A hybrid Extreme Learning Machine model with Lévy flight Chaotic Whale Optimization Algorithm for Wind Speed Forecasting

Efficient and accurate prediction of renewable energy sources (RES) is an interminable challenge in efforts to assure the stable and safe operation of any hybrid energy system due to its intermittent nature. High integration of RES especially wind energy into the existing power sector in recent year...

Full description

Saved in:
Bibliographic Details
Published inResults in engineering Vol. 19; p. 101274
Main Authors Syama, S., Ramprabhakar, J., Anand, R., Guerrero, Josep M.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2023
Elsevier
Subjects
Online AccessGet full text
ISSN2590-1230
2590-1230
DOI10.1016/j.rineng.2023.101274

Cover

Abstract Efficient and accurate prediction of renewable energy sources (RES) is an interminable challenge in efforts to assure the stable and safe operation of any hybrid energy system due to its intermittent nature. High integration of RES especially wind energy into the existing power sector in recent years has made the situation still challenging which draws the attention of many researchers in developing a computationally efficient forecast model for accurately predicting RES. With the advent of Neural network based methods, ELM -Extreme Learning Machine, a typical Single Layer Feedforward Network (SLFFN), has gained a significant attention in recent years in solving various real-time complex problems due to simplified architecture, good generalization capabilities and fast computation. However, since the model parameters are randomly assigned, the conventional ELM is frequently ranked as the second-best model. As a solution, the article attempts to construct a unique optimized Extreme Learning Machine (ELM) based forecast model with improved accuracy for wind speed forecasting. A novel swarm intelligence technique- Lévy flight Chaotic Whale Optimization algorithm (LCWOA) is utilized in the hybrid model to optimize different parameters of ELM. Despite having a appropriate convergence rate, WOA is occasionally unable to discover the global optima due to imbalanced exploration and exploitation when using control parameters with linear variation. An improvement in the convergence rate of WOA can be expected by incorporating chaotic maps in the control parameters of WOA due to their ergodic nature. In addition to this, Lévy flight can significantly improve the intensification and diversification of the Whale Optimization algorithm (WOA) resulting in improvised search ability avoiding local minima. The prediction capability of the suggested hybrid Extreme Learning Machine (ELM) based forecast model is validated with nine other existing models. The experimental study affirms that the suggested model outperform existing forecasting methods in a variety of quantitative metrics. [Display omitted] •A novel Lévy Flight Chaotic Whale Optimization Algorithm (LCWOA) is proposed.•A hybrid wind speed forecasting model is proposed by employing the LCWOA to optimize ELM model.•The performance of LCWOA-ELM model is verified with different seasonal datasets.•The performance of LCWOA in optimizing ELM is compared with different variants of Whale Optimization Algorithm (WOA).
AbstractList Efficient and accurate prediction of renewable energy sources (RES) is an interminable challenge in efforts to assure the stable and safe operation of any hybrid energy system due to its intermittent nature. High integration of RES especially wind energy into the existing power sector in recent years has made the situation still challenging which draws the attention of many researchers in developing a computationally efficient forecast model for accurately predicting RES. With the advent of Neural network based methods, ELM -Extreme Learning Machine, a typical Single Layer Feedforward Network (SLFFN), has gained a significant attention in recent years in solving various real-time complex problems due to simplified architecture, good generalization capabilities and fast computation. However, since the model parameters are randomly assigned, the conventional ELM is frequently ranked as the second-best model. As a solution, the article attempts to construct a unique optimized Extreme Learning Machine (ELM) based forecast model with improved accuracy for wind speed forecasting. A novel swarm intelligence technique- Lévy flight Chaotic Whale Optimization algorithm (LCWOA) is utilized in the hybrid model to optimize different parameters of ELM. Despite having a appropriate convergence rate, WOA is occasionally unable to discover the global optima due to imbalanced exploration and exploitation when using control parameters with linear variation. An improvement in the convergence rate of WOA can be expected by incorporating chaotic maps in the control parameters of WOA due to their ergodic nature. In addition to this, Lévy flight can significantly improve the intensification and diversification of the Whale Optimization algorithm (WOA) resulting in improvised search ability avoiding local minima. The prediction capability of the suggested hybrid Extreme Learning Machine (ELM) based forecast model is validated with nine other existing models. The experimental study affirms that the suggested model outperform existing forecasting methods in a variety of quantitative metrics. [Display omitted] •A novel Lévy Flight Chaotic Whale Optimization Algorithm (LCWOA) is proposed.•A hybrid wind speed forecasting model is proposed by employing the LCWOA to optimize ELM model.•The performance of LCWOA-ELM model is verified with different seasonal datasets.•The performance of LCWOA in optimizing ELM is compared with different variants of Whale Optimization Algorithm (WOA).
Efficient and accurate prediction of renewable energy sources (RES) is an interminable challenge in efforts to assure the stable and safe operation of any hybrid energy system due to its intermittent nature. High integration of RES especially wind energy into the existing power sector in recent years has made the situation still challenging which draws the attention of many researchers in developing a computationally efficient forecast model for accurately predicting RES. With the advent of Neural network based methods, ELM -Extreme Learning Machine, a typical Single Layer Feedforward Network (SLFFN), has gained a significant attention in recent years in solving various real-time complex problems due to simplified architecture, good generalization capabilities and fast computation. However, since the model parameters are randomly assigned, the conventional ELM is frequently ranked as the second-best model. As a solution, the article attempts to construct a unique optimized Extreme Learning Machine (ELM) based forecast model with improved accuracy for wind speed forecasting. A novel swarm intelligence technique- Lévy flight Chaotic Whale Optimization algorithm (LCWOA) is utilized in the hybrid model to optimize different parameters of ELM. Despite having a appropriate convergence rate, WOA is occasionally unable to discover the global optima due to imbalanced exploration and exploitation when using control parameters with linear variation. An improvement in the convergence rate of WOA can be expected by incorporating chaotic maps in the control parameters of WOA due to their ergodic nature. In addition to this, Lévy flight can significantly improve the intensification and diversification of the Whale Optimization algorithm (WOA) resulting in improvised search ability avoiding local minima. The prediction capability of the suggested hybrid Extreme Learning Machine (ELM) based forecast model is validated with nine other existing models. The experimental study affirms that the suggested model outperform existing forecasting methods in a variety of quantitative metrics.
ArticleNumber 101274
Author Syama, S.
Anand, R.
Ramprabhakar, J.
Guerrero, Josep M.
Author_xml – sequence: 1
  givenname: S.
  orcidid: 0000-0003-4798-0205
  surname: Syama
  fullname: Syama, S.
  email: s_syama@blr.amrita.edu
  organization: Department of Electrical and Electronics Engineering, Amrita School of Engineering, Bengaluru, Amrita Vishwa Vidyapeetham, India
– sequence: 2
  givenname: J.
  surname: Ramprabhakar
  fullname: Ramprabhakar, J.
  email: j_ramprabhakar@blr.amrita.edu
  organization: Department of Electrical and Electronics Engineering, Amrita School of Engineering, Bengaluru, Amrita Vishwa Vidyapeetham, India
– sequence: 3
  givenname: R.
  surname: Anand
  fullname: Anand, R.
  email: r_anand@blr.amrita.edu
  organization: Department of Electrical and Electronics Engineering, Amrita School of Engineering, Bengaluru, Amrita Vishwa Vidyapeetham, India
– sequence: 4
  givenname: Josep M.
  surname: Guerrero
  fullname: Guerrero, Josep M.
  email: joz@et.aau.dk
  organization: Department of Energy Technology, Aalborg University, Aalborg East, 9220, Denmark
BookMark eNqNkc1u1DAUhSNUJErpG7Dwks0M_ksyYYE0GrVQaVAXVOrScuybxCPHHmxP2_BGPAcvVk9TIcQC2NjW1Tnfvb7ndXHivIOieEvwkmBSvd8tg3Hg-iXFlB1LtOYvilNaNnhBKMMnv71fFecx7jDGdJWFrD4tpjUapjYYjS4eUoAR0BZkcMb16ItUQyaj0Wuw6N6kAW1__ribUGdNPyS0GaRPRqHbQVpA1_tkRvNdJuMdWtveh2wYUecDujVOo697AI0ufQAlY8r8N8XLTtoI58_3WXFzeXGz-bzYXn-62qy3C8VLkhaSUVaVTJea1KWuSQWlxliVBBqsGt1IAK5WLe-YrhtNqpa1HNeSEKaA5POsuJqx2sud2AczyjAJL414KvjQCxnyNywIBlIDw1C3jHLe0hUF3SjVSqp4yynNrHJmHdxeTvfS2l9AgsUxDbETcxrimIaY08i-d7NvH_y3A8QkRhMVWCsd-EMUuR3FFS1ZnaUfZqkKPsYAnVAmPS01BWnsv_rwP8z_Od7H2QY5hjsDQURlwCnQJqeV8qLM3wGPydjKuQ
CitedBy_id crossref_primary_10_1016_j_eswa_2023_123054
crossref_primary_10_1038_s41598_024_83836_z
crossref_primary_10_3389_fenrg_2023_1336675
crossref_primary_10_1016_j_eswa_2024_124764
crossref_primary_10_3390_biomimetics9030186
crossref_primary_10_1016_j_aej_2024_11_035
crossref_primary_10_1109_ACCESS_2024_3379327
crossref_primary_10_1016_j_cjche_2024_10_019
crossref_primary_10_1142_S0218127424502055
crossref_primary_10_3390_sym16010083
crossref_primary_10_1109_ACCESS_2024_3401588
crossref_primary_10_1007_s40866_024_00228_y
crossref_primary_10_1016_j_rineng_2024_102111
crossref_primary_10_1109_ACCESS_2023_3335124
crossref_primary_10_1155_etep_6694504
crossref_primary_10_1109_ACCESS_2024_3466170
crossref_primary_10_1016_j_apenergy_2024_124708
crossref_primary_10_1016_j_rineng_2024_101986
crossref_primary_10_1007_s40747_024_01460_w
crossref_primary_10_1016_j_rineng_2024_102675
crossref_primary_10_7498_aps_73_20231569
crossref_primary_10_1038_s41598_024_75743_0
crossref_primary_10_1016_j_enbuild_2024_113942
crossref_primary_10_1007_s11276_023_03591_3
crossref_primary_10_1016_j_enbuild_2024_114339
crossref_primary_10_1016_j_energy_2024_130529
crossref_primary_10_1155_etep_6254758
crossref_primary_10_1016_j_joei_2024_101649
crossref_primary_10_1109_ACCESS_2024_3505535
crossref_primary_10_1016_j_neucom_2024_129062
Cites_doi 10.1504/IJPEC.2017.080829
10.1016/j.eswa.2018.08.027
10.20533/ijsed.2046.3707.2012.0007
10.1016/j.jcp.2007.06.008
10.1016/j.mechatronics.2015.04.007
10.1016/j.patcog.2005.03.028
10.1016/j.knosys.2011.04.019
10.1016/j.renene.2019.04.157
10.1016/j.engappai.2019.103457
10.1016/j.apenergy.2017.05.029
10.1088/1742-6596/1213/3/032004
10.1038/nature06948
10.1007/s00521-013-1522-8
10.1016/j.enconman.2016.01.007
10.1007/s10745-006-9083-4
10.1007/s007040050043
10.1016/j.jfranklin.2020.06.027
10.1109/ACCESS.2017.2695498
10.1177/0309524X211038547
10.1016/j.enconman.2017.04.012
10.1049/el.2017.4286
10.1016/j.enconman.2018.02.015
10.1007/s00357-018-9261-2
10.1016/j.apenergy.2021.117766
10.1016/j.egypro.2019.01.480
10.1016/j.enconman.2018.01.010
10.1155/2019/8718571
10.1109/TEC.2005.847954
10.1049/iet-rpg.2020.0315
10.1016/j.renene.2015.07.004
10.1016/j.neucom.2018.05.057
10.1016/j.advengsoft.2016.01.008
10.1371/journal.pone.0000354
10.1016/j.jcde.2017.12.006
10.4028/www.scientific.net/AMM.421.496
10.1016/j.enconman.2018.08.053
10.1016/j.apenergy.2009.12.013
10.1016/j.apenergy.2010.10.031
10.1016/j.asoc.2019.105937
ContentType Journal Article
Copyright 2023 The Authors
Copyright_xml – notice: 2023 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
ADTOC
UNPAY
DOA
DOI 10.1016/j.rineng.2023.101274
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2590-1230
ExternalDocumentID oai_doaj_org_article_3eade30e7b3244b282ed9ccba2c4b422
10.1016/j.rineng.2023.101274
10_1016_j_rineng_2023_101274
S2590123023004012
GroupedDBID 0SF
6I.
AAEDW
AAFTH
AALRI
AAXUO
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
FDB
GROUPED_DOAJ
M41
M~E
NCXOZ
OK1
ROL
SSZ
0R~
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
7S9
L.6
ADTOC
UNPAY
ID FETCH-LOGICAL-c451t-a323653d5d175d716e5d00c51e90c9d9aee4c8b4f3d79d16b3b407a113ce1113
IEDL.DBID DOA
ISSN 2590-1230
IngestDate Fri Oct 03 12:51:41 EDT 2025
Wed Oct 01 15:15:55 EDT 2025
Fri Aug 22 20:37:43 EDT 2025
Tue Jul 01 01:37:20 EDT 2025
Thu Apr 24 23:05:36 EDT 2025
Sat Oct 14 15:51:36 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Recurssive prediction
Extreme learning machines
Whale optimization algorithm
Lévy flight, Chaotic Optimization
Wind speed forecasting
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-a323653d5d175d716e5d00c51e90c9d9aee4c8b4f3d79d16b3b407a113ce1113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4798-0205
OpenAccessLink https://doaj.org/article/3eade30e7b3244b282ed9ccba2c4b422
PQID 3242062537
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_3eade30e7b3244b282ed9ccba2c4b422
unpaywall_primary_10_1016_j_rineng_2023_101274
proquest_miscellaneous_3242062537
crossref_citationtrail_10_1016_j_rineng_2023_101274
crossref_primary_10_1016_j_rineng_2023_101274
elsevier_sciencedirect_doi_10_1016_j_rineng_2023_101274
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2023
2023-09-00
20230901
2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: September 2023
PublicationDecade 2020
PublicationTitle Results in engineering
PublicationYear 2023
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Lydia, Kumar, Selvakumar, Kumar (bib9) 2016; 112
(bib57) 2020; 357
Oliva, Aziz, Hassanien (bib43) 2017; 200
Qi, Gao, Wang, Xiang, Lv, Liu (bib28) 2020; 14
Xiao, Qian, Shao (bib32) 2017; 143
Yang, Suash (bib49) 2009
Kamaruzaman, Mohd Zain, Mohamed Yusuf, Udin (bib50) September 2013; 421
Syama, Ramprabhakar (bib19) 2022
Nikolić, Motamedi, Shamshirband, Petković, Ch, Arif (bib24) 2016; 34
Long, Wu, Jiao (bib38) 2020; 89
Qais, Hasanien, Alghuwainem (bib40) 2020; 86
Guo, Wu, Lu, Wang (bib13) 2011; 24
Yuan, Guo, Zheng, Ding (bib42) 2018; 54
Zhang, Xiao, Li, Zhang (bib56) 2018; 311
Kiranvishnu, Ramprabhakar (bib12) 2016
Li, Han, Han, Zhao, Wei (bib46) 2019; 1213
Nicksson (bib4) 2017; 8
Fu, Hu, Tang, Yu, Liu (bib16) 2018
Wu, Wang, Chen, Du, Yang (bib33) 2020; 146
Yin, Cheng, Wang (bib37) 2019; 158
Prasad, Mukherjee, Mukherjee (bib44) 2017
Barbounis, Theocharis, Alexiadis, Dokopoulos (bib17) 2006; 21
Ding, Xu, Nie (bib22) 2014; 25
Gao (bib2) 2016
Barthelemy, Bertolotti, Wiersma (bib55) May 2008; 453
Kumar, Nookesh, Saketh, Syama, Ramprabhakar (bib20) 2021
Kaur, Arora (bib41) 2018; 5
Gomes, Castro (bib10) 2012; 1
Pavlyukevich (bib52) Oct. 2007; 226
Xiong, Zhang, Shi (bib39) 2018; 174
Brown, Liebovitch, Glendon (bib51) Dec. 2007; 35
Sun, Wang, Chen, Liu (bib48) December 2018; 114
Lian, He (bib36) 2022; 46
Mishra (bib29) 2017; 8
(bib1) 2022
Nair, Vanitha, Jisma (bib11) 2017
Li, Shi (bib14) 2010; 87
Zuo, Liu (bib3) 2012
Wang, Zou, Liu (bib23) 2021; 304
Zhang, Li, Xiao, Zhang (bib58) 2020; 357
Ehsan, Shahirinia, Zhang, Oladunni (bib18) 2020
Pelikan, Eben, Resler, Juruš, Krč, Brabec, Brabec, May (bib5) 2010
Schlink, Tetzlaff (bib8) 1998; 60
Pelikan, Resler, Juruš, Krč, Brabec, Brabec, May (bib6) 2010
Ren (bib25) 2021
Wang, Li, Bai (bib26) 2018; 162
Liu, Mi, Li (bib27) 2018; 159
Erdem, Shi (bib7) 2011; 88
Reynolds, Frye (bib54) Apr. 2007; 2
Pavlyukevich (bib53) Sep. 2007; 40
Santamaría-Bonfil, Reyes-Ballesteros (bib15) 2016; 85
Mohammed, Umar, Rashid (bib35) 2019; 2019
Li, Wei (bib31) 2020; vol. 675
Mirjalili, Lewis (bib34) 2016; 95
Huang, Zhu, Siew (bib21) 2004
Sayed, Darwish, Hassanien (bib45) 2018; 35
Zhu, Qin, Suganthan (bib30) 2005; 38
Ling, Zhou, Luo (bib47) 2017; 5
Sayed (10.1016/j.rineng.2023.101274_bib45) 2018; 35
Li (10.1016/j.rineng.2023.101274_bib31) 2020; vol. 675
Ding (10.1016/j.rineng.2023.101274_bib22) 2014; 25
Zhang (10.1016/j.rineng.2023.101274_bib58) 2020; 357
Yang (10.1016/j.rineng.2023.101274_bib49) 2009
Zhang (10.1016/j.rineng.2023.101274_bib56) 2018; 311
Pavlyukevich (10.1016/j.rineng.2023.101274_bib53) 2007; 40
Nicksson (10.1016/j.rineng.2023.101274_bib4) 2017; 8
Mohammed (10.1016/j.rineng.2023.101274_bib35) 2019; 2019
Mishra (10.1016/j.rineng.2023.101274_bib29) 2017; 8
Xiao (10.1016/j.rineng.2023.101274_bib32) 2017; 143
Pelikan (10.1016/j.rineng.2023.101274_bib6) 2010
Xiong (10.1016/j.rineng.2023.101274_bib39) 2018; 174
Gomes (10.1016/j.rineng.2023.101274_bib10) 2012; 1
Wang (10.1016/j.rineng.2023.101274_bib26) 2018; 162
Li (10.1016/j.rineng.2023.101274_bib46) 2019; 1213
Brown (10.1016/j.rineng.2023.101274_bib51) 2007; 35
Syama (10.1016/j.rineng.2023.101274_bib19) 2022
Schlink (10.1016/j.rineng.2023.101274_bib8) 1998; 60
Ling (10.1016/j.rineng.2023.101274_bib47) 2017; 5
Fu (10.1016/j.rineng.2023.101274_bib16) 2018
Wang (10.1016/j.rineng.2023.101274_bib23) 2021; 304
(10.1016/j.rineng.2023.101274_bib57) 2020; 357
Santamaría-Bonfil (10.1016/j.rineng.2023.101274_bib15) 2016; 85
Zhu (10.1016/j.rineng.2023.101274_bib30) 2005; 38
Qais (10.1016/j.rineng.2023.101274_bib40) 2020; 86
Lydia (10.1016/j.rineng.2023.101274_bib9) 2016; 112
Lian (10.1016/j.rineng.2023.101274_bib36) 2022; 46
Pavlyukevich (10.1016/j.rineng.2023.101274_bib52) 2007; 226
Barbounis (10.1016/j.rineng.2023.101274_bib17) 2006; 21
Wu (10.1016/j.rineng.2023.101274_bib33) 2020; 146
Barthelemy (10.1016/j.rineng.2023.101274_bib55) 2008; 453
Kaur (10.1016/j.rineng.2023.101274_bib41) 2018; 5
Qi (10.1016/j.rineng.2023.101274_bib28) 2020; 14
Pelikan (10.1016/j.rineng.2023.101274_bib5) 2010
Oliva (10.1016/j.rineng.2023.101274_bib43) 2017; 200
Nikolić (10.1016/j.rineng.2023.101274_bib24) 2016; 34
Liu (10.1016/j.rineng.2023.101274_bib27) 2018; 159
Zuo (10.1016/j.rineng.2023.101274_bib3) 2012
Ehsan (10.1016/j.rineng.2023.101274_bib18) 2020
Kumar (10.1016/j.rineng.2023.101274_bib20) 2021
Li (10.1016/j.rineng.2023.101274_bib14) 2010; 87
Ren (10.1016/j.rineng.2023.101274_bib25) 2021
(10.1016/j.rineng.2023.101274_bib1) 2022
Long (10.1016/j.rineng.2023.101274_bib38) 2020; 89
Kamaruzaman (10.1016/j.rineng.2023.101274_bib50) 2013; 421
Prasad (10.1016/j.rineng.2023.101274_bib44) 2017
Erdem (10.1016/j.rineng.2023.101274_bib7) 2011; 88
Yuan (10.1016/j.rineng.2023.101274_bib42) 2018; 54
Kiranvishnu (10.1016/j.rineng.2023.101274_bib12) 2016
Reynolds (10.1016/j.rineng.2023.101274_bib54) 2007; 2
Yin (10.1016/j.rineng.2023.101274_bib37) 2019; 158
Guo (10.1016/j.rineng.2023.101274_bib13) 2011; 24
Huang (10.1016/j.rineng.2023.101274_bib21) 2004
Nair (10.1016/j.rineng.2023.101274_bib11) 2017
Mirjalili (10.1016/j.rineng.2023.101274_bib34) 2016; 95
Sun (10.1016/j.rineng.2023.101274_bib48) 2018; 114
Gao (10.1016/j.rineng.2023.101274_bib2) 2016
References_xml – start-page: 602
  year: 2021
  end-page: 607
  ident: bib20
  article-title: Wind speed prediction using deep learning-LSTM and GRU
  publication-title: 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC)
– volume: 1
  year: 2012
  ident: bib10
  article-title: Wind speed and wind power forecasting using statistical models: autoregressive moving average (ARMA) and artificial neural networks (ANN)
  publication-title: International Journal of Sustainable Energy Development
– start-page: 217
  year: 2018
  end-page: 222
  ident: bib16
  article-title: Multi-step ahead wind power forecasting based on recurrent neural networks
  publication-title: 2018 IEEE PES AsiaPacific Power and Energy Engineering Conference (APPEEC)
– volume: 40
  year: Sep. 2007
  ident: bib53
  article-title: Cooling down Lévy flights
  publication-title: J. Phys. Math. Theor.
– start-page: 164
  year: 2022
  end-page: 171
  ident: bib19
  publication-title: Multistep Ahead Solar Irradiance and Wind Speed Forecasting Using Bayesian Optimized Long ShortTerm Memory,” 7th International Conference on Communication and Electronics Systems
– volume: vol. 675
  year: 2020
  ident: bib31
  article-title: Short-term wind speed forecasting based on PSO-ELM
  publication-title: Innovative Computing
– start-page: 234
  year: 2020
  end-page: 240
  ident: bib18
  publication-title: Wind Speed Prediction and Visualization Using Long Short-Term Memory Networks (LSTM), 2020 10th International Conference on Information Science and Technology (ICIST)
– volume: 60
  start-page: 191
  year: 1998
  end-page: 198
  ident: bib8
  article-title: Wind speed forecasting from 1 to 30 minutes
  publication-title: Theor. Appl. Climatol.
– volume: 112
  start-page: 115
  year: 2016
  end-page: 124
  ident: bib9
  article-title: Linear and non-linear autoregressive models for short-term wind speed forecasting
  publication-title: Energy Convers. Manag.
– start-page: 1
  year: 2016
  end-page: 6
  ident: bib12
  publication-title: Comparative Study of Wind Speed Forecasting Techniques, 2016 Biennial International Conference on Power and Energy Systems: towards Sustainable Energy (PESTSE)
– volume: 88
  start-page: 1405
  year: 2011
  end-page: 1414
  ident: bib7
  article-title: ARMA based approaches for forecasting the tuple of wind speed and direction
  publication-title: Appl. Energy
– volume: 46
  start-page: 556
  year: 2022
  end-page: 571
  ident: bib36
  article-title: Ultra-short-term wind speed prediction based on variational mode decomposition and optimized extreme learning machine
  publication-title: Wind Eng.
– start-page: 188
  year: 2021
  end-page: 192
  ident: bib25
  article-title: Short-term wind power prediction based on extreme learning machine
  publication-title: 2021 International Conference on Digital Society and Intelligent Systems (DSInS)
– volume: 158
  start-page: 6208
  year: 2019
  end-page: 6216
  ident: bib37
  article-title: Optimization for hydro-photovoltaic-wind power generation system based on modified version of multi-objective whale optimization algorithm
  publication-title: Energy Proc.
– start-page: 45
  year: 2010
  end-page: 48
  ident: bib6
  article-title: Wind power forecasting by an empirical model using NWP outputs
  publication-title: 2010, 9th International Conference on Environment and Electrical Engineering (EEEIC
– volume: 311
  year: 2018
  ident: bib56
  article-title: Residual compensation extreme learning machine for regression
  publication-title: Neurocomputing
– volume: 86
  year: 2020
  ident: bib40
  article-title: Enhanced whale optimization algorithm for maximum power point tracking of variable-speed wind generators
  publication-title: Appl. Soft Comput.
– volume: 34
  start-page: 78
  year: 2016
  end-page: 83
  ident: bib24
  article-title: Extreme learning machine approach for sensorless wind speed estimation
  publication-title: Mechatronics
– volume: 1213
  year: 2019
  ident: bib46
  article-title: Whale optimization algorithm with chaos strategy and weight factor
  publication-title: J. Phys. Conf.
– volume: 2
  start-page: e354
  year: Apr. 2007
  ident: bib54
  article-title: Free-flight odor tracking in Drosophila is consistent with an optimal intermittent scale-free search
  publication-title: PLoS One
– volume: 35
  start-page: 300
  year: 2018
  end-page: 344
  ident: bib45
  article-title: A new chaotic whale optimization algorithm for features selection
  publication-title: J. Classif.
– start-page: 311
  year: 2017
  end-page: 332
  ident: bib44
  article-title: Transient Stability Constrained Optimal Power Flow Using Chaotic Whale Optimization Algorithm
– volume: 2019
  year: 2019
  ident: bib35
  article-title: A systematic and meta-analysis survey of whale optimization algorithm
  publication-title: Comput. Intell. Neurosci.
– volume: 8
  start-page: 4
  year: 2017
  end-page: 8
  ident: bib4
  article-title: de Freitas wind speed forecasting: a review
  publication-title: Int. J. Eng. Res. Afr.
– volume: 143
  start-page: 410
  year: 2017
  end-page: 430
  ident: bib32
  article-title: Multi-step wind speed forecasting based on a hybrid forecasting architecture and an improved bat algorithm
  publication-title: Energy Convers. Manag.
– start-page: 45
  year: 2010
  end-page: 48
  ident: bib5
  article-title: Wind power forecasting by an empirical model using NWP outputs
  publication-title: Environment and Electrical Engineering (EEEIC), 2010, 9th International Conference on
– volume: 357
  start-page: 9885
  year: 2020
  end-page: 9908
  ident: bib58
  article-title: Robust extreme learning machine for modeling with unknown noise
  publication-title: J. Franklin Inst.
– volume: 357
  year: 2020
  ident: bib57
  article-title: Non-iterative and fast deep learning: multilayer extreme learning machines
  publication-title: J. Franklin Inst.
– volume: 421
  start-page: 496
  year: September 2013
  end-page: 501
  ident: bib50
  article-title: Lévy flight algorithm for optimization problems - a literature review
  publication-title: Appl. Mech. Mater.
– start-page: 985
  year: 2004
  end-page: 990
  ident: bib21
  article-title: Extreme learning machine: a new learning scheme of feedforward neural networks
  publication-title: Proceedings of International Joint Conference on Neural Networks (IJCNN2004)
– volume: 89
  year: 2020
  ident: bib38
  article-title: Refraction-learning-based whale optimization algorithm for high dimensional problems and parameter estimation of PV model
  publication-title: Eng. Appl. Artif. Intell.
– volume: 25
  start-page: 549
  year: 2014
  end-page: 556
  ident: bib22
  article-title: Extreme learning machine and its applications
  publication-title: Neural Comput. Appl.
– volume: 85
  start-page: 790
  year: 2016
  end-page: 809
  ident: bib15
  article-title: Gershenson C Wind speed forecasting for wind farms: a method based on support vector regression
  publication-title: Renew. Energy
– volume: 200
  start-page: 141
  year: 2017
  end-page: 154
  ident: bib43
  article-title: Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm
  publication-title: Appl. Energy
– volume: 226
  start-page: 1830
  year: Oct. 2007
  end-page: 1844
  ident: bib52
  article-title: Lévy flights, non-local search and simulated annealing
  publication-title: J. Comput. Phys.
– volume: 54
  start-page: 311
  year: 2018
  end-page: 313
  ident: bib42
  article-title: Side lobe suppression with constraint for MIMO radar via chaotic whale optimization
  publication-title: Electron. Lett.
– volume: 453
  start-page: 495
  year: May 2008
  end-page: 498
  ident: bib55
  article-title: A Lévy flight for light
  publication-title: Nature
– start-page: 170
  year: 2017
  end-page: 175
  ident: bib11
  article-title: Forecasting of wind speed using ANN, ARIMA and Hybrid models
  publication-title: 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT)
– volume: 14
  start-page: 3181
  year: 2020
  end-page: 3191
  ident: bib28
  article-title: Wind power interval forecasting based on adaptive decomposition and probabilistic regularized extreme learning machine
  publication-title: IET Renew. Power Gener.
– volume: 87
  start-page: 2313
  year: 2010
  end-page: 2320
  ident: bib14
  article-title: On comparing three artificial neural networks for wind speed forecasting
  publication-title: Appl. Energy
– volume: 5
  start-page: 275
  year: 2018
  end-page: 284
  ident: bib41
  article-title: Chaotic whale optimization algorithm
  publication-title: Journal of Computational Design and Engineering
– volume: 146
  start-page: 149
  year: 2020
  end-page: 165
  ident: bib33
  article-title: A novel hybrid system based on multi-objective optimization for wind speed forecasting
  publication-title: Renew. Energy
– volume: 174
  start-page: 388
  year: 2018
  end-page: 405
  ident: bib39
  article-title: Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm
  publication-title: Energy Convers. Manag.
– volume: 38
  start-page: 1759
  year: 2005
  end-page: 1763
  ident: bib30
  article-title: Guang-Bin Huang, Evolutionary extreme learning machine
  publication-title: Pattern Recogn.
– volume: 21
  start-page: 273
  year: 2006
  end-page: 284
  ident: bib17
  article-title: Long-term wind speed and power forecasting using local recurrent neural network models
  publication-title: IEEE Trans. Energy Convers.
– year: 2022
  ident: bib1
  article-title: Global Wind Report
– volume: 24
  start-page: 1048
  year: 2011
  end-page: 1056
  ident: bib13
  article-title: A case study on a hybrid wind speed forecasting method using BP neural network
  publication-title: Knowl. Base Syst.
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: bib34
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Software
– volume: 114
  start-page: 563
  year: December 2018
  end-page: 577
  ident: bib48
  article-title: A modified whale optimization algorithm for large-scale global optimization problems
  publication-title: Expert Syst. Appl.
– volume: 35
  start-page: 129
  year: Dec. 2007
  end-page: 138
  ident: bib51
  article-title: Lévy flights in Dobe Ju/’hoansi Foraging patterns
  publication-title: Hum. Ecol.
– start-page: 435
  year: 2016
  end-page: 439
  ident: bib2
  article-title: An overview on development of wind power generation
  publication-title: 2016 Chinese Control and Decision Conference (CCDC)
– volume: 159
  start-page: 54
  year: 2018
  end-page: 64
  ident: bib27
  article-title: Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, LSTM network and ELM
  publication-title: Energy Convers. Manag.
– volume: 5
  start-page: 6168
  year: 2017
  end-page: 6186
  ident: bib47
  article-title: Levy flight trajectory-based whale optimization algorithm for global optimization
  publication-title: IEEE Access
– volume: 8
  start-page: 68
  year: 2017
  end-page: 89
  ident: bib29
  article-title: Short-term forecasting of wind power generation using extreme learning machine and its variants
  publication-title: Int. J. Power Energy Convers.
– volume: 162
  start-page: 239
  year: 2018
  end-page: 250
  ident: bib26
  article-title: Short-term wind speed prediction using an extreme learning machine model with error correction
  publication-title: Energy Convers. Manag.
– volume: 304
  year: 2021
  ident: bib23
  article-title: A review of wind speed and wind power forecasting with deep neural networks
  publication-title: Appl. Energy
– start-page: 210
  year: 2009
  end-page: 214
  ident: bib49
  article-title: Cuckoo search via Lévy flights
  publication-title: World Congress Nature Biologically Inspired Computer (NaBIC)
– start-page: 635
  year: 2012
  end-page: 638
  ident: bib3
  article-title: Evaluation on comprehensive benefit of wind power generation and utilization of wind energy
  publication-title: 2012 IEEE International Conference on Computer Science and Automation Engineering
– start-page: 602
  year: 2021
  ident: 10.1016/j.rineng.2023.101274_bib20
  article-title: Wind speed prediction using deep learning-LSTM and GRU
– volume: 8
  start-page: 68
  year: 2017
  ident: 10.1016/j.rineng.2023.101274_bib29
  article-title: Short-term forecasting of wind power generation using extreme learning machine and its variants
  publication-title: Int. J. Power Energy Convers.
  doi: 10.1504/IJPEC.2017.080829
– volume: 114
  start-page: 563
  year: 2018
  ident: 10.1016/j.rineng.2023.101274_bib48
  article-title: A modified whale optimization algorithm for large-scale global optimization problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.08.027
– volume: 1
  year: 2012
  ident: 10.1016/j.rineng.2023.101274_bib10
  article-title: Wind speed and wind power forecasting using statistical models: autoregressive moving average (ARMA) and artificial neural networks (ANN)
  publication-title: International Journal of Sustainable Energy Development
  doi: 10.20533/ijsed.2046.3707.2012.0007
– start-page: 311
  year: 2017
  ident: 10.1016/j.rineng.2023.101274_bib44
– volume: 226
  start-page: 1830
  issue: 2
  year: 2007
  ident: 10.1016/j.rineng.2023.101274_bib52
  article-title: Lévy flights, non-local search and simulated annealing
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2007.06.008
– start-page: 45
  year: 2010
  ident: 10.1016/j.rineng.2023.101274_bib6
  article-title: Wind power forecasting by an empirical model using NWP outputs
– volume: 34
  start-page: 78
  year: 2016
  ident: 10.1016/j.rineng.2023.101274_bib24
  article-title: Extreme learning machine approach for sensorless wind speed estimation
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2015.04.007
– volume: 38
  start-page: 1759
  issue: 10
  year: 2005
  ident: 10.1016/j.rineng.2023.101274_bib30
  article-title: Guang-Bin Huang, Evolutionary extreme learning machine
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2005.03.028
– volume: 24
  start-page: 1048
  issue: 7
  year: 2011
  ident: 10.1016/j.rineng.2023.101274_bib13
  article-title: A case study on a hybrid wind speed forecasting method using BP neural network
  publication-title: Knowl. Base Syst.
  doi: 10.1016/j.knosys.2011.04.019
– volume: 146
  start-page: 149
  year: 2020
  ident: 10.1016/j.rineng.2023.101274_bib33
  article-title: A novel hybrid system based on multi-objective optimization for wind speed forecasting
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.04.157
– start-page: 435
  year: 2016
  ident: 10.1016/j.rineng.2023.101274_bib2
  article-title: An overview on development of wind power generation
– start-page: 164
  year: 2022
  ident: 10.1016/j.rineng.2023.101274_bib19
– volume: 89
  year: 2020
  ident: 10.1016/j.rineng.2023.101274_bib38
  article-title: Refraction-learning-based whale optimization algorithm for high dimensional problems and parameter estimation of PV model
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.103457
– volume: 200
  start-page: 141
  year: 2017
  ident: 10.1016/j.rineng.2023.101274_bib43
  article-title: Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.05.029
– volume: 1213
  year: 2019
  ident: 10.1016/j.rineng.2023.101274_bib46
  article-title: Whale optimization algorithm with chaos strategy and weight factor
  publication-title: J. Phys. Conf.
  doi: 10.1088/1742-6596/1213/3/032004
– volume: 453
  start-page: 495
  issue: 7194
  year: 2008
  ident: 10.1016/j.rineng.2023.101274_bib55
  article-title: A Lévy flight for light
  publication-title: Nature
  doi: 10.1038/nature06948
– volume: 25
  start-page: 549
  issue: 3–4
  year: 2014
  ident: 10.1016/j.rineng.2023.101274_bib22
  article-title: Extreme learning machine and its applications
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-013-1522-8
– year: 2022
  ident: 10.1016/j.rineng.2023.101274_bib1
– start-page: 234
  year: 2020
  ident: 10.1016/j.rineng.2023.101274_bib18
– volume: 112
  start-page: 115
  year: 2016
  ident: 10.1016/j.rineng.2023.101274_bib9
  article-title: Linear and non-linear autoregressive models for short-term wind speed forecasting
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2016.01.007
– volume: 35
  start-page: 129
  issue: 1
  year: 2007
  ident: 10.1016/j.rineng.2023.101274_bib51
  article-title: Lévy flights in Dobe Ju/’hoansi Foraging patterns
  publication-title: Hum. Ecol.
  doi: 10.1007/s10745-006-9083-4
– volume: 60
  start-page: 191
  issue: 1–4
  year: 1998
  ident: 10.1016/j.rineng.2023.101274_bib8
  article-title: Wind speed forecasting from 1 to 30 minutes
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s007040050043
– start-page: 45
  year: 2010
  ident: 10.1016/j.rineng.2023.101274_bib5
  article-title: Wind power forecasting by an empirical model using NWP outputs
– volume: 357
  year: 2020
  ident: 10.1016/j.rineng.2023.101274_bib57
  article-title: Non-iterative and fast deep learning: multilayer extreme learning machines
  publication-title: J. Franklin Inst.
– start-page: 1
  year: 2016
  ident: 10.1016/j.rineng.2023.101274_bib12
– volume: 357
  start-page: 9885
  issue: 14
  year: 2020
  ident: 10.1016/j.rineng.2023.101274_bib58
  article-title: Robust extreme learning machine for modeling with unknown noise
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2020.06.027
– volume: 5
  start-page: 6168
  year: 2017
  ident: 10.1016/j.rineng.2023.101274_bib47
  article-title: Levy flight trajectory-based whale optimization algorithm for global optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2695498
– volume: 46
  start-page: 556
  issue: 2
  year: 2022
  ident: 10.1016/j.rineng.2023.101274_bib36
  article-title: Ultra-short-term wind speed prediction based on variational mode decomposition and optimized extreme learning machine
  publication-title: Wind Eng.
  doi: 10.1177/0309524X211038547
– volume: 143
  start-page: 410
  year: 2017
  ident: 10.1016/j.rineng.2023.101274_bib32
  article-title: Multi-step wind speed forecasting based on a hybrid forecasting architecture and an improved bat algorithm
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.04.012
– volume: vol. 675
  year: 2020
  ident: 10.1016/j.rineng.2023.101274_bib31
  article-title: Short-term wind speed forecasting based on PSO-ELM
– start-page: 217
  year: 2018
  ident: 10.1016/j.rineng.2023.101274_bib16
  article-title: Multi-step ahead wind power forecasting based on recurrent neural networks
– volume: 54
  start-page: 311
  issue: 5
  year: 2018
  ident: 10.1016/j.rineng.2023.101274_bib42
  article-title: Side lobe suppression with constraint for MIMO radar via chaotic whale optimization
  publication-title: Electron. Lett.
  doi: 10.1049/el.2017.4286
– volume: 8
  start-page: 4
  issue: 1
  year: 2017
  ident: 10.1016/j.rineng.2023.101274_bib4
  article-title: de Freitas wind speed forecasting: a review
  publication-title: Int. J. Eng. Res. Afr.
– volume: 162
  start-page: 239
  year: 2018
  ident: 10.1016/j.rineng.2023.101274_bib26
  article-title: Short-term wind speed prediction using an extreme learning machine model with error correction
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.02.015
– volume: 35
  start-page: 300
  year: 2018
  ident: 10.1016/j.rineng.2023.101274_bib45
  article-title: A new chaotic whale optimization algorithm for features selection
  publication-title: J. Classif.
  doi: 10.1007/s00357-018-9261-2
– start-page: 635
  year: 2012
  ident: 10.1016/j.rineng.2023.101274_bib3
  article-title: Evaluation on comprehensive benefit of wind power generation and utilization of wind energy
– volume: 304
  year: 2021
  ident: 10.1016/j.rineng.2023.101274_bib23
  article-title: A review of wind speed and wind power forecasting with deep neural networks
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117766
– volume: 158
  start-page: 6208
  year: 2019
  ident: 10.1016/j.rineng.2023.101274_bib37
  article-title: Optimization for hydro-photovoltaic-wind power generation system based on modified version of multi-objective whale optimization algorithm
  publication-title: Energy Proc.
  doi: 10.1016/j.egypro.2019.01.480
– volume: 159
  start-page: 54
  year: 2018
  ident: 10.1016/j.rineng.2023.101274_bib27
  article-title: Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, LSTM network and ELM
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.01.010
– volume: 40
  issue: 41
  year: 2007
  ident: 10.1016/j.rineng.2023.101274_bib53
  article-title: Cooling down Lévy flights
  publication-title: J. Phys. Math. Theor.
– volume: 2019
  year: 2019
  ident: 10.1016/j.rineng.2023.101274_bib35
  article-title: A systematic and meta-analysis survey of whale optimization algorithm
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2019/8718571
– volume: 21
  start-page: 273
  issue: 1
  year: 2006
  ident: 10.1016/j.rineng.2023.101274_bib17
  article-title: Long-term wind speed and power forecasting using local recurrent neural network models
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2005.847954
– volume: 14
  start-page: 3181
  year: 2020
  ident: 10.1016/j.rineng.2023.101274_bib28
  article-title: Wind power interval forecasting based on adaptive decomposition and probabilistic regularized extreme learning machine
  publication-title: IET Renew. Power Gener.
  doi: 10.1049/iet-rpg.2020.0315
– volume: 85
  start-page: 790
  year: 2016
  ident: 10.1016/j.rineng.2023.101274_bib15
  article-title: Gershenson C Wind speed forecasting for wind farms: a method based on support vector regression
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2015.07.004
– volume: 311
  year: 2018
  ident: 10.1016/j.rineng.2023.101274_bib56
  article-title: Residual compensation extreme learning machine for regression
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.057
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.rineng.2023.101274_bib34
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Software
  doi: 10.1016/j.advengsoft.2016.01.008
– start-page: 170
  year: 2017
  ident: 10.1016/j.rineng.2023.101274_bib11
  article-title: Forecasting of wind speed using ANN, ARIMA and Hybrid models
– volume: 2
  start-page: e354
  issue: 4
  year: 2007
  ident: 10.1016/j.rineng.2023.101274_bib54
  article-title: Free-flight odor tracking in Drosophila is consistent with an optimal intermittent scale-free search
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0000354
– start-page: 210
  year: 2009
  ident: 10.1016/j.rineng.2023.101274_bib49
  article-title: Cuckoo search via Lévy flights
– start-page: 188
  year: 2021
  ident: 10.1016/j.rineng.2023.101274_bib25
  article-title: Short-term wind power prediction based on extreme learning machine
– start-page: 985
  year: 2004
  ident: 10.1016/j.rineng.2023.101274_bib21
  article-title: Extreme learning machine: a new learning scheme of feedforward neural networks
– volume: 5
  start-page: 275
  issue: 3
  year: 2018
  ident: 10.1016/j.rineng.2023.101274_bib41
  article-title: Chaotic whale optimization algorithm
  publication-title: Journal of Computational Design and Engineering
  doi: 10.1016/j.jcde.2017.12.006
– volume: 421
  start-page: 496
  year: 2013
  ident: 10.1016/j.rineng.2023.101274_bib50
  article-title: Lévy flight algorithm for optimization problems - a literature review
  publication-title: Appl. Mech. Mater.
  doi: 10.4028/www.scientific.net/AMM.421.496
– volume: 174
  start-page: 388
  year: 2018
  ident: 10.1016/j.rineng.2023.101274_bib39
  article-title: Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.08.053
– volume: 87
  start-page: 2313
  issue: 7
  year: 2010
  ident: 10.1016/j.rineng.2023.101274_bib14
  article-title: On comparing three artificial neural networks for wind speed forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2009.12.013
– volume: 88
  start-page: 1405
  issue: 4
  year: 2011
  ident: 10.1016/j.rineng.2023.101274_bib7
  article-title: ARMA based approaches for forecasting the tuple of wind speed and direction
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2010.10.031
– volume: 86
  year: 2020
  ident: 10.1016/j.rineng.2023.101274_bib40
  article-title: Enhanced whale optimization algorithm for maximum power point tracking of variable-speed wind generators
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105937
SSID ssj0002810137
Score 2.4724004
Snippet Efficient and accurate prediction of renewable energy sources (RES) is an interminable challenge in efforts to assure the stable and safe operation of any...
SourceID doaj
unpaywall
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 101274
SubjectTerms algorithms
energy
Extreme learning machines
Lévy flight, Chaotic Optimization
Markov chain
prediction
Recurssive prediction
swarms
Whale optimization algorithm
wind power
wind speed
Wind speed forecasting
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BekAceKMGAVokrnbt3bUdH0PVqkJQkNqq5bTal520jh0lTkv4R_wO_hgzfkQpl4LE1dpda-Vvdr5Zz3xDyPt4ZBiwIQhLUmY9YTIBNpdpCFVcEmvrAERNguxxfHQmPl5EF13-E9bCQDTng1PwjC3bigbUaCrrvekMzGsv9JbMD7wThhWTDPvdIAhD5uUqlMUi9y_n-X2yE0fAywdk5-z46_gbdpeD4R6O72vnmgQvrK4rcx_7h-MjlohbvqmR8L_lorYo6INVOVfrG1UUW97o8DG56vfRJqFc-ata--bHHxKP_2ejT8ijjrTScYuyp-SeK5-Rh1tShs_Jekwna6z-ogffa7xzpJ1ya04_N_majjZNdyhe_NJPv35er2lW4M0A3Z-oCham5xNwVvQLnGGzrjiUjou8WsCEGQVuTc-npaUnc_C3FDuKGrXEnO0X5PTw4HT_yOvaOnhGRGHtKc54HHEbWaAuFuI1F9kgMFHo0sCkNlXOCTPSIuM2SW0Ya64h6lRhyI2Dk5m_JIOyKt0uoSodCR2llqc6E0AldcKUhvUMz3g8irMh4f33lKaTPMfOG4Xsc9suZYsCiSiQLQqGxNvMmreSH3eM_4BQ2YxFwe7mQbXIZWf_kmNiOgcD0MBghYZA19nUGK2YEVowNiRJDzTZcZ-W08BS0zte_67HpYSjAf_3qNJVq6VErhxAfMuTIfE3gP2rPb361wmvyaBerNwbYGi1ftuZ3m8JDjtP
  priority: 102
  providerName: Unpaywall
Title A hybrid Extreme Learning Machine model with Lévy flight Chaotic Whale Optimization Algorithm for Wind Speed Forecasting
URI https://dx.doi.org/10.1016/j.rineng.2023.101274
https://www.proquest.com/docview/3242062537
https://ars.els-cdn.com/content/image/1-s2.0-S2590123023004012-ga1_lrg.jpg
https://doaj.org/article/3eade30e7b3244b282ed9ccba2c4b422
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2590-1230
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002810137
  issn: 2590-1230
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2590-1230
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002810137
  issn: 2590-1230
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2590-1230
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002810137
  issn: 2590-1230
  databaseCode: AKRWK
  dateStart: 20190301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQOQAHxFMsj2qQuKYksfPwcam2qhAtSLRqOVl-ZbdVml21u8Be-D_8Dv4YM06ySk_LgUsOUezEmXHm-5zPM4y9y0ubIhpCWiJTFwlbCZxzlUGq4ovcOI9OFASyx_nhqfh4np0PSn2RJqxND9y-uPecFL0cWxoM_cIgQ_BOWmt0aoURafj6xqUckKnLsGSUdAkzEd6T_IDH_b65IO6inXXNdI9qh9OptBC34lJI338rPA3g571Vs9DrH7quB5Ho4BF72EFIGLeP_pjd8c0T9mCQWPApW49htqa9WDD5uaQVQOjyqE7hKKgnPYQSOEDLsPDpz-_va6hq4umwP9Nz7BjOZhg64DN-Ua66rZowrqfza2xwBYh04QzZPHxdYPQDqu9p9Q0pqJ-xk4PJyf5h1BVZiKzIkmWkecrzjLvMIZBwyJ585uLYZomXsZVOau-FLY2ouCukS3LDDXJAnSTceipT_5ztNPPGv2CgZSlMJh2XphII7EyRaoP9WV7xvMyrEeP9G1a2S0BOdTBq1SvNLlVrF0V2Ua1dRizatFq0CTi2XP-BjLe5ltJnhxPoVKpzKrXNqUas6E2vOiTSIgzs6mLL7d_2nqJwotLfF934-epGEXKNkW3yYsT2Ni70T2N6-T_G9Irdpy5bfdxrtrO8Xvk3CKiWZjfMHTwe_Zrssrunx1_G3_4CErkg8Q
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BekAceKMGAVokrnbt3bUdH0PVqkJQkNqq5bTal520jh0lTkv4R_wO_hgzfkQpl4LE1dpda-Vvdr5Zz3xDyPt4ZBiwIQhLUmY9YTIBNpdpCFVcEmvrAERNguxxfHQmPl5EF13-E9bCQDTng1PwjC3bigbUaCrrvekMzGsv9JbMD7wThhWTDPvdIAhD5uUqlMUi9y_n-X2yE0fAywdk5-z46_gbdpeD4R6O72vnmgQvrK4rcx_7h-MjlohbvqmR8L_lorYo6INVOVfrG1UUW97o8DG56vfRJqFc-ata--bHHxKP_2ejT8ijjrTScYuyp-SeK5-Rh1tShs_Jekwna6z-ogffa7xzpJ1ya04_N_majjZNdyhe_NJPv35er2lW4M0A3Z-oCham5xNwVvQLnGGzrjiUjou8WsCEGQVuTc-npaUnc_C3FDuKGrXEnO0X5PTw4HT_yOvaOnhGRGHtKc54HHEbWaAuFuI1F9kgMFHo0sCkNlXOCTPSIuM2SW0Ya64h6lRhyI2Dk5m_JIOyKt0uoSodCR2llqc6E0AldcKUhvUMz3g8irMh4f33lKaTPMfOG4Xsc9suZYsCiSiQLQqGxNvMmreSH3eM_4BQ2YxFwe7mQbXIZWf_kmNiOgcD0MBghYZA19nUGK2YEVowNiRJDzTZcZ-W08BS0zte_67HpYSjAf_3qNJVq6VErhxAfMuTIfE3gP2rPb361wmvyaBerNwbYGi1ftuZ3m8JDjtP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+Extreme+Learning+Machine+model+with+L%C3%A9vy+flight+Chaotic+Whale+Optimization+Algorithm+for+Wind+Speed+Forecasting&rft.jtitle=Results+in+engineering&rft.au=Syama%2C+S.&rft.au=Ramprabhakar%2C+J.&rft.au=Anand%2C+R.&rft.au=Guerrero%2C+Josep+M.&rft.date=2023-09-01&rft.pub=Elsevier+B.V&rft.issn=2590-1230&rft.eissn=2590-1230&rft.volume=19&rft_id=info:doi/10.1016%2Fj.rineng.2023.101274&rft.externalDocID=S2590123023004012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1230&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1230&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1230&client=summon