Protein Corona in Response to Flow: Effect on Protein Concentration and Structure

Nanoparticles used in cellular applications encounter free serum proteins that adsorb onto the surface of the nanoparticle, forming a protein corona. This protein layer controls the interaction of nanoparticles with cells. For nanomedicine applications, it is important to consider how intravenous in...

Full description

Saved in:
Bibliographic Details
Published inBiophysical journal Vol. 115; no. 2; pp. 209 - 216
Main Authors Jayaram, Dhanya T., Pustulka, Samantha M., Mannino, Robert G., Lam, Wilbur A., Payne, Christine K.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 17.07.2018
The Biophysical Society
Subjects
Online AccessGet full text
ISSN0006-3495
1542-0086
1542-0086
DOI10.1016/j.bpj.2018.02.036

Cover

Abstract Nanoparticles used in cellular applications encounter free serum proteins that adsorb onto the surface of the nanoparticle, forming a protein corona. This protein layer controls the interaction of nanoparticles with cells. For nanomedicine applications, it is important to consider how intravenous injection and the subsequent shear flow will affect the protein corona. Our goal was to determine if shear flow changed the composition of the protein corona and if these changes affected cellular binding. Colorimetric assays of protein concentration and gel electrophoresis demonstrate that polystyrene nanoparticles subjected to flow have a greater concentration of serum proteins adsorbed on the surface, especially plasminogen. Plasminogen, in the absence of nanoparticles, undergoes changes in structure in response to flow, characterized by fluorescence and circular dichroism spectroscopy. The protein-nanoparticle complexes formed from fetal bovine serum after flow had decreased cellular binding, as measured with flow cytometry. In addition to the relevance for nanomedicine, these results also highlight the technical challenges of protein corona studies. The composition of the protein corona was highly dependent on the initial mixing step: rocking, vortexing, or flow. Overall, these results reaffirm the importance of the protein corona in nanoparticle-cell interactions and point toward the challenges of predicting corona composition based on nanoparticle properties.
AbstractList Nanoparticles used in cellular applications encounter free serum proteins that adsorb onto the surface of the nanoparticle, forming a protein corona. This protein layer controls the interaction of nanoparticles with cells. For nanomedicine applications, it is important to consider how intravenous injection and the subsequent shear flow will affect the protein corona. Our goal was to determine if shear flow changed the composition of the protein corona and if these changes affected cellular binding. Colorimetric assays of protein concentration and gel electrophoresis demonstrate that polystyrene nanoparticles subjected to flow have a greater concentration of serum proteins adsorbed on the surface, especially plasminogen. Plasminogen, in the absence of nanoparticles, undergoes changes in structure in response to flow, characterized by fluorescence and circular dichroism spectroscopy. The protein-nanoparticle complexes formed from fetal bovine serum after flow had decreased cellular binding, as measured with flow cytometry. In addition to the relevance for nanomedicine, these results also highlight the technical challenges of protein corona studies. The composition of the protein corona was highly dependent on the initial mixing step: rocking, vortexing, or flow. Overall, these results reaffirm the importance of the protein corona in nanoparticle-cell interactions and point toward the challenges of predicting corona composition based on nanoparticle properties.
Nanoparticles used in cellular applications encounter free serum proteins that adsorb onto the surface of the nanoparticle, forming a protein corona. This protein layer controls the interaction of nanoparticles with cells. For nanomedicine applications, it is important to consider how intravenous injection and the subsequent shear flow will affect the protein corona. Our goal was to determine if shear flow changed the composition of the protein corona and if these changes affected cellular binding. Colorimetric assays of protein concentration and gel electrophoresis demonstrate that polystyrene nanoparticles subjected to flow have a greater concentration of serum proteins adsorbed on the surface, especially plasminogen. Plasminogen, in the absence of nanoparticles, undergoes changes in structure in response to flow, characterized by fluorescence and circular dichroism spectroscopy. The protein-nanoparticle complexes formed from fetal bovine serum after flow had decreased cellular binding, as measured with flow cytometry. In addition to the relevance for nanomedicine, these results also highlight the technical challenges of protein corona studies. The composition of the protein corona was highly dependent on the initial mixing step: rocking, vortexing, or flow. Overall, these results reaffirm the importance of the protein corona in nanoparticle-cell interactions and point toward the challenges of predicting corona composition based on nanoparticle properties.Nanoparticles used in cellular applications encounter free serum proteins that adsorb onto the surface of the nanoparticle, forming a protein corona. This protein layer controls the interaction of nanoparticles with cells. For nanomedicine applications, it is important to consider how intravenous injection and the subsequent shear flow will affect the protein corona. Our goal was to determine if shear flow changed the composition of the protein corona and if these changes affected cellular binding. Colorimetric assays of protein concentration and gel electrophoresis demonstrate that polystyrene nanoparticles subjected to flow have a greater concentration of serum proteins adsorbed on the surface, especially plasminogen. Plasminogen, in the absence of nanoparticles, undergoes changes in structure in response to flow, characterized by fluorescence and circular dichroism spectroscopy. The protein-nanoparticle complexes formed from fetal bovine serum after flow had decreased cellular binding, as measured with flow cytometry. In addition to the relevance for nanomedicine, these results also highlight the technical challenges of protein corona studies. The composition of the protein corona was highly dependent on the initial mixing step: rocking, vortexing, or flow. Overall, these results reaffirm the importance of the protein corona in nanoparticle-cell interactions and point toward the challenges of predicting corona composition based on nanoparticle properties.
Author Jayaram, Dhanya T.
Pustulka, Samantha M.
Mannino, Robert G.
Payne, Christine K.
Lam, Wilbur A.
AuthorAffiliation 2 School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
1 School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
4 Division of Pediatric Hematology/Oncology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
5 Children’s Healthcare of Atlanta, Aflac Cancer & Blood Disorders Center, Atlanta, Georgia
3 The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
6 Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia
AuthorAffiliation_xml – name: 3 The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
– name: 1 School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
– name: 6 Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia
– name: 5 Children’s Healthcare of Atlanta, Aflac Cancer & Blood Disorders Center, Atlanta, Georgia
– name: 4 Division of Pediatric Hematology/Oncology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
– name: 2 School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
Author_xml – sequence: 1
  givenname: Dhanya T.
  surname: Jayaram
  fullname: Jayaram, Dhanya T.
  organization: School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
– sequence: 2
  givenname: Samantha M.
  surname: Pustulka
  fullname: Pustulka, Samantha M.
  organization: School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
– sequence: 3
  givenname: Robert G.
  surname: Mannino
  fullname: Mannino, Robert G.
  organization: The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
– sequence: 4
  givenname: Wilbur A.
  surname: Lam
  fullname: Lam, Wilbur A.
  organization: The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
– sequence: 5
  givenname: Christine K.
  surname: Payne
  fullname: Payne, Christine K.
  email: christine.payne@duke.edu
  organization: School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29650368$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS3Uik4LD8AGZckm4dqxEwckpGrUAlKl8ru2HPsGPMrYg-0U8fa4TGmhi65s2ec79-qcY3Lgg0dCnlFoKNDu5aYZd5uGAZUNsAba7hFZUcFZDSC7A7ICgK5u-SCOyHFKGwDKBNDH5IgNnShyuSIfP8SQ0flqHWLwuiq3T5h2wSescqjO5_DzVXU2TWhyFXx1p_YGfY46u_Kqva0-57iYvER8Qg4nPSd8enOekK_nZ1_W7-qLy7fv16cXteGC5lrLlkpmh5FPTCLKdrRm5F0_ajlaOxohcBqxHQy3k4YBO2uNhMIK3nHZm_aEvNn77pZxi3a_zqx20W11_KWCdur_H---q2_hSnUgoKd9MXhxYxDDjwVTVluXDM6z9hiWpBgw0VIOfCjS5__Ouh3yN8cioHuBiSGliNOthIK67kptVOlKXXelgKkCFaa_xxiX_wRa1nXzg-TrPYkl3yuHUSXjsDRiXSxFKRvcA_Rv9kmwHQ
CitedBy_id crossref_primary_10_1016_j_cobme_2019_01_002
crossref_primary_10_1088_1748_605X_abe5fa
crossref_primary_10_1021_acsnano_1c05901
crossref_primary_10_1038_s41565_021_00924_1
crossref_primary_10_1063_5_0073494
crossref_primary_10_1002_admt_202100660
crossref_primary_10_1016_j_impact_2022_100405
crossref_primary_10_2174_1389450122666210118105122
crossref_primary_10_1016_j_bpj_2019_04_025
crossref_primary_10_1088_1361_6528_ac7ac0
crossref_primary_10_1111_1541_4337_12838
crossref_primary_10_1002_adhm_202300584
crossref_primary_10_1016_j_xphs_2023_12_021
crossref_primary_10_1016_j_addr_2019_02_008
crossref_primary_10_1039_D2LC00799A
crossref_primary_10_3390_pharmaceutics15122655
crossref_primary_10_1039_D3NR03749E
crossref_primary_10_1021_acs_biomac_0c01779
crossref_primary_10_1016_j_jcyt_2022_12_002
crossref_primary_10_1016_j_msec_2020_110760
crossref_primary_10_1021_acs_molpharmaceut_1c00698
crossref_primary_10_1039_D1NR08101B
crossref_primary_10_1116_6_0000439
crossref_primary_10_1002_adma_202211261
crossref_primary_10_1007_s00216_020_02726_1
crossref_primary_10_1021_acs_macromol_1c00849
crossref_primary_10_1039_D2NA00066K
crossref_primary_10_1063_1_5120178
crossref_primary_10_1124_pr_118_016816
crossref_primary_10_1073_pnas_2307809121
crossref_primary_10_3390_polym11091441
crossref_primary_10_3389_fchem_2020_611833
crossref_primary_10_1021_acs_langmuir_4c00956
crossref_primary_10_1007_s00216_022_04278_y
crossref_primary_10_1016_j_mtadv_2019_100036
crossref_primary_10_1007_s13346_020_00745_0
crossref_primary_10_1016_j_colsurfb_2025_114508
crossref_primary_10_1016_j_addr_2022_114356
crossref_primary_10_1016_j_ijbiomac_2021_01_152
crossref_primary_10_1021_acs_bioconjchem_0c00091
crossref_primary_10_1002_smll_202301663
crossref_primary_10_1016_j_scitotenv_2023_169590
crossref_primary_10_1186_s12989_022_00458_x
crossref_primary_10_1016_j_jconrel_2022_05_055
Cites_doi 10.2217/nnm.15.6
10.1161/01.CIR.40.5.603
10.1039/C0CC02618B
10.1016/j.copbio.2017.02.009
10.1002/jbio.201300154
10.1016/j.msec.2016.03.059
10.1039/c2cc16937a
10.1021/bi001857b
10.1097/00001721-199210000-00012
10.1371/journal.pone.0116737
10.1016/j.bbamem.2015.11.012
10.1021/nn204951s
10.1016/j.cis.2007.04.021
10.1002/smll.200801546
10.1021/acs.jpcc.6b01939
10.1002/bip.21646
10.1007/s10439-012-0695-0
10.1021/ar500190q
10.1038/natrevmats.2016.14
10.1016/j.jconrel.2014.12.030
10.1021/la050588t
10.1016/S0927-7765(99)00156-3
10.1039/C7NR03042H
10.1021/nn2000756
10.1182/blood-2007-05-093021
10.1002/jbm.a.10371
10.1021/ja2084338
10.1039/C6NR09500C
10.1016/0169-409X(95)00026-4
10.1021/jp304630q
10.1007/s10529-010-0469-4
10.1021/la402920f
10.1111/j.1432-1033.1973.tb03146.x
10.1039/C7TB01695F
10.1146/annurev.biochem.67.1.395
10.1016/j.colsurfb.2017.02.037
10.1111/j.1600-0854.2007.00540.x
10.1021/jp502624n
10.1016/j.cbpa.2010.06.186
10.1021/ja910675v
10.1039/c2nr33611a
10.1016/j.biomaterials.2015.10.019
10.1038/nnano.2012.207
10.1073/pnas.0608582104
10.1007/s13204-015-0501-z
10.1039/C4RA04246H
10.1039/C5NR03701H
10.1021/ja309812z
10.1046/j.1432-1327.1999.00695.x
10.1007/s12551-012-0072-0
ContentType Journal Article
Copyright 2018 Biophysical Society
Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
2018 Biophysical Society. 2018 Biophysical Society
Copyright_xml – notice: 2018 Biophysical Society
– notice: Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
– notice: 2018 Biophysical Society. 2018 Biophysical Society
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.bpj.2018.02.036
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1542-0086
EndPage 216
ExternalDocumentID PMC6050717
29650368
10_1016_j_bpj_2018_02_036
S0006349518302960
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
23N
2WC
4.4
457
5GY
5RE
62-
6I.
6J9
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACBEA
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPRK
ADBBV
ADEZE
ADJPV
AENEX
AEXQZ
AFRAH
AFTJW
AGKMS
AHMBA
AHPSJ
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
AYCSE
AZFZN
BAWUL
CS3
D0L
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FRP
HYE
IH2
IXB
JIG
KQ8
L7B
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
RNS
ROL
RPM
RWL
SES
SSZ
TAE
TBP
TN5
WH7
WOQ
WOW
WQ6
X7M
YNY
YWH
ZA5
~02
--K
.GJ
3O-
53G
6TJ
7X2
7X7
88E
88I
8AF
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
AAEDT
AAIKJ
AAMRU
AAQXK
AAYWO
AAYXX
ABDGV
ABUWG
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AEUPX
AEUYN
AFKRA
AFPUW
AGCQF
AGHFR
AGQPQ
AI.
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
ARAPS
ASPBG
ATCPS
AVWKF
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DWQXO
EFKBS
FEDTE
FGOYB
FYUFA
G-2
GNUQQ
GUQSH
GX1
H13
HCIFZ
HMCUK
HVGLF
HX~
HZ~
LK8
M0K
M1P
M2O
M2P
M2Q
M7P
MVM
OZT
P62
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PRG
PROAC
PSQYO
PUEGO
Q2X
R2-
S0X
UKHRP
UKR
VH1
YYP
ZGI
ZXP
~KM
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c451t-a83182d9b4f28ee83bdcb467ba8bddbc55efbe39c4dfa09e6ddc80c45546487c3
IEDL.DBID IXB
ISSN 0006-3495
1542-0086
IngestDate Thu Aug 21 18:16:13 EDT 2025
Sun Sep 28 08:04:12 EDT 2025
Thu Apr 03 07:02:27 EDT 2025
Thu Sep 18 00:17:09 EDT 2025
Thu Apr 24 22:57:09 EDT 2025
Fri Feb 23 02:49:08 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This article is made available under the Elsevier license.
Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-a83182d9b4f28ee83bdcb467ba8bddbc55efbe39c4dfa09e6ddc80c45546487c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0006349518302960
PMID 29650368
PQID 2025314049
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6050717
proquest_miscellaneous_2025314049
pubmed_primary_29650368
crossref_primary_10_1016_j_bpj_2018_02_036
crossref_citationtrail_10_1016_j_bpj_2018_02_036
elsevier_sciencedirect_doi_10_1016_j_bpj_2018_02_036
PublicationCentury 2000
PublicationDate 2018-07-17
PublicationDateYYYYMMDD 2018-07-17
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-17
  day: 17
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biophysical journal
PublicationTitleAlternate Biophys J
PublicationYear 2018
Publisher Elsevier Inc
The Biophysical Society
Publisher_xml – name: Elsevier Inc
– name: The Biophysical Society
References Lesniak, Salvati, Åberg (bib44) 2013; 135
Alkilany, Nagaria, Wyatt (bib11) 2009; 5
Fleischer, Payne (bib34) 2012; 116
Sjöholm (bib38) 1973; 39
Kornblatt, Rajotte, Heitz (bib39) 2001; 40
Palchetti, Colapicchioni, Laganà (bib31) 2016; 1858
Milani, Bombelli, Rädler (bib24) 2012; 6
Hamad-Schifferli (bib36) 2015; 10
Doorley, Payne (bib42) 2012; 48
Braun, DeBrosse, Comfort (bib27) 2016; 64
Cedervall, Lynch, Linse (bib23) 2007; 104
Dolan, Kolega, Meng (bib4) 2013; 41
Park, Hamad-Schifferli (bib14) 2010; 14
Liu, Rose, Vidaud (bib26) 2013; 5
Jayaram, Runa, Payne (bib32) 2017; 9
Sadler (bib49) 1998; 67
Luby, Breitner, Comfort (bib28) 2016; 6
Walczyk, Bombelli, Dawson (bib7) 2010; 132
Gref, Domb, Langer (bib16) 1995; 16
Palchetti, Pozzi, Laganà (bib29) 2017; 153
Mirshafiee, Kim, Kraft (bib35) 2016; 75
Lynch, Cedervall, Dawson (bib12) 2007; 134–135
Brewer, Glomm, Franzen (bib10) 2005; 21
Carrillo-Carrion, Carril, Parak (bib15) 2017; 46
Papi, Caputo, Caracciolo (bib21) 2017; 9
Runa, Khanal, Payne (bib33) 2016; 120
Baran, Shi, Wang (bib3) 2015; 8
Kornblatt, Kornblatt, Balny (bib52) 1999; 265
Thomas, Geer (bib48) 2011; 33
Wicki, Witzigmann, Huwyler (bib1) 2015; 200
Boulos, Davis, Murphy (bib19) 2013; 29
Monopoli, Åberg, Dawson (bib25) 2012; 7
Runa, Hill, Payne (bib20) 2014
Bekard, Asimakis, Dunstan (bib47) 2011; 95
Lunov, Syrovets, Simmet (bib8) 2011; 5
Gessner, Lieske, Müller (bib9) 2003; 65
Doorley, Payne (bib41) 2011; 47
Shim, Anderson, Sadler (bib50) 2008; 111
Li, Xu, Mao (bib22) 2018; 6
Ponting, Marshall, Cederholm-Williams (bib51) 1992; 3
Pozzi, Caracciolo, Laganà (bib30) 2015; 7
Wilhelm, Tavares, Chan (bib2) 2016; 1
Fleischer, Payne (bib6) 2014; 47
Szymanski, Yi, Payne (bib45) 2013
Treuel, Nienhaus (bib13) 2012; 4
Walkey, Olsen, Chan (bib18) 2012; 134
Payne, Jones, Zhuang (bib40) 2007; 8
Hill, Payne (bib43) 2014; 4
Fleischer, Payne (bib46) 2014; 118
Gabe, Gault, Braunwald (bib5) 1969; 40
Gref, Lück, Müller (bib17) 2000; 18
Correia, Snabe, Neves-Petersen (bib37) 2015; 10
Gref (10.1016/j.bpj.2018.02.036_bib16) 1995; 16
Runa (10.1016/j.bpj.2018.02.036_bib20) 2014
Hamad-Schifferli (10.1016/j.bpj.2018.02.036_bib36) 2015; 10
Lunov (10.1016/j.bpj.2018.02.036_bib8) 2011; 5
Park (10.1016/j.bpj.2018.02.036_bib14) 2010; 14
Sadler (10.1016/j.bpj.2018.02.036_bib49) 1998; 67
Milani (10.1016/j.bpj.2018.02.036_bib24) 2012; 6
Doorley (10.1016/j.bpj.2018.02.036_bib41) 2011; 47
Lynch (10.1016/j.bpj.2018.02.036_bib12) 2007; 134–135
Liu (10.1016/j.bpj.2018.02.036_bib26) 2013; 5
Hill (10.1016/j.bpj.2018.02.036_bib43) 2014; 4
Jayaram (10.1016/j.bpj.2018.02.036_bib32) 2017; 9
Lesniak (10.1016/j.bpj.2018.02.036_bib44) 2013; 135
Correia (10.1016/j.bpj.2018.02.036_bib37) 2015; 10
Dolan (10.1016/j.bpj.2018.02.036_bib4) 2013; 41
Monopoli (10.1016/j.bpj.2018.02.036_bib25) 2012; 7
Wicki (10.1016/j.bpj.2018.02.036_bib1) 2015; 200
Sjöholm (10.1016/j.bpj.2018.02.036_bib38) 1973; 39
Walkey (10.1016/j.bpj.2018.02.036_bib18) 2012; 134
Cedervall (10.1016/j.bpj.2018.02.036_bib23) 2007; 104
Szymanski (10.1016/j.bpj.2018.02.036_bib45) 2013
Fleischer (10.1016/j.bpj.2018.02.036_bib46) 2014; 118
Fleischer (10.1016/j.bpj.2018.02.036_bib6) 2014; 47
Carrillo-Carrion (10.1016/j.bpj.2018.02.036_bib15) 2017; 46
Payne (10.1016/j.bpj.2018.02.036_bib40) 2007; 8
Walczyk (10.1016/j.bpj.2018.02.036_bib7) 2010; 132
Li (10.1016/j.bpj.2018.02.036_bib22) 2018; 6
Thomas (10.1016/j.bpj.2018.02.036_bib48) 2011; 33
Runa (10.1016/j.bpj.2018.02.036_bib33) 2016; 120
Wilhelm (10.1016/j.bpj.2018.02.036_bib2) 2016; 1
Luby (10.1016/j.bpj.2018.02.036_bib28) 2016; 6
Shim (10.1016/j.bpj.2018.02.036_bib50) 2008; 111
Papi (10.1016/j.bpj.2018.02.036_bib21) 2017; 9
Alkilany (10.1016/j.bpj.2018.02.036_bib11) 2009; 5
Bekard (10.1016/j.bpj.2018.02.036_bib47) 2011; 95
Baran (10.1016/j.bpj.2018.02.036_bib3) 2015; 8
Braun (10.1016/j.bpj.2018.02.036_bib27) 2016; 64
Palchetti (10.1016/j.bpj.2018.02.036_bib29) 2017; 153
Gref (10.1016/j.bpj.2018.02.036_bib17) 2000; 18
Ponting (10.1016/j.bpj.2018.02.036_bib51) 1992; 3
Pozzi (10.1016/j.bpj.2018.02.036_bib30) 2015; 7
Boulos (10.1016/j.bpj.2018.02.036_bib19) 2013; 29
Doorley (10.1016/j.bpj.2018.02.036_bib42) 2012; 48
Palchetti (10.1016/j.bpj.2018.02.036_bib31) 2016; 1858
Fleischer (10.1016/j.bpj.2018.02.036_bib34) 2012; 116
Mirshafiee (10.1016/j.bpj.2018.02.036_bib35) 2016; 75
Gessner (10.1016/j.bpj.2018.02.036_bib9) 2003; 65
Kornblatt (10.1016/j.bpj.2018.02.036_bib52) 1999; 265
Brewer (10.1016/j.bpj.2018.02.036_bib10) 2005; 21
Kornblatt (10.1016/j.bpj.2018.02.036_bib39) 2001; 40
Gabe (10.1016/j.bpj.2018.02.036_bib5) 1969; 40
Treuel (10.1016/j.bpj.2018.02.036_bib13) 2012; 4
References_xml – volume: 6
  start-page: 2532
  year: 2012
  end-page: 2541
  ident: bib24
  article-title: Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: soft and hard corona
  publication-title: ACS Nano
– volume: 29
  start-page: 14984
  year: 2013
  end-page: 14996
  ident: bib19
  article-title: Nanoparticle-protein interactions: a thermodynamic and kinetic study of the adsorption of bovine serum albumin to gold nanoparticle surfaces
  publication-title: Langmuir
– volume: 6
  start-page: 827
  year: 2016
  end-page: 836
  ident: bib28
  article-title: Preliminary protein corona formation stabilizes gold nanoparticles and improves deposition efficiency
  publication-title: Appl. Nanosi
– volume: 75
  start-page: 295
  year: 2016
  end-page: 304
  ident: bib35
  article-title: Impact of protein pre-coating on the protein corona composition and nanoparticle cellular uptake
  publication-title: Biomaterials
– volume: 10
  start-page: 1663
  year: 2015
  end-page: 1674
  ident: bib36
  article-title: Exploiting the novel properties of protein coronas: emerging applications in nanomedicine
  publication-title: Nanomedicine (Lond.)
– volume: 134–135
  start-page: 167
  year: 2007
  end-page: 174
  ident: bib12
  article-title: The nanoparticle-protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century
  publication-title: Adv. Colloid Interface Sci
– volume: 1
  start-page: 16014
  year: 2016
  ident: bib2
  article-title: Analysis of nanoparticle delivery to tumours
  publication-title: Nat. Rev. Mater
– volume: 64
  start-page: 34
  year: 2016
  end-page: 42
  ident: bib27
  article-title: Modification of the protein corona-nanoparticle complex by physiological factors
  publication-title: Mater. Sci. Eng. C
– volume: 5
  start-page: 1658
  year: 2013
  end-page: 1668
  ident: bib26
  article-title: Protein corona formation for nanomaterials and proteins of a similar size: hard or soft corona?
  publication-title: Nanoscale
– volume: 8
  start-page: 46
  year: 2015
  end-page: 51
  ident: bib3
  article-title: Capillary blood flow imaging within human finger cuticle using optical microangiography
  publication-title: J. Biophotonics
– volume: 265
  start-page: 120
  year: 1999
  end-page: 126
  ident: bib52
  article-title: The effects of hydrostatic pressure on the conformation of plasminogen
  publication-title: Eur. J. Biochem.
– volume: 116
  start-page: 8901
  year: 2012
  end-page: 8907
  ident: bib34
  article-title: Nanoparticle surface charge mediates the cellular receptors used by protein-nanoparticle complexes
  publication-title: J. Phys. Chem. B
– volume: 47
  start-page: 2651
  year: 2014
  end-page: 2659
  ident: bib6
  article-title: Nanoparticle-cell interactions: molecular structure of the protein corona and cellular outcomes
  publication-title: Acc. Chem. Res
– volume: 5
  start-page: 701
  year: 2009
  end-page: 708
  ident: bib11
  article-title: Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects
  publication-title: Small
– volume: 47
  start-page: 466
  year: 2011
  end-page: 468
  ident: bib41
  article-title: Cellular binding of nanoparticles in the presence of serum proteins
  publication-title: Chem. Commun. (Camb.)
– start-page: 21
  year: 2013
  end-page: 23
  ident: bib45
  article-title: Imaging intracellular quantum dots: fluorescence microscopy and transmission electron microscopy
  publication-title: Nanobiotechnology Protocols
– volume: 65
  start-page: 319
  year: 2003
  end-page: 326
  ident: bib9
  article-title: Functional groups on polystyrene model nanoparticles: influence on protein adsorption
  publication-title: J. Biomed. Mater. Res. A
– volume: 3
  start-page: 605
  year: 1992
  end-page: 614
  ident: bib51
  article-title: Plasminogen: a structural review
  publication-title: Blood Coagul. Fibrinolysis
– volume: 132
  start-page: 5761
  year: 2010
  end-page: 5768
  ident: bib7
  article-title: What the cell “sees” in bionanoscience
  publication-title: J. Am. Chem. Soc
– volume: 5
  start-page: 1657
  year: 2011
  end-page: 1669
  ident: bib8
  article-title: Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line
  publication-title: ACS Nano
– volume: 6
  start-page: 9
  year: 2018
  end-page: 24
  ident: bib22
  article-title: Impact of anti-biofouling surface coatings on the properties of nanomaterials and their biomedical applications
  publication-title: J. Mater. Chem. B
– volume: 8
  start-page: 389
  year: 2007
  end-page: 401
  ident: bib40
  article-title: Internalization and trafficking of cell surface proteoglycans and proteoglycan-binding ligands
  publication-title: Traffic
– volume: 48
  start-page: 2961
  year: 2012
  end-page: 2963
  ident: bib42
  article-title: Nanoparticles act as protein carriers during cellular internalization
  publication-title: Chem. Commun. (Camb.)
– volume: 33
  start-page: 443
  year: 2011
  end-page: 456
  ident: bib48
  article-title: Effects of shear on proteins in solution
  publication-title: Biotechnol. Lett
– volume: 4
  start-page: 31735
  year: 2014
  end-page: 31744
  ident: bib43
  article-title: Impact of serum proteins on MRI contrast agents: cellular binding and T2 relaxation
  publication-title: RSC Advances
– volume: 9
  start-page: 10327
  year: 2017
  end-page: 10334
  ident: bib21
  article-title: Clinically approved PEGylated nanoparticles are covered by a protein corona that boosts the uptake by cancer cells
  publication-title: Nanoscale
– volume: 39
  start-page: 471
  year: 1973
  end-page: 479
  ident: bib38
  article-title: Studies on the conformational changes of plasminogen induced during activation to plasmin and by 6-aminohexanoic acid
  publication-title: Eur. J. Biochem
– volume: 120
  start-page: 20736
  year: 2016
  end-page: 20742
  ident: bib33
  article-title: TiO2 nanoparticles alter the expression of peroxiredoxin antioxidant genes
  publication-title: J. Phys. Chem. C
– volume: 40
  start-page: 3639
  year: 2001
  end-page: 3647
  ident: bib39
  article-title: Reaction of canine plasminogen with 6-aminohexanoate: a thermodynamic study combining fluorescence, circular dichroism, and isothermal titration calorimetry
  publication-title: Biochemistry
– volume: 7
  start-page: 779
  year: 2012
  end-page: 786
  ident: bib25
  article-title: Biomolecular coronas provide the biological identity of nanosized materials
  publication-title: Nat. Nanotechnol
– volume: 200
  start-page: 138
  year: 2015
  end-page: 157
  ident: bib1
  article-title: Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications
  publication-title: J. Control. Release
– volume: 111
  start-page: 651
  year: 2008
  end-page: 657
  ident: bib50
  article-title: Platelet-VWF complexes are preferred substrates of ADAMTS13 under fluid shear stress
  publication-title: Blood
– volume: 40
  start-page: 603
  year: 1969
  end-page: 614
  ident: bib5
  article-title: Measurement of instantaneous blood flow velocity and pressure in conscious man with a catheter-tip velocity probe
  publication-title: Circulation
– volume: 9
  start-page: 7595
  year: 2017
  end-page: 7601
  ident: bib32
  article-title: Nanoparticle-induced oxidation of corona proteins initiates an oxidative stress response in cells
  publication-title: Nanoscale
– volume: 95
  start-page: 733
  year: 2011
  end-page: 745
  ident: bib47
  article-title: The effects of shear flow on protein structure and function
  publication-title: Biopolymers
– volume: 67
  start-page: 395
  year: 1998
  end-page: 424
  ident: bib49
  article-title: Biochemistry and genetics of von Willebrand factor
  publication-title: Annu. Rev. Biochem
– volume: 21
  start-page: 9303
  year: 2005
  end-page: 9307
  ident: bib10
  article-title: Probing BSA binding to citrate-coated gold nanoparticles and surfaces
  publication-title: Langmuir
– volume: 16
  start-page: 215
  year: 1995
  end-page: 233
  ident: bib16
  article-title: The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres
  publication-title: Adv. Drug Deliv. Rev
– volume: 104
  start-page: 2050
  year: 2007
  end-page: 2055
  ident: bib23
  article-title: Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 18
  start-page: 301
  year: 2000
  end-page: 313
  ident: bib17
  article-title: ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption
  publication-title: Colloids Surf. B Biointerfaces
– volume: 7
  start-page: 13958
  year: 2015
  end-page: 13966
  ident: bib30
  article-title: The biomolecular corona of nanoparticles in circulating biological media
  publication-title: Nanoscale
– volume: 10
  start-page: e0116737
  year: 2015
  ident: bib37
  article-title: Photonic activation of plasminogen induced by low dose UVB
  publication-title: PLoS One
– volume: 153
  start-page: 263
  year: 2017
  end-page: 271
  ident: bib29
  article-title: Influence of dynamic flow environment on nanoparticle-protein corona: from protein patterns to uptake in cancer cells
  publication-title: Colloids Surf. B Biointerfaces
– volume: 41
  start-page: 1411
  year: 2013
  end-page: 1427
  ident: bib4
  article-title: High wall shear stress and spatial gradients in vascular pathology: a review
  publication-title: Ann. Biomed. Eng
– volume: 135
  start-page: 1438
  year: 2013
  end-page: 1444
  ident: bib44
  article-title: Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency
  publication-title: J. Am. Chem. Soc.
– volume: 118
  start-page: 14017
  year: 2014
  end-page: 14026
  ident: bib46
  article-title: Secondary structure of corona proteins determines the cell surface receptors used by nanoparticles
  publication-title: J. Phys. Chem. B
– start-page: 91651F
  year: 2014
  ident: bib20
  article-title: PEGylated nanoparticles: protein corona and secondary structure
  publication-title: Proceedings SPIE, Physical Chemistry of Interfaces and Nanomaterials XIII 9165
– volume: 14
  start-page: 616
  year: 2010
  end-page: 622
  ident: bib14
  article-title: Nanoscale interfaces to biology
  publication-title: Curr. Opin. Chem. Biol
– volume: 134
  start-page: 2139
  year: 2012
  end-page: 2147
  ident: bib18
  article-title: Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake
  publication-title: J. Am. Chem. Soc
– volume: 4
  start-page: 137
  year: 2012
  end-page: 147
  ident: bib13
  article-title: Toward a molecular understanding of nanoparticle-protein interactions
  publication-title: Biophys. Rev
– volume: 46
  start-page: 106
  year: 2017
  end-page: 113
  ident: bib15
  article-title: Techniques for the experimental investigation of the protein corona
  publication-title: Curr. Opin. Biotechnol
– volume: 1858
  start-page: 189
  year: 2016
  end-page: 196
  ident: bib31
  article-title: The protein corona of circulating PEGylated liposomes
  publication-title: Biochim. Biophys. Acta
– volume: 10
  start-page: 1663
  year: 2015
  ident: 10.1016/j.bpj.2018.02.036_bib36
  article-title: Exploiting the novel properties of protein coronas: emerging applications in nanomedicine
  publication-title: Nanomedicine (Lond.)
  doi: 10.2217/nnm.15.6
– volume: 40
  start-page: 603
  year: 1969
  ident: 10.1016/j.bpj.2018.02.036_bib5
  article-title: Measurement of instantaneous blood flow velocity and pressure in conscious man with a catheter-tip velocity probe
  publication-title: Circulation
  doi: 10.1161/01.CIR.40.5.603
– volume: 47
  start-page: 466
  year: 2011
  ident: 10.1016/j.bpj.2018.02.036_bib41
  article-title: Cellular binding of nanoparticles in the presence of serum proteins
  publication-title: Chem. Commun. (Camb.)
  doi: 10.1039/C0CC02618B
– volume: 46
  start-page: 106
  year: 2017
  ident: 10.1016/j.bpj.2018.02.036_bib15
  article-title: Techniques for the experimental investigation of the protein corona
  publication-title: Curr. Opin. Biotechnol
  doi: 10.1016/j.copbio.2017.02.009
– volume: 8
  start-page: 46
  year: 2015
  ident: 10.1016/j.bpj.2018.02.036_bib3
  article-title: Capillary blood flow imaging within human finger cuticle using optical microangiography
  publication-title: J. Biophotonics
  doi: 10.1002/jbio.201300154
– volume: 64
  start-page: 34
  year: 2016
  ident: 10.1016/j.bpj.2018.02.036_bib27
  article-title: Modification of the protein corona-nanoparticle complex by physiological factors
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2016.03.059
– volume: 48
  start-page: 2961
  year: 2012
  ident: 10.1016/j.bpj.2018.02.036_bib42
  article-title: Nanoparticles act as protein carriers during cellular internalization
  publication-title: Chem. Commun. (Camb.)
  doi: 10.1039/c2cc16937a
– volume: 40
  start-page: 3639
  year: 2001
  ident: 10.1016/j.bpj.2018.02.036_bib39
  article-title: Reaction of canine plasminogen with 6-aminohexanoate: a thermodynamic study combining fluorescence, circular dichroism, and isothermal titration calorimetry
  publication-title: Biochemistry
  doi: 10.1021/bi001857b
– volume: 3
  start-page: 605
  year: 1992
  ident: 10.1016/j.bpj.2018.02.036_bib51
  article-title: Plasminogen: a structural review
  publication-title: Blood Coagul. Fibrinolysis
  doi: 10.1097/00001721-199210000-00012
– volume: 10
  start-page: e0116737
  year: 2015
  ident: 10.1016/j.bpj.2018.02.036_bib37
  article-title: Photonic activation of plasminogen induced by low dose UVB
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0116737
– volume: 1858
  start-page: 189
  year: 2016
  ident: 10.1016/j.bpj.2018.02.036_bib31
  article-title: The protein corona of circulating PEGylated liposomes
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2015.11.012
– volume: 6
  start-page: 2532
  year: 2012
  ident: 10.1016/j.bpj.2018.02.036_bib24
  article-title: Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: soft and hard corona
  publication-title: ACS Nano
  doi: 10.1021/nn204951s
– volume: 134–135
  start-page: 167
  year: 2007
  ident: 10.1016/j.bpj.2018.02.036_bib12
  article-title: The nanoparticle-protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century
  publication-title: Adv. Colloid Interface Sci
  doi: 10.1016/j.cis.2007.04.021
– volume: 5
  start-page: 701
  year: 2009
  ident: 10.1016/j.bpj.2018.02.036_bib11
  article-title: Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects
  publication-title: Small
  doi: 10.1002/smll.200801546
– volume: 120
  start-page: 20736
  year: 2016
  ident: 10.1016/j.bpj.2018.02.036_bib33
  article-title: TiO2 nanoparticles alter the expression of peroxiredoxin antioxidant genes
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b01939
– volume: 95
  start-page: 733
  year: 2011
  ident: 10.1016/j.bpj.2018.02.036_bib47
  article-title: The effects of shear flow on protein structure and function
  publication-title: Biopolymers
  doi: 10.1002/bip.21646
– volume: 41
  start-page: 1411
  year: 2013
  ident: 10.1016/j.bpj.2018.02.036_bib4
  article-title: High wall shear stress and spatial gradients in vascular pathology: a review
  publication-title: Ann. Biomed. Eng
  doi: 10.1007/s10439-012-0695-0
– volume: 47
  start-page: 2651
  year: 2014
  ident: 10.1016/j.bpj.2018.02.036_bib6
  article-title: Nanoparticle-cell interactions: molecular structure of the protein corona and cellular outcomes
  publication-title: Acc. Chem. Res
  doi: 10.1021/ar500190q
– start-page: 21
  year: 2013
  ident: 10.1016/j.bpj.2018.02.036_bib45
  article-title: Imaging intracellular quantum dots: fluorescence microscopy and transmission electron microscopy
– volume: 1
  start-page: 16014
  year: 2016
  ident: 10.1016/j.bpj.2018.02.036_bib2
  article-title: Analysis of nanoparticle delivery to tumours
  publication-title: Nat. Rev. Mater
  doi: 10.1038/natrevmats.2016.14
– volume: 200
  start-page: 138
  year: 2015
  ident: 10.1016/j.bpj.2018.02.036_bib1
  article-title: Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2014.12.030
– volume: 21
  start-page: 9303
  year: 2005
  ident: 10.1016/j.bpj.2018.02.036_bib10
  article-title: Probing BSA binding to citrate-coated gold nanoparticles and surfaces
  publication-title: Langmuir
  doi: 10.1021/la050588t
– volume: 18
  start-page: 301
  year: 2000
  ident: 10.1016/j.bpj.2018.02.036_bib17
  article-title: ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/S0927-7765(99)00156-3
– volume: 9
  start-page: 10327
  year: 2017
  ident: 10.1016/j.bpj.2018.02.036_bib21
  article-title: Clinically approved PEGylated nanoparticles are covered by a protein corona that boosts the uptake by cancer cells
  publication-title: Nanoscale
  doi: 10.1039/C7NR03042H
– volume: 5
  start-page: 1657
  year: 2011
  ident: 10.1016/j.bpj.2018.02.036_bib8
  article-title: Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line
  publication-title: ACS Nano
  doi: 10.1021/nn2000756
– volume: 111
  start-page: 651
  year: 2008
  ident: 10.1016/j.bpj.2018.02.036_bib50
  article-title: Platelet-VWF complexes are preferred substrates of ADAMTS13 under fluid shear stress
  publication-title: Blood
  doi: 10.1182/blood-2007-05-093021
– volume: 65
  start-page: 319
  year: 2003
  ident: 10.1016/j.bpj.2018.02.036_bib9
  article-title: Functional groups on polystyrene model nanoparticles: influence on protein adsorption
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/jbm.a.10371
– volume: 134
  start-page: 2139
  year: 2012
  ident: 10.1016/j.bpj.2018.02.036_bib18
  article-title: Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake
  publication-title: J. Am. Chem. Soc
  doi: 10.1021/ja2084338
– volume: 9
  start-page: 7595
  year: 2017
  ident: 10.1016/j.bpj.2018.02.036_bib32
  article-title: Nanoparticle-induced oxidation of corona proteins initiates an oxidative stress response in cells
  publication-title: Nanoscale
  doi: 10.1039/C6NR09500C
– volume: 16
  start-page: 215
  year: 1995
  ident: 10.1016/j.bpj.2018.02.036_bib16
  article-title: The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres
  publication-title: Adv. Drug Deliv. Rev
  doi: 10.1016/0169-409X(95)00026-4
– start-page: 91651F
  year: 2014
  ident: 10.1016/j.bpj.2018.02.036_bib20
  article-title: PEGylated nanoparticles: protein corona and secondary structure
– volume: 116
  start-page: 8901
  year: 2012
  ident: 10.1016/j.bpj.2018.02.036_bib34
  article-title: Nanoparticle surface charge mediates the cellular receptors used by protein-nanoparticle complexes
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp304630q
– volume: 33
  start-page: 443
  year: 2011
  ident: 10.1016/j.bpj.2018.02.036_bib48
  article-title: Effects of shear on proteins in solution
  publication-title: Biotechnol. Lett
  doi: 10.1007/s10529-010-0469-4
– volume: 29
  start-page: 14984
  year: 2013
  ident: 10.1016/j.bpj.2018.02.036_bib19
  article-title: Nanoparticle-protein interactions: a thermodynamic and kinetic study of the adsorption of bovine serum albumin to gold nanoparticle surfaces
  publication-title: Langmuir
  doi: 10.1021/la402920f
– volume: 39
  start-page: 471
  year: 1973
  ident: 10.1016/j.bpj.2018.02.036_bib38
  article-title: Studies on the conformational changes of plasminogen induced during activation to plasmin and by 6-aminohexanoic acid
  publication-title: Eur. J. Biochem
  doi: 10.1111/j.1432-1033.1973.tb03146.x
– volume: 6
  start-page: 9
  year: 2018
  ident: 10.1016/j.bpj.2018.02.036_bib22
  article-title: Impact of anti-biofouling surface coatings on the properties of nanomaterials and their biomedical applications
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C7TB01695F
– volume: 67
  start-page: 395
  year: 1998
  ident: 10.1016/j.bpj.2018.02.036_bib49
  article-title: Biochemistry and genetics of von Willebrand factor
  publication-title: Annu. Rev. Biochem
  doi: 10.1146/annurev.biochem.67.1.395
– volume: 153
  start-page: 263
  year: 2017
  ident: 10.1016/j.bpj.2018.02.036_bib29
  article-title: Influence of dynamic flow environment on nanoparticle-protein corona: from protein patterns to uptake in cancer cells
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2017.02.037
– volume: 8
  start-page: 389
  year: 2007
  ident: 10.1016/j.bpj.2018.02.036_bib40
  article-title: Internalization and trafficking of cell surface proteoglycans and proteoglycan-binding ligands
  publication-title: Traffic
  doi: 10.1111/j.1600-0854.2007.00540.x
– volume: 118
  start-page: 14017
  year: 2014
  ident: 10.1016/j.bpj.2018.02.036_bib46
  article-title: Secondary structure of corona proteins determines the cell surface receptors used by nanoparticles
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp502624n
– volume: 14
  start-page: 616
  year: 2010
  ident: 10.1016/j.bpj.2018.02.036_bib14
  article-title: Nanoscale interfaces to biology
  publication-title: Curr. Opin. Chem. Biol
  doi: 10.1016/j.cbpa.2010.06.186
– volume: 132
  start-page: 5761
  year: 2010
  ident: 10.1016/j.bpj.2018.02.036_bib7
  article-title: What the cell “sees” in bionanoscience
  publication-title: J. Am. Chem. Soc
  doi: 10.1021/ja910675v
– volume: 5
  start-page: 1658
  year: 2013
  ident: 10.1016/j.bpj.2018.02.036_bib26
  article-title: Protein corona formation for nanomaterials and proteins of a similar size: hard or soft corona?
  publication-title: Nanoscale
  doi: 10.1039/c2nr33611a
– volume: 75
  start-page: 295
  year: 2016
  ident: 10.1016/j.bpj.2018.02.036_bib35
  article-title: Impact of protein pre-coating on the protein corona composition and nanoparticle cellular uptake
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.10.019
– volume: 7
  start-page: 779
  year: 2012
  ident: 10.1016/j.bpj.2018.02.036_bib25
  article-title: Biomolecular coronas provide the biological identity of nanosized materials
  publication-title: Nat. Nanotechnol
  doi: 10.1038/nnano.2012.207
– volume: 104
  start-page: 2050
  year: 2007
  ident: 10.1016/j.bpj.2018.02.036_bib23
  article-title: Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0608582104
– volume: 6
  start-page: 827
  year: 2016
  ident: 10.1016/j.bpj.2018.02.036_bib28
  article-title: Preliminary protein corona formation stabilizes gold nanoparticles and improves deposition efficiency
  publication-title: Appl. Nanosi
  doi: 10.1007/s13204-015-0501-z
– volume: 4
  start-page: 31735
  year: 2014
  ident: 10.1016/j.bpj.2018.02.036_bib43
  article-title: Impact of serum proteins on MRI contrast agents: cellular binding and T2 relaxation
  publication-title: RSC Advances
  doi: 10.1039/C4RA04246H
– volume: 7
  start-page: 13958
  year: 2015
  ident: 10.1016/j.bpj.2018.02.036_bib30
  article-title: The biomolecular corona of nanoparticles in circulating biological media
  publication-title: Nanoscale
  doi: 10.1039/C5NR03701H
– volume: 135
  start-page: 1438
  year: 2013
  ident: 10.1016/j.bpj.2018.02.036_bib44
  article-title: Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja309812z
– volume: 265
  start-page: 120
  year: 1999
  ident: 10.1016/j.bpj.2018.02.036_bib52
  article-title: The effects of hydrostatic pressure on the conformation of plasminogen
  publication-title: Eur. J. Biochem.
  doi: 10.1046/j.1432-1327.1999.00695.x
– volume: 4
  start-page: 137
  year: 2012
  ident: 10.1016/j.bpj.2018.02.036_bib13
  article-title: Toward a molecular understanding of nanoparticle-protein interactions
  publication-title: Biophys. Rev
  doi: 10.1007/s12551-012-0072-0
SSID ssj0012501
Score 2.4788094
Snippet Nanoparticles used in cellular applications encounter free serum proteins that adsorb onto the surface of the nanoparticle, forming a protein corona. This...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 209
SubjectTerms Adsorption
Animals
Cattle
HeLa Cells
Humans
Hydrodynamics
Nanoparticles - chemistry
Plasminogen - chemistry
Plasminogen - metabolism
Polystyrenes - chemistry
Protein Corona - chemistry
Title Protein Corona in Response to Flow: Effect on Protein Concentration and Structure
URI https://dx.doi.org/10.1016/j.bpj.2018.02.036
https://www.ncbi.nlm.nih.gov/pubmed/29650368
https://www.proquest.com/docview/2025314049
https://pubmed.ncbi.nlm.nih.gov/PMC6050717
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEA5FEHwRb-tRIvgkBPdu1jctliIoXoW-hVzFSskWbRH_vTPZ3WpVfPBtjwmbncnOsZn5hpDjOFTg9-Y5M22VMbDXnEkdGAaWK1Qy4Dr05dHXN1mvn1wN0kGDdOpaGEyrrHR_qdO9tq6unFbcPJ2MRljjC-YV_PsQIazAEQc9jFWlWMQ3uJjvJICJr7rmZQyp651Nn-OlJs-Y3cU9bKdHaf7VNv30Pb-nUH6xSd01slo5k_S8nO86aVi3QZbL9pLvm-TuFkEYRo52EKZAUji6L1NiLZ0WtDsu3s5oCV9MC0c_qV35PJQZlc7QBw8yO3uxW6TfvXzs9FjVQoHpJA2nTHL4ZiOTq2QYcWt5rIxWoBuV5MoYpdPUDpWNc52YoQxymxmjeQBj0ySDUEbH22TJFc7uEoo9JJQ0cTuGQFYOc66zwERtCxEkCDXnTRLUzBO6whfHNhdjUSeSPQvgt0B-iyASwO8mOZkPmZTgGn8RJ7VExMIKEaD8_xp2VEtPwJeD2yHS2WL2CkQRKKAEQqQm2SmlOZ8FrKcUBsNLtRfkPCdAVO7FO2705NG5IT7EGHnvf9PdJyt4xjx05wFZAvnaQ3B7pqrl13XL_4_6AIM0AcU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSyMxEB-qIvpynN89T43gkxDc72Z9uyuWqlX8hL6FfBUrki1e5fC_d5LdrVbFB9-WzYTNzkzmg0x-A7AXhxLj3jynuiUziv6aUaECTdFzhVIETIX-evTZeda9TU76ab8B7foujCurrGx_adO9ta7eHFTcPBgNh-6OL7pXjO9DB2GFgfgMzGE0EDjVPu7_nRwloI-v2uZl1JHXR5u-yEuO7l15F_O4nR6m-VPn9DH4fF9D-cYpdX7CjyqaJH_KBS9Bw9hlmC_7Sz6vwOWFQ2EYWtJ2OAWC4NNVWRNryLggnYfi_yEp8YtJYckrtS2_54RGhNXk2qPMPj2aVbjtHN20u7TqoUBVkoZjKhhu2kjnMhlEzBgWS60kGkcpmNRaqjQ1A2niXCV6IILcZForFuDcNMkwl1HxGszawpoNIK6JhBQ6bsWYyYpBzlQW6KhlMIVEqeasCUHNPK4qgHHX5-KB15Vk9xz5zR2_eRBx5HcT9idTRiW6xlfESS0RPqUiHK3_V9N2a-lx3DruPERYUzz9Q6IILVCCOVIT1ktpTlaBCpXiZPyp1pScJwQOlnt6xA7vPDw3JoguSf71veXuwEL35qzHe8fnp5uw6Eaox_H8DbMoa7OFMdBYbnsdfwFuoAPY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protein+Corona+in+Response+to+Flow%3A+Effect+on+Protein+Concentration+and+Structure&rft.jtitle=Biophysical+journal&rft.au=Jayaram%2C+Dhanya+T&rft.au=Pustulka%2C+Samantha+M&rft.au=Mannino%2C+Robert+G&rft.au=Lam%2C+Wilbur+A&rft.date=2018-07-17&rft.eissn=1542-0086&rft.volume=115&rft.issue=2&rft.spage=209&rft_id=info:doi/10.1016%2Fj.bpj.2018.02.036&rft_id=info%3Apmid%2F29650368&rft.externalDocID=29650368
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3495&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3495&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3495&client=summon