 2022; 215
Sinderby (10.1016/j.cmpb.2024.108323_bib0020) 2013; 17
Tabebordbar (10.1016/j.cmpb.2024.108323_bib0080) 2020; 5
de Haro (10.1016/j.cmpb.2024.108323_bib0033) 2024; 28
Miglani (10.1016/j.cmpb.2024.108323_bib0070) 2021; 178
Chiew (10.1016/j.cmpb.2024.108323_bib0014) 2018; 157
Ossai (10.1016/j.cmpb.2024.108323_bib0029) 2021; 150
Rajkomar (10.1016/j.cmpb.2024.108323_bib0068) 2018; 1
Sottile (10.1016/j.cmpb.2024.108323_bib0026) 2018; 46
Wang (10.1016/j.cmpb.2024.108323_bib0074) 2020; 102
Beitler (10.1016/j.cmpb.2024.108323_bib0058) 2016; 42
10.1016/j.cmpb.2024.108323_bib0024
10.1016/j.cmpb.2024.108323_bib0021
Chen (10.1016/j.cmpb.2024.108323_bib0031) 2023; 222
Sauer (10.1016/j.cmpb.2024.108323_bib0023) 2024; 14
Ang (10.1016/j.cmpb.2024.108323_bib0055) 2022
Newberry (10.1016/j.cmpb.2024.108323_bib0013) 2016
Chase (10.1016/j.cmpb.2024.108323_bib0048) 2023
Thille (10.1016/j.cmpb.2024.108323_bib0060) 2006; 32
Zhang (10.1016/j.cmpb.2024.108323_bib0006) 2020; 120
Bakkes (10.1016/j.cmpb.2024.108323_bib0027) 2020; 2020
Lou (10.1016/j.cmpb.2024.108323_bib0069) 2019; 1
Iqbal (10.1016/j.cmpb.2024.108323_bib0071) 2022; 4
Blanch (10.1016/j.cmpb.2024.108323_bib0002) 2015; 41
Kelly (10.1016/j.cmpb.2024.108323_bib0064) 2019; 17
Petkovic (10.1016/j.cmpb.2024.108323_bib0066) 2018; 23
Holanda (10.1016/j.cmpb.2024.108323_bib0003) 2018; 44
de Haro (10.1016/j.cmpb.2024.108323_bib0057) 2018; 46
Philbrick (10.1016/j.cmpb.2024.108323_bib0062) 2018; 211
Ang (10.1016/j.cmpb.2024.108323_bib0061) 2024; 29
Souza Leite (10.1016/j.cmpb.2024.108323_bib0005) 2020; 15
Mulqueeny (10.1016/j.cmpb.2024.108323_bib0015) 2009
Knopp (10.1016/j.cmpb.2024.108323_bib0050) 2021; 208
Longhini (10.1016/j.cmpb.2024.108323_bib0010) 2017; 3
Zhou (10.1016/j.cmpb.2024.108323_bib0041) 2017; 84
Marchuk (10.1016/j.cmpb.2024.108323_bib0056) 2018; 8
Habehh (10.1016/j.cmpb.2024.108323_bib0075) 2021; 22
Park (10.1016/j.cmpb.2024.108323_bib0065) 2023; 10
Subirà (10.1016/j.cmpb.2024.108323_bib0011) 2018; 63
Guy (10.1016/j.cmpb.2024.108323_bib0049) 2022; 142
Ramirez (10.1016/j.cmpb.2024.108323_bib0009) 2017; 62
References_xml – volume: 14
  start-page: 32
  year: 2024
  ident: bib0023
  article-title: Automated characterization of patient–ventilator interaction using surface electromyography
  publication-title: Ann. Intensive Care
– year: 2022
  ident: bib0055
  article-title: Predicting mechanically ventilated patients future respiratory system elastance – A stochastic modelling approach
  publication-title: Comput. Biol. Med.
– volume: 208
  year: 2021
  ident: bib0050
  article-title: Model-based estimation of negative inspiratory driving pressure in patients receiving invasive NAVA mechanical ventilation
  publication-title: Comput. Methods Programs Biomed.
– volume: 16
  start-page: 163
  year: 2015
  end-page: 181
  ident: bib0040
  article-title: Overall damage identification of flag-shaped hysteresis systems under seismic excitation
  publication-title: Smart. Struct. Syst.
– volume: 62
  start-page: 144
  year: 2017
  end-page: 149
  ident: bib0009
  article-title: Ability of ICU Health-Care Professionals to Identify Patient-Ventilator Asynchrony Using Waveform Analysis
  publication-title: Respir. Care
– volume: 8
  year: 2018
  ident: bib0056
  article-title: Predicting Patient-ventilator Asynchronies with Hidden Markov Models
  publication-title: Sci. Rep.
– volume: 42
  start-page: 1427
  year: 2016
  end-page: 1436
  ident: bib0058
  article-title: Quantifying unintended exposure to high tidal volumes from breath stacking dyssynchrony in ARDS: the BREATHE criteria
  publication-title: Intensive Care Med.
– volume: 5
  start-page: 207
  year: 2020
  end-page: 223
  ident: bib0080
  article-title: Feature-based and adaptive rule adaptation in dynamic environments
  publication-title: Data Sci. Eng.
– volume: 65
  start-page: 847
  year: 2020
  ident: bib0012
  article-title: Monitoring Asynchrony During Invasive Mechanical Ventilation
  publication-title: Respir. Care
– volume: 30
  start-page: 247
  year: 2015
  end-page: 262
  ident: bib0039
  article-title: Physical parameter identification of structural systems with hysteretic pinching
  publication-title: Computer-Aided Civil Infrastruct. Eng.
– volume: 7
  start-page: 43
  year: 2019
  ident: bib0004
  article-title: Patient-ventilator asynchronies during mechanical ventilation: current knowledge and research priorities
  publication-title: Intensive Care Med. Exp.
– volume: 4
  year: 2022
  ident: bib0071
  article-title: Exploring Unsupervised Machine Learning Classification Methods for Physiological Stress Detection
  publication-title: Front. Med. Technol.
– volume: 1
  start-page: 18
  year: 2018
  ident: bib0068
  article-title: Scalable and accurate deep learning with electronic health records
  publication-title: NPJ. Digit. Med.
– volume: 131
  year: 2021
  ident: bib0076
  article-title: Discovering symptom patterns of COVID-19 patients using association rule mining
  publication-title: Comput. Biol. Med.
– volume: 44
  start-page: 321
  year: 2018
  end-page: 333
  ident: bib0003
  article-title: Patient-ventilator asynchrony
  publication-title: J. Bras. Pneumol.
– volume: 33
  start-page: 1337
  year: 2007
  end-page: 1346
  ident: bib0017
  article-title: A method for monitoring and improving patient: ventilator interaction
  publication-title: Intensive Care Med.
– volume: 199
  year: 2021
  ident: bib0044
  article-title: Virtual patients for mechanical ventilation in the intensive care unit
  publication-title: Computer Methods Prog. Biomed.
– volume: 54
  start-page: 322
  year: 2021
  end-page: 327
  ident: bib0034
  article-title: Classification Patient-Ventilator Asynchrony with Dual-Input Convolutional Neural Network
  publication-title: IFAC-PapersOnLine
– volume: 22
  start-page: 102
  year: 2023
  ident: bib0038
  article-title: Automated evaluation of typical patient–ventilator asynchronies based on lung hysteretic responses
  publication-title: Biomed. Eng. Online
– volume: 15
  year: 2020
  ident: bib0005
  article-title: Patient-ventilator asynchrony in conventional ventilation modes during short-term mechanical ventilation after cardiac surgery: randomized clinical trial
  publication-title: Multidiscip. Respir. Med.
– volume: 157
  start-page: 217
  year: 2018
  end-page: 224
  ident: bib0014
  article-title: Assessing mechanical ventilation asynchrony through iterative airway pressure reconstruction
  publication-title: Comput. Methods Programs Biomed.
– volume: 57
  start-page: 208
  year: 2018
  end-page: 219
  ident: bib0025
  article-title: Creation of a robust and generalizable machine learning classifier for patient ventilator asynchrony
  publication-title: Methods Inf. Med.
– volume: 28
  start-page: 75
  year: 2024
  ident: bib0033
  article-title: Flow starvation during square-flow assisted ventilation detected by supervised deep learning techniques
  publication-title: Crit. Care (Fullerton)
– volume: 34
  start-page: 539
  year: 2021
  end-page: 546
  ident: bib0007
  article-title: Managing patient–ventilator asynchrony with a twice-daily screening protocol: a retrospective cohort study
  publication-title: Australian Critical Care
– year: 2024
  ident: bib0036
  article-title: Detection and quantitative analysis of patient-ventilator interactions in ventilated infants by deep learning networks
  publication-title: Pediatr. Res.
– volume: 211
  start-page: 1184
  year: 2018
  end-page: 1193
  ident: bib0062
  article-title: What does deep learning see? Insights from a classifier trained to predict contrast enhancement phase from CT images
  publication-title: Am. J. Roentgenol.
– volume: 23
  start-page: 204
  year: 2018
  end-page: 215
  ident: bib0066
  article-title: Improving the explainability of Random Forest classifier - user centered approach
  publication-title: Pac. Symp. Biocomput.
– volume: 46
  start-page: 1385
  year: 2018
  end-page: 1392
  ident: bib0057
  article-title: Double Cycling During Mechanical Ventilation: frequency, Mechanisms, and Physiologic Implications
  publication-title: Crit. Care Med.
– volume: 41
  start-page: 633
  year: 2015
  end-page: 641
  ident: bib0002
  article-title: Asynchronies during mechanical ventilation are associated with mortality
  publication-title: Intensive Care Med.
– volume: 7
  start-page: 1529
  year: 2014
  end-page: 1540
  ident: bib0078
  article-title: Chimera: large-scale classification using machine learning, rules, and crowdsourcing
  publication-title: Proc. VLDB Endow.
– volume: 7
  start-page: 14980
  year: 2017
  ident: bib0022
  article-title: Development and validation of a multi-algorithm analytic platform to detect off-target mechanical ventilation
  publication-title: Scientific Reports,
– volume: 33
  start-page: 2014
  year: 2007
  end-page: 2018
  ident: bib0018
  article-title: Automatic detection of ineffective triggering and double triggering during mechanical ventilation
  publication-title: Intensive Care Med.
– volume: 9
  start-page: 1465
  year: 2016
  end-page: 1468
  ident: bib0081
  article-title: Rudolf: interactive rule refinement system for fraud detection
  publication-title: Proc. VLDB Endow
– volume: 17
  start-page: R239
  year: 2013
  ident: bib0020
  article-title: An automated and standardized neural index to quantify patient-ventilator interaction
  publication-title: Crit. Care (Fullerton)
– reference: Loo, N.L., et al., A Machine learning model for real-time asynchronous breathing monitoring. IFAC-PapersOnLine, 2018. 51(27): p. 378–383.
– reference: Chiew, Y.S., et al., Automated logging of inspiratory and expiratory non-synchronized breathing (ALIEN) for mechanical ventilation. Vol. 2015. 2015.
– volume: 86
  year: 2023
  ident: bib0032
  article-title: A novel application of spectrograms with machine learning can detect patient ventilator dyssynchrony
  publication-title: Biomed. Signal. Process. Control
– volume: 15
  start-page: 5393
  year: 2017
  end-page: 5412
  ident: bib0051
  article-title: Damage assessment by stiffness identification for a full-scale three-story steel moment resisting frame building subjected to a sequence of earthquake excitations
  publication-title: Bull. Earthq. Eng.
– volume: 3
  start-page: 182
  year: 2022
  end-page: 192
  ident: bib0077
  article-title: PTR: prompt Tuning with Rules for Text Classification
  publication-title: AI Open
– volume: 141
  year: 2022
  ident: bib0045
  article-title: Over-distension prediction via hysteresis loop analysis and patient-specific basis functions in a virtual patient model
  publication-title: Comput. Biol. Med.
– volume: 9
  start-page: 50
  year: 2021
  ident: bib0001
  article-title: Patient–ventilator asynchrony, impact on clinical outcomes and effectiveness of interventions: a systematic review and meta-analysis
  publication-title: J. Intensive Care
– volume: 3
  start-page: 00075
  year: 2017
  end-page: 02017
  ident: bib0010
  article-title: Efficacy of ventilator waveform observation for detection of patient-ventilator asynchrony during NIV: a multicentre study
  publication-title: ERJ. Open. Res.
– volume: 32
  start-page: 1515
  year: 2006
  end-page: 1522
  ident: bib0060
  article-title: Patient-ventilator asynchrony during assisted mechanical ventilation
  publication-title: Intensive Care Med.
– year: 2009
  ident: bib0015
  article-title: Automated detection of asynchrony in patient-ventilator interaction
  publication-title: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– volume: 142
  year: 2022
  ident: bib0049
  article-title: Quantifying ventilator unloading in CPAP ventilation
  publication-title: Comput. Biol. Med.
– volume: 49
  start-page: 3280
  year: 2021
  end-page: 3295
  ident: bib0054
  article-title: Stochastic Modelling of Respiratory System Elastance for Mechanically Ventilated Respiratory Failure Patients
  publication-title: Ann. Biomed. Eng.
– start-page: 265
  year: 2015
  end-page: 276
  ident: bib0083
  article-title: Why big data industrial systems need rules and what we can do about it
  publication-title: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data
– volume: 2020
  start-page: 150
  year: 2020
  end-page: 153
  ident: bib0027
  article-title: A machine learning method for automatic detection and classification of patient-ventilator asynchrony
  publication-title: Annu Int. Conf. IEEe Eng. Med. Biol. Soc.
– year: 2019
  ident: bib0079
  article-title: Adaptive Rule Adaptation in Unstructured and Dynamic Environments
  publication-title: Web Information Systems Engineering – WISE 2019
– volume: 172
  start-page: 1122
  year: 2018
  end-page: 1131
  ident: bib0063
  article-title: Identifying medical diagnoses and treatable diseases by image-based deep learning
  publication-title: Cell
– volume: 21
  start-page: 16
  year: 2022
  ident: bib0037
  article-title: Reconstructing asynchrony for mechanical ventilation using a hysteresis loop virtual patient model
  publication-title: Biomed. Eng. Online
– year: 2024
  ident: bib0035
  article-title: Automatic patient-ventilator asynchrony detection framework using objective asynchrony definitions
  publication-title: IFAC J. Syst. Control
– volume: 46
  year: 2018
  ident: bib0026
  article-title: The association between ventilator dyssynchrony, delivered tidal volume, and sedation using a novel automated ventilator dyssynchrony detection algorithm*
  publication-title: Crit. Care Med.
– year: 2023
  ident: bib0043
  article-title: Structural performance and damage prediction using a novel digital cloning technique
  publication-title: Struct. Health Monit.
– volume: 22
  start-page: 483
  year: 2021
  ident: bib0067
  article-title: Emulating complex simulations by machine learning methods
  publication-title: BMC. Bioinformatics.
– volume: 178
  start-page: 37
  year: 2021
  end-page: 63
  ident: bib0070
  article-title: Blockchain management and machine learning adaptation for IoT environment in 5G and beyond networks: a systematic review
  publication-title: Comput. Commun.
– volume: 150
  year: 2021
  ident: bib0029
  article-title: Intelligent decision support with machine learning for efficient management of mechanical ventilation in the intensive care unit – A critical overview
  publication-title: Int. J. Med. Inform.
– volume: 17
  start-page: 195
  year: 2019
  ident: bib0064
  article-title: Key challenges for delivering clinical impact with artificial intelligence
  publication-title: BMC. Med.
– volume: 62
  start-page: 1004
  year: 2017
  ident: bib0084
  article-title: Patient-ventilator asynchrony and standard waveforms: looks can be deceiving
  publication-title: Respir. Care
– start-page: 457
  year: 2023
  end-page: 489
  ident: bib0048
  article-title: Digital twins and automation of care in the intensive care unit
  publication-title: Cyber–Physical–Human Syst.: Fundament. Appl.
– volume: 1
  start-page: e136
  year: 2019
  end-page: e147
  ident: bib0069
  article-title: An image-based deep learning framework for individualising radiotherapy dose: a retrospective analysis of outcome prediction
  publication-title: Lancet Digit. Health
– volume: 84
  start-page: 384
  year: 2017
  end-page: 398
  ident: bib0041
  article-title: Comparing model-based adaptive LMS filters and a model-free hysteresis loop analysis method for structural health monitoring
  publication-title: Mech. Syst. Signal Process.
– volume: 222
  year: 2023
  ident: bib0031
  article-title: An interpretable multi-scale lightweight network for patient-ventilator asynchrony detection during mechanical ventilation
  publication-title: Measurement
– volume: 10
  start-page: 1163
  year: 2023
  ident: bib0065
  article-title: Development of a machine learning model for predicting weaning outcomes based solely on continuous ventilator parameters during spontaneous breathing trials
  publication-title: Bioengineering
– year: 2016
  ident: bib0013
  article-title: Iterative Interpolative Pressure Reconstruction for Improved Respiratory Mechanics Estimation During Asynchronous Volume Controlled Ventilation
  publication-title: International Conference for Innovation in Biomedical Engineering and Life Sciences
– volume: 102
  year: 2020
  ident: bib0074
  article-title: Unsupervised machine learning for the discovery of latent disease clusters and patient subgroups using electronic health records
  publication-title: J. Biomed. Inform.
– volume: 63
  start-page: 464
  year: 2018
  ident: bib0011
  article-title: Minimizing Asynchronies in Mechanical Ventilation: current and Future Trends
  publication-title: Respir. Care
– volume: 204
  year: 2021
  ident: bib0028
  article-title: An interpreTable 1D convolutional neural network for detecting patient-ventilator asynchrony in mechanical ventilation
  publication-title: Comput. Methods Programs Biomed.
– volume: 37
  start-page: 2740
  year: 2009
  end-page: 2745
  ident: bib0059
  article-title: Ineffective triggering predicts increased duration of mechanical ventilation
  publication-title: Crit. Care Med.
– volume: 38
  start-page: 772
  year: 2012
  end-page: 780
  ident: bib0019
  article-title: Validation of the Better Care® system to detect ineffective efforts during expiration in mechanically ventilated patients: a pilot study
  publication-title: Intensive Care Med.
– volume: 215
  year: 2022
  ident: bib0053
  article-title: Quantification of respiratory effort magnitude in spontaneous breathing patients using Convolutional Autoencoders
  publication-title: Comput. Methods Programs Biomed.
– volume: 56
  start-page: 2096
  year: 2023
  end-page: 2101
  ident: bib0047
  article-title: Patient spontaneous effort estimation in digital twin model with b-spline function
  publication-title: IFAC-PapersOnLine
– volume: 16
  year: 2021
  ident: bib0052
  article-title: An empirical survey of data augmentation for time series classification with neural networks
  publication-title: PLoS. One
– volume: 7
  start-page: e39932
  year: 2012
  ident: bib0082
  article-title: Using rule-based machine learning for candidate disease gene prioritization and sample classification of cancer gene expression data
  publication-title: PLoS. One
– volume: 19
  start-page: 64
  year: 2019
  ident: bib0073
  article-title: Machine learning in medicine: a practical introduction
  publication-title: BMC. Med. Res. Methodol.
– volume: 22
  start-page: 291
  year: 2021
  end-page: 300
  ident: bib0075
  article-title: Machine Learning in Healthcare
  publication-title: Curr. Genomics.
– volume: 120
  year: 2020
  ident: bib0006
  article-title: Detection of patient-ventilator asynchrony from mechanical ventilation waveforms using a two-layer long short-term memory neural network
  publication-title: Comput. Biol. Med.
– year: 2016
  ident: bib0072
  article-title: Classification of multiple sclerosis lesion evolution patterns a study based on unsupervised clustering of asynchronous time-series
  publication-title: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI)
– volume: 15
  start-page: R167
  year: 2011
  ident: bib0016
  article-title: Automatic detection of patient-ventilator asynchrony by spectral analysis of airway flow
  publication-title: Crit. Care
– volume: 29
  year: 2024
  ident: bib0061
  article-title: Exploring variable observational time windows for patient–ventilator​ asynchrony during mechanical ventilation treatment
  publication-title: IFAC J. Syst. Control
– start-page: 1
  year: 2017
  end-page: 16
  ident: bib0042
  article-title: Efficient hysteresis loop analysis-based damage identification of a reinforced concrete frame structure over multiple events
  publication-title: J. Civ. Struct. Health Monit.
– volume: 37
  start-page: 389
  year: 2023
  end-page: 398
  ident: bib0046
  article-title: Non-invasive over-distension measurements: data driven vs model-based
  publication-title: J. Clin. Monit. Comput.
– volume: 21
  year: 2021
  ident: bib0030
  article-title: Identifying Patient-Ventilator Asynchrony on a Small Dataset Using Image-Based Transfer Learning
  publication-title: Sensors. (Basel)
– volume: 4
  year: 2017
  ident: bib0008
  article-title: Identifying Patient-Ventilator Asynchrony Using Waveform Analysis
  publication-title: Palliative Med. Care Open Access
– volume: 42
  start-page: 1427
  issue: 9
  year: 2016
  ident: 10.1016/j.cmpb.2024.108323_bib0058
  article-title: Quantifying unintended exposure to high tidal volumes from breath stacking dyssynchrony in ARDS: the BREATHE criteria
  publication-title: Intensive Care Med.
  doi: 10.1007/s00134-016-4423-3
– year: 2023
  ident: 10.1016/j.cmpb.2024.108323_bib0043
  article-title: Structural performance and damage prediction using a novel digital cloning technique
  publication-title: Struct. Health Monit.
  doi: 10.1177/14759217231160271
– volume: 215
  year: 2022
  ident: 10.1016/j.cmpb.2024.108323_bib0053
  article-title: Quantification of respiratory effort magnitude in spontaneous breathing patients using Convolutional Autoencoders
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2021.106601
– volume: 19
  start-page: 64
  issue: 1
  year: 2019
  ident: 10.1016/j.cmpb.2024.108323_bib0073
  article-title: Machine learning in medicine: a practical introduction
  publication-title: BMC. Med. Res. Methodol.
  doi: 10.1186/s12874-019-0681-4
– year: 2019
  ident: 10.1016/j.cmpb.2024.108323_bib0079
  article-title: Adaptive Rule Adaptation in Unstructured and Dynamic Environments
– volume: 9
  start-page: 50
  issue: 1
  year: 2021
  ident: 10.1016/j.cmpb.2024.108323_bib0001
  article-title: Patient–ventilator asynchrony, impact on clinical outcomes and effectiveness of interventions: a systematic review and meta-analysis
  publication-title: J. Intensive Care
  doi: 10.1186/s40560-021-00565-5
– volume: 208
  year: 2021
  ident: 10.1016/j.cmpb.2024.108323_bib0050
  article-title: Model-based estimation of negative inspiratory driving pressure in patients receiving invasive NAVA mechanical ventilation
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2021.106300
– year: 2009
  ident: 10.1016/j.cmpb.2024.108323_bib0015
  article-title: Automated detection of asynchrony in patient-ventilator interaction
– volume: 34
  start-page: 539
  issue: 6
  year: 2021
  ident: 10.1016/j.cmpb.2024.108323_bib0007
  article-title: Managing patient–ventilator asynchrony with a twice-daily screening protocol: a retrospective cohort study
  publication-title: Australian Critical Care
  doi: 10.1016/j.aucc.2020.11.008
– volume: 178
  start-page: 37
  year: 2021
  ident: 10.1016/j.cmpb.2024.108323_bib0070
  article-title: Blockchain management and machine learning adaptation for IoT environment in 5G and beyond networks: a systematic review
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2021.07.009
– year: 2016
  ident: 10.1016/j.cmpb.2024.108323_bib0072
  article-title: Classification of multiple sclerosis lesion evolution patterns a study based on unsupervised clustering of asynchronous time-series
– volume: 17
  start-page: R239
  issue: 5
  year: 2013
  ident: 10.1016/j.cmpb.2024.108323_bib0020
  article-title: An automated and standardized neural index to quantify patient-ventilator interaction
  publication-title: Crit. Care (Fullerton)
  doi: 10.1186/cc13063
– volume: 22
  start-page: 102
  issue: 1
  year: 2023
  ident: 10.1016/j.cmpb.2024.108323_bib0038
  article-title: Automated evaluation of typical patient–ventilator asynchronies based on lung hysteretic responses
  publication-title: Biomed. Eng. Online
  doi: 10.1186/s12938-023-01165-0
– volume: 62
  start-page: 144
  issue: 2
  year: 2017
  ident: 10.1016/j.cmpb.2024.108323_bib0009
  article-title: Ability of ICU Health-Care Professionals to Identify Patient-Ventilator Asynchrony Using Waveform Analysis
  publication-title: Respir. Care
  doi: 10.4187/respcare.04750
– volume: 46
  issue: 2
  year: 2018
  ident: 10.1016/j.cmpb.2024.108323_bib0026
  article-title: The association between ventilator dyssynchrony, delivered tidal volume, and sedation using a novel automated ventilator dyssynchrony detection algorithm*
  publication-title: Crit. Care Med.
  doi: 10.1097/CCM.0000000000002849
– volume: 14
  start-page: 32
  issue: 1
  year: 2024
  ident: 10.1016/j.cmpb.2024.108323_bib0023
  article-title: Automated characterization of patient–ventilator interaction using surface electromyography
  publication-title: Ann. Intensive Care
  doi: 10.1186/s13613-024-01259-5
– volume: 3
  start-page: 00075
  issue: 4
  year: 2017
  ident: 10.1016/j.cmpb.2024.108323_bib0010
  article-title: Efficacy of ventilator waveform observation for detection of patient-ventilator asynchrony during NIV: a multicentre study
  publication-title: ERJ. Open. Res.
  doi: 10.1183/23120541.00075-2017
– year: 2022
  ident: 10.1016/j.cmpb.2024.108323_bib0055
  article-title: Predicting mechanically ventilated patients future respiratory system elastance – A stochastic modelling approach
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.106275
– volume: 28
  start-page: 75
  issue: 1
  year: 2024
  ident: 10.1016/j.cmpb.2024.108323_bib0033
  article-title: Flow starvation during square-flow assisted ventilation detected by supervised deep learning techniques
  publication-title: Crit. Care (Fullerton)
  doi: 10.1186/s13054-024-04845-y
– volume: 102
  year: 2020
  ident: 10.1016/j.cmpb.2024.108323_bib0074
  article-title: Unsupervised machine learning for the discovery of latent disease clusters and patient subgroups using electronic health records
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2019.103364
– volume: 21
  issue: 12
  year: 2021
  ident: 10.1016/j.cmpb.2024.108323_bib0030
  article-title: Identifying Patient-Ventilator Asynchrony on a Small Dataset Using Image-Based Transfer Learning
  publication-title: Sensors. (Basel)
  doi: 10.3390/s21124149
– volume: 131
  year: 2021
  ident: 10.1016/j.cmpb.2024.108323_bib0076
  article-title: Discovering symptom patterns of COVID-19 patients using association rule mining
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104249
– volume: 33
  start-page: 1337
  issue: 8
  year: 2007
  ident: 10.1016/j.cmpb.2024.108323_bib0017
  article-title: A method for monitoring and improving patient: ventilator interaction
  publication-title: Intensive Care Med.
  doi: 10.1007/s00134-007-0681-4
– volume: 211
  start-page: 1184
  issue: 6
  year: 2018
  ident: 10.1016/j.cmpb.2024.108323_bib0062
  article-title: What does deep learning see? Insights from a classifier trained to predict contrast enhancement phase from CT images
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/AJR.18.20331
– volume: 15
  start-page: 5393
  issue: 12
  year: 2017
  ident: 10.1016/j.cmpb.2024.108323_bib0051
  article-title: Damage assessment by stiffness identification for a full-scale three-story steel moment resisting frame building subjected to a sequence of earthquake excitations
  publication-title: Bull. Earthq. Eng.
  doi: 10.1007/s10518-017-0190-y
– volume: 38
  start-page: 772
  issue: 5
  year: 2012
  ident: 10.1016/j.cmpb.2024.108323_bib0019
  article-title: Validation of the Better Care® system to detect ineffective efforts during expiration in mechanically ventilated patients: a pilot study
  publication-title: Intensive Care Med.
  doi: 10.1007/s00134-012-2493-4
– volume: 15
  issue: 1
  year: 2020
  ident: 10.1016/j.cmpb.2024.108323_bib0005
  article-title: Patient-ventilator asynchrony in conventional ventilation modes during short-term mechanical ventilation after cardiac surgery: randomized clinical trial
  publication-title: Multidiscip. Respir. Med.
– volume: 44
  start-page: 321
  issue: 4
  year: 2018
  ident: 10.1016/j.cmpb.2024.108323_bib0003
  article-title: Patient-ventilator asynchrony
  publication-title: J. Bras. Pneumol.
  doi: 10.1590/s1806-37562017000000185
– volume: 16
  start-page: 163
  issue: 1
  year: 2015
  ident: 10.1016/j.cmpb.2024.108323_bib0040
  article-title: Overall damage identification of flag-shaped hysteresis systems under seismic excitation
  publication-title: Smart. Struct. Syst.
  doi: 10.12989/sss.2015.16.1.163
– volume: 15
  start-page: R167
  year: 2011
  ident: 10.1016/j.cmpb.2024.108323_bib0016
  article-title: Automatic detection of patient-ventilator asynchrony by spectral analysis of airway flow
  publication-title: Crit. Care
  doi: 10.1186/cc10309
– volume: 7
  start-page: 43
  issue: 1
  year: 2019
  ident: 10.1016/j.cmpb.2024.108323_bib0004
  article-title: Patient-ventilator asynchronies during mechanical ventilation: current knowledge and research priorities
  publication-title: Intensive Care Med. Exp.
  doi: 10.1186/s40635-019-0234-5
– volume: 8
  issue: 1
  year: 2018
  ident: 10.1016/j.cmpb.2024.108323_bib0056
  article-title: Predicting Patient-ventilator Asynchronies with Hidden Markov Models
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-36011-0
– volume: 23
  start-page: 204
  year: 2018
  ident: 10.1016/j.cmpb.2024.108323_bib0066
  article-title: Improving the explainability of Random Forest classifier - user centered approach
  publication-title: Pac. Symp. Biocomput.
– volume: 65
  start-page: 847
  issue: 6
  year: 2020
  ident: 10.1016/j.cmpb.2024.108323_bib0012
  article-title: Monitoring Asynchrony During Invasive Mechanical Ventilation
  publication-title: Respir. Care
  doi: 10.4187/respcare.07404
– volume: 7
  start-page: e39932
  issue: 7
  year: 2012
  ident: 10.1016/j.cmpb.2024.108323_bib0082
  article-title: Using rule-based machine learning for candidate disease gene prioritization and sample classification of cancer gene expression data
  publication-title: PLoS. One
  doi: 10.1371/journal.pone.0039932
– volume: 57
  start-page: 208
  issue: 04
  year: 2018
  ident: 10.1016/j.cmpb.2024.108323_bib0025
  article-title: Creation of a robust and generalizable machine learning classifier for patient ventilator asynchrony
  publication-title: Methods Inf. Med.
  doi: 10.3414/ME17-02-0012
– volume: 7
  start-page: 14980
  issue: 1
  year: 2017
  ident: 10.1016/j.cmpb.2024.108323_bib0022
  article-title: Development and validation of a multi-algorithm analytic platform to detect off-target mechanical ventilation
  publication-title: Scientific Reports,
  doi: 10.1038/s41598-017-15052-x
– volume: 199
  year: 2021
  ident: 10.1016/j.cmpb.2024.108323_bib0044
  article-title: Virtual patients for mechanical ventilation in the intensive care unit
  publication-title: Computer Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2020.105912
– volume: 4
  issue: 4
  year: 2017
  ident: 10.1016/j.cmpb.2024.108323_bib0008
  article-title: Identifying Patient-Ventilator Asynchrony Using Waveform Analysis
  publication-title: Palliative Med. Care Open Access
– volume: 204
  year: 2021
  ident: 10.1016/j.cmpb.2024.108323_bib0028
  article-title: An interpreTable 1D convolutional neural network for detecting patient-ventilator asynchrony in mechanical ventilation
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2021.106057
– volume: 9
  start-page: 1465
  issue: 13
  year: 2016
  ident: 10.1016/j.cmpb.2024.108323_bib0081
  article-title: Rudolf: interactive rule refinement system for fraud detection
  publication-title: Proc. VLDB Endow
  doi: 10.14778/3007263.3007285
– volume: 142
  year: 2022
  ident: 10.1016/j.cmpb.2024.108323_bib0049
  article-title: Quantifying ventilator unloading in CPAP ventilation
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105225
– volume: 120
  year: 2020
  ident: 10.1016/j.cmpb.2024.108323_bib0006
  article-title: Detection of patient-ventilator asynchrony from mechanical ventilation waveforms using a two-layer long short-term memory neural network
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103721
– volume: 150
  year: 2021
  ident: 10.1016/j.cmpb.2024.108323_bib0029
  article-title: Intelligent decision support with machine learning for efficient management of mechanical ventilation in the intensive care unit – A critical overview
  publication-title: Int. J. Med. Inform.
  doi: 10.1016/j.ijmedinf.2021.104469
– volume: 10
  start-page: 1163
  issue: 10
  year: 2023
  ident: 10.1016/j.cmpb.2024.108323_bib0065
  article-title: Development of a machine learning model for predicting weaning outcomes based solely on continuous ventilator parameters during spontaneous breathing trials
  publication-title: Bioengineering
  doi: 10.3390/bioengineering10101163
– start-page: 265
  year: 2015
  ident: 10.1016/j.cmpb.2024.108323_bib0083
  article-title: Why big data industrial systems need rules and what we can do about it
– volume: 222
  year: 2023
  ident: 10.1016/j.cmpb.2024.108323_bib0031
  article-title: An interpretable multi-scale lightweight network for patient-ventilator asynchrony detection during mechanical ventilation
  publication-title: Measurement
  doi: 10.1016/j.measurement.2023.113597
– volume: 32
  start-page: 1515
  issue: 10
  year: 2006
  ident: 10.1016/j.cmpb.2024.108323_bib0060
  article-title: Patient-ventilator asynchrony during assisted mechanical ventilation
  publication-title: Intensive Care Med.
  doi: 10.1007/s00134-006-0301-8
– volume: 22
  start-page: 483
  issue: 14
  year: 2021
  ident: 10.1016/j.cmpb.2024.108323_bib0067
  article-title: Emulating complex simulations by machine learning methods
  publication-title: BMC. Bioinformatics.
  doi: 10.1186/s12859-021-04354-7
– volume: 63
  start-page: 464
  issue: 4
  year: 2018
  ident: 10.1016/j.cmpb.2024.108323_bib0011
  article-title: Minimizing Asynchronies in Mechanical Ventilation: current and Future Trends
  publication-title: Respir. Care
  doi: 10.4187/respcare.05949
– volume: 141
  year: 2022
  ident: 10.1016/j.cmpb.2024.108323_bib0045
  article-title: Over-distension prediction via hysteresis loop analysis and patient-specific basis functions in a virtual patient model
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.105022
– volume: 46
  start-page: 1385
  issue: 9
  year: 2018
  ident: 10.1016/j.cmpb.2024.108323_bib0057
  article-title: Double Cycling During Mechanical Ventilation: frequency, Mechanisms, and Physiologic Implications
  publication-title: Crit. Care Med.
  doi: 10.1097/CCM.0000000000003256
– volume: 37
  start-page: 2740
  issue: 10
  year: 2009
  ident: 10.1016/j.cmpb.2024.108323_bib0059
  article-title: Ineffective triggering predicts increased duration of mechanical ventilation
  publication-title: Crit. Care Med.
– volume: 4
  year: 2022
  ident: 10.1016/j.cmpb.2024.108323_bib0071
  article-title: Exploring Unsupervised Machine Learning Classification Methods for Physiological Stress Detection
  publication-title: Front. Med. Technol.
  doi: 10.3389/fmedt.2022.782756
– year: 2016
  ident: 10.1016/j.cmpb.2024.108323_bib0013
  article-title: Iterative Interpolative Pressure Reconstruction for Improved Respiratory Mechanics Estimation During Asynchronous Volume Controlled Ventilation
– ident: 10.1016/j.cmpb.2024.108323_bib0021
  doi: 10.1109/EMBC.2015.7319591
– volume: 172
  start-page: 1122
  issue: 5
  year: 2018
  ident: 10.1016/j.cmpb.2024.108323_bib0063
  article-title: Identifying medical diagnoses and treatable diseases by image-based deep learning
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.010
– volume: 1
  start-page: e136
  issue: 3
  year: 2019
  ident: 10.1016/j.cmpb.2024.108323_bib0069
  article-title: An image-based deep learning framework for individualising radiotherapy dose: a retrospective analysis of outcome prediction
  publication-title: Lancet Digit. Health
  doi: 10.1016/S2589-7500(19)30058-5
– volume: 49
  start-page: 3280
  issue: 12
  year: 2021
  ident: 10.1016/j.cmpb.2024.108323_bib0054
  article-title: Stochastic Modelling of Respiratory System Elastance for Mechanically Ventilated Respiratory Failure Patients
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-021-02854-4
– year: 2024
  ident: 10.1016/j.cmpb.2024.108323_bib0036
  article-title: Detection and quantitative analysis of patient-ventilator interactions in ventilated infants by deep learning networks
  publication-title: Pediatr. Res.
  doi: 10.1038/s41390-024-03064-z
– volume: 2020
  start-page: 150
  year: 2020
  ident: 10.1016/j.cmpb.2024.108323_bib0027
  article-title: A machine learning method for automatic detection and classification of patient-ventilator asynchrony
  publication-title: Annu Int. Conf. IEEe Eng. Med. Biol. Soc.
– volume: 62
  start-page: 1004
  issue: 7
  year: 2017
  ident: 10.1016/j.cmpb.2024.108323_bib0084
  article-title: Patient-ventilator asynchrony and standard waveforms: looks can be deceiving
  publication-title: Respir. Care
  doi: 10.4187/respcare.05593
– volume: 41
  start-page: 633
  issue: 4
  year: 2015
  ident: 10.1016/j.cmpb.2024.108323_bib0002
  article-title: Asynchronies during mechanical ventilation are associated with mortality
  publication-title: Intensive Care Med.
  doi: 10.1007/s00134-015-3692-6
– volume: 21
  start-page: 16
  issue: 1
  year: 2022
  ident: 10.1016/j.cmpb.2024.108323_bib0037
  article-title: Reconstructing asynchrony for mechanical ventilation using a hysteresis loop virtual patient model
  publication-title: Biomed. Eng. Online
  doi: 10.1186/s12938-022-00986-9
– volume: 3
  start-page: 182
  year: 2022
  ident: 10.1016/j.cmpb.2024.108323_bib0077
  article-title: PTR: prompt Tuning with Rules for Text Classification
  publication-title: AI Open
  doi: 10.1016/j.aiopen.2022.11.003
– volume: 7
  start-page: 1529
  issue: 13
  year: 2014
  ident: 10.1016/j.cmpb.2024.108323_bib0078
  article-title: Chimera: large-scale classification using machine learning, rules, and crowdsourcing
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/2733004.2733024
– start-page: 1
  year: 2017
  ident: 10.1016/j.cmpb.2024.108323_bib0042
  article-title: Efficient hysteresis loop analysis-based damage identification of a reinforced concrete frame structure over multiple events
  publication-title: J. Civ. Struct. Health Monit.
– ident: 10.1016/j.cmpb.2024.108323_bib0024
  doi: 10.1016/j.ifacol.2018.11.610
– year: 2024
  ident: 10.1016/j.cmpb.2024.108323_bib0035
  article-title: Automatic patient-ventilator asynchrony detection framework using objective asynchrony definitions
  publication-title: IFAC J. Syst. Control
  doi: 10.1016/j.ifacsc.2023.100236
– volume: 30
  start-page: 247
  issue: 4
  year: 2015
  ident: 10.1016/j.cmpb.2024.108323_bib0039
  article-title: Physical parameter identification of structural systems with hysteretic pinching
  publication-title: Computer-Aided Civil Infrastruct. Eng.
  doi: 10.1111/mice.12108
– volume: 37
  start-page: 389
  issue: 2
  year: 2023
  ident: 10.1016/j.cmpb.2024.108323_bib0046
  article-title: Non-invasive over-distension measurements: data driven vs model-based
  publication-title: J. Clin. Monit. Comput.
  doi: 10.1007/s10877-022-00900-7
– volume: 56
  start-page: 2096
  issue: 2
  year: 2023
  ident: 10.1016/j.cmpb.2024.108323_bib0047
  article-title: Patient spontaneous effort estimation in digital twin model with b-spline function
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2023.10.1111
– volume: 5
  start-page: 207
  issue: 3
  year: 2020
  ident: 10.1016/j.cmpb.2024.108323_bib0080
  article-title: Feature-based and adaptive rule adaptation in dynamic environments
  publication-title: Data Sci. Eng.
  doi: 10.1007/s41019-020-00130-4
– volume: 22
  start-page: 291
  issue: 4
  year: 2021
  ident: 10.1016/j.cmpb.2024.108323_bib0075
  article-title: Machine Learning in Healthcare
  publication-title: Curr. Genomics.
  doi: 10.2174/1389202922666210705124359
– volume: 84
  start-page: 384
  year: 2017
  ident: 10.1016/j.cmpb.2024.108323_bib0041
  article-title: Comparing model-based adaptive LMS filters and a model-free hysteresis loop analysis method for structural health monitoring
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2016.07.030
– volume: 54
  start-page: 322
  issue: 15
  year: 2021
  ident: 10.1016/j.cmpb.2024.108323_bib0034
  article-title: Classification Patient-Ventilator Asynchrony with Dual-Input Convolutional Neural Network
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2021.10.276
– volume: 29
  year: 2024
  ident: 10.1016/j.cmpb.2024.108323_bib0061
  article-title: Exploring variable observational time windows for patient–ventilator​ asynchrony during mechanical ventilation treatment
  publication-title: IFAC J. Syst. Control
– volume: 17
  start-page: 195
  issue: 1
  year: 2019
  ident: 10.1016/j.cmpb.2024.108323_bib0064
  article-title: Key challenges for delivering clinical impact with artificial intelligence
  publication-title: BMC. Med.
  doi: 10.1186/s12916-019-1426-2
– volume: 33
  start-page: 2014
  issue: 11
  year: 2007
  ident: 10.1016/j.cmpb.2024.108323_bib0018
  article-title: Automatic detection of ineffective triggering and double triggering during mechanical ventilation
  publication-title: Intensive Care Med.
  doi: 10.1007/s00134-007-0767-z
– volume: 86
  year: 2023
  ident: 10.1016/j.cmpb.2024.108323_bib0032
  article-title: A novel application of spectrograms with machine learning can detect patient ventilator dyssynchrony
  publication-title: Biomed. Signal. Process. Control
  doi: 10.1016/j.bspc.2023.105251
– volume: 1
  start-page: 18
  issue: 1
  year: 2018
  ident: 10.1016/j.cmpb.2024.108323_bib0068
  article-title: Scalable and accurate deep learning with electronic health records
  publication-title: NPJ. Digit. Med.
  doi: 10.1038/s41746-018-0029-1
– volume: 16
  issue: 7
  year: 2021
  ident: 10.1016/j.cmpb.2024.108323_bib0052
  article-title: An empirical survey of data augmentation for time series classification with neural networks
  publication-title: PLoS. One
  doi: 10.1371/journal.pone.0254841
– volume: 157
  start-page: 217
  year: 2018
  ident: 10.1016/j.cmpb.2024.108323_bib0014
  article-title: Assessing mechanical ventilation asynchrony through iterative airway pressure reconstruction
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.02.007
– start-page: 457
  year: 2023
  ident: 10.1016/j.cmpb.2024.108323_bib0048
  article-title: Digital twins and automation of care in the intensive care unit
  publication-title: Cyber–Physical–Human Syst.: Fundament. Appl.
  doi: 10.1002/9781119857433.ch17
SSID ssj0002556
Score 2.4375026
Snippet •Patient-ventilator asynchrony (PVA) detection methods have variable performance.•A rule-based and machine learning (ML) method is used to classify 7 types of...
Patient-ventilator asynchrony (PVA) is associated with poor clinical outcomes and remains under-monitored. Automated PVA detection would enable complete...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 108323
SubjectTerms Aged
Algorithms
Convolution neural network
Female
Humans
Hysteresis loop analysis
Machine Learning
Male
Mechanical ventilation
Middle Aged
Neural Networks, Computer
Patient-Ventilator Asynchrony
Respiration, Artificial
Retrospective Studies
Rule based methods
Ventilators, Mechanical
SummonAdditionalLinks – databaseName: Science Direct
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEF_EB6sPpbZ-nLWyQt90veQ2u0l8kSLKUTgRVLi3Zb8iJ7nc0btD8uLf7k52c7aItvQpJOyEzc5kdob9zW8Q-u6CCJPlUeFyEypJkjFOVFQokudGGRYZ55chURxc8f5d8nPIhivovK2FAVhl8P3epzfeOjzphtXsTkej7g3wiLhoPAUUJI35ECrYkxS6GJw8vcA8gGLL83vnBEaHwhmP8dLjqXI5Yi8BqB3t0bc2p9fB5wb6sKimsn6UZfnbhnT5CX0MkST-4Se7iVZs9RmtDcJZ-RdUX3vKVNIgGktIrrGc1ZUGOtwaawibASfUqAaPKjy2UAUMSitr3ApZgwP16uwUQ-O0ksDGZ7B727gBYlocOk_cY9-O-mwL3V1e3J73SWi0QHTC4jmRlkZWcsm1TZnlzolZaorIsiy1Mc-kNRB1uGvKZRFzVUQurOE6zxMtTZQouo1Wq0lldwEpxV0KomOpXKbWK7RiUO6qGUtjnVrNOyhuV1jowEIOzTBK0cLNHgRoRYBWhNdKBx0tZaaeg-Pd0bRVnGirS50_FG6LeFeKLaX-sL-_yh22tiHcjwmnLbKyk8VMAA9QRoE4qoN2vNEsZ0_zqJcncdpBx0sr-odP2_vPSX5F63DnMYj7aHX-a2G_uVhqrg6an-UZUKwcKQ
  priority: 102
  providerName: Elsevier
Title Patient-ventilator asynchrony classification in mechanically ventilated patients: Model-based or machine learning method?
URI https://www.clinicalkey.com/#!/content/1-s2.0-S016926072400316X
https://dx.doi.org/10.1016/j.cmpb.2024.108323
https://www.ncbi.nlm.nih.gov/pubmed/39029417
https://www.proquest.com/docview/3082833738
https://doi.org/10.1016/j.cmpb.2024.108323
UnpaywallVersion publishedVersion
Volume 255
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AKRWK
  dateStart: 19850501
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELbYVgJx4P0ogspI3MBVUsdOwgVViFUBbbUHKi0ny6-sgDRb0VYoHPjtzMROxXNZTrl4rNge29_I33xDyBMAEa4okwpiE65ZVgjJTFIZVpbOOJE4OJcxUDxayPkye3MiTqJMDubC_PR-3_Gw7GptII6bZkiH41N-QIZSAO4ekOFycTx7H8S7SwbAvKukUuQAGQGmxAyZP3fyt1vod5R5lVzZNWvdftF1_cPNc3g9lDDadIKFSDj5NNltzcR-_UXO8WKDukGuRQBKZ8FjbpJLvrlFLh_FJ_bbpD0OSqusI0LWGJNTvWkbiyq6LbWItpFe1K0o_dDQlcfkYVzruqW9kXc0KrZunlOst1YzvC8dhd5WHX_T01iw4pSGKtYv7pDl4at3L-cs1mdgNhPplmnPE6-lltbnwks4-zx3VeJFkftUFto7BCvwzaWuUmmqBNCQtGWZWe2SzPC7ZNCcNf4-EqwkRC421QYCvGlljcAsWStEntrcWzkiab9eykbxcqyhUauepfZR4ZwqnFMV5nREnu5t1kG649zWvHcD1SelwjGqYO3OtRJ7qwhZAhT5p93j3tMU7Gd8pNGNP9ttFMoHFRz1pkbkXnDB_d_zMpmWWZqPyLO9T15gaA_-r_lDMth-3vlHALa2ZkwOJt_SMRnOXr-dL8Zxz30HyVkndg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_OE7zzQfw8188IvmnctmnS1heRw2PV20PwDvYt5Kuy0u0t7i7SF_92M026KuIpPhXaTEkz08kM-c1vAJ76IMKWVVL73IQpmpdcUJ3UmlaV1ZYn1vtlTBSnJ2Jylr-b8dkOHA61MAirjL4_-PTeW8c747ia4-V8Pv6IPCI-Gi8QBclSMbsEl3OeFZiBvfj2A-eBHFuB4LuiODxWzgSQl1kstU8Ssxyxdixjf9qdfo8-r8Lepl2q7qtqmp92pKPrcC2GkuR1mO0N2HHtTbgyjYflt6D7EDhTaQ9pbDC7JmrVtQb5cDtiMG5GoFCvGzJvycJhGTBqrenIIOQsidyrq5cEO6c1FHc-S_zbFj0S05HYeuITCf2oX92Gs6M3p4cTGjstUJPzdE2VY4lTQgnjCu6E92KO2TpxvCxcKkrlLIYd_loIVadC14mPa4Spqtwom-Sa3YHd9rx1dxEqJXwOYlKlfaqW1UZzrHc1nBepKZwRI0iHFZYm0pBjN4xGDnizzxK1IlErMmhlBM-2MstAwnHhaDYoTg7lpd4hSr9HXCjFt1K_GOBf5Z4MtiH9n4nHLap155uVRCKgkiFz1AgOgtFsZ8-qJKvytBjB860V_cOn3fvPST6Gvcnp9Fgevz15fx_28UkAJD6A3fWXjXvoA6u1ftT_ON8BoU4fTA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PTxQxFG5gSSAeFEFljZKScJOSme20M-PFECMhJhAObIKnpr_GqLPDht2NGf9635t2NiIIeJpLXzNtX9vvpd_7HiH7ACJcUSYVxCZcs6wQkpmkMqwsnXEicXAuY6B4eiZPxtnnS3EZZXIwF-bG-33Hw7KTqYE4bpQhHY6P-CpZkwJw94Csjc_Oj74E8e6SATDvKqkUOUBGgCkxQ-buTv51C91GmU_IxqKZ6vanrus_bp7jZ6GE0awTLETCyY_Dxdwc2l9_yTk-blCb5GkEoPQoeMxzsuKbLbJ-Gp_Yt0l7HpRWWUeErDEmp3rWNhZVdFtqEW0jvahbUfqtoROPycO41nVLeyPvaFRsnb2nWG-tZnhfOgq9TTr-pqexYMVXGqpYf3hBxsefLj6esFifgdlMpHOmPU-8llpanwsv4ezz3FWJF0XuU1lo7xCswDeXukqlqRJAQ9KWZWa1SzLDX5JBc9X4HSRYSYhcbKoNBHijyhqBWbJWiDy1ubdySNJ-vZSN4uVYQ6NWPUvtu8I5VTinKszpkLxb2kyDdMe9rXnvBqpPSoVjVMHa3WslllYRsgQo8qDdXu9pCvYzPtLoxl8tZgrlgwqOelND8iq44PLveZmMyizNh-Rg6ZOPGNrr_2v-hgzm1wv_FsDW3OzGXfYbuBIk6g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patient-ventilator+asynchrony+classification+in+mechanically+ventilated+patients%3A+Model-based+or+machine+learning+method%3F&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Ang%2C+Christopher+Yew+Shuen&rft.au=Chiew%2C+Yeong+Shiong&rft.au=Wang%2C+Xin&rft.au=Ooi%2C+Ean+Hin&rft.date=2024-10-01&rft.pub=Elsevier+B.V&rft.issn=0169-2607&rft.volume=255&rft_id=info:doi/10.1016%2Fj.cmpb.2024.108323&rft.externalDocID=S016926072400316X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon