Inhibition of platelet-surface-bound proteins during coagulation under flow II: Antithrombin and heparin
Blood coagulation is a self-repair process regulated by activated platelet surfaces, clotting factors, and inhibitors. Antithrombin (AT) is one such inhibitor that impedes coagulation by targeting and inactivating several key coagulation enzymes. The effect of AT is greatly enhanced in the presence...
Saved in:
Published in | Biophysical journal Vol. 122; no. 1; pp. 230 - 240 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
03.01.2023
The Biophysical Society |
Subjects | |
Online Access | Get full text |
ISSN | 0006-3495 1542-0086 1542-0086 |
DOI | 10.1016/j.bpj.2022.10.038 |
Cover
Abstract | Blood coagulation is a self-repair process regulated by activated platelet surfaces, clotting factors, and inhibitors. Antithrombin (AT) is one such inhibitor that impedes coagulation by targeting and inactivating several key coagulation enzymes. The effect of AT is greatly enhanced in the presence of heparin, a common anticoagulant drug. When heparin binds to AT, it either bridges with the target enzyme or induces allosteric changes in AT leading to more favorable binding with the target enzyme. AT inhibition of fluid-phase enzymes caused little suppression of thrombin generation in our previous mathematical models of blood coagulation under flow. This is because in that model, flow itself was a greater inhibitor of the fluid-phase enzymes than AT. From clinical observations, it is clear that AT and heparin should have strong inhibitory effects on thrombin generation, and thus we hypothesized that AT could be inhibiting enzymes bound to activated platelet surfaces that are not subject to being washed away by flow. We extended our mathematical model to include the relevant reactions of AT inhibition at the activated platelet surfaces as well as those for unfractionated heparin and a low molecular weight heparin. Our results show that AT alone is only an effective inhibitor at low tissue factor densities, but in the presence of heparin, it can greatly alter, and in some cases shut down, thrombin generation. Additionally, we studied each target enzyme separately and found that inactivation of no single enzyme could substantially suppress thrombin generation. |
---|---|
AbstractList | Blood coagulation is a self-repair process regulated by activated platelet surfaces, clotting factors, and inhibitors. Antithrombin (AT) is one such inhibitor that impedes coagulation by targeting and inactivating several key coagulation enzymes. The effect of AT is greatly enhanced in the presence of heparin, a common anticoagulant drug. When heparin binds to AT, it either bridges with the target enzyme or induces allosteric changes in AT leading to more favorable binding with the target enzyme. AT inhibition of fluid-phase enzymes caused little suppression of thrombin generation in our previous mathematical models of blood coagulation under flow. This is because in that model, flow itself was a greater inhibitor of the fluid-phase enzymes than AT. From clinical observations, it is clear that AT and heparin should have strong inhibitory effects on thrombin generation, and thus we hypothesized that AT could be inhibiting enzymes bound to activated platelet surfaces that are not subject to being washed away by flow. We extended our mathematical model to include the relevant reactions of AT inhibition at the activated platelet surfaces as well as those for unfractionated heparin and a low molecular weight heparin. Our results show that AT alone is only an effective inhibitor at low tissue factor densities, but in the presence of heparin, it can greatly alter, and in some cases shut down, thrombin generation. Additionally, we studied each target enzyme separately and found that inactivation of no single enzyme could substantially suppress thrombin generation. Blood coagulation is a self-repair process regulated by activated platelet surfaces, clotting factors, and inhibitors. Antithrombin (AT) is one such inhibitor that impedes coagulation by targeting and inactivating several key coagulation enzymes. The effect of AT is greatly enhanced in the presence of heparin, a common anticoagulant drug. When heparin binds to AT, it either bridges with the target enzyme or induces allosteric changes in AT leading to more favorable binding with the target enzyme. AT inhibition of fluid-phase enzymes caused little suppression of thrombin generation in our previous mathematical models of blood coagulation under flow. This is because in that model, flow itself was a greater inhibitor of the fluid-phase enzymes than AT. From clinical observations, it is clear that AT and heparin should have strong inhibitory effects on thrombin generation, and thus we hypothesized that AT could be inhibiting enzymes bound to activated platelet surfaces that are not subject to being washed away by flow. We extended our mathematical model to include the relevant reactions of AT inhibition at the activated platelet surfaces as well as those for unfractionated heparin and a low molecular weight heparin. Our results show that AT alone is only an effective inhibitor at low tissue factor densities, but in the presence of heparin, it can greatly alter, and in some cases shut down, thrombin generation. Additionally, we studied each target enzyme separately and found that inactivation of no single enzyme could substantially suppress thrombin generation.Blood coagulation is a self-repair process regulated by activated platelet surfaces, clotting factors, and inhibitors. Antithrombin (AT) is one such inhibitor that impedes coagulation by targeting and inactivating several key coagulation enzymes. The effect of AT is greatly enhanced in the presence of heparin, a common anticoagulant drug. When heparin binds to AT, it either bridges with the target enzyme or induces allosteric changes in AT leading to more favorable binding with the target enzyme. AT inhibition of fluid-phase enzymes caused little suppression of thrombin generation in our previous mathematical models of blood coagulation under flow. This is because in that model, flow itself was a greater inhibitor of the fluid-phase enzymes than AT. From clinical observations, it is clear that AT and heparin should have strong inhibitory effects on thrombin generation, and thus we hypothesized that AT could be inhibiting enzymes bound to activated platelet surfaces that are not subject to being washed away by flow. We extended our mathematical model to include the relevant reactions of AT inhibition at the activated platelet surfaces as well as those for unfractionated heparin and a low molecular weight heparin. Our results show that AT alone is only an effective inhibitor at low tissue factor densities, but in the presence of heparin, it can greatly alter, and in some cases shut down, thrombin generation. Additionally, we studied each target enzyme separately and found that inactivation of no single enzyme could substantially suppress thrombin generation. |
Author | Fogelson, Aaron L. Miyazawa, Kenji Leiderman, Karin |
Author_xml | – sequence: 1 givenname: Kenji surname: Miyazawa fullname: Miyazawa, Kenji organization: Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado – sequence: 2 givenname: Aaron L. surname: Fogelson fullname: Fogelson, Aaron L. organization: Department of Mathematics, University of Utah, Salt Lake City, Utah – sequence: 3 givenname: Karin orcidid: 0000-0002-4188-1305 surname: Leiderman fullname: Leiderman, Karin email: karin.leiderman@unc.edu organization: Mathematics Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36325617$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u1DAUhS1URKeFB2CDsmSTwdeJ7QQkpKriZ6RKbGBtOfbNjEcZO9hOEW_Ds_BkeJhSAYuurmyf71zrnAty5oNHQp4DXQMF8Wq_Hub9mlHGynlNm-4RWQFvWU1pJ87IilIq6qbt-Tm5SGlPKTBO4Qk5b0TDuAC5Im7jd25w2QVfhbGaJ51xwlynJY7aYD2ExdtqjiGj86myS3R--_OHCXq7FO0RKwKM1TiFb9Vm87q68tnlXQyHwflKF3iHsy7UU_J41FPCZ3fzknx5_-7z9cf65tOHzfXVTW1aDrnWA2-F7E2ZY8NZbwUIBORWDtB2gIzRQYq2RT4K1rORSsuQAna2aykKaC7J25PvvAwHtAZ9jnpSc3QHHb-roJ3698W7ndqGW9V3jMm-KQYv7wxi-LpgyurgksFp0h7DkhSTDUjoWyqL9MXfu-6X_Mm3COAkMDGkFHG8lwBVxw7VXpUO1bHD41XpsDDyP8a4_Dvq8l03PUi-OZFY8r11GFUyDr1B6yKarGxwD9C_APwzuNY |
CitedBy_id | crossref_primary_10_1016_j_carrev_2023_10_014 crossref_primary_10_1007_s10811_023_03136_3 crossref_primary_10_1016_j_rpth_2024_102570 crossref_primary_10_1016_j_softx_2023_101483 crossref_primary_10_1016_j_jtha_2023_11_026 crossref_primary_10_1016_j_jtha_2024_10_028 crossref_primary_10_1016_j_thromres_2025_109286 crossref_primary_10_3934_mbe_2024339 |
Cites_doi | 10.1055/s-2007-1004360 10.1160/TH08-05-0275 10.1073/pnas.76.7.3198 10.1021/acs.biochem.1c00128 10.1055/s-0038-1625983 10.1016/S1050-1738(02)00183-4 10.1002/rth2.12353 10.1182/blood.V87.5.1845.1845 10.3390/ph9030038 10.1021/bi00361a022 10.1160/TH04-06-0384 10.1159/000089930 10.5045/br.2016.51.3.171 10.1111/jth.12960 10.1016/bs.pmbts.2019.02.003 10.1016/S0021-9258(18)94058-5 10.1021/bi802298r 10.1016/j.bpj.2016.10.030 10.1016/0049-3848(77)90054-8 10.1016/0049-3848(86)90333-6 10.1111/jth.15052 10.1016/S1357-2725(03)00244-9 10.1161/01.CIR.98.15.1575 10.1101/gr.147800 10.1016/S0021-9258(19)43472-8 10.1016/S0021-9258(18)42309-5 10.1021/bi701310x 10.1016/S0006-3495(01)76085-7 10.1073/pnas.1310444110 10.1371/journal.pone.0200917 10.1016/0076-6879(93)22033-C 10.1160/TH08-01-0032 10.1161/01.CIR.19.1.75 10.1160/TH16-10-0807 10.1016/0049-3848(83)90091-9 10.1038/nsmb811 10.1007/s11239-009-0411-6 10.1345/aph.1M615 10.1007/978-1-62703-339-8_28 10.1056/NEJMra2104091 10.1182/blood.V78.9.2337.2337 10.1021/bi049808c 10.1016/j.bpj.2011.10.048 10.1152/ajplung.00199.2020 |
ContentType | Journal Article |
Copyright | 2022 Biophysical Society Copyright © 2022 Biophysical Society. Published by Elsevier Inc. All rights reserved. 2022 Biophysical Society. 2022 Biophysical Society |
Copyright_xml | – notice: 2022 Biophysical Society – notice: Copyright © 2022 Biophysical Society. Published by Elsevier Inc. All rights reserved. – notice: 2022 Biophysical Society. 2022 Biophysical Society |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.bpj.2022.10.038 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1542-0086 |
EndPage | 240 |
ExternalDocumentID | PMC9822793 36325617 10_1016_j_bpj_2022_10_038 S000634952200892X |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL120728 – fundername: NHLBI NIH HHS grantid: R01 HL151984 |
GroupedDBID | --- -DZ -~X .55 0R~ 23N 2WC 4.4 457 5GY 5RE 62- 6I. 6J9 AACTN AAEDW AAFTH AAIAV AAKRW AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACBEA ACGFO ACGFS ACGOD ACIWK ACNCT ACPRK ADBBV ADEZE ADJPV AENEX AEXQZ AFRAH AFTJW AGKMS AHMBA ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS AYCSE AZFZN BAWUL CS3 D0L DIK DU5 E3Z EBS EJD F5P FCP FDB FRP HYE IH2 IXB JIG KQ8 L7B M41 N9A O-L O9- OK1 P2P RCE RNS RPM RWL SES SSZ TAE TBP TN5 WH7 WOQ WOW WQ6 X7M YNY YWH ZA5 ~02 --K .GJ 3O- 53G 6TJ 7X2 7X7 88E 88I 8AF 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 AAEDT AAIKJ AAMRU AAQXK AAYWO AAYXX ABDGV ABUWG ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AEUPX AEUYN AFKRA AFPUW AGCQF AGHFR AGQPQ AI. AIGII AITUG AKAPO AKBMS AKRWK AKYEP APXCP ARAPS ASPBG ATCPS AVWKF AZQEC BBNVY BENPR BGLVJ BHPHI BPHCQ BVXVI CCPQU CITATION DWQXO EFKBS FEDTE FGOYB FYUFA G-2 GNUQQ GUQSH GX1 H13 HCIFZ HMCUK HVGLF HX~ HZ~ LK8 M0K M1P M2O M2P M2Q M7P MVM OZT P62 PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PRG PROAC PSQYO PUEGO Q2X R2- ROL S0X UKHRP UKR VH1 YYP ZGI ZXP ~KM ALIPV CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c451t-ab54679cab5f3529d616e1e5d7b1481e220b7644e5f6292f07d2e01e8d840e613 |
IEDL.DBID | IXB |
ISSN | 0006-3495 1542-0086 |
IngestDate | Thu Aug 21 18:42:31 EDT 2025 Sun Sep 28 09:04:10 EDT 2025 Mon Jul 21 05:34:12 EDT 2025 Thu Sep 18 00:23:21 EDT 2025 Thu Apr 24 22:58:44 EDT 2025 Fri Feb 23 02:39:32 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2022 Biophysical Society. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-ab54679cab5f3529d616e1e5d7b1481e220b7644e5f6292f07d2e01e8d840e613 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4188-1305 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S000634952200892X |
PMID | 36325617 |
PQID | 2731719407 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9822793 proquest_miscellaneous_2731719407 pubmed_primary_36325617 crossref_primary_10_1016_j_bpj_2022_10_038 crossref_citationtrail_10_1016_j_bpj_2022_10_038 elsevier_sciencedirect_doi_10_1016_j_bpj_2022_10_038 |
PublicationCentury | 2000 |
PublicationDate | 2023-01-03 |
PublicationDateYYYYMMDD | 2023-01-03 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biophysical journal |
PublicationTitleAlternate | Biophys J |
PublicationYear | 2023 |
Publisher | Elsevier Inc The Biophysical Society |
Publisher_xml | – name: Elsevier Inc – name: The Biophysical Society |
References | Elizondo, Fogelson (bib28) 2016; 111 Quinsey, Greedy, Pike (bib4) 2004; 36 Walsh (bib33) 1994 Smith, Morrissey (bib39) 2008; 100 Sinha, Badellino, Walsh (bib25) 2004; 43 Weitz, Weitz (bib41) 2010; 29 Fareed, Walenga, Hoppensteadt (bib19) 1985; 11 Mast (bib38) 1996; 87 Gray, Mulloy, Barrowcliffe (bib15) 2008; 99 Olson, Björk, Choay (bib21) 1992; 267 Link, Stobb, Leiderman (bib27) 2018; 13 Kuharsky, Fogelson (bib29) 2001; 80 Croles, Borjas-Howard, Meijer (bib9) 2018; 44 Harenberg, Würzner, Schettler (bib20) 1986; 44 Yang, Sun, Rezaie (bib7) 2009; 48 Izaguirre, Swanson, Olson (bib22) 2021; 60 Miller, Sinha, Walsh (bib36) 2007; 46 Byun, Jang, Koh (bib37) 2016; 51 Bergqvist, Hedner, Holmer (bib18) 1983; 15 Irving (bib1) 2000; 10 Mclean (bib13) 1959; 19 Olson, Swanson, Björk (bib11) 2004; 92 Hao, Sun, Zhang, Wang (bib16) 2019; 163 Ahmad, Rawala-Sheikh, Walsh (bib32) 1989; 264 Nieuwenhuis, Albada, Sixma (bib43) 1991; 78 Greengard, Heeb, Griffin (bib35) 1986; 25 Cossette, Pelletier, Farand (bib44) 2010; 44 Rezaie, Giri (bib3) 2020; 18 Olson (bib23) 2002; 12 Fogelson, Hussain, Leiderman (bib31) 2012; 102 Wood, Bunce, Mast (bib40) 2013; 110 Bick, Dukes, Fekete (bib2) 1977; 10 Levy, Connors (bib42) 2021; 385 Westmark, Tanratana, Sheehan (bib6) 2015; 13 Oduah, Linhardt, Sharfstein (bib12) 2016; 9 Weitz, Harenberg (bib45) 2017; 117 Mirta Hepner (bib8) 2013; 992 Hirsh (bib17) 1998; 98 Miyazawa, K., A. L. Fogelson, and K. Leiderman. Inhibition of platelet-surface-bound proteins during coagulation under flow I: TFPI. Biophys J, In This Issue. Li, Johnson, Huntington (bib24) 2004; 11 Olson, Björk, Shore (bib10) 1993; 222 Hippensteel, LaRiviere, Schmidt (bib46) 2020; 319 Rosenberg, Damus (bib5) 1973; 248 Liu, Li, Key (bib47) 2020; 4 Lindahl, Bäckström, Linker (bib14) 1979; 76 Fogelson, Tania (bib30) 2005; 34 Smith (10.1016/j.bpj.2022.10.038_bib39) 2008; 100 Irving (10.1016/j.bpj.2022.10.038_bib1) 2000; 10 Westmark (10.1016/j.bpj.2022.10.038_bib6) 2015; 13 Mclean (10.1016/j.bpj.2022.10.038_bib13) 1959; 19 Mirta Hepner (10.1016/j.bpj.2022.10.038_bib8) 2013; 992 Yang (10.1016/j.bpj.2022.10.038_bib7) 2009; 48 Fogelson (10.1016/j.bpj.2022.10.038_bib30) 2005; 34 Levy (10.1016/j.bpj.2022.10.038_bib42) 2021; 385 Miller (10.1016/j.bpj.2022.10.038_bib36) 2007; 46 Byun (10.1016/j.bpj.2022.10.038_bib37) 2016; 51 10.1016/j.bpj.2022.10.038_bib26 Walsh (10.1016/j.bpj.2022.10.038_bib33) 1994 Croles (10.1016/j.bpj.2022.10.038_bib9) 2018; 44 Olson (10.1016/j.bpj.2022.10.038_bib23) 2002; 12 Ahmad (10.1016/j.bpj.2022.10.038_bib32) 1989; 264 Olson (10.1016/j.bpj.2022.10.038_bib10) 1993; 222 Kuharsky (10.1016/j.bpj.2022.10.038_bib29) 2001; 80 Wood (10.1016/j.bpj.2022.10.038_bib40) 2013; 110 Sinha (10.1016/j.bpj.2022.10.038_bib25) 2004; 43 Hao (10.1016/j.bpj.2022.10.038_bib16) 2019; 163 Weitz (10.1016/j.bpj.2022.10.038_bib45) 2017; 117 Hirsh (10.1016/j.bpj.2022.10.038_bib17) 1998; 98 Olson (10.1016/j.bpj.2022.10.038_bib21) 1992; 267 Weitz (10.1016/j.bpj.2022.10.038_bib41) 2010; 29 Gray (10.1016/j.bpj.2022.10.038_bib15) 2008; 99 Li (10.1016/j.bpj.2022.10.038_bib24) 2004; 11 Olson (10.1016/j.bpj.2022.10.038_bib11) 2004; 92 Harenberg (10.1016/j.bpj.2022.10.038_bib20) 1986; 44 Oduah (10.1016/j.bpj.2022.10.038_bib12) 2016; 9 Nieuwenhuis (10.1016/j.bpj.2022.10.038_bib43) 1991; 78 Bergqvist (10.1016/j.bpj.2022.10.038_bib18) 1983; 15 Quinsey (10.1016/j.bpj.2022.10.038_bib4) 2004; 36 Rezaie (10.1016/j.bpj.2022.10.038_bib3) 2020; 18 Fareed (10.1016/j.bpj.2022.10.038_bib19) 1985; 11 Bick (10.1016/j.bpj.2022.10.038_bib2) 1977; 10 Izaguirre (10.1016/j.bpj.2022.10.038_bib22) 2021; 60 Rosenberg (10.1016/j.bpj.2022.10.038_bib5) 1973; 248 Link (10.1016/j.bpj.2022.10.038_bib27) 2018; 13 Hippensteel (10.1016/j.bpj.2022.10.038_bib46) 2020; 319 Elizondo (10.1016/j.bpj.2022.10.038_bib28) 2016; 111 Mast (10.1016/j.bpj.2022.10.038_bib38) 1996; 87 Cossette (10.1016/j.bpj.2022.10.038_bib44) 2010; 44 Fogelson (10.1016/j.bpj.2022.10.038_bib31) 2012; 102 Lindahl (10.1016/j.bpj.2022.10.038_bib14) 1979; 76 Greengard (10.1016/j.bpj.2022.10.038_bib35) 1986; 25 Liu (10.1016/j.bpj.2022.10.038_bib47) 2020; 4 |
References_xml | – volume: 248 start-page: 6490 year: 1973 end-page: 6505 ident: bib5 article-title: The purification and mechanism of action of human antithrombin-heparin cofactor publication-title: J. Biol. Chem. – volume: 992 start-page: 355 year: 2013 end-page: 364 ident: bib8 article-title: Antithrombin publication-title: Methods Mol. Biol. – volume: 111 start-page: 2722 year: 2016 end-page: 2734 ident: bib28 article-title: A mathematical model of venous thrombosis initiation publication-title: Biophys. J. – volume: 264 start-page: 3244 year: 1989 end-page: 3251 ident: bib32 article-title: Comparative interactions of factor IX and factor IXa with human platelets publication-title: J. Biol. Chem. – volume: 385 start-page: 826 year: 2021 end-page: 832 ident: bib42 article-title: Heparin resistance—clinical perspectives and management strategies publication-title: N. Engl. J. Med. – volume: 13 year: 2018 ident: bib27 article-title: A local and global sensitivity analysis of a mathematical model of coagulation and platelet deposition under flow publication-title: PLoS One – volume: 9 start-page: 38 year: 2016 ident: bib12 article-title: Heparin: past, present, and future publication-title: Pharmaceuticals – volume: 100 start-page: 160 year: 2008 end-page: 162 ident: bib39 article-title: Heparin is procoagulant in the absence of antithrombin publication-title: Thromb. Haemost. – volume: 10 start-page: 721 year: 1977 end-page: 729 ident: bib2 article-title: Antithrombin III (AT-III) as a diagnostic aid in disseminated intravascular coagulation publication-title: Thromb. Res. – volume: 51 start-page: 171 year: 2016 end-page: 174 ident: bib37 article-title: Establishing the heparin therapeutic range using aPTT and anti-Xa measurements for monitoring unfractionated heparin therapy publication-title: Blood Res. – volume: 87 start-page: 1845 year: 1996 end-page: 1850 ident: bib38 article-title: Physiological concentrations of tissue factor pathway inhibitor do not inhibit prothrombinase publication-title: Blood – volume: 34 start-page: 91 year: 2005 end-page: 108 ident: bib30 article-title: Coagulation under flow: the influence of flow-mediated transport on the initiation and inhibition of coagulation publication-title: Pathophysiol. Haemost. Thromb. – volume: 11 start-page: 56 year: 1985 end-page: 74 ident: bib19 article-title: Studies on the antithrombotic effects and pharmacokinetics of heparin fractions and fragments publication-title: Semin. Thromb. Hemost. – volume: 102 start-page: 10 year: 2012 end-page: 18 ident: bib31 article-title: Blood clot formation under flow: the importance of factor XI depends strongly on platelet count publication-title: Biophys. J. – volume: 25 start-page: 3884 year: 1986 end-page: 3890 ident: bib35 article-title: Binding of coagulation factor XI to washed human paltelets publication-title: Biochemistry – volume: 60 start-page: 1201 year: 2021 end-page: 1213 ident: bib22 article-title: Paramount importance of core conformational changes for heparin allosteric activation of antithrombin publication-title: Biochemistry – start-page: 629 year: 1994 end-page: 651 ident: bib33 article-title: Platelet-coagulant protein interactions publication-title: Hemostasis and Thrombosis: Basic Principles and Clinical Practices – volume: 99 start-page: 807 year: 2008 end-page: 818 ident: bib15 article-title: Heparin and low-molecular-weight heparin publication-title: Thromb. Haemost. – reference: Miyazawa, K., A. L. Fogelson, and K. Leiderman. Inhibition of platelet-surface-bound proteins during coagulation under flow I: TFPI. Biophys J, In This Issue. – volume: 98 start-page: 1575 year: 1998 end-page: 1582 ident: bib17 article-title: Low-molecular-weight heparin: a review of the results of recent studies of the treatment of venous thromboembolism and unstable Angina publication-title: Circulation – volume: 48 start-page: 1517 year: 2009 end-page: 1524 ident: bib7 article-title: Characterization of a heparin-binding site on the catalytic domain of factor XIa: mechanism of heparin acceleration of factor XIa inhibition by the serpins antithrombin and C1-inhibitor publication-title: Biochemistry – volume: 18 start-page: 3142 year: 2020 end-page: 3153 ident: bib3 article-title: Anticoagulant and signaling functions of antithrombin publication-title: J. Thromb. Haemost. – volume: 44 start-page: 549 year: 1986 end-page: 554 ident: bib20 article-title: Bioavailability and antagonization of the low molecular weight heparin CY 216 in man publication-title: Thromb. Res. – volume: 15 start-page: 381 year: 1983 end-page: 391 ident: bib18 article-title: Anticoagulant effects of two types of low molecular weight heparin administered subcutaneously publication-title: Thromb. Res. – volume: 163 start-page: 21 year: 2019 end-page: 39 ident: bib16 article-title: Low molecular weight heparins and their clinical applications publication-title: Prog. Mol. Biol. Transl. Sci. – volume: 4 start-page: 518 year: 2020 end-page: 523 ident: bib47 article-title: Using heparin molecules to manage COVID-2019 publication-title: Res. Pract. Thromb. Haemost. – volume: 110 start-page: 17838 year: 2013 end-page: 17843 ident: bib40 article-title: Tissue factor pathway inhibitor-alpha inhibits prothrombinase during the initiation of blood coagulation publication-title: Proc. Natl. Acad. Sci. USA – volume: 78 start-page: 2337 year: 1991 end-page: 2343 ident: bib43 article-title: Identification of risk factors for bleeding during treatment of acute venous thromboembolism with heparin or low molecular weight heparin publication-title: Blood – volume: 222 start-page: 525 year: 1993 end-page: 559 ident: bib10 article-title: [30] Kinetic characterization of heparin-catalyzed and uncatalyzed inhibition of blood coagulation proteinases by antithrombin publication-title: Methods in Enzymology – volume: 44 start-page: 994 year: 2010 end-page: 1002 ident: bib44 article-title: Evaluation of bleeding risk in patients exposed to therapeutic unfractionated or low-molecular weight heparin: a cohort study in the context of a quality improvement initiative publication-title: Ann. Pharmacother. – volume: 80 start-page: 1050 year: 2001 end-page: 1074 ident: bib29 article-title: Surface-mediated control of blood coagulation: the role of binding site densities and platelet deposition publication-title: Biophys. J. – volume: 46 start-page: 14450 year: 2007 end-page: 14460 ident: bib36 article-title: A catalytic domain exosity (Cys publication-title: Biochemistry – volume: 10 start-page: 1845 year: 2000 end-page: 1864 ident: bib1 article-title: Phylogeny of the serpin superfamily: implications of patterns of amino acid conservation for structure and function publication-title: Genome Res. – volume: 12 start-page: 331 year: 2002 end-page: 338 ident: bib23 article-title: Heparin activates antithrombin anticoagulant function by generating new interaction sites (exosites) for blood clotting proteinases publication-title: Trends Cardiovasc. Med. – volume: 19 start-page: 75 year: 1959 end-page: 78 ident: bib13 article-title: The discovery of heparin publication-title: Circulation – volume: 319 start-page: L211 year: 2020 end-page: L217 ident: bib46 article-title: Heparin as a therapy for COVID-19: current evidence and future possibilities publication-title: Am. J. Physiol. Lung Cell Mol. Physiol. – volume: 117 start-page: 1283 year: 2017 end-page: 1288 ident: bib45 article-title: New developments in anticoagulants: past, present and future publication-title: Thromb. Haemost. – volume: 13 start-page: 1053 year: 2015 end-page: 1063 ident: bib6 article-title: Selective disruption of heparin and antithrombin-mediated regulation of human factor IX publication-title: J. Thromb. Haemost. – volume: 36 start-page: 386 year: 2004 end-page: 389 ident: bib4 article-title: Antithrombin: in control of coagulation publication-title: Int. J. Biochem. Cell Biol. – volume: 43 start-page: 7593 year: 2004 end-page: 7600 ident: bib25 article-title: Allosteric modification of factor XIa functional activity upon binding to polyanions publication-title: Biochemistry – volume: 44 start-page: 315 year: 2018 end-page: 326 ident: bib9 article-title: Risk of venous thrombosis in antithrombin deficiency: a systematic review and Bayesian meta-analysis publication-title: Semin. Thromb. Hemost. – volume: 76 start-page: 3198 year: 1979 end-page: 3202 ident: bib14 article-title: Structure of the antithrombin-binding site in heparin publication-title: Proc. Natl. Acad. Sci. USA – volume: 29 start-page: 199 year: 2010 end-page: 207 ident: bib41 article-title: Update on heparin: what do we need to know? publication-title: J. Thromb. Thrombolysis – volume: 267 start-page: 12528 year: 1992 end-page: 12538 ident: bib21 article-title: Role of the antithrombin-binding pentasaccharide in heparin acceleration of antithrombin-proteinase reactions. Resolution of the antithrombin conformational change contribution to heparin rate enhancement publication-title: J. Biol. Chem. – volume: 11 start-page: 857 year: 2004 end-page: 862 ident: bib24 article-title: Structure of the antithrombin–thrombin–heparin ternary complex reveals the antithrombotic mechanism of heparin publication-title: Nat. Struct. Mol. Biol. – volume: 92 start-page: 929 year: 2004 end-page: 939 ident: bib11 article-title: Accelerating ability of synthetic oligosaccharides on antithrombin inhibition of proteinases of the clotting and fibrinolytic systems Comparison with heparin and low-molecular-weight heparin publication-title: Thromb. Haemost. – volume: 11 start-page: 56 year: 1985 ident: 10.1016/j.bpj.2022.10.038_bib19 article-title: Studies on the antithrombotic effects and pharmacokinetics of heparin fractions and fragments publication-title: Semin. Thromb. Hemost. doi: 10.1055/s-2007-1004360 – volume: 100 start-page: 160 year: 2008 ident: 10.1016/j.bpj.2022.10.038_bib39 article-title: Heparin is procoagulant in the absence of antithrombin publication-title: Thromb. Haemost. doi: 10.1160/TH08-05-0275 – volume: 76 start-page: 3198 year: 1979 ident: 10.1016/j.bpj.2022.10.038_bib14 article-title: Structure of the antithrombin-binding site in heparin publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.76.7.3198 – volume: 60 start-page: 1201 year: 2021 ident: 10.1016/j.bpj.2022.10.038_bib22 article-title: Paramount importance of core conformational changes for heparin allosteric activation of antithrombin publication-title: Biochemistry doi: 10.1021/acs.biochem.1c00128 – volume: 44 start-page: 315 year: 2018 ident: 10.1016/j.bpj.2022.10.038_bib9 article-title: Risk of venous thrombosis in antithrombin deficiency: a systematic review and Bayesian meta-analysis publication-title: Semin. Thromb. Hemost. doi: 10.1055/s-0038-1625983 – volume: 12 start-page: 331 year: 2002 ident: 10.1016/j.bpj.2022.10.038_bib23 article-title: Heparin activates antithrombin anticoagulant function by generating new interaction sites (exosites) for blood clotting proteinases publication-title: Trends Cardiovasc. Med. doi: 10.1016/S1050-1738(02)00183-4 – start-page: 629 year: 1994 ident: 10.1016/j.bpj.2022.10.038_bib33 article-title: Platelet-coagulant protein interactions – volume: 4 start-page: 518 year: 2020 ident: 10.1016/j.bpj.2022.10.038_bib47 article-title: Using heparin molecules to manage COVID-2019 publication-title: Res. Pract. Thromb. Haemost. doi: 10.1002/rth2.12353 – volume: 87 start-page: 1845 year: 1996 ident: 10.1016/j.bpj.2022.10.038_bib38 article-title: Physiological concentrations of tissue factor pathway inhibitor do not inhibit prothrombinase publication-title: Blood doi: 10.1182/blood.V87.5.1845.1845 – volume: 9 start-page: 38 year: 2016 ident: 10.1016/j.bpj.2022.10.038_bib12 article-title: Heparin: past, present, and future publication-title: Pharmaceuticals doi: 10.3390/ph9030038 – volume: 25 start-page: 3884 year: 1986 ident: 10.1016/j.bpj.2022.10.038_bib35 article-title: Binding of coagulation factor XI to washed human paltelets publication-title: Biochemistry doi: 10.1021/bi00361a022 – volume: 92 start-page: 929 year: 2004 ident: 10.1016/j.bpj.2022.10.038_bib11 article-title: Accelerating ability of synthetic oligosaccharides on antithrombin inhibition of proteinases of the clotting and fibrinolytic systems Comparison with heparin and low-molecular-weight heparin publication-title: Thromb. Haemost. doi: 10.1160/TH04-06-0384 – volume: 34 start-page: 91 year: 2005 ident: 10.1016/j.bpj.2022.10.038_bib30 article-title: Coagulation under flow: the influence of flow-mediated transport on the initiation and inhibition of coagulation publication-title: Pathophysiol. Haemost. Thromb. doi: 10.1159/000089930 – volume: 51 start-page: 171 year: 2016 ident: 10.1016/j.bpj.2022.10.038_bib37 article-title: Establishing the heparin therapeutic range using aPTT and anti-Xa measurements for monitoring unfractionated heparin therapy publication-title: Blood Res. doi: 10.5045/br.2016.51.3.171 – volume: 13 start-page: 1053 year: 2015 ident: 10.1016/j.bpj.2022.10.038_bib6 article-title: Selective disruption of heparin and antithrombin-mediated regulation of human factor IX publication-title: J. Thromb. Haemost. doi: 10.1111/jth.12960 – ident: 10.1016/j.bpj.2022.10.038_bib26 – volume: 163 start-page: 21 year: 2019 ident: 10.1016/j.bpj.2022.10.038_bib16 article-title: Low molecular weight heparins and their clinical applications publication-title: Prog. Mol. Biol. Transl. Sci. doi: 10.1016/bs.pmbts.2019.02.003 – volume: 264 start-page: 3244 year: 1989 ident: 10.1016/j.bpj.2022.10.038_bib32 article-title: Comparative interactions of factor IX and factor IXa with human platelets publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)94058-5 – volume: 48 start-page: 1517 year: 2009 ident: 10.1016/j.bpj.2022.10.038_bib7 article-title: Characterization of a heparin-binding site on the catalytic domain of factor XIa: mechanism of heparin acceleration of factor XIa inhibition by the serpins antithrombin and C1-inhibitor publication-title: Biochemistry doi: 10.1021/bi802298r – volume: 111 start-page: 2722 year: 2016 ident: 10.1016/j.bpj.2022.10.038_bib28 article-title: A mathematical model of venous thrombosis initiation publication-title: Biophys. J. doi: 10.1016/j.bpj.2016.10.030 – volume: 10 start-page: 721 year: 1977 ident: 10.1016/j.bpj.2022.10.038_bib2 article-title: Antithrombin III (AT-III) as a diagnostic aid in disseminated intravascular coagulation publication-title: Thromb. Res. doi: 10.1016/0049-3848(77)90054-8 – volume: 44 start-page: 549 year: 1986 ident: 10.1016/j.bpj.2022.10.038_bib20 article-title: Bioavailability and antagonization of the low molecular weight heparin CY 216 in man publication-title: Thromb. Res. doi: 10.1016/0049-3848(86)90333-6 – volume: 18 start-page: 3142 year: 2020 ident: 10.1016/j.bpj.2022.10.038_bib3 article-title: Anticoagulant and signaling functions of antithrombin publication-title: J. Thromb. Haemost. doi: 10.1111/jth.15052 – volume: 36 start-page: 386 year: 2004 ident: 10.1016/j.bpj.2022.10.038_bib4 article-title: Antithrombin: in control of coagulation publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/S1357-2725(03)00244-9 – volume: 98 start-page: 1575 year: 1998 ident: 10.1016/j.bpj.2022.10.038_bib17 article-title: Low-molecular-weight heparin: a review of the results of recent studies of the treatment of venous thromboembolism and unstable Angina publication-title: Circulation doi: 10.1161/01.CIR.98.15.1575 – volume: 10 start-page: 1845 year: 2000 ident: 10.1016/j.bpj.2022.10.038_bib1 article-title: Phylogeny of the serpin superfamily: implications of patterns of amino acid conservation for structure and function publication-title: Genome Res. doi: 10.1101/gr.147800 – volume: 248 start-page: 6490 year: 1973 ident: 10.1016/j.bpj.2022.10.038_bib5 article-title: The purification and mechanism of action of human antithrombin-heparin cofactor publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)43472-8 – volume: 267 start-page: 12528 year: 1992 ident: 10.1016/j.bpj.2022.10.038_bib21 article-title: Role of the antithrombin-binding pentasaccharide in heparin acceleration of antithrombin-proteinase reactions. Resolution of the antithrombin conformational change contribution to heparin rate enhancement publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)42309-5 – volume: 46 start-page: 14450 year: 2007 ident: 10.1016/j.bpj.2022.10.038_bib36 article-title: A catalytic domain exosity (Cys527–Cys542 ) in factor FXIa mediates binding to a site on activated platelets publication-title: Biochemistry doi: 10.1021/bi701310x – volume: 80 start-page: 1050 year: 2001 ident: 10.1016/j.bpj.2022.10.038_bib29 article-title: Surface-mediated control of blood coagulation: the role of binding site densities and platelet deposition publication-title: Biophys. J. doi: 10.1016/S0006-3495(01)76085-7 – volume: 110 start-page: 17838 year: 2013 ident: 10.1016/j.bpj.2022.10.038_bib40 article-title: Tissue factor pathway inhibitor-alpha inhibits prothrombinase during the initiation of blood coagulation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1310444110 – volume: 13 year: 2018 ident: 10.1016/j.bpj.2022.10.038_bib27 article-title: A local and global sensitivity analysis of a mathematical model of coagulation and platelet deposition under flow publication-title: PLoS One doi: 10.1371/journal.pone.0200917 – volume: 222 start-page: 525 year: 1993 ident: 10.1016/j.bpj.2022.10.038_bib10 article-title: [30] Kinetic characterization of heparin-catalyzed and uncatalyzed inhibition of blood coagulation proteinases by antithrombin doi: 10.1016/0076-6879(93)22033-C – volume: 99 start-page: 807 year: 2008 ident: 10.1016/j.bpj.2022.10.038_bib15 article-title: Heparin and low-molecular-weight heparin publication-title: Thromb. Haemost. doi: 10.1160/TH08-01-0032 – volume: 19 start-page: 75 year: 1959 ident: 10.1016/j.bpj.2022.10.038_bib13 article-title: The discovery of heparin publication-title: Circulation doi: 10.1161/01.CIR.19.1.75 – volume: 117 start-page: 1283 year: 2017 ident: 10.1016/j.bpj.2022.10.038_bib45 article-title: New developments in anticoagulants: past, present and future publication-title: Thromb. Haemost. doi: 10.1160/TH16-10-0807 – volume: 15 start-page: 381 year: 1983 ident: 10.1016/j.bpj.2022.10.038_bib18 article-title: Anticoagulant effects of two types of low molecular weight heparin administered subcutaneously publication-title: Thromb. Res. doi: 10.1016/0049-3848(83)90091-9 – volume: 11 start-page: 857 year: 2004 ident: 10.1016/j.bpj.2022.10.038_bib24 article-title: Structure of the antithrombin–thrombin–heparin ternary complex reveals the antithrombotic mechanism of heparin publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb811 – volume: 29 start-page: 199 year: 2010 ident: 10.1016/j.bpj.2022.10.038_bib41 article-title: Update on heparin: what do we need to know? publication-title: J. Thromb. Thrombolysis doi: 10.1007/s11239-009-0411-6 – volume: 44 start-page: 994 year: 2010 ident: 10.1016/j.bpj.2022.10.038_bib44 article-title: Evaluation of bleeding risk in patients exposed to therapeutic unfractionated or low-molecular weight heparin: a cohort study in the context of a quality improvement initiative publication-title: Ann. Pharmacother. doi: 10.1345/aph.1M615 – volume: 992 start-page: 355 year: 2013 ident: 10.1016/j.bpj.2022.10.038_bib8 article-title: Antithrombin publication-title: Methods Mol. Biol. doi: 10.1007/978-1-62703-339-8_28 – volume: 385 start-page: 826 year: 2021 ident: 10.1016/j.bpj.2022.10.038_bib42 article-title: Heparin resistance—clinical perspectives and management strategies publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra2104091 – volume: 78 start-page: 2337 year: 1991 ident: 10.1016/j.bpj.2022.10.038_bib43 article-title: Identification of risk factors for bleeding during treatment of acute venous thromboembolism with heparin or low molecular weight heparin publication-title: Blood doi: 10.1182/blood.V78.9.2337.2337 – volume: 43 start-page: 7593 year: 2004 ident: 10.1016/j.bpj.2022.10.038_bib25 article-title: Allosteric modification of factor XIa functional activity upon binding to polyanions publication-title: Biochemistry doi: 10.1021/bi049808c – volume: 102 start-page: 10 year: 2012 ident: 10.1016/j.bpj.2022.10.038_bib31 article-title: Blood clot formation under flow: the importance of factor XI depends strongly on platelet count publication-title: Biophys. J. doi: 10.1016/j.bpj.2011.10.048 – volume: 319 start-page: L211 year: 2020 ident: 10.1016/j.bpj.2022.10.038_bib46 article-title: Heparin as a therapy for COVID-19: current evidence and future possibilities publication-title: Am. J. Physiol. Lung Cell Mol. Physiol. doi: 10.1152/ajplung.00199.2020 |
SSID | ssj0012501 |
Score | 2.4610455 |
Snippet | Blood coagulation is a self-repair process regulated by activated platelet surfaces, clotting factors, and inhibitors. Antithrombin (AT) is one such inhibitor... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 230 |
SubjectTerms | Anticoagulants - pharmacology Antithrombin III - metabolism Antithrombin III - pharmacology Antithrombins - metabolism Antithrombins - pharmacology Blood Coagulation - physiology Heparin - chemistry Heparin - pharmacology Thrombin - metabolism |
Title | Inhibition of platelet-surface-bound proteins during coagulation under flow II: Antithrombin and heparin |
URI | https://dx.doi.org/10.1016/j.bpj.2022.10.038 https://www.ncbi.nlm.nih.gov/pubmed/36325617 https://www.proquest.com/docview/2731719407 https://pubmed.ncbi.nlm.nih.gov/PMC9822793 |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4iCF7Et-uLCJ6E6qZNmtbbKoor6ElhbyVpp25lbZd9IP4bf4u_zJk-FlfFg6dCk0DItDPfZOabYezY8zwlvdQ6Hnk6MqYgIei2o0FobUwgICa-8929f_Mob3uqt8AuGy4MpVXWur_S6aW2rt-c1ad5Nswy4viieUV871IIP3R7qIeJVUokvt7FLJKAJr7umuc7NLuJbJY5Xnb4jC6i655SghdRVH63TT-x5_cUyi826XqVrdRgkneq_a6xBcjX2VLVXvJtg2XdvJ_ZMieLFykfDhBXopic8XSUmhgcSy2VeFmpIcvHvGIsfrzHhXmqm3pxopiNeDooXnm3e847ROrtj4oX9Ke5wcV9oC6G-SZ7vL56uLxx6tYKTiyVmDjGKtSQYYzPFCFYmPjCBwEq0Rb9IwF4plYjVAKV-m7opm2duNAWECToEAJCgC22mBc57DAeJGClkCoJ_EQGVGpAydgahC3W-kapFms3hxrFdd1xan8xiJoEs-cI5RCRHOgVyqHFTmZLhlXRjb8my0ZS0dyXE6FR-GvZUSPVCP8oCpOYHIrpOEJAJ7QI0dNtse1KyrNdeL6HGFHgiJ6T_2wCVeueH8mzflm1mwolojLc_d9299gyNbovL3-8fbY4GU3hAOHQxB6W3_theU_1CawQC2k |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZpSmkvJU1f26StAjkV3Fi2ZNm5JSFh3TxOCexNSPY467C1l31Q-m_6W_rLMuPH0m1DDj0ZZAmEPnnmG8-Lsf0wDJUMC-eFZOnIjJyEoH1Pg9Da2lhARvnOl1fR8EZ-G6nRBjvpc2EorLKT_a1Mb6R1N3LQnebBtCwpxxfVK_L7gFz4STB6wp4iG_Dpaqej45UrAXV81zYv8mh679psgrzc9A5txCD4ShFelKPysHL6l3z-HUP5h1I622IvOzbJj9oNv2IbUG2zZ21_yZ-vWZlW49I1QVm8Lvh0gsQScfLmy1lhM_Ac9VTiTamGsprzNmXx96-strddVy9OOWYzXkzqHzxND_kRZfWOZ_V3NKi5xcVjoDaG1Rt2c3Z6fTL0ut4KXiaVWHjWKRSRSYbPAjlYkkciAgEq1w4NJAF4qE4jVwJVREESFL7OA_AFxDlahIAc4C3brOoK3jMe5-CkkCqPo1zGVGtAycxZ5C3ORVapAfP7QzVZV3ic-l9MTB9hdmcQB0M40BDiMGBfVkumbdWNxybLHimzdnUMaoXHlu31qBr8pMhPYiuol3ODjE5okaCpO2DvWpRXuwijEEmiwDd6Df_VBCrXvf6mKsdN2W6qlIjS8MP_bfczez68vrwwF-nV-Q57QV3vmz9B4S7bXMyW8BG50cJ9au7-Pde7DXw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inhibition+of+platelet-surface-bound+proteins+during%C2%A0coagulation+under+flow+II%3A+Antithrombin+and+heparin&rft.jtitle=Biophysical+journal&rft.au=Miyazawa%2C+Kenji&rft.au=Fogelson%2C+Aaron+L.&rft.au=Leiderman%2C+Karin&rft.date=2023-01-03&rft.pub=Elsevier+Inc&rft.issn=0006-3495&rft.eissn=1542-0086&rft.volume=122&rft.issue=1&rft.spage=230&rft.epage=240&rft_id=info:doi/10.1016%2Fj.bpj.2022.10.038&rft.externalDocID=S000634952200892X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3495&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3495&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3495&client=summon |