Inhibition of platelet-surface-bound proteins during coagulation under flow II: Antithrombin and heparin

Blood coagulation is a self-repair process regulated by activated platelet surfaces, clotting factors, and inhibitors. Antithrombin (AT) is one such inhibitor that impedes coagulation by targeting and inactivating several key coagulation enzymes. The effect of AT is greatly enhanced in the presence...

Full description

Saved in:
Bibliographic Details
Published inBiophysical journal Vol. 122; no. 1; pp. 230 - 240
Main Authors Miyazawa, Kenji, Fogelson, Aaron L., Leiderman, Karin
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 03.01.2023
The Biophysical Society
Subjects
Online AccessGet full text
ISSN0006-3495
1542-0086
1542-0086
DOI10.1016/j.bpj.2022.10.038

Cover

Abstract Blood coagulation is a self-repair process regulated by activated platelet surfaces, clotting factors, and inhibitors. Antithrombin (AT) is one such inhibitor that impedes coagulation by targeting and inactivating several key coagulation enzymes. The effect of AT is greatly enhanced in the presence of heparin, a common anticoagulant drug. When heparin binds to AT, it either bridges with the target enzyme or induces allosteric changes in AT leading to more favorable binding with the target enzyme. AT inhibition of fluid-phase enzymes caused little suppression of thrombin generation in our previous mathematical models of blood coagulation under flow. This is because in that model, flow itself was a greater inhibitor of the fluid-phase enzymes than AT. From clinical observations, it is clear that AT and heparin should have strong inhibitory effects on thrombin generation, and thus we hypothesized that AT could be inhibiting enzymes bound to activated platelet surfaces that are not subject to being washed away by flow. We extended our mathematical model to include the relevant reactions of AT inhibition at the activated platelet surfaces as well as those for unfractionated heparin and a low molecular weight heparin. Our results show that AT alone is only an effective inhibitor at low tissue factor densities, but in the presence of heparin, it can greatly alter, and in some cases shut down, thrombin generation. Additionally, we studied each target enzyme separately and found that inactivation of no single enzyme could substantially suppress thrombin generation.
AbstractList Blood coagulation is a self-repair process regulated by activated platelet surfaces, clotting factors, and inhibitors. Antithrombin (AT) is one such inhibitor that impedes coagulation by targeting and inactivating several key coagulation enzymes. The effect of AT is greatly enhanced in the presence of heparin, a common anticoagulant drug. When heparin binds to AT, it either bridges with the target enzyme or induces allosteric changes in AT leading to more favorable binding with the target enzyme. AT inhibition of fluid-phase enzymes caused little suppression of thrombin generation in our previous mathematical models of blood coagulation under flow. This is because in that model, flow itself was a greater inhibitor of the fluid-phase enzymes than AT. From clinical observations, it is clear that AT and heparin should have strong inhibitory effects on thrombin generation, and thus we hypothesized that AT could be inhibiting enzymes bound to activated platelet surfaces that are not subject to being washed away by flow. We extended our mathematical model to include the relevant reactions of AT inhibition at the activated platelet surfaces as well as those for unfractionated heparin and a low molecular weight heparin. Our results show that AT alone is only an effective inhibitor at low tissue factor densities, but in the presence of heparin, it can greatly alter, and in some cases shut down, thrombin generation. Additionally, we studied each target enzyme separately and found that inactivation of no single enzyme could substantially suppress thrombin generation.
Blood coagulation is a self-repair process regulated by activated platelet surfaces, clotting factors, and inhibitors. Antithrombin (AT) is one such inhibitor that impedes coagulation by targeting and inactivating several key coagulation enzymes. The effect of AT is greatly enhanced in the presence of heparin, a common anticoagulant drug. When heparin binds to AT, it either bridges with the target enzyme or induces allosteric changes in AT leading to more favorable binding with the target enzyme. AT inhibition of fluid-phase enzymes caused little suppression of thrombin generation in our previous mathematical models of blood coagulation under flow. This is because in that model, flow itself was a greater inhibitor of the fluid-phase enzymes than AT. From clinical observations, it is clear that AT and heparin should have strong inhibitory effects on thrombin generation, and thus we hypothesized that AT could be inhibiting enzymes bound to activated platelet surfaces that are not subject to being washed away by flow. We extended our mathematical model to include the relevant reactions of AT inhibition at the activated platelet surfaces as well as those for unfractionated heparin and a low molecular weight heparin. Our results show that AT alone is only an effective inhibitor at low tissue factor densities, but in the presence of heparin, it can greatly alter, and in some cases shut down, thrombin generation. Additionally, we studied each target enzyme separately and found that inactivation of no single enzyme could substantially suppress thrombin generation.Blood coagulation is a self-repair process regulated by activated platelet surfaces, clotting factors, and inhibitors. Antithrombin (AT) is one such inhibitor that impedes coagulation by targeting and inactivating several key coagulation enzymes. The effect of AT is greatly enhanced in the presence of heparin, a common anticoagulant drug. When heparin binds to AT, it either bridges with the target enzyme or induces allosteric changes in AT leading to more favorable binding with the target enzyme. AT inhibition of fluid-phase enzymes caused little suppression of thrombin generation in our previous mathematical models of blood coagulation under flow. This is because in that model, flow itself was a greater inhibitor of the fluid-phase enzymes than AT. From clinical observations, it is clear that AT and heparin should have strong inhibitory effects on thrombin generation, and thus we hypothesized that AT could be inhibiting enzymes bound to activated platelet surfaces that are not subject to being washed away by flow. We extended our mathematical model to include the relevant reactions of AT inhibition at the activated platelet surfaces as well as those for unfractionated heparin and a low molecular weight heparin. Our results show that AT alone is only an effective inhibitor at low tissue factor densities, but in the presence of heparin, it can greatly alter, and in some cases shut down, thrombin generation. Additionally, we studied each target enzyme separately and found that inactivation of no single enzyme could substantially suppress thrombin generation.
Author Fogelson, Aaron L.
Miyazawa, Kenji
Leiderman, Karin
Author_xml – sequence: 1
  givenname: Kenji
  surname: Miyazawa
  fullname: Miyazawa, Kenji
  organization: Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado
– sequence: 2
  givenname: Aaron L.
  surname: Fogelson
  fullname: Fogelson, Aaron L.
  organization: Department of Mathematics, University of Utah, Salt Lake City, Utah
– sequence: 3
  givenname: Karin
  orcidid: 0000-0002-4188-1305
  surname: Leiderman
  fullname: Leiderman, Karin
  email: karin.leiderman@unc.edu
  organization: Mathematics Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36325617$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1URKeFB2CDsmSTwdeJ7QQkpKriZ6RKbGBtOfbNjEcZO9hOEW_Ds_BkeJhSAYuurmyf71zrnAty5oNHQp4DXQMF8Wq_Hub9mlHGynlNm-4RWQFvWU1pJ87IilIq6qbt-Tm5SGlPKTBO4Qk5b0TDuAC5Im7jd25w2QVfhbGaJ51xwlynJY7aYD2ExdtqjiGj86myS3R--_OHCXq7FO0RKwKM1TiFb9Vm87q68tnlXQyHwflKF3iHsy7UU_J41FPCZ3fzknx5_-7z9cf65tOHzfXVTW1aDrnWA2-F7E2ZY8NZbwUIBORWDtB2gIzRQYq2RT4K1rORSsuQAna2aykKaC7J25PvvAwHtAZ9jnpSc3QHHb-roJ3698W7ndqGW9V3jMm-KQYv7wxi-LpgyurgksFp0h7DkhSTDUjoWyqL9MXfu-6X_Mm3COAkMDGkFHG8lwBVxw7VXpUO1bHD41XpsDDyP8a4_Dvq8l03PUi-OZFY8r11GFUyDr1B6yKarGxwD9C_APwzuNY
CitedBy_id crossref_primary_10_1016_j_carrev_2023_10_014
crossref_primary_10_1007_s10811_023_03136_3
crossref_primary_10_1016_j_rpth_2024_102570
crossref_primary_10_1016_j_softx_2023_101483
crossref_primary_10_1016_j_jtha_2023_11_026
crossref_primary_10_1016_j_jtha_2024_10_028
crossref_primary_10_1016_j_thromres_2025_109286
crossref_primary_10_3934_mbe_2024339
Cites_doi 10.1055/s-2007-1004360
10.1160/TH08-05-0275
10.1073/pnas.76.7.3198
10.1021/acs.biochem.1c00128
10.1055/s-0038-1625983
10.1016/S1050-1738(02)00183-4
10.1002/rth2.12353
10.1182/blood.V87.5.1845.1845
10.3390/ph9030038
10.1021/bi00361a022
10.1160/TH04-06-0384
10.1159/000089930
10.5045/br.2016.51.3.171
10.1111/jth.12960
10.1016/bs.pmbts.2019.02.003
10.1016/S0021-9258(18)94058-5
10.1021/bi802298r
10.1016/j.bpj.2016.10.030
10.1016/0049-3848(77)90054-8
10.1016/0049-3848(86)90333-6
10.1111/jth.15052
10.1016/S1357-2725(03)00244-9
10.1161/01.CIR.98.15.1575
10.1101/gr.147800
10.1016/S0021-9258(19)43472-8
10.1016/S0021-9258(18)42309-5
10.1021/bi701310x
10.1016/S0006-3495(01)76085-7
10.1073/pnas.1310444110
10.1371/journal.pone.0200917
10.1016/0076-6879(93)22033-C
10.1160/TH08-01-0032
10.1161/01.CIR.19.1.75
10.1160/TH16-10-0807
10.1016/0049-3848(83)90091-9
10.1038/nsmb811
10.1007/s11239-009-0411-6
10.1345/aph.1M615
10.1007/978-1-62703-339-8_28
10.1056/NEJMra2104091
10.1182/blood.V78.9.2337.2337
10.1021/bi049808c
10.1016/j.bpj.2011.10.048
10.1152/ajplung.00199.2020
ContentType Journal Article
Copyright 2022 Biophysical Society
Copyright © 2022 Biophysical Society. Published by Elsevier Inc. All rights reserved.
2022 Biophysical Society. 2022 Biophysical Society
Copyright_xml – notice: 2022 Biophysical Society
– notice: Copyright © 2022 Biophysical Society. Published by Elsevier Inc. All rights reserved.
– notice: 2022 Biophysical Society. 2022 Biophysical Society
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.bpj.2022.10.038
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1542-0086
EndPage 240
ExternalDocumentID PMC9822793
36325617
10_1016_j_bpj_2022_10_038
S000634952200892X
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL120728
– fundername: NHLBI NIH HHS
  grantid: R01 HL151984
GroupedDBID ---
-DZ
-~X
.55
0R~
23N
2WC
4.4
457
5GY
5RE
62-
6I.
6J9
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACBEA
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPRK
ADBBV
ADEZE
ADJPV
AENEX
AEXQZ
AFRAH
AFTJW
AGKMS
AHMBA
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
AYCSE
AZFZN
BAWUL
CS3
D0L
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FRP
HYE
IH2
IXB
JIG
KQ8
L7B
M41
N9A
O-L
O9-
OK1
P2P
RCE
RNS
RPM
RWL
SES
SSZ
TAE
TBP
TN5
WH7
WOQ
WOW
WQ6
X7M
YNY
YWH
ZA5
~02
--K
.GJ
3O-
53G
6TJ
7X2
7X7
88E
88I
8AF
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
AAEDT
AAIKJ
AAMRU
AAQXK
AAYWO
AAYXX
ABDGV
ABUWG
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AEUPX
AEUYN
AFKRA
AFPUW
AGCQF
AGHFR
AGQPQ
AI.
AIGII
AITUG
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
ARAPS
ASPBG
ATCPS
AVWKF
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DWQXO
EFKBS
FEDTE
FGOYB
FYUFA
G-2
GNUQQ
GUQSH
GX1
H13
HCIFZ
HMCUK
HVGLF
HX~
HZ~
LK8
M0K
M1P
M2O
M2P
M2Q
M7P
MVM
OZT
P62
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PRG
PROAC
PSQYO
PUEGO
Q2X
R2-
ROL
S0X
UKHRP
UKR
VH1
YYP
ZGI
ZXP
~KM
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c451t-ab54679cab5f3529d616e1e5d7b1481e220b7644e5f6292f07d2e01e8d840e613
IEDL.DBID IXB
ISSN 0006-3495
1542-0086
IngestDate Thu Aug 21 18:42:31 EDT 2025
Sun Sep 28 09:04:10 EDT 2025
Mon Jul 21 05:34:12 EDT 2025
Thu Sep 18 00:23:21 EDT 2025
Thu Apr 24 22:58:44 EDT 2025
Fri Feb 23 02:39:32 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article under the CC BY license.
Copyright © 2022 Biophysical Society. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-ab54679cab5f3529d616e1e5d7b1481e220b7644e5f6292f07d2e01e8d840e613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4188-1305
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S000634952200892X
PMID 36325617
PQID 2731719407
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9822793
proquest_miscellaneous_2731719407
pubmed_primary_36325617
crossref_primary_10_1016_j_bpj_2022_10_038
crossref_citationtrail_10_1016_j_bpj_2022_10_038
elsevier_sciencedirect_doi_10_1016_j_bpj_2022_10_038
PublicationCentury 2000
PublicationDate 2023-01-03
PublicationDateYYYYMMDD 2023-01-03
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-03
  day: 03
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biophysical journal
PublicationTitleAlternate Biophys J
PublicationYear 2023
Publisher Elsevier Inc
The Biophysical Society
Publisher_xml – name: Elsevier Inc
– name: The Biophysical Society
References Elizondo, Fogelson (bib28) 2016; 111
Quinsey, Greedy, Pike (bib4) 2004; 36
Walsh (bib33) 1994
Smith, Morrissey (bib39) 2008; 100
Sinha, Badellino, Walsh (bib25) 2004; 43
Weitz, Weitz (bib41) 2010; 29
Fareed, Walenga, Hoppensteadt (bib19) 1985; 11
Mast (bib38) 1996; 87
Gray, Mulloy, Barrowcliffe (bib15) 2008; 99
Olson, Björk, Choay (bib21) 1992; 267
Link, Stobb, Leiderman (bib27) 2018; 13
Kuharsky, Fogelson (bib29) 2001; 80
Croles, Borjas-Howard, Meijer (bib9) 2018; 44
Harenberg, Würzner, Schettler (bib20) 1986; 44
Yang, Sun, Rezaie (bib7) 2009; 48
Izaguirre, Swanson, Olson (bib22) 2021; 60
Miller, Sinha, Walsh (bib36) 2007; 46
Byun, Jang, Koh (bib37) 2016; 51
Bergqvist, Hedner, Holmer (bib18) 1983; 15
Irving (bib1) 2000; 10
Mclean (bib13) 1959; 19
Olson, Swanson, Björk (bib11) 2004; 92
Hao, Sun, Zhang, Wang (bib16) 2019; 163
Ahmad, Rawala-Sheikh, Walsh (bib32) 1989; 264
Nieuwenhuis, Albada, Sixma (bib43) 1991; 78
Greengard, Heeb, Griffin (bib35) 1986; 25
Cossette, Pelletier, Farand (bib44) 2010; 44
Rezaie, Giri (bib3) 2020; 18
Olson (bib23) 2002; 12
Fogelson, Hussain, Leiderman (bib31) 2012; 102
Wood, Bunce, Mast (bib40) 2013; 110
Bick, Dukes, Fekete (bib2) 1977; 10
Levy, Connors (bib42) 2021; 385
Westmark, Tanratana, Sheehan (bib6) 2015; 13
Oduah, Linhardt, Sharfstein (bib12) 2016; 9
Weitz, Harenberg (bib45) 2017; 117
Mirta Hepner (bib8) 2013; 992
Hirsh (bib17) 1998; 98
Miyazawa, K., A. L. Fogelson, and K. Leiderman. Inhibition of platelet-surface-bound proteins during coagulation under flow I: TFPI. Biophys J, In This Issue.
Li, Johnson, Huntington (bib24) 2004; 11
Olson, Björk, Shore (bib10) 1993; 222
Hippensteel, LaRiviere, Schmidt (bib46) 2020; 319
Rosenberg, Damus (bib5) 1973; 248
Liu, Li, Key (bib47) 2020; 4
Lindahl, Bäckström, Linker (bib14) 1979; 76
Fogelson, Tania (bib30) 2005; 34
Smith (10.1016/j.bpj.2022.10.038_bib39) 2008; 100
Irving (10.1016/j.bpj.2022.10.038_bib1) 2000; 10
Westmark (10.1016/j.bpj.2022.10.038_bib6) 2015; 13
Mclean (10.1016/j.bpj.2022.10.038_bib13) 1959; 19
Mirta Hepner (10.1016/j.bpj.2022.10.038_bib8) 2013; 992
Yang (10.1016/j.bpj.2022.10.038_bib7) 2009; 48
Fogelson (10.1016/j.bpj.2022.10.038_bib30) 2005; 34
Levy (10.1016/j.bpj.2022.10.038_bib42) 2021; 385
Miller (10.1016/j.bpj.2022.10.038_bib36) 2007; 46
Byun (10.1016/j.bpj.2022.10.038_bib37) 2016; 51
10.1016/j.bpj.2022.10.038_bib26
Walsh (10.1016/j.bpj.2022.10.038_bib33) 1994
Croles (10.1016/j.bpj.2022.10.038_bib9) 2018; 44
Olson (10.1016/j.bpj.2022.10.038_bib23) 2002; 12
Ahmad (10.1016/j.bpj.2022.10.038_bib32) 1989; 264
Olson (10.1016/j.bpj.2022.10.038_bib10) 1993; 222
Kuharsky (10.1016/j.bpj.2022.10.038_bib29) 2001; 80
Wood (10.1016/j.bpj.2022.10.038_bib40) 2013; 110
Sinha (10.1016/j.bpj.2022.10.038_bib25) 2004; 43
Hao (10.1016/j.bpj.2022.10.038_bib16) 2019; 163
Weitz (10.1016/j.bpj.2022.10.038_bib45) 2017; 117
Hirsh (10.1016/j.bpj.2022.10.038_bib17) 1998; 98
Olson (10.1016/j.bpj.2022.10.038_bib21) 1992; 267
Weitz (10.1016/j.bpj.2022.10.038_bib41) 2010; 29
Gray (10.1016/j.bpj.2022.10.038_bib15) 2008; 99
Li (10.1016/j.bpj.2022.10.038_bib24) 2004; 11
Olson (10.1016/j.bpj.2022.10.038_bib11) 2004; 92
Harenberg (10.1016/j.bpj.2022.10.038_bib20) 1986; 44
Oduah (10.1016/j.bpj.2022.10.038_bib12) 2016; 9
Nieuwenhuis (10.1016/j.bpj.2022.10.038_bib43) 1991; 78
Bergqvist (10.1016/j.bpj.2022.10.038_bib18) 1983; 15
Quinsey (10.1016/j.bpj.2022.10.038_bib4) 2004; 36
Rezaie (10.1016/j.bpj.2022.10.038_bib3) 2020; 18
Fareed (10.1016/j.bpj.2022.10.038_bib19) 1985; 11
Bick (10.1016/j.bpj.2022.10.038_bib2) 1977; 10
Izaguirre (10.1016/j.bpj.2022.10.038_bib22) 2021; 60
Rosenberg (10.1016/j.bpj.2022.10.038_bib5) 1973; 248
Link (10.1016/j.bpj.2022.10.038_bib27) 2018; 13
Hippensteel (10.1016/j.bpj.2022.10.038_bib46) 2020; 319
Elizondo (10.1016/j.bpj.2022.10.038_bib28) 2016; 111
Mast (10.1016/j.bpj.2022.10.038_bib38) 1996; 87
Cossette (10.1016/j.bpj.2022.10.038_bib44) 2010; 44
Fogelson (10.1016/j.bpj.2022.10.038_bib31) 2012; 102
Lindahl (10.1016/j.bpj.2022.10.038_bib14) 1979; 76
Greengard (10.1016/j.bpj.2022.10.038_bib35) 1986; 25
Liu (10.1016/j.bpj.2022.10.038_bib47) 2020; 4
References_xml – volume: 248
  start-page: 6490
  year: 1973
  end-page: 6505
  ident: bib5
  article-title: The purification and mechanism of action of human antithrombin-heparin cofactor
  publication-title: J. Biol. Chem.
– volume: 992
  start-page: 355
  year: 2013
  end-page: 364
  ident: bib8
  article-title: Antithrombin
  publication-title: Methods Mol. Biol.
– volume: 111
  start-page: 2722
  year: 2016
  end-page: 2734
  ident: bib28
  article-title: A mathematical model of venous thrombosis initiation
  publication-title: Biophys. J.
– volume: 264
  start-page: 3244
  year: 1989
  end-page: 3251
  ident: bib32
  article-title: Comparative interactions of factor IX and factor IXa with human platelets
  publication-title: J. Biol. Chem.
– volume: 385
  start-page: 826
  year: 2021
  end-page: 832
  ident: bib42
  article-title: Heparin resistance—clinical perspectives and management strategies
  publication-title: N. Engl. J. Med.
– volume: 13
  year: 2018
  ident: bib27
  article-title: A local and global sensitivity analysis of a mathematical model of coagulation and platelet deposition under flow
  publication-title: PLoS One
– volume: 9
  start-page: 38
  year: 2016
  ident: bib12
  article-title: Heparin: past, present, and future
  publication-title: Pharmaceuticals
– volume: 100
  start-page: 160
  year: 2008
  end-page: 162
  ident: bib39
  article-title: Heparin is procoagulant in the absence of antithrombin
  publication-title: Thromb. Haemost.
– volume: 10
  start-page: 721
  year: 1977
  end-page: 729
  ident: bib2
  article-title: Antithrombin III (AT-III) as a diagnostic aid in disseminated intravascular coagulation
  publication-title: Thromb. Res.
– volume: 51
  start-page: 171
  year: 2016
  end-page: 174
  ident: bib37
  article-title: Establishing the heparin therapeutic range using aPTT and anti-Xa measurements for monitoring unfractionated heparin therapy
  publication-title: Blood Res.
– volume: 87
  start-page: 1845
  year: 1996
  end-page: 1850
  ident: bib38
  article-title: Physiological concentrations of tissue factor pathway inhibitor do not inhibit prothrombinase
  publication-title: Blood
– volume: 34
  start-page: 91
  year: 2005
  end-page: 108
  ident: bib30
  article-title: Coagulation under flow: the influence of flow-mediated transport on the initiation and inhibition of coagulation
  publication-title: Pathophysiol. Haemost. Thromb.
– volume: 11
  start-page: 56
  year: 1985
  end-page: 74
  ident: bib19
  article-title: Studies on the antithrombotic effects and pharmacokinetics of heparin fractions and fragments
  publication-title: Semin. Thromb. Hemost.
– volume: 102
  start-page: 10
  year: 2012
  end-page: 18
  ident: bib31
  article-title: Blood clot formation under flow: the importance of factor XI depends strongly on platelet count
  publication-title: Biophys. J.
– volume: 25
  start-page: 3884
  year: 1986
  end-page: 3890
  ident: bib35
  article-title: Binding of coagulation factor XI to washed human paltelets
  publication-title: Biochemistry
– volume: 60
  start-page: 1201
  year: 2021
  end-page: 1213
  ident: bib22
  article-title: Paramount importance of core conformational changes for heparin allosteric activation of antithrombin
  publication-title: Biochemistry
– start-page: 629
  year: 1994
  end-page: 651
  ident: bib33
  article-title: Platelet-coagulant protein interactions
  publication-title: Hemostasis and Thrombosis: Basic Principles and Clinical Practices
– volume: 99
  start-page: 807
  year: 2008
  end-page: 818
  ident: bib15
  article-title: Heparin and low-molecular-weight heparin
  publication-title: Thromb. Haemost.
– reference: Miyazawa, K., A. L. Fogelson, and K. Leiderman. Inhibition of platelet-surface-bound proteins during coagulation under flow I: TFPI. Biophys J, In This Issue.
– volume: 98
  start-page: 1575
  year: 1998
  end-page: 1582
  ident: bib17
  article-title: Low-molecular-weight heparin: a review of the results of recent studies of the treatment of venous thromboembolism and unstable Angina
  publication-title: Circulation
– volume: 48
  start-page: 1517
  year: 2009
  end-page: 1524
  ident: bib7
  article-title: Characterization of a heparin-binding site on the catalytic domain of factor XIa: mechanism of heparin acceleration of factor XIa inhibition by the serpins antithrombin and C1-inhibitor
  publication-title: Biochemistry
– volume: 18
  start-page: 3142
  year: 2020
  end-page: 3153
  ident: bib3
  article-title: Anticoagulant and signaling functions of antithrombin
  publication-title: J. Thromb. Haemost.
– volume: 44
  start-page: 549
  year: 1986
  end-page: 554
  ident: bib20
  article-title: Bioavailability and antagonization of the low molecular weight heparin CY 216 in man
  publication-title: Thromb. Res.
– volume: 15
  start-page: 381
  year: 1983
  end-page: 391
  ident: bib18
  article-title: Anticoagulant effects of two types of low molecular weight heparin administered subcutaneously
  publication-title: Thromb. Res.
– volume: 163
  start-page: 21
  year: 2019
  end-page: 39
  ident: bib16
  article-title: Low molecular weight heparins and their clinical applications
  publication-title: Prog. Mol. Biol. Transl. Sci.
– volume: 4
  start-page: 518
  year: 2020
  end-page: 523
  ident: bib47
  article-title: Using heparin molecules to manage COVID-2019
  publication-title: Res. Pract. Thromb. Haemost.
– volume: 110
  start-page: 17838
  year: 2013
  end-page: 17843
  ident: bib40
  article-title: Tissue factor pathway inhibitor-alpha inhibits prothrombinase during the initiation of blood coagulation
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 78
  start-page: 2337
  year: 1991
  end-page: 2343
  ident: bib43
  article-title: Identification of risk factors for bleeding during treatment of acute venous thromboembolism with heparin or low molecular weight heparin
  publication-title: Blood
– volume: 222
  start-page: 525
  year: 1993
  end-page: 559
  ident: bib10
  article-title: [30] Kinetic characterization of heparin-catalyzed and uncatalyzed inhibition of blood coagulation proteinases by antithrombin
  publication-title: Methods in Enzymology
– volume: 44
  start-page: 994
  year: 2010
  end-page: 1002
  ident: bib44
  article-title: Evaluation of bleeding risk in patients exposed to therapeutic unfractionated or low-molecular weight heparin: a cohort study in the context of a quality improvement initiative
  publication-title: Ann. Pharmacother.
– volume: 80
  start-page: 1050
  year: 2001
  end-page: 1074
  ident: bib29
  article-title: Surface-mediated control of blood coagulation: the role of binding site densities and platelet deposition
  publication-title: Biophys. J.
– volume: 46
  start-page: 14450
  year: 2007
  end-page: 14460
  ident: bib36
  article-title: A catalytic domain exosity (Cys
  publication-title: Biochemistry
– volume: 10
  start-page: 1845
  year: 2000
  end-page: 1864
  ident: bib1
  article-title: Phylogeny of the serpin superfamily: implications of patterns of amino acid conservation for structure and function
  publication-title: Genome Res.
– volume: 12
  start-page: 331
  year: 2002
  end-page: 338
  ident: bib23
  article-title: Heparin activates antithrombin anticoagulant function by generating new interaction sites (exosites) for blood clotting proteinases
  publication-title: Trends Cardiovasc. Med.
– volume: 19
  start-page: 75
  year: 1959
  end-page: 78
  ident: bib13
  article-title: The discovery of heparin
  publication-title: Circulation
– volume: 319
  start-page: L211
  year: 2020
  end-page: L217
  ident: bib46
  article-title: Heparin as a therapy for COVID-19: current evidence and future possibilities
  publication-title: Am. J. Physiol. Lung Cell Mol. Physiol.
– volume: 117
  start-page: 1283
  year: 2017
  end-page: 1288
  ident: bib45
  article-title: New developments in anticoagulants: past, present and future
  publication-title: Thromb. Haemost.
– volume: 13
  start-page: 1053
  year: 2015
  end-page: 1063
  ident: bib6
  article-title: Selective disruption of heparin and antithrombin-mediated regulation of human factor IX
  publication-title: J. Thromb. Haemost.
– volume: 36
  start-page: 386
  year: 2004
  end-page: 389
  ident: bib4
  article-title: Antithrombin: in control of coagulation
  publication-title: Int. J. Biochem. Cell Biol.
– volume: 43
  start-page: 7593
  year: 2004
  end-page: 7600
  ident: bib25
  article-title: Allosteric modification of factor XIa functional activity upon binding to polyanions
  publication-title: Biochemistry
– volume: 44
  start-page: 315
  year: 2018
  end-page: 326
  ident: bib9
  article-title: Risk of venous thrombosis in antithrombin deficiency: a systematic review and Bayesian meta-analysis
  publication-title: Semin. Thromb. Hemost.
– volume: 76
  start-page: 3198
  year: 1979
  end-page: 3202
  ident: bib14
  article-title: Structure of the antithrombin-binding site in heparin
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 29
  start-page: 199
  year: 2010
  end-page: 207
  ident: bib41
  article-title: Update on heparin: what do we need to know?
  publication-title: J. Thromb. Thrombolysis
– volume: 267
  start-page: 12528
  year: 1992
  end-page: 12538
  ident: bib21
  article-title: Role of the antithrombin-binding pentasaccharide in heparin acceleration of antithrombin-proteinase reactions. Resolution of the antithrombin conformational change contribution to heparin rate enhancement
  publication-title: J. Biol. Chem.
– volume: 11
  start-page: 857
  year: 2004
  end-page: 862
  ident: bib24
  article-title: Structure of the antithrombin–thrombin–heparin ternary complex reveals the antithrombotic mechanism of heparin
  publication-title: Nat. Struct. Mol. Biol.
– volume: 92
  start-page: 929
  year: 2004
  end-page: 939
  ident: bib11
  article-title: Accelerating ability of synthetic oligosaccharides on antithrombin inhibition of proteinases of the clotting and fibrinolytic systems Comparison with heparin and low-molecular-weight heparin
  publication-title: Thromb. Haemost.
– volume: 11
  start-page: 56
  year: 1985
  ident: 10.1016/j.bpj.2022.10.038_bib19
  article-title: Studies on the antithrombotic effects and pharmacokinetics of heparin fractions and fragments
  publication-title: Semin. Thromb. Hemost.
  doi: 10.1055/s-2007-1004360
– volume: 100
  start-page: 160
  year: 2008
  ident: 10.1016/j.bpj.2022.10.038_bib39
  article-title: Heparin is procoagulant in the absence of antithrombin
  publication-title: Thromb. Haemost.
  doi: 10.1160/TH08-05-0275
– volume: 76
  start-page: 3198
  year: 1979
  ident: 10.1016/j.bpj.2022.10.038_bib14
  article-title: Structure of the antithrombin-binding site in heparin
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.76.7.3198
– volume: 60
  start-page: 1201
  year: 2021
  ident: 10.1016/j.bpj.2022.10.038_bib22
  article-title: Paramount importance of core conformational changes for heparin allosteric activation of antithrombin
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.1c00128
– volume: 44
  start-page: 315
  year: 2018
  ident: 10.1016/j.bpj.2022.10.038_bib9
  article-title: Risk of venous thrombosis in antithrombin deficiency: a systematic review and Bayesian meta-analysis
  publication-title: Semin. Thromb. Hemost.
  doi: 10.1055/s-0038-1625983
– volume: 12
  start-page: 331
  year: 2002
  ident: 10.1016/j.bpj.2022.10.038_bib23
  article-title: Heparin activates antithrombin anticoagulant function by generating new interaction sites (exosites) for blood clotting proteinases
  publication-title: Trends Cardiovasc. Med.
  doi: 10.1016/S1050-1738(02)00183-4
– start-page: 629
  year: 1994
  ident: 10.1016/j.bpj.2022.10.038_bib33
  article-title: Platelet-coagulant protein interactions
– volume: 4
  start-page: 518
  year: 2020
  ident: 10.1016/j.bpj.2022.10.038_bib47
  article-title: Using heparin molecules to manage COVID-2019
  publication-title: Res. Pract. Thromb. Haemost.
  doi: 10.1002/rth2.12353
– volume: 87
  start-page: 1845
  year: 1996
  ident: 10.1016/j.bpj.2022.10.038_bib38
  article-title: Physiological concentrations of tissue factor pathway inhibitor do not inhibit prothrombinase
  publication-title: Blood
  doi: 10.1182/blood.V87.5.1845.1845
– volume: 9
  start-page: 38
  year: 2016
  ident: 10.1016/j.bpj.2022.10.038_bib12
  article-title: Heparin: past, present, and future
  publication-title: Pharmaceuticals
  doi: 10.3390/ph9030038
– volume: 25
  start-page: 3884
  year: 1986
  ident: 10.1016/j.bpj.2022.10.038_bib35
  article-title: Binding of coagulation factor XI to washed human paltelets
  publication-title: Biochemistry
  doi: 10.1021/bi00361a022
– volume: 92
  start-page: 929
  year: 2004
  ident: 10.1016/j.bpj.2022.10.038_bib11
  article-title: Accelerating ability of synthetic oligosaccharides on antithrombin inhibition of proteinases of the clotting and fibrinolytic systems Comparison with heparin and low-molecular-weight heparin
  publication-title: Thromb. Haemost.
  doi: 10.1160/TH04-06-0384
– volume: 34
  start-page: 91
  year: 2005
  ident: 10.1016/j.bpj.2022.10.038_bib30
  article-title: Coagulation under flow: the influence of flow-mediated transport on the initiation and inhibition of coagulation
  publication-title: Pathophysiol. Haemost. Thromb.
  doi: 10.1159/000089930
– volume: 51
  start-page: 171
  year: 2016
  ident: 10.1016/j.bpj.2022.10.038_bib37
  article-title: Establishing the heparin therapeutic range using aPTT and anti-Xa measurements for monitoring unfractionated heparin therapy
  publication-title: Blood Res.
  doi: 10.5045/br.2016.51.3.171
– volume: 13
  start-page: 1053
  year: 2015
  ident: 10.1016/j.bpj.2022.10.038_bib6
  article-title: Selective disruption of heparin and antithrombin-mediated regulation of human factor IX
  publication-title: J. Thromb. Haemost.
  doi: 10.1111/jth.12960
– ident: 10.1016/j.bpj.2022.10.038_bib26
– volume: 163
  start-page: 21
  year: 2019
  ident: 10.1016/j.bpj.2022.10.038_bib16
  article-title: Low molecular weight heparins and their clinical applications
  publication-title: Prog. Mol. Biol. Transl. Sci.
  doi: 10.1016/bs.pmbts.2019.02.003
– volume: 264
  start-page: 3244
  year: 1989
  ident: 10.1016/j.bpj.2022.10.038_bib32
  article-title: Comparative interactions of factor IX and factor IXa with human platelets
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)94058-5
– volume: 48
  start-page: 1517
  year: 2009
  ident: 10.1016/j.bpj.2022.10.038_bib7
  article-title: Characterization of a heparin-binding site on the catalytic domain of factor XIa: mechanism of heparin acceleration of factor XIa inhibition by the serpins antithrombin and C1-inhibitor
  publication-title: Biochemistry
  doi: 10.1021/bi802298r
– volume: 111
  start-page: 2722
  year: 2016
  ident: 10.1016/j.bpj.2022.10.038_bib28
  article-title: A mathematical model of venous thrombosis initiation
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2016.10.030
– volume: 10
  start-page: 721
  year: 1977
  ident: 10.1016/j.bpj.2022.10.038_bib2
  article-title: Antithrombin III (AT-III) as a diagnostic aid in disseminated intravascular coagulation
  publication-title: Thromb. Res.
  doi: 10.1016/0049-3848(77)90054-8
– volume: 44
  start-page: 549
  year: 1986
  ident: 10.1016/j.bpj.2022.10.038_bib20
  article-title: Bioavailability and antagonization of the low molecular weight heparin CY 216 in man
  publication-title: Thromb. Res.
  doi: 10.1016/0049-3848(86)90333-6
– volume: 18
  start-page: 3142
  year: 2020
  ident: 10.1016/j.bpj.2022.10.038_bib3
  article-title: Anticoagulant and signaling functions of antithrombin
  publication-title: J. Thromb. Haemost.
  doi: 10.1111/jth.15052
– volume: 36
  start-page: 386
  year: 2004
  ident: 10.1016/j.bpj.2022.10.038_bib4
  article-title: Antithrombin: in control of coagulation
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/S1357-2725(03)00244-9
– volume: 98
  start-page: 1575
  year: 1998
  ident: 10.1016/j.bpj.2022.10.038_bib17
  article-title: Low-molecular-weight heparin: a review of the results of recent studies of the treatment of venous thromboembolism and unstable Angina
  publication-title: Circulation
  doi: 10.1161/01.CIR.98.15.1575
– volume: 10
  start-page: 1845
  year: 2000
  ident: 10.1016/j.bpj.2022.10.038_bib1
  article-title: Phylogeny of the serpin superfamily: implications of patterns of amino acid conservation for structure and function
  publication-title: Genome Res.
  doi: 10.1101/gr.147800
– volume: 248
  start-page: 6490
  year: 1973
  ident: 10.1016/j.bpj.2022.10.038_bib5
  article-title: The purification and mechanism of action of human antithrombin-heparin cofactor
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)43472-8
– volume: 267
  start-page: 12528
  year: 1992
  ident: 10.1016/j.bpj.2022.10.038_bib21
  article-title: Role of the antithrombin-binding pentasaccharide in heparin acceleration of antithrombin-proteinase reactions. Resolution of the antithrombin conformational change contribution to heparin rate enhancement
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)42309-5
– volume: 46
  start-page: 14450
  year: 2007
  ident: 10.1016/j.bpj.2022.10.038_bib36
  article-title: A catalytic domain exosity (Cys527–Cys542 ) in factor FXIa mediates binding to a site on activated platelets
  publication-title: Biochemistry
  doi: 10.1021/bi701310x
– volume: 80
  start-page: 1050
  year: 2001
  ident: 10.1016/j.bpj.2022.10.038_bib29
  article-title: Surface-mediated control of blood coagulation: the role of binding site densities and platelet deposition
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(01)76085-7
– volume: 110
  start-page: 17838
  year: 2013
  ident: 10.1016/j.bpj.2022.10.038_bib40
  article-title: Tissue factor pathway inhibitor-alpha inhibits prothrombinase during the initiation of blood coagulation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1310444110
– volume: 13
  year: 2018
  ident: 10.1016/j.bpj.2022.10.038_bib27
  article-title: A local and global sensitivity analysis of a mathematical model of coagulation and platelet deposition under flow
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0200917
– volume: 222
  start-page: 525
  year: 1993
  ident: 10.1016/j.bpj.2022.10.038_bib10
  article-title: [30] Kinetic characterization of heparin-catalyzed and uncatalyzed inhibition of blood coagulation proteinases by antithrombin
  doi: 10.1016/0076-6879(93)22033-C
– volume: 99
  start-page: 807
  year: 2008
  ident: 10.1016/j.bpj.2022.10.038_bib15
  article-title: Heparin and low-molecular-weight heparin
  publication-title: Thromb. Haemost.
  doi: 10.1160/TH08-01-0032
– volume: 19
  start-page: 75
  year: 1959
  ident: 10.1016/j.bpj.2022.10.038_bib13
  article-title: The discovery of heparin
  publication-title: Circulation
  doi: 10.1161/01.CIR.19.1.75
– volume: 117
  start-page: 1283
  year: 2017
  ident: 10.1016/j.bpj.2022.10.038_bib45
  article-title: New developments in anticoagulants: past, present and future
  publication-title: Thromb. Haemost.
  doi: 10.1160/TH16-10-0807
– volume: 15
  start-page: 381
  year: 1983
  ident: 10.1016/j.bpj.2022.10.038_bib18
  article-title: Anticoagulant effects of two types of low molecular weight heparin administered subcutaneously
  publication-title: Thromb. Res.
  doi: 10.1016/0049-3848(83)90091-9
– volume: 11
  start-page: 857
  year: 2004
  ident: 10.1016/j.bpj.2022.10.038_bib24
  article-title: Structure of the antithrombin–thrombin–heparin ternary complex reveals the antithrombotic mechanism of heparin
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb811
– volume: 29
  start-page: 199
  year: 2010
  ident: 10.1016/j.bpj.2022.10.038_bib41
  article-title: Update on heparin: what do we need to know?
  publication-title: J. Thromb. Thrombolysis
  doi: 10.1007/s11239-009-0411-6
– volume: 44
  start-page: 994
  year: 2010
  ident: 10.1016/j.bpj.2022.10.038_bib44
  article-title: Evaluation of bleeding risk in patients exposed to therapeutic unfractionated or low-molecular weight heparin: a cohort study in the context of a quality improvement initiative
  publication-title: Ann. Pharmacother.
  doi: 10.1345/aph.1M615
– volume: 992
  start-page: 355
  year: 2013
  ident: 10.1016/j.bpj.2022.10.038_bib8
  article-title: Antithrombin
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-62703-339-8_28
– volume: 385
  start-page: 826
  year: 2021
  ident: 10.1016/j.bpj.2022.10.038_bib42
  article-title: Heparin resistance—clinical perspectives and management strategies
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra2104091
– volume: 78
  start-page: 2337
  year: 1991
  ident: 10.1016/j.bpj.2022.10.038_bib43
  article-title: Identification of risk factors for bleeding during treatment of acute venous thromboembolism with heparin or low molecular weight heparin
  publication-title: Blood
  doi: 10.1182/blood.V78.9.2337.2337
– volume: 43
  start-page: 7593
  year: 2004
  ident: 10.1016/j.bpj.2022.10.038_bib25
  article-title: Allosteric modification of factor XIa functional activity upon binding to polyanions
  publication-title: Biochemistry
  doi: 10.1021/bi049808c
– volume: 102
  start-page: 10
  year: 2012
  ident: 10.1016/j.bpj.2022.10.038_bib31
  article-title: Blood clot formation under flow: the importance of factor XI depends strongly on platelet count
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2011.10.048
– volume: 319
  start-page: L211
  year: 2020
  ident: 10.1016/j.bpj.2022.10.038_bib46
  article-title: Heparin as a therapy for COVID-19: current evidence and future possibilities
  publication-title: Am. J. Physiol. Lung Cell Mol. Physiol.
  doi: 10.1152/ajplung.00199.2020
SSID ssj0012501
Score 2.4610455
Snippet Blood coagulation is a self-repair process regulated by activated platelet surfaces, clotting factors, and inhibitors. Antithrombin (AT) is one such inhibitor...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 230
SubjectTerms Anticoagulants - pharmacology
Antithrombin III - metabolism
Antithrombin III - pharmacology
Antithrombins - metabolism
Antithrombins - pharmacology
Blood Coagulation - physiology
Heparin - chemistry
Heparin - pharmacology
Thrombin - metabolism
Title Inhibition of platelet-surface-bound proteins during coagulation under flow II: Antithrombin and heparin
URI https://dx.doi.org/10.1016/j.bpj.2022.10.038
https://www.ncbi.nlm.nih.gov/pubmed/36325617
https://www.proquest.com/docview/2731719407
https://pubmed.ncbi.nlm.nih.gov/PMC9822793
Volume 122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4iCF7Et-uLCJ6E6qZNmtbbKoor6ElhbyVpp25lbZd9IP4bf4u_zJk-FlfFg6dCk0DItDPfZOabYezY8zwlvdQ6Hnk6MqYgIei2o0FobUwgICa-8929f_Mob3uqt8AuGy4MpVXWur_S6aW2rt-c1ad5Nswy4viieUV871IIP3R7qIeJVUokvt7FLJKAJr7umuc7NLuJbJY5Xnb4jC6i655SghdRVH63TT-x5_cUyi826XqVrdRgkneq_a6xBcjX2VLVXvJtg2XdvJ_ZMieLFykfDhBXopic8XSUmhgcSy2VeFmpIcvHvGIsfrzHhXmqm3pxopiNeDooXnm3e847ROrtj4oX9Ke5wcV9oC6G-SZ7vL56uLxx6tYKTiyVmDjGKtSQYYzPFCFYmPjCBwEq0Rb9IwF4plYjVAKV-m7opm2duNAWECToEAJCgC22mBc57DAeJGClkCoJ_EQGVGpAydgahC3W-kapFms3hxrFdd1xan8xiJoEs-cI5RCRHOgVyqHFTmZLhlXRjb8my0ZS0dyXE6FR-GvZUSPVCP8oCpOYHIrpOEJAJ7QI0dNtse1KyrNdeL6HGFHgiJ6T_2wCVeueH8mzflm1mwolojLc_d9299gyNbovL3-8fbY4GU3hAOHQxB6W3_theU_1CawQC2k
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZpSmkvJU1f26StAjkV3Fi2ZNm5JSFh3TxOCexNSPY467C1l31Q-m_6W_rLMuPH0m1DDj0ZZAmEPnnmG8-Lsf0wDJUMC-eFZOnIjJyEoH1Pg9Da2lhARvnOl1fR8EZ-G6nRBjvpc2EorLKT_a1Mb6R1N3LQnebBtCwpxxfVK_L7gFz4STB6wp4iG_Dpaqej45UrAXV81zYv8mh679psgrzc9A5txCD4ShFelKPysHL6l3z-HUP5h1I622IvOzbJj9oNv2IbUG2zZ21_yZ-vWZlW49I1QVm8Lvh0gsQScfLmy1lhM_Ac9VTiTamGsprzNmXx96-strddVy9OOWYzXkzqHzxND_kRZfWOZ_V3NKi5xcVjoDaG1Rt2c3Z6fTL0ut4KXiaVWHjWKRSRSYbPAjlYkkciAgEq1w4NJAF4qE4jVwJVREESFL7OA_AFxDlahIAc4C3brOoK3jMe5-CkkCqPo1zGVGtAycxZ5C3ORVapAfP7QzVZV3ic-l9MTB9hdmcQB0M40BDiMGBfVkumbdWNxybLHimzdnUMaoXHlu31qBr8pMhPYiuol3ODjE5okaCpO2DvWpRXuwijEEmiwDd6Df_VBCrXvf6mKsdN2W6qlIjS8MP_bfczez68vrwwF-nV-Q57QV3vmz9B4S7bXMyW8BG50cJ9au7-Pde7DXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inhibition+of+platelet-surface-bound+proteins+during%C2%A0coagulation+under+flow+II%3A+Antithrombin+and+heparin&rft.jtitle=Biophysical+journal&rft.au=Miyazawa%2C+Kenji&rft.au=Fogelson%2C+Aaron+L.&rft.au=Leiderman%2C+Karin&rft.date=2023-01-03&rft.pub=Elsevier+Inc&rft.issn=0006-3495&rft.eissn=1542-0086&rft.volume=122&rft.issue=1&rft.spage=230&rft.epage=240&rft_id=info:doi/10.1016%2Fj.bpj.2022.10.038&rft.externalDocID=S000634952200892X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3495&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3495&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3495&client=summon