Protein Corona in Response to Flow: Effect on Protein Concentration and Structure
Nanoparticles used in cellular applications encounter free serum proteins that adsorb onto the surface of the nanoparticle, forming a protein corona. This protein layer controls the interaction of nanoparticles with cells. For nanomedicine applications, it is important to consider how intravenous in...
Saved in:
Published in | Biophysical journal Vol. 115; no. 2; pp. 209 - 216 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
17.07.2018
The Biophysical Society |
Subjects | |
Online Access | Get full text |
ISSN | 0006-3495 1542-0086 1542-0086 |
DOI | 10.1016/j.bpj.2018.02.036 |
Cover
Abstract | Nanoparticles used in cellular applications encounter free serum proteins that adsorb onto the surface of the nanoparticle, forming a protein corona. This protein layer controls the interaction of nanoparticles with cells. For nanomedicine applications, it is important to consider how intravenous injection and the subsequent shear flow will affect the protein corona. Our goal was to determine if shear flow changed the composition of the protein corona and if these changes affected cellular binding. Colorimetric assays of protein concentration and gel electrophoresis demonstrate that polystyrene nanoparticles subjected to flow have a greater concentration of serum proteins adsorbed on the surface, especially plasminogen. Plasminogen, in the absence of nanoparticles, undergoes changes in structure in response to flow, characterized by fluorescence and circular dichroism spectroscopy. The protein-nanoparticle complexes formed from fetal bovine serum after flow had decreased cellular binding, as measured with flow cytometry. In addition to the relevance for nanomedicine, these results also highlight the technical challenges of protein corona studies. The composition of the protein corona was highly dependent on the initial mixing step: rocking, vortexing, or flow. Overall, these results reaffirm the importance of the protein corona in nanoparticle-cell interactions and point toward the challenges of predicting corona composition based on nanoparticle properties. |
---|---|
AbstractList | Nanoparticles used in cellular applications encounter free serum proteins that adsorb onto the surface of the nanoparticle, forming a protein corona. This protein layer controls the interaction of nanoparticles with cells. For nanomedicine applications, it is important to consider how intravenous injection and the subsequent shear flow will affect the protein corona. Our goal was to determine if shear flow changed the composition of the protein corona and if these changes affected cellular binding. Colorimetric assays of protein concentration and gel electrophoresis demonstrate that polystyrene nanoparticles subjected to flow have a greater concentration of serum proteins adsorbed on the surface, especially plasminogen. Plasminogen, in the absence of nanoparticles, undergoes changes in structure in response to flow, characterized by fluorescence and circular dichroism spectroscopy. The protein-nanoparticle complexes formed from fetal bovine serum after flow had decreased cellular binding, as measured with flow cytometry. In addition to the relevance for nanomedicine, these results also highlight the technical challenges of protein corona studies. The composition of the protein corona was highly dependent on the initial mixing step: rocking, vortexing, or flow. Overall, these results reaffirm the importance of the protein corona in nanoparticle-cell interactions and point toward the challenges of predicting corona composition based on nanoparticle properties. Nanoparticles used in cellular applications encounter free serum proteins that adsorb onto the surface of the nanoparticle, forming a protein corona. This protein layer controls the interaction of nanoparticles with cells. For nanomedicine applications, it is important to consider how intravenous injection and the subsequent shear flow will affect the protein corona. Our goal was to determine if shear flow changed the composition of the protein corona and if these changes affected cellular binding. Colorimetric assays of protein concentration and gel electrophoresis demonstrate that polystyrene nanoparticles subjected to flow have a greater concentration of serum proteins adsorbed on the surface, especially plasminogen. Plasminogen, in the absence of nanoparticles, undergoes changes in structure in response to flow, characterized by fluorescence and circular dichroism spectroscopy. The protein-nanoparticle complexes formed from fetal bovine serum after flow had decreased cellular binding, as measured with flow cytometry. In addition to the relevance for nanomedicine, these results also highlight the technical challenges of protein corona studies. The composition of the protein corona was highly dependent on the initial mixing step: rocking, vortexing, or flow. Overall, these results reaffirm the importance of the protein corona in nanoparticle-cell interactions and point toward the challenges of predicting corona composition based on nanoparticle properties.Nanoparticles used in cellular applications encounter free serum proteins that adsorb onto the surface of the nanoparticle, forming a protein corona. This protein layer controls the interaction of nanoparticles with cells. For nanomedicine applications, it is important to consider how intravenous injection and the subsequent shear flow will affect the protein corona. Our goal was to determine if shear flow changed the composition of the protein corona and if these changes affected cellular binding. Colorimetric assays of protein concentration and gel electrophoresis demonstrate that polystyrene nanoparticles subjected to flow have a greater concentration of serum proteins adsorbed on the surface, especially plasminogen. Plasminogen, in the absence of nanoparticles, undergoes changes in structure in response to flow, characterized by fluorescence and circular dichroism spectroscopy. The protein-nanoparticle complexes formed from fetal bovine serum after flow had decreased cellular binding, as measured with flow cytometry. In addition to the relevance for nanomedicine, these results also highlight the technical challenges of protein corona studies. The composition of the protein corona was highly dependent on the initial mixing step: rocking, vortexing, or flow. Overall, these results reaffirm the importance of the protein corona in nanoparticle-cell interactions and point toward the challenges of predicting corona composition based on nanoparticle properties. |
Author | Jayaram, Dhanya T. Pustulka, Samantha M. Mannino, Robert G. Payne, Christine K. Lam, Wilbur A. |
AuthorAffiliation | 2 School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 1 School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 4 Division of Pediatric Hematology/Oncology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 5 Children’s Healthcare of Atlanta, Aflac Cancer & Blood Disorders Center, Atlanta, Georgia 3 The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 6 Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia |
AuthorAffiliation_xml | – name: 3 The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia – name: 1 School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia – name: 6 Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia – name: 5 Children’s Healthcare of Atlanta, Aflac Cancer & Blood Disorders Center, Atlanta, Georgia – name: 4 Division of Pediatric Hematology/Oncology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia – name: 2 School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia |
Author_xml | – sequence: 1 givenname: Dhanya T. surname: Jayaram fullname: Jayaram, Dhanya T. organization: School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia – sequence: 2 givenname: Samantha M. surname: Pustulka fullname: Pustulka, Samantha M. organization: School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia – sequence: 3 givenname: Robert G. surname: Mannino fullname: Mannino, Robert G. organization: The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia – sequence: 4 givenname: Wilbur A. surname: Lam fullname: Lam, Wilbur A. organization: The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia – sequence: 5 givenname: Christine K. surname: Payne fullname: Payne, Christine K. email: christine.payne@duke.edu organization: School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29650368$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u1DAUhS3Uik4LD8AGZckm4dqxEwckpGrUAlKl8ru2HPsGPMrYg-0U8fa4TGmhi65s2ec79-qcY3Lgg0dCnlFoKNDu5aYZd5uGAZUNsAba7hFZUcFZDSC7A7ICgK5u-SCOyHFKGwDKBNDH5IgNnShyuSIfP8SQ0flqHWLwuiq3T5h2wSescqjO5_DzVXU2TWhyFXx1p_YGfY46u_Kqva0-57iYvER8Qg4nPSd8enOekK_nZ1_W7-qLy7fv16cXteGC5lrLlkpmh5FPTCLKdrRm5F0_ajlaOxohcBqxHQy3k4YBO2uNhMIK3nHZm_aEvNn77pZxi3a_zqx20W11_KWCdur_H---q2_hSnUgoKd9MXhxYxDDjwVTVluXDM6z9hiWpBgw0VIOfCjS5__Ouh3yN8cioHuBiSGliNOthIK67kptVOlKXXelgKkCFaa_xxiX_wRa1nXzg-TrPYkl3yuHUSXjsDRiXSxFKRvcA_Rv9kmwHQ |
CitedBy_id | crossref_primary_10_1016_j_cobme_2019_01_002 crossref_primary_10_1088_1748_605X_abe5fa crossref_primary_10_1021_acsnano_1c05901 crossref_primary_10_1038_s41565_021_00924_1 crossref_primary_10_1063_5_0073494 crossref_primary_10_1002_admt_202100660 crossref_primary_10_1016_j_impact_2022_100405 crossref_primary_10_2174_1389450122666210118105122 crossref_primary_10_1016_j_bpj_2019_04_025 crossref_primary_10_1088_1361_6528_ac7ac0 crossref_primary_10_1111_1541_4337_12838 crossref_primary_10_1002_adhm_202300584 crossref_primary_10_1016_j_xphs_2023_12_021 crossref_primary_10_1016_j_addr_2019_02_008 crossref_primary_10_1039_D2LC00799A crossref_primary_10_3390_pharmaceutics15122655 crossref_primary_10_1039_D3NR03749E crossref_primary_10_1021_acs_biomac_0c01779 crossref_primary_10_1016_j_jcyt_2022_12_002 crossref_primary_10_1016_j_msec_2020_110760 crossref_primary_10_1021_acs_molpharmaceut_1c00698 crossref_primary_10_1039_D1NR08101B crossref_primary_10_1116_6_0000439 crossref_primary_10_1002_adma_202211261 crossref_primary_10_1007_s00216_020_02726_1 crossref_primary_10_1021_acs_macromol_1c00849 crossref_primary_10_1039_D2NA00066K crossref_primary_10_1063_1_5120178 crossref_primary_10_1124_pr_118_016816 crossref_primary_10_1073_pnas_2307809121 crossref_primary_10_3390_polym11091441 crossref_primary_10_3389_fchem_2020_611833 crossref_primary_10_1021_acs_langmuir_4c00956 crossref_primary_10_1007_s00216_022_04278_y crossref_primary_10_1016_j_mtadv_2019_100036 crossref_primary_10_1007_s13346_020_00745_0 crossref_primary_10_1016_j_colsurfb_2025_114508 crossref_primary_10_1016_j_addr_2022_114356 crossref_primary_10_1016_j_ijbiomac_2021_01_152 crossref_primary_10_1021_acs_bioconjchem_0c00091 crossref_primary_10_1002_smll_202301663 crossref_primary_10_1016_j_scitotenv_2023_169590 crossref_primary_10_1186_s12989_022_00458_x crossref_primary_10_1016_j_jconrel_2022_05_055 |
Cites_doi | 10.2217/nnm.15.6 10.1161/01.CIR.40.5.603 10.1039/C0CC02618B 10.1016/j.copbio.2017.02.009 10.1002/jbio.201300154 10.1016/j.msec.2016.03.059 10.1039/c2cc16937a 10.1021/bi001857b 10.1097/00001721-199210000-00012 10.1371/journal.pone.0116737 10.1016/j.bbamem.2015.11.012 10.1021/nn204951s 10.1016/j.cis.2007.04.021 10.1002/smll.200801546 10.1021/acs.jpcc.6b01939 10.1002/bip.21646 10.1007/s10439-012-0695-0 10.1021/ar500190q 10.1038/natrevmats.2016.14 10.1016/j.jconrel.2014.12.030 10.1021/la050588t 10.1016/S0927-7765(99)00156-3 10.1039/C7NR03042H 10.1021/nn2000756 10.1182/blood-2007-05-093021 10.1002/jbm.a.10371 10.1021/ja2084338 10.1039/C6NR09500C 10.1016/0169-409X(95)00026-4 10.1021/jp304630q 10.1007/s10529-010-0469-4 10.1021/la402920f 10.1111/j.1432-1033.1973.tb03146.x 10.1039/C7TB01695F 10.1146/annurev.biochem.67.1.395 10.1016/j.colsurfb.2017.02.037 10.1111/j.1600-0854.2007.00540.x 10.1021/jp502624n 10.1016/j.cbpa.2010.06.186 10.1021/ja910675v 10.1039/c2nr33611a 10.1016/j.biomaterials.2015.10.019 10.1038/nnano.2012.207 10.1073/pnas.0608582104 10.1007/s13204-015-0501-z 10.1039/C4RA04246H 10.1039/C5NR03701H 10.1021/ja309812z 10.1046/j.1432-1327.1999.00695.x 10.1007/s12551-012-0072-0 |
ContentType | Journal Article |
Copyright | 2018 Biophysical Society Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved. 2018 Biophysical Society. 2018 Biophysical Society |
Copyright_xml | – notice: 2018 Biophysical Society – notice: Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved. – notice: 2018 Biophysical Society. 2018 Biophysical Society |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.bpj.2018.02.036 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1542-0086 |
EndPage | 216 |
ExternalDocumentID | PMC6050717 29650368 10_1016_j_bpj_2018_02_036 S0006349518302960 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .55 0R~ 23N 2WC 4.4 457 5GY 5RE 62- 6I. 6J9 AACTN AAEDW AAFTH AAIAV AAKRW AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACBEA ACGFO ACGFS ACGOD ACIWK ACNCT ACPRK ADBBV ADEZE ADJPV AENEX AEXQZ AFRAH AFTJW AGKMS AHMBA AHPSJ AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS AYCSE AZFZN BAWUL CS3 D0L DIK DU5 E3Z EBS EJD F5P FCP FDB FRP HYE IH2 IXB JIG KQ8 L7B M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG RNS ROL RPM RWL SES SSZ TAE TBP TN5 WH7 WOQ WOW WQ6 X7M YNY YWH ZA5 ~02 --K .GJ 3O- 53G 6TJ 7X2 7X7 88E 88I 8AF 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 AAEDT AAIKJ AAMRU AAQXK AAYWO AAYXX ABDGV ABUWG ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AEUPX AEUYN AFKRA AFPUW AGCQF AGHFR AGQPQ AI. AIGII AKAPO AKBMS AKRWK AKYEP APXCP ARAPS ASPBG ATCPS AVWKF AZQEC BBNVY BENPR BGLVJ BHPHI BPHCQ BVXVI CCPQU CITATION DWQXO EFKBS FEDTE FGOYB FYUFA G-2 GNUQQ GUQSH GX1 H13 HCIFZ HMCUK HVGLF HX~ HZ~ LK8 M0K M1P M2O M2P M2Q M7P MVM OZT P62 PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PRG PROAC PSQYO PUEGO Q2X R2- S0X UKHRP UKR VH1 YYP ZGI ZXP ~KM ALIPV CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c451t-a83182d9b4f28ee83bdcb467ba8bddbc55efbe39c4dfa09e6ddc80c45546487c3 |
IEDL.DBID | IXB |
ISSN | 0006-3495 1542-0086 |
IngestDate | Thu Aug 21 18:16:13 EDT 2025 Sun Sep 28 08:04:12 EDT 2025 Thu Apr 03 07:02:27 EDT 2025 Thu Sep 18 00:17:09 EDT 2025 Thu Apr 24 22:57:09 EDT 2025 Fri Feb 23 02:49:08 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-a83182d9b4f28ee83bdcb467ba8bddbc55efbe39c4dfa09e6ddc80c45546487c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0006349518302960 |
PMID | 29650368 |
PQID | 2025314049 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6050717 proquest_miscellaneous_2025314049 pubmed_primary_29650368 crossref_primary_10_1016_j_bpj_2018_02_036 crossref_citationtrail_10_1016_j_bpj_2018_02_036 elsevier_sciencedirect_doi_10_1016_j_bpj_2018_02_036 |
PublicationCentury | 2000 |
PublicationDate | 2018-07-17 |
PublicationDateYYYYMMDD | 2018-07-17 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-17 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biophysical journal |
PublicationTitleAlternate | Biophys J |
PublicationYear | 2018 |
Publisher | Elsevier Inc The Biophysical Society |
Publisher_xml | – name: Elsevier Inc – name: The Biophysical Society |
References | Lesniak, Salvati, Åberg (bib44) 2013; 135 Alkilany, Nagaria, Wyatt (bib11) 2009; 5 Fleischer, Payne (bib34) 2012; 116 Sjöholm (bib38) 1973; 39 Kornblatt, Rajotte, Heitz (bib39) 2001; 40 Palchetti, Colapicchioni, Laganà (bib31) 2016; 1858 Milani, Bombelli, Rädler (bib24) 2012; 6 Hamad-Schifferli (bib36) 2015; 10 Doorley, Payne (bib42) 2012; 48 Braun, DeBrosse, Comfort (bib27) 2016; 64 Cedervall, Lynch, Linse (bib23) 2007; 104 Dolan, Kolega, Meng (bib4) 2013; 41 Park, Hamad-Schifferli (bib14) 2010; 14 Liu, Rose, Vidaud (bib26) 2013; 5 Jayaram, Runa, Payne (bib32) 2017; 9 Sadler (bib49) 1998; 67 Luby, Breitner, Comfort (bib28) 2016; 6 Walczyk, Bombelli, Dawson (bib7) 2010; 132 Gref, Domb, Langer (bib16) 1995; 16 Palchetti, Pozzi, Laganà (bib29) 2017; 153 Mirshafiee, Kim, Kraft (bib35) 2016; 75 Lynch, Cedervall, Dawson (bib12) 2007; 134–135 Brewer, Glomm, Franzen (bib10) 2005; 21 Carrillo-Carrion, Carril, Parak (bib15) 2017; 46 Papi, Caputo, Caracciolo (bib21) 2017; 9 Runa, Khanal, Payne (bib33) 2016; 120 Baran, Shi, Wang (bib3) 2015; 8 Kornblatt, Kornblatt, Balny (bib52) 1999; 265 Thomas, Geer (bib48) 2011; 33 Wicki, Witzigmann, Huwyler (bib1) 2015; 200 Boulos, Davis, Murphy (bib19) 2013; 29 Monopoli, Åberg, Dawson (bib25) 2012; 7 Runa, Hill, Payne (bib20) 2014 Bekard, Asimakis, Dunstan (bib47) 2011; 95 Lunov, Syrovets, Simmet (bib8) 2011; 5 Gessner, Lieske, Müller (bib9) 2003; 65 Doorley, Payne (bib41) 2011; 47 Shim, Anderson, Sadler (bib50) 2008; 111 Li, Xu, Mao (bib22) 2018; 6 Ponting, Marshall, Cederholm-Williams (bib51) 1992; 3 Pozzi, Caracciolo, Laganà (bib30) 2015; 7 Wilhelm, Tavares, Chan (bib2) 2016; 1 Fleischer, Payne (bib6) 2014; 47 Szymanski, Yi, Payne (bib45) 2013 Treuel, Nienhaus (bib13) 2012; 4 Walkey, Olsen, Chan (bib18) 2012; 134 Payne, Jones, Zhuang (bib40) 2007; 8 Hill, Payne (bib43) 2014; 4 Fleischer, Payne (bib46) 2014; 118 Gabe, Gault, Braunwald (bib5) 1969; 40 Gref, Lück, Müller (bib17) 2000; 18 Correia, Snabe, Neves-Petersen (bib37) 2015; 10 Gref (10.1016/j.bpj.2018.02.036_bib16) 1995; 16 Runa (10.1016/j.bpj.2018.02.036_bib20) 2014 Hamad-Schifferli (10.1016/j.bpj.2018.02.036_bib36) 2015; 10 Lunov (10.1016/j.bpj.2018.02.036_bib8) 2011; 5 Park (10.1016/j.bpj.2018.02.036_bib14) 2010; 14 Sadler (10.1016/j.bpj.2018.02.036_bib49) 1998; 67 Milani (10.1016/j.bpj.2018.02.036_bib24) 2012; 6 Doorley (10.1016/j.bpj.2018.02.036_bib41) 2011; 47 Lynch (10.1016/j.bpj.2018.02.036_bib12) 2007; 134–135 Liu (10.1016/j.bpj.2018.02.036_bib26) 2013; 5 Hill (10.1016/j.bpj.2018.02.036_bib43) 2014; 4 Jayaram (10.1016/j.bpj.2018.02.036_bib32) 2017; 9 Lesniak (10.1016/j.bpj.2018.02.036_bib44) 2013; 135 Correia (10.1016/j.bpj.2018.02.036_bib37) 2015; 10 Dolan (10.1016/j.bpj.2018.02.036_bib4) 2013; 41 Monopoli (10.1016/j.bpj.2018.02.036_bib25) 2012; 7 Wicki (10.1016/j.bpj.2018.02.036_bib1) 2015; 200 Sjöholm (10.1016/j.bpj.2018.02.036_bib38) 1973; 39 Walkey (10.1016/j.bpj.2018.02.036_bib18) 2012; 134 Cedervall (10.1016/j.bpj.2018.02.036_bib23) 2007; 104 Szymanski (10.1016/j.bpj.2018.02.036_bib45) 2013 Fleischer (10.1016/j.bpj.2018.02.036_bib46) 2014; 118 Fleischer (10.1016/j.bpj.2018.02.036_bib6) 2014; 47 Carrillo-Carrion (10.1016/j.bpj.2018.02.036_bib15) 2017; 46 Payne (10.1016/j.bpj.2018.02.036_bib40) 2007; 8 Walczyk (10.1016/j.bpj.2018.02.036_bib7) 2010; 132 Li (10.1016/j.bpj.2018.02.036_bib22) 2018; 6 Thomas (10.1016/j.bpj.2018.02.036_bib48) 2011; 33 Runa (10.1016/j.bpj.2018.02.036_bib33) 2016; 120 Wilhelm (10.1016/j.bpj.2018.02.036_bib2) 2016; 1 Luby (10.1016/j.bpj.2018.02.036_bib28) 2016; 6 Shim (10.1016/j.bpj.2018.02.036_bib50) 2008; 111 Papi (10.1016/j.bpj.2018.02.036_bib21) 2017; 9 Alkilany (10.1016/j.bpj.2018.02.036_bib11) 2009; 5 Bekard (10.1016/j.bpj.2018.02.036_bib47) 2011; 95 Baran (10.1016/j.bpj.2018.02.036_bib3) 2015; 8 Braun (10.1016/j.bpj.2018.02.036_bib27) 2016; 64 Palchetti (10.1016/j.bpj.2018.02.036_bib29) 2017; 153 Gref (10.1016/j.bpj.2018.02.036_bib17) 2000; 18 Ponting (10.1016/j.bpj.2018.02.036_bib51) 1992; 3 Pozzi (10.1016/j.bpj.2018.02.036_bib30) 2015; 7 Boulos (10.1016/j.bpj.2018.02.036_bib19) 2013; 29 Doorley (10.1016/j.bpj.2018.02.036_bib42) 2012; 48 Palchetti (10.1016/j.bpj.2018.02.036_bib31) 2016; 1858 Fleischer (10.1016/j.bpj.2018.02.036_bib34) 2012; 116 Mirshafiee (10.1016/j.bpj.2018.02.036_bib35) 2016; 75 Gessner (10.1016/j.bpj.2018.02.036_bib9) 2003; 65 Kornblatt (10.1016/j.bpj.2018.02.036_bib52) 1999; 265 Brewer (10.1016/j.bpj.2018.02.036_bib10) 2005; 21 Kornblatt (10.1016/j.bpj.2018.02.036_bib39) 2001; 40 Gabe (10.1016/j.bpj.2018.02.036_bib5) 1969; 40 Treuel (10.1016/j.bpj.2018.02.036_bib13) 2012; 4 |
References_xml | – volume: 6 start-page: 2532 year: 2012 end-page: 2541 ident: bib24 article-title: Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: soft and hard corona publication-title: ACS Nano – volume: 29 start-page: 14984 year: 2013 end-page: 14996 ident: bib19 article-title: Nanoparticle-protein interactions: a thermodynamic and kinetic study of the adsorption of bovine serum albumin to gold nanoparticle surfaces publication-title: Langmuir – volume: 6 start-page: 827 year: 2016 end-page: 836 ident: bib28 article-title: Preliminary protein corona formation stabilizes gold nanoparticles and improves deposition efficiency publication-title: Appl. Nanosi – volume: 75 start-page: 295 year: 2016 end-page: 304 ident: bib35 article-title: Impact of protein pre-coating on the protein corona composition and nanoparticle cellular uptake publication-title: Biomaterials – volume: 10 start-page: 1663 year: 2015 end-page: 1674 ident: bib36 article-title: Exploiting the novel properties of protein coronas: emerging applications in nanomedicine publication-title: Nanomedicine (Lond.) – volume: 134–135 start-page: 167 year: 2007 end-page: 174 ident: bib12 article-title: The nanoparticle-protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century publication-title: Adv. Colloid Interface Sci – volume: 1 start-page: 16014 year: 2016 ident: bib2 article-title: Analysis of nanoparticle delivery to tumours publication-title: Nat. Rev. Mater – volume: 64 start-page: 34 year: 2016 end-page: 42 ident: bib27 article-title: Modification of the protein corona-nanoparticle complex by physiological factors publication-title: Mater. Sci. Eng. C – volume: 5 start-page: 1658 year: 2013 end-page: 1668 ident: bib26 article-title: Protein corona formation for nanomaterials and proteins of a similar size: hard or soft corona? publication-title: Nanoscale – volume: 8 start-page: 46 year: 2015 end-page: 51 ident: bib3 article-title: Capillary blood flow imaging within human finger cuticle using optical microangiography publication-title: J. Biophotonics – volume: 265 start-page: 120 year: 1999 end-page: 126 ident: bib52 article-title: The effects of hydrostatic pressure on the conformation of plasminogen publication-title: Eur. J. Biochem. – volume: 116 start-page: 8901 year: 2012 end-page: 8907 ident: bib34 article-title: Nanoparticle surface charge mediates the cellular receptors used by protein-nanoparticle complexes publication-title: J. Phys. Chem. B – volume: 47 start-page: 2651 year: 2014 end-page: 2659 ident: bib6 article-title: Nanoparticle-cell interactions: molecular structure of the protein corona and cellular outcomes publication-title: Acc. Chem. Res – volume: 5 start-page: 701 year: 2009 end-page: 708 ident: bib11 article-title: Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects publication-title: Small – volume: 47 start-page: 466 year: 2011 end-page: 468 ident: bib41 article-title: Cellular binding of nanoparticles in the presence of serum proteins publication-title: Chem. Commun. (Camb.) – start-page: 21 year: 2013 end-page: 23 ident: bib45 article-title: Imaging intracellular quantum dots: fluorescence microscopy and transmission electron microscopy publication-title: Nanobiotechnology Protocols – volume: 65 start-page: 319 year: 2003 end-page: 326 ident: bib9 article-title: Functional groups on polystyrene model nanoparticles: influence on protein adsorption publication-title: J. Biomed. Mater. Res. A – volume: 3 start-page: 605 year: 1992 end-page: 614 ident: bib51 article-title: Plasminogen: a structural review publication-title: Blood Coagul. Fibrinolysis – volume: 132 start-page: 5761 year: 2010 end-page: 5768 ident: bib7 article-title: What the cell “sees” in bionanoscience publication-title: J. Am. Chem. Soc – volume: 5 start-page: 1657 year: 2011 end-page: 1669 ident: bib8 article-title: Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line publication-title: ACS Nano – volume: 6 start-page: 9 year: 2018 end-page: 24 ident: bib22 article-title: Impact of anti-biofouling surface coatings on the properties of nanomaterials and their biomedical applications publication-title: J. Mater. Chem. B – volume: 8 start-page: 389 year: 2007 end-page: 401 ident: bib40 article-title: Internalization and trafficking of cell surface proteoglycans and proteoglycan-binding ligands publication-title: Traffic – volume: 48 start-page: 2961 year: 2012 end-page: 2963 ident: bib42 article-title: Nanoparticles act as protein carriers during cellular internalization publication-title: Chem. Commun. (Camb.) – volume: 33 start-page: 443 year: 2011 end-page: 456 ident: bib48 article-title: Effects of shear on proteins in solution publication-title: Biotechnol. Lett – volume: 4 start-page: 31735 year: 2014 end-page: 31744 ident: bib43 article-title: Impact of serum proteins on MRI contrast agents: cellular binding and T2 relaxation publication-title: RSC Advances – volume: 9 start-page: 10327 year: 2017 end-page: 10334 ident: bib21 article-title: Clinically approved PEGylated nanoparticles are covered by a protein corona that boosts the uptake by cancer cells publication-title: Nanoscale – volume: 39 start-page: 471 year: 1973 end-page: 479 ident: bib38 article-title: Studies on the conformational changes of plasminogen induced during activation to plasmin and by 6-aminohexanoic acid publication-title: Eur. J. Biochem – volume: 120 start-page: 20736 year: 2016 end-page: 20742 ident: bib33 article-title: TiO2 nanoparticles alter the expression of peroxiredoxin antioxidant genes publication-title: J. Phys. Chem. C – volume: 40 start-page: 3639 year: 2001 end-page: 3647 ident: bib39 article-title: Reaction of canine plasminogen with 6-aminohexanoate: a thermodynamic study combining fluorescence, circular dichroism, and isothermal titration calorimetry publication-title: Biochemistry – volume: 7 start-page: 779 year: 2012 end-page: 786 ident: bib25 article-title: Biomolecular coronas provide the biological identity of nanosized materials publication-title: Nat. Nanotechnol – volume: 200 start-page: 138 year: 2015 end-page: 157 ident: bib1 article-title: Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications publication-title: J. Control. Release – volume: 111 start-page: 651 year: 2008 end-page: 657 ident: bib50 article-title: Platelet-VWF complexes are preferred substrates of ADAMTS13 under fluid shear stress publication-title: Blood – volume: 40 start-page: 603 year: 1969 end-page: 614 ident: bib5 article-title: Measurement of instantaneous blood flow velocity and pressure in conscious man with a catheter-tip velocity probe publication-title: Circulation – volume: 9 start-page: 7595 year: 2017 end-page: 7601 ident: bib32 article-title: Nanoparticle-induced oxidation of corona proteins initiates an oxidative stress response in cells publication-title: Nanoscale – volume: 95 start-page: 733 year: 2011 end-page: 745 ident: bib47 article-title: The effects of shear flow on protein structure and function publication-title: Biopolymers – volume: 67 start-page: 395 year: 1998 end-page: 424 ident: bib49 article-title: Biochemistry and genetics of von Willebrand factor publication-title: Annu. Rev. Biochem – volume: 21 start-page: 9303 year: 2005 end-page: 9307 ident: bib10 article-title: Probing BSA binding to citrate-coated gold nanoparticles and surfaces publication-title: Langmuir – volume: 16 start-page: 215 year: 1995 end-page: 233 ident: bib16 article-title: The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres publication-title: Adv. Drug Deliv. Rev – volume: 104 start-page: 2050 year: 2007 end-page: 2055 ident: bib23 article-title: Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles publication-title: Proc. Natl. Acad. Sci. USA – volume: 18 start-page: 301 year: 2000 end-page: 313 ident: bib17 article-title: ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption publication-title: Colloids Surf. B Biointerfaces – volume: 7 start-page: 13958 year: 2015 end-page: 13966 ident: bib30 article-title: The biomolecular corona of nanoparticles in circulating biological media publication-title: Nanoscale – volume: 10 start-page: e0116737 year: 2015 ident: bib37 article-title: Photonic activation of plasminogen induced by low dose UVB publication-title: PLoS One – volume: 153 start-page: 263 year: 2017 end-page: 271 ident: bib29 article-title: Influence of dynamic flow environment on nanoparticle-protein corona: from protein patterns to uptake in cancer cells publication-title: Colloids Surf. B Biointerfaces – volume: 41 start-page: 1411 year: 2013 end-page: 1427 ident: bib4 article-title: High wall shear stress and spatial gradients in vascular pathology: a review publication-title: Ann. Biomed. Eng – volume: 135 start-page: 1438 year: 2013 end-page: 1444 ident: bib44 article-title: Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency publication-title: J. Am. Chem. Soc. – volume: 118 start-page: 14017 year: 2014 end-page: 14026 ident: bib46 article-title: Secondary structure of corona proteins determines the cell surface receptors used by nanoparticles publication-title: J. Phys. Chem. B – start-page: 91651F year: 2014 ident: bib20 article-title: PEGylated nanoparticles: protein corona and secondary structure publication-title: Proceedings SPIE, Physical Chemistry of Interfaces and Nanomaterials XIII 9165 – volume: 14 start-page: 616 year: 2010 end-page: 622 ident: bib14 article-title: Nanoscale interfaces to biology publication-title: Curr. Opin. Chem. Biol – volume: 134 start-page: 2139 year: 2012 end-page: 2147 ident: bib18 article-title: Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake publication-title: J. Am. Chem. Soc – volume: 4 start-page: 137 year: 2012 end-page: 147 ident: bib13 article-title: Toward a molecular understanding of nanoparticle-protein interactions publication-title: Biophys. Rev – volume: 46 start-page: 106 year: 2017 end-page: 113 ident: bib15 article-title: Techniques for the experimental investigation of the protein corona publication-title: Curr. Opin. Biotechnol – volume: 1858 start-page: 189 year: 2016 end-page: 196 ident: bib31 article-title: The protein corona of circulating PEGylated liposomes publication-title: Biochim. Biophys. Acta – volume: 10 start-page: 1663 year: 2015 ident: 10.1016/j.bpj.2018.02.036_bib36 article-title: Exploiting the novel properties of protein coronas: emerging applications in nanomedicine publication-title: Nanomedicine (Lond.) doi: 10.2217/nnm.15.6 – volume: 40 start-page: 603 year: 1969 ident: 10.1016/j.bpj.2018.02.036_bib5 article-title: Measurement of instantaneous blood flow velocity and pressure in conscious man with a catheter-tip velocity probe publication-title: Circulation doi: 10.1161/01.CIR.40.5.603 – volume: 47 start-page: 466 year: 2011 ident: 10.1016/j.bpj.2018.02.036_bib41 article-title: Cellular binding of nanoparticles in the presence of serum proteins publication-title: Chem. Commun. (Camb.) doi: 10.1039/C0CC02618B – volume: 46 start-page: 106 year: 2017 ident: 10.1016/j.bpj.2018.02.036_bib15 article-title: Techniques for the experimental investigation of the protein corona publication-title: Curr. Opin. Biotechnol doi: 10.1016/j.copbio.2017.02.009 – volume: 8 start-page: 46 year: 2015 ident: 10.1016/j.bpj.2018.02.036_bib3 article-title: Capillary blood flow imaging within human finger cuticle using optical microangiography publication-title: J. Biophotonics doi: 10.1002/jbio.201300154 – volume: 64 start-page: 34 year: 2016 ident: 10.1016/j.bpj.2018.02.036_bib27 article-title: Modification of the protein corona-nanoparticle complex by physiological factors publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2016.03.059 – volume: 48 start-page: 2961 year: 2012 ident: 10.1016/j.bpj.2018.02.036_bib42 article-title: Nanoparticles act as protein carriers during cellular internalization publication-title: Chem. Commun. (Camb.) doi: 10.1039/c2cc16937a – volume: 40 start-page: 3639 year: 2001 ident: 10.1016/j.bpj.2018.02.036_bib39 article-title: Reaction of canine plasminogen with 6-aminohexanoate: a thermodynamic study combining fluorescence, circular dichroism, and isothermal titration calorimetry publication-title: Biochemistry doi: 10.1021/bi001857b – volume: 3 start-page: 605 year: 1992 ident: 10.1016/j.bpj.2018.02.036_bib51 article-title: Plasminogen: a structural review publication-title: Blood Coagul. Fibrinolysis doi: 10.1097/00001721-199210000-00012 – volume: 10 start-page: e0116737 year: 2015 ident: 10.1016/j.bpj.2018.02.036_bib37 article-title: Photonic activation of plasminogen induced by low dose UVB publication-title: PLoS One doi: 10.1371/journal.pone.0116737 – volume: 1858 start-page: 189 year: 2016 ident: 10.1016/j.bpj.2018.02.036_bib31 article-title: The protein corona of circulating PEGylated liposomes publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamem.2015.11.012 – volume: 6 start-page: 2532 year: 2012 ident: 10.1016/j.bpj.2018.02.036_bib24 article-title: Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: soft and hard corona publication-title: ACS Nano doi: 10.1021/nn204951s – volume: 134–135 start-page: 167 year: 2007 ident: 10.1016/j.bpj.2018.02.036_bib12 article-title: The nanoparticle-protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century publication-title: Adv. Colloid Interface Sci doi: 10.1016/j.cis.2007.04.021 – volume: 5 start-page: 701 year: 2009 ident: 10.1016/j.bpj.2018.02.036_bib11 article-title: Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects publication-title: Small doi: 10.1002/smll.200801546 – volume: 120 start-page: 20736 year: 2016 ident: 10.1016/j.bpj.2018.02.036_bib33 article-title: TiO2 nanoparticles alter the expression of peroxiredoxin antioxidant genes publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b01939 – volume: 95 start-page: 733 year: 2011 ident: 10.1016/j.bpj.2018.02.036_bib47 article-title: The effects of shear flow on protein structure and function publication-title: Biopolymers doi: 10.1002/bip.21646 – volume: 41 start-page: 1411 year: 2013 ident: 10.1016/j.bpj.2018.02.036_bib4 article-title: High wall shear stress and spatial gradients in vascular pathology: a review publication-title: Ann. Biomed. Eng doi: 10.1007/s10439-012-0695-0 – volume: 47 start-page: 2651 year: 2014 ident: 10.1016/j.bpj.2018.02.036_bib6 article-title: Nanoparticle-cell interactions: molecular structure of the protein corona and cellular outcomes publication-title: Acc. Chem. Res doi: 10.1021/ar500190q – start-page: 21 year: 2013 ident: 10.1016/j.bpj.2018.02.036_bib45 article-title: Imaging intracellular quantum dots: fluorescence microscopy and transmission electron microscopy – volume: 1 start-page: 16014 year: 2016 ident: 10.1016/j.bpj.2018.02.036_bib2 article-title: Analysis of nanoparticle delivery to tumours publication-title: Nat. Rev. Mater doi: 10.1038/natrevmats.2016.14 – volume: 200 start-page: 138 year: 2015 ident: 10.1016/j.bpj.2018.02.036_bib1 article-title: Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications publication-title: J. Control. Release doi: 10.1016/j.jconrel.2014.12.030 – volume: 21 start-page: 9303 year: 2005 ident: 10.1016/j.bpj.2018.02.036_bib10 article-title: Probing BSA binding to citrate-coated gold nanoparticles and surfaces publication-title: Langmuir doi: 10.1021/la050588t – volume: 18 start-page: 301 year: 2000 ident: 10.1016/j.bpj.2018.02.036_bib17 article-title: ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/S0927-7765(99)00156-3 – volume: 9 start-page: 10327 year: 2017 ident: 10.1016/j.bpj.2018.02.036_bib21 article-title: Clinically approved PEGylated nanoparticles are covered by a protein corona that boosts the uptake by cancer cells publication-title: Nanoscale doi: 10.1039/C7NR03042H – volume: 5 start-page: 1657 year: 2011 ident: 10.1016/j.bpj.2018.02.036_bib8 article-title: Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line publication-title: ACS Nano doi: 10.1021/nn2000756 – volume: 111 start-page: 651 year: 2008 ident: 10.1016/j.bpj.2018.02.036_bib50 article-title: Platelet-VWF complexes are preferred substrates of ADAMTS13 under fluid shear stress publication-title: Blood doi: 10.1182/blood-2007-05-093021 – volume: 65 start-page: 319 year: 2003 ident: 10.1016/j.bpj.2018.02.036_bib9 article-title: Functional groups on polystyrene model nanoparticles: influence on protein adsorption publication-title: J. Biomed. Mater. Res. A doi: 10.1002/jbm.a.10371 – volume: 134 start-page: 2139 year: 2012 ident: 10.1016/j.bpj.2018.02.036_bib18 article-title: Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake publication-title: J. Am. Chem. Soc doi: 10.1021/ja2084338 – volume: 9 start-page: 7595 year: 2017 ident: 10.1016/j.bpj.2018.02.036_bib32 article-title: Nanoparticle-induced oxidation of corona proteins initiates an oxidative stress response in cells publication-title: Nanoscale doi: 10.1039/C6NR09500C – volume: 16 start-page: 215 year: 1995 ident: 10.1016/j.bpj.2018.02.036_bib16 article-title: The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres publication-title: Adv. Drug Deliv. Rev doi: 10.1016/0169-409X(95)00026-4 – start-page: 91651F year: 2014 ident: 10.1016/j.bpj.2018.02.036_bib20 article-title: PEGylated nanoparticles: protein corona and secondary structure – volume: 116 start-page: 8901 year: 2012 ident: 10.1016/j.bpj.2018.02.036_bib34 article-title: Nanoparticle surface charge mediates the cellular receptors used by protein-nanoparticle complexes publication-title: J. Phys. Chem. B doi: 10.1021/jp304630q – volume: 33 start-page: 443 year: 2011 ident: 10.1016/j.bpj.2018.02.036_bib48 article-title: Effects of shear on proteins in solution publication-title: Biotechnol. Lett doi: 10.1007/s10529-010-0469-4 – volume: 29 start-page: 14984 year: 2013 ident: 10.1016/j.bpj.2018.02.036_bib19 article-title: Nanoparticle-protein interactions: a thermodynamic and kinetic study of the adsorption of bovine serum albumin to gold nanoparticle surfaces publication-title: Langmuir doi: 10.1021/la402920f – volume: 39 start-page: 471 year: 1973 ident: 10.1016/j.bpj.2018.02.036_bib38 article-title: Studies on the conformational changes of plasminogen induced during activation to plasmin and by 6-aminohexanoic acid publication-title: Eur. J. Biochem doi: 10.1111/j.1432-1033.1973.tb03146.x – volume: 6 start-page: 9 year: 2018 ident: 10.1016/j.bpj.2018.02.036_bib22 article-title: Impact of anti-biofouling surface coatings on the properties of nanomaterials and their biomedical applications publication-title: J. Mater. Chem. B doi: 10.1039/C7TB01695F – volume: 67 start-page: 395 year: 1998 ident: 10.1016/j.bpj.2018.02.036_bib49 article-title: Biochemistry and genetics of von Willebrand factor publication-title: Annu. Rev. Biochem doi: 10.1146/annurev.biochem.67.1.395 – volume: 153 start-page: 263 year: 2017 ident: 10.1016/j.bpj.2018.02.036_bib29 article-title: Influence of dynamic flow environment on nanoparticle-protein corona: from protein patterns to uptake in cancer cells publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2017.02.037 – volume: 8 start-page: 389 year: 2007 ident: 10.1016/j.bpj.2018.02.036_bib40 article-title: Internalization and trafficking of cell surface proteoglycans and proteoglycan-binding ligands publication-title: Traffic doi: 10.1111/j.1600-0854.2007.00540.x – volume: 118 start-page: 14017 year: 2014 ident: 10.1016/j.bpj.2018.02.036_bib46 article-title: Secondary structure of corona proteins determines the cell surface receptors used by nanoparticles publication-title: J. Phys. Chem. B doi: 10.1021/jp502624n – volume: 14 start-page: 616 year: 2010 ident: 10.1016/j.bpj.2018.02.036_bib14 article-title: Nanoscale interfaces to biology publication-title: Curr. Opin. Chem. Biol doi: 10.1016/j.cbpa.2010.06.186 – volume: 132 start-page: 5761 year: 2010 ident: 10.1016/j.bpj.2018.02.036_bib7 article-title: What the cell “sees” in bionanoscience publication-title: J. Am. Chem. Soc doi: 10.1021/ja910675v – volume: 5 start-page: 1658 year: 2013 ident: 10.1016/j.bpj.2018.02.036_bib26 article-title: Protein corona formation for nanomaterials and proteins of a similar size: hard or soft corona? publication-title: Nanoscale doi: 10.1039/c2nr33611a – volume: 75 start-page: 295 year: 2016 ident: 10.1016/j.bpj.2018.02.036_bib35 article-title: Impact of protein pre-coating on the protein corona composition and nanoparticle cellular uptake publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.10.019 – volume: 7 start-page: 779 year: 2012 ident: 10.1016/j.bpj.2018.02.036_bib25 article-title: Biomolecular coronas provide the biological identity of nanosized materials publication-title: Nat. Nanotechnol doi: 10.1038/nnano.2012.207 – volume: 104 start-page: 2050 year: 2007 ident: 10.1016/j.bpj.2018.02.036_bib23 article-title: Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0608582104 – volume: 6 start-page: 827 year: 2016 ident: 10.1016/j.bpj.2018.02.036_bib28 article-title: Preliminary protein corona formation stabilizes gold nanoparticles and improves deposition efficiency publication-title: Appl. Nanosi doi: 10.1007/s13204-015-0501-z – volume: 4 start-page: 31735 year: 2014 ident: 10.1016/j.bpj.2018.02.036_bib43 article-title: Impact of serum proteins on MRI contrast agents: cellular binding and T2 relaxation publication-title: RSC Advances doi: 10.1039/C4RA04246H – volume: 7 start-page: 13958 year: 2015 ident: 10.1016/j.bpj.2018.02.036_bib30 article-title: The biomolecular corona of nanoparticles in circulating biological media publication-title: Nanoscale doi: 10.1039/C5NR03701H – volume: 135 start-page: 1438 year: 2013 ident: 10.1016/j.bpj.2018.02.036_bib44 article-title: Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency publication-title: J. Am. Chem. Soc. doi: 10.1021/ja309812z – volume: 265 start-page: 120 year: 1999 ident: 10.1016/j.bpj.2018.02.036_bib52 article-title: The effects of hydrostatic pressure on the conformation of plasminogen publication-title: Eur. J. Biochem. doi: 10.1046/j.1432-1327.1999.00695.x – volume: 4 start-page: 137 year: 2012 ident: 10.1016/j.bpj.2018.02.036_bib13 article-title: Toward a molecular understanding of nanoparticle-protein interactions publication-title: Biophys. Rev doi: 10.1007/s12551-012-0072-0 |
SSID | ssj0012501 |
Score | 2.4788094 |
Snippet | Nanoparticles used in cellular applications encounter free serum proteins that adsorb onto the surface of the nanoparticle, forming a protein corona. This... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 209 |
SubjectTerms | Adsorption Animals Cattle HeLa Cells Humans Hydrodynamics Nanoparticles - chemistry Plasminogen - chemistry Plasminogen - metabolism Polystyrenes - chemistry Protein Corona - chemistry |
Title | Protein Corona in Response to Flow: Effect on Protein Concentration and Structure |
URI | https://dx.doi.org/10.1016/j.bpj.2018.02.036 https://www.ncbi.nlm.nih.gov/pubmed/29650368 https://www.proquest.com/docview/2025314049 https://pubmed.ncbi.nlm.nih.gov/PMC6050717 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEA5FEHwRb-tRIvgkBPdu1jctliIoXoW-hVzFSskWbRH_vTPZ3WpVfPBtjwmbncnOsZn5hpDjOFTg9-Y5M22VMbDXnEkdGAaWK1Qy4Dr05dHXN1mvn1wN0kGDdOpaGEyrrHR_qdO9tq6unFbcPJ2MRljjC-YV_PsQIazAEQc9jFWlWMQ3uJjvJICJr7rmZQyp651Nn-OlJs-Y3cU9bKdHaf7VNv30Pb-nUH6xSd01slo5k_S8nO86aVi3QZbL9pLvm-TuFkEYRo52EKZAUji6L1NiLZ0WtDsu3s5oCV9MC0c_qV35PJQZlc7QBw8yO3uxW6TfvXzs9FjVQoHpJA2nTHL4ZiOTq2QYcWt5rIxWoBuV5MoYpdPUDpWNc52YoQxymxmjeQBj0ySDUEbH22TJFc7uEoo9JJQ0cTuGQFYOc66zwERtCxEkCDXnTRLUzBO6whfHNhdjUSeSPQvgt0B-iyASwO8mOZkPmZTgGn8RJ7VExMIKEaD8_xp2VEtPwJeD2yHS2WL2CkQRKKAEQqQm2SmlOZ8FrKcUBsNLtRfkPCdAVO7FO2705NG5IT7EGHnvf9PdJyt4xjx05wFZAvnaQ3B7pqrl13XL_4_6AIM0AcU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSyMxEB-qIvpynN89T43gkxDc72Z9uyuWqlX8hL6FfBUrki1e5fC_d5LdrVbFB9-WzYTNzkzmg0x-A7AXhxLj3jynuiUziv6aUaECTdFzhVIETIX-evTZeda9TU76ab8B7foujCurrGx_adO9ta7eHFTcPBgNh-6OL7pXjO9DB2GFgfgMzGE0EDjVPu7_nRwloI-v2uZl1JHXR5u-yEuO7l15F_O4nR6m-VPn9DH4fF9D-cYpdX7CjyqaJH_KBS9Bw9hlmC_7Sz6vwOWFQ2EYWtJ2OAWC4NNVWRNryLggnYfi_yEp8YtJYckrtS2_54RGhNXk2qPMPj2aVbjtHN20u7TqoUBVkoZjKhhu2kjnMhlEzBgWS60kGkcpmNRaqjQ1A2niXCV6IILcZForFuDcNMkwl1HxGszawpoNIK6JhBQ6bsWYyYpBzlQW6KhlMIVEqeasCUHNPK4qgHHX5-KB15Vk9xz5zR2_eRBx5HcT9idTRiW6xlfESS0RPqUiHK3_V9N2a-lx3DruPERYUzz9Q6IILVCCOVIT1ktpTlaBCpXiZPyp1pScJwQOlnt6xA7vPDw3JoguSf71veXuwEL35qzHe8fnp5uw6Eaox_H8DbMoa7OFMdBYbnsdfwFuoAPY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protein+Corona+in+Response+to+Flow%3A+Effect+on+Protein+Concentration+and+Structure&rft.jtitle=Biophysical+journal&rft.au=Jayaram%2C+Dhanya+T&rft.au=Pustulka%2C+Samantha+M&rft.au=Mannino%2C+Robert+G&rft.au=Lam%2C+Wilbur+A&rft.date=2018-07-17&rft.eissn=1542-0086&rft.volume=115&rft.issue=2&rft.spage=209&rft_id=info:doi/10.1016%2Fj.bpj.2018.02.036&rft_id=info%3Apmid%2F29650368&rft.externalDocID=29650368 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3495&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3495&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3495&client=summon |