A hybrid Extreme Learning Machine model with Lévy flight Chaotic Whale Optimization Algorithm for Wind Speed Forecasting
Efficient and accurate prediction of renewable energy sources (RES) is an interminable challenge in efforts to assure the stable and safe operation of any hybrid energy system due to its intermittent nature. High integration of RES especially wind energy into the existing power sector in recent year...
Saved in:
| Published in | Results in engineering Vol. 19; p. 101274 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.09.2023
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2590-1230 2590-1230 |
| DOI | 10.1016/j.rineng.2023.101274 |
Cover
| Abstract | Efficient and accurate prediction of renewable energy sources (RES) is an interminable challenge in efforts to assure the stable and safe operation of any hybrid energy system due to its intermittent nature. High integration of RES especially wind energy into the existing power sector in recent years has made the situation still challenging which draws the attention of many researchers in developing a computationally efficient forecast model for accurately predicting RES. With the advent of Neural network based methods, ELM -Extreme Learning Machine, a typical Single Layer Feedforward Network (SLFFN), has gained a significant attention in recent years in solving various real-time complex problems due to simplified architecture, good generalization capabilities and fast computation. However, since the model parameters are randomly assigned, the conventional ELM is frequently ranked as the second-best model. As a solution, the article attempts to construct a unique optimized Extreme Learning Machine (ELM) based forecast model with improved accuracy for wind speed forecasting. A novel swarm intelligence technique- Lévy flight Chaotic Whale Optimization algorithm (LCWOA) is utilized in the hybrid model to optimize different parameters of ELM. Despite having a appropriate convergence rate, WOA is occasionally unable to discover the global optima due to imbalanced exploration and exploitation when using control parameters with linear variation. An improvement in the convergence rate of WOA can be expected by incorporating chaotic maps in the control parameters of WOA due to their ergodic nature. In addition to this, Lévy flight can significantly improve the intensification and diversification of the Whale Optimization algorithm (WOA) resulting in improvised search ability avoiding local minima. The prediction capability of the suggested hybrid Extreme Learning Machine (ELM) based forecast model is validated with nine other existing models. The experimental study affirms that the suggested model outperform existing forecasting methods in a variety of quantitative metrics.
[Display omitted]
•A novel Lévy Flight Chaotic Whale Optimization Algorithm (LCWOA) is proposed.•A hybrid wind speed forecasting model is proposed by employing the LCWOA to optimize ELM model.•The performance of LCWOA-ELM model is verified with different seasonal datasets.•The performance of LCWOA in optimizing ELM is compared with different variants of Whale Optimization Algorithm (WOA). |
|---|---|
| AbstractList | Efficient and accurate prediction of renewable energy sources (RES) is an interminable challenge in efforts to assure the stable and safe operation of any hybrid energy system due to its intermittent nature. High integration of RES especially wind energy into the existing power sector in recent years has made the situation still challenging which draws the attention of many researchers in developing a computationally efficient forecast model for accurately predicting RES. With the advent of Neural network based methods, ELM -Extreme Learning Machine, a typical Single Layer Feedforward Network (SLFFN), has gained a significant attention in recent years in solving various real-time complex problems due to simplified architecture, good generalization capabilities and fast computation. However, since the model parameters are randomly assigned, the conventional ELM is frequently ranked as the second-best model. As a solution, the article attempts to construct a unique optimized Extreme Learning Machine (ELM) based forecast model with improved accuracy for wind speed forecasting. A novel swarm intelligence technique- Lévy flight Chaotic Whale Optimization algorithm (LCWOA) is utilized in the hybrid model to optimize different parameters of ELM. Despite having a appropriate convergence rate, WOA is occasionally unable to discover the global optima due to imbalanced exploration and exploitation when using control parameters with linear variation. An improvement in the convergence rate of WOA can be expected by incorporating chaotic maps in the control parameters of WOA due to their ergodic nature. In addition to this, Lévy flight can significantly improve the intensification and diversification of the Whale Optimization algorithm (WOA) resulting in improvised search ability avoiding local minima. The prediction capability of the suggested hybrid Extreme Learning Machine (ELM) based forecast model is validated with nine other existing models. The experimental study affirms that the suggested model outperform existing forecasting methods in a variety of quantitative metrics.
[Display omitted]
•A novel Lévy Flight Chaotic Whale Optimization Algorithm (LCWOA) is proposed.•A hybrid wind speed forecasting model is proposed by employing the LCWOA to optimize ELM model.•The performance of LCWOA-ELM model is verified with different seasonal datasets.•The performance of LCWOA in optimizing ELM is compared with different variants of Whale Optimization Algorithm (WOA). Efficient and accurate prediction of renewable energy sources (RES) is an interminable challenge in efforts to assure the stable and safe operation of any hybrid energy system due to its intermittent nature. High integration of RES especially wind energy into the existing power sector in recent years has made the situation still challenging which draws the attention of many researchers in developing a computationally efficient forecast model for accurately predicting RES. With the advent of Neural network based methods, ELM -Extreme Learning Machine, a typical Single Layer Feedforward Network (SLFFN), has gained a significant attention in recent years in solving various real-time complex problems due to simplified architecture, good generalization capabilities and fast computation. However, since the model parameters are randomly assigned, the conventional ELM is frequently ranked as the second-best model. As a solution, the article attempts to construct a unique optimized Extreme Learning Machine (ELM) based forecast model with improved accuracy for wind speed forecasting. A novel swarm intelligence technique- Lévy flight Chaotic Whale Optimization algorithm (LCWOA) is utilized in the hybrid model to optimize different parameters of ELM. Despite having a appropriate convergence rate, WOA is occasionally unable to discover the global optima due to imbalanced exploration and exploitation when using control parameters with linear variation. An improvement in the convergence rate of WOA can be expected by incorporating chaotic maps in the control parameters of WOA due to their ergodic nature. In addition to this, Lévy flight can significantly improve the intensification and diversification of the Whale Optimization algorithm (WOA) resulting in improvised search ability avoiding local minima. The prediction capability of the suggested hybrid Extreme Learning Machine (ELM) based forecast model is validated with nine other existing models. The experimental study affirms that the suggested model outperform existing forecasting methods in a variety of quantitative metrics. |
| ArticleNumber | 101274 |
| Author | Syama, S. Anand, R. Ramprabhakar, J. Guerrero, Josep M. |
| Author_xml | – sequence: 1 givenname: S. orcidid: 0000-0003-4798-0205 surname: Syama fullname: Syama, S. email: s_syama@blr.amrita.edu organization: Department of Electrical and Electronics Engineering, Amrita School of Engineering, Bengaluru, Amrita Vishwa Vidyapeetham, India – sequence: 2 givenname: J. surname: Ramprabhakar fullname: Ramprabhakar, J. email: j_ramprabhakar@blr.amrita.edu organization: Department of Electrical and Electronics Engineering, Amrita School of Engineering, Bengaluru, Amrita Vishwa Vidyapeetham, India – sequence: 3 givenname: R. surname: Anand fullname: Anand, R. email: r_anand@blr.amrita.edu organization: Department of Electrical and Electronics Engineering, Amrita School of Engineering, Bengaluru, Amrita Vishwa Vidyapeetham, India – sequence: 4 givenname: Josep M. surname: Guerrero fullname: Guerrero, Josep M. email: joz@et.aau.dk organization: Department of Energy Technology, Aalborg University, Aalborg East, 9220, Denmark |
| BookMark | eNqNkc1u1DAUhSNUJErpG7Dwks0M_ksyYYE0GrVQaVAXVOrScuybxCPHHmxP2_BGPAcvVk9TIcQC2NjW1Tnfvb7ndXHivIOieEvwkmBSvd8tg3Hg-iXFlB1LtOYvilNaNnhBKMMnv71fFecx7jDGdJWFrD4tpjUapjYYjS4eUoAR0BZkcMb16ItUQyaj0Wuw6N6kAW1__ribUGdNPyS0GaRPRqHbQVpA1_tkRvNdJuMdWtveh2wYUecDujVOo697AI0ufQAlY8r8N8XLTtoI58_3WXFzeXGz-bzYXn-62qy3C8VLkhaSUVaVTJea1KWuSQWlxliVBBqsGt1IAK5WLe-YrhtNqpa1HNeSEKaA5POsuJqx2sud2AczyjAJL414KvjQCxnyNywIBlIDw1C3jHLe0hUF3SjVSqp4yynNrHJmHdxeTvfS2l9AgsUxDbETcxrimIaY08i-d7NvH_y3A8QkRhMVWCsd-EMUuR3FFS1ZnaUfZqkKPsYAnVAmPS01BWnsv_rwP8z_Od7H2QY5hjsDQURlwCnQJqeV8qLM3wGPydjKuQ |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2023_123054 crossref_primary_10_1038_s41598_024_83836_z crossref_primary_10_3389_fenrg_2023_1336675 crossref_primary_10_1016_j_eswa_2024_124764 crossref_primary_10_3390_biomimetics9030186 crossref_primary_10_1016_j_aej_2024_11_035 crossref_primary_10_1109_ACCESS_2024_3379327 crossref_primary_10_1016_j_cjche_2024_10_019 crossref_primary_10_1142_S0218127424502055 crossref_primary_10_3390_sym16010083 crossref_primary_10_1109_ACCESS_2024_3401588 crossref_primary_10_1007_s40866_024_00228_y crossref_primary_10_1016_j_rineng_2024_102111 crossref_primary_10_1109_ACCESS_2023_3335124 crossref_primary_10_1155_etep_6694504 crossref_primary_10_1109_ACCESS_2024_3466170 crossref_primary_10_1016_j_apenergy_2024_124708 crossref_primary_10_1016_j_rineng_2024_101986 crossref_primary_10_1007_s40747_024_01460_w crossref_primary_10_1016_j_rineng_2024_102675 crossref_primary_10_7498_aps_73_20231569 crossref_primary_10_1038_s41598_024_75743_0 crossref_primary_10_1016_j_enbuild_2024_113942 crossref_primary_10_1007_s11276_023_03591_3 crossref_primary_10_1016_j_enbuild_2024_114339 crossref_primary_10_1016_j_energy_2024_130529 crossref_primary_10_1155_etep_6254758 crossref_primary_10_1016_j_joei_2024_101649 crossref_primary_10_1109_ACCESS_2024_3505535 crossref_primary_10_1016_j_neucom_2024_129062 |
| Cites_doi | 10.1504/IJPEC.2017.080829 10.1016/j.eswa.2018.08.027 10.20533/ijsed.2046.3707.2012.0007 10.1016/j.jcp.2007.06.008 10.1016/j.mechatronics.2015.04.007 10.1016/j.patcog.2005.03.028 10.1016/j.knosys.2011.04.019 10.1016/j.renene.2019.04.157 10.1016/j.engappai.2019.103457 10.1016/j.apenergy.2017.05.029 10.1088/1742-6596/1213/3/032004 10.1038/nature06948 10.1007/s00521-013-1522-8 10.1016/j.enconman.2016.01.007 10.1007/s10745-006-9083-4 10.1007/s007040050043 10.1016/j.jfranklin.2020.06.027 10.1109/ACCESS.2017.2695498 10.1177/0309524X211038547 10.1016/j.enconman.2017.04.012 10.1049/el.2017.4286 10.1016/j.enconman.2018.02.015 10.1007/s00357-018-9261-2 10.1016/j.apenergy.2021.117766 10.1016/j.egypro.2019.01.480 10.1016/j.enconman.2018.01.010 10.1155/2019/8718571 10.1109/TEC.2005.847954 10.1049/iet-rpg.2020.0315 10.1016/j.renene.2015.07.004 10.1016/j.neucom.2018.05.057 10.1016/j.advengsoft.2016.01.008 10.1371/journal.pone.0000354 10.1016/j.jcde.2017.12.006 10.4028/www.scientific.net/AMM.421.496 10.1016/j.enconman.2018.08.053 10.1016/j.apenergy.2009.12.013 10.1016/j.apenergy.2010.10.031 10.1016/j.asoc.2019.105937 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors |
| Copyright_xml | – notice: 2023 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 ADTOC UNPAY DOA |
| DOI | 10.1016/j.rineng.2023.101274 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2590-1230 |
| ExternalDocumentID | oai_doaj_org_article_3eade30e7b3244b282ed9ccba2c4b422 10.1016/j.rineng.2023.101274 10_1016_j_rineng_2023_101274 S2590123023004012 |
| GroupedDBID | 0SF 6I. AAEDW AAFTH AALRI AAXUO ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS FDB GROUPED_DOAJ M41 M~E NCXOZ OK1 ROL SSZ 0R~ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION 7S9 L.6 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c451t-a323653d5d175d716e5d00c51e90c9d9aee4c8b4f3d79d16b3b407a113ce1113 |
| IEDL.DBID | DOA |
| ISSN | 2590-1230 |
| IngestDate | Fri Oct 03 12:51:41 EDT 2025 Wed Oct 01 15:15:55 EDT 2025 Fri Aug 22 20:37:43 EDT 2025 Tue Jul 01 01:37:20 EDT 2025 Thu Apr 24 23:05:36 EDT 2025 Sat Oct 14 15:51:36 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Recurssive prediction Extreme learning machines Whale optimization algorithm Lévy flight, Chaotic Optimization Wind speed forecasting |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c451t-a323653d5d175d716e5d00c51e90c9d9aee4c8b4f3d79d16b3b407a113ce1113 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-4798-0205 |
| OpenAccessLink | https://doaj.org/article/3eade30e7b3244b282ed9ccba2c4b422 |
| PQID | 3242062537 |
| PQPubID | 24069 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3eade30e7b3244b282ed9ccba2c4b422 unpaywall_primary_10_1016_j_rineng_2023_101274 proquest_miscellaneous_3242062537 crossref_citationtrail_10_1016_j_rineng_2023_101274 crossref_primary_10_1016_j_rineng_2023_101274 elsevier_sciencedirect_doi_10_1016_j_rineng_2023_101274 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | September 2023 2023-09-00 20230901 2023-09-01 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 09 year: 2023 text: September 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Results in engineering |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Lydia, Kumar, Selvakumar, Kumar (bib9) 2016; 112 (bib57) 2020; 357 Oliva, Aziz, Hassanien (bib43) 2017; 200 Qi, Gao, Wang, Xiang, Lv, Liu (bib28) 2020; 14 Xiao, Qian, Shao (bib32) 2017; 143 Yang, Suash (bib49) 2009 Kamaruzaman, Mohd Zain, Mohamed Yusuf, Udin (bib50) September 2013; 421 Syama, Ramprabhakar (bib19) 2022 Nikolić, Motamedi, Shamshirband, Petković, Ch, Arif (bib24) 2016; 34 Long, Wu, Jiao (bib38) 2020; 89 Qais, Hasanien, Alghuwainem (bib40) 2020; 86 Guo, Wu, Lu, Wang (bib13) 2011; 24 Yuan, Guo, Zheng, Ding (bib42) 2018; 54 Zhang, Xiao, Li, Zhang (bib56) 2018; 311 Kiranvishnu, Ramprabhakar (bib12) 2016 Li, Han, Han, Zhao, Wei (bib46) 2019; 1213 Nicksson (bib4) 2017; 8 Fu, Hu, Tang, Yu, Liu (bib16) 2018 Wu, Wang, Chen, Du, Yang (bib33) 2020; 146 Yin, Cheng, Wang (bib37) 2019; 158 Prasad, Mukherjee, Mukherjee (bib44) 2017 Barbounis, Theocharis, Alexiadis, Dokopoulos (bib17) 2006; 21 Ding, Xu, Nie (bib22) 2014; 25 Gao (bib2) 2016 Barthelemy, Bertolotti, Wiersma (bib55) May 2008; 453 Kumar, Nookesh, Saketh, Syama, Ramprabhakar (bib20) 2021 Kaur, Arora (bib41) 2018; 5 Gomes, Castro (bib10) 2012; 1 Pavlyukevich (bib52) Oct. 2007; 226 Xiong, Zhang, Shi (bib39) 2018; 174 Brown, Liebovitch, Glendon (bib51) Dec. 2007; 35 Sun, Wang, Chen, Liu (bib48) December 2018; 114 Lian, He (bib36) 2022; 46 Mishra (bib29) 2017; 8 (bib1) 2022 Nair, Vanitha, Jisma (bib11) 2017 Li, Shi (bib14) 2010; 87 Zuo, Liu (bib3) 2012 Wang, Zou, Liu (bib23) 2021; 304 Zhang, Li, Xiao, Zhang (bib58) 2020; 357 Ehsan, Shahirinia, Zhang, Oladunni (bib18) 2020 Pelikan, Eben, Resler, Juruš, Krč, Brabec, Brabec, May (bib5) 2010 Schlink, Tetzlaff (bib8) 1998; 60 Pelikan, Resler, Juruš, Krč, Brabec, Brabec, May (bib6) 2010 Ren (bib25) 2021 Wang, Li, Bai (bib26) 2018; 162 Liu, Mi, Li (bib27) 2018; 159 Erdem, Shi (bib7) 2011; 88 Reynolds, Frye (bib54) Apr. 2007; 2 Pavlyukevich (bib53) Sep. 2007; 40 Santamaría-Bonfil, Reyes-Ballesteros (bib15) 2016; 85 Mohammed, Umar, Rashid (bib35) 2019; 2019 Li, Wei (bib31) 2020; vol. 675 Mirjalili, Lewis (bib34) 2016; 95 Huang, Zhu, Siew (bib21) 2004 Sayed, Darwish, Hassanien (bib45) 2018; 35 Zhu, Qin, Suganthan (bib30) 2005; 38 Ling, Zhou, Luo (bib47) 2017; 5 Sayed (10.1016/j.rineng.2023.101274_bib45) 2018; 35 Li (10.1016/j.rineng.2023.101274_bib31) 2020; vol. 675 Ding (10.1016/j.rineng.2023.101274_bib22) 2014; 25 Zhang (10.1016/j.rineng.2023.101274_bib58) 2020; 357 Yang (10.1016/j.rineng.2023.101274_bib49) 2009 Zhang (10.1016/j.rineng.2023.101274_bib56) 2018; 311 Pavlyukevich (10.1016/j.rineng.2023.101274_bib53) 2007; 40 Nicksson (10.1016/j.rineng.2023.101274_bib4) 2017; 8 Mohammed (10.1016/j.rineng.2023.101274_bib35) 2019; 2019 Mishra (10.1016/j.rineng.2023.101274_bib29) 2017; 8 Xiao (10.1016/j.rineng.2023.101274_bib32) 2017; 143 Pelikan (10.1016/j.rineng.2023.101274_bib6) 2010 Xiong (10.1016/j.rineng.2023.101274_bib39) 2018; 174 Gomes (10.1016/j.rineng.2023.101274_bib10) 2012; 1 Wang (10.1016/j.rineng.2023.101274_bib26) 2018; 162 Li (10.1016/j.rineng.2023.101274_bib46) 2019; 1213 Brown (10.1016/j.rineng.2023.101274_bib51) 2007; 35 Syama (10.1016/j.rineng.2023.101274_bib19) 2022 Schlink (10.1016/j.rineng.2023.101274_bib8) 1998; 60 Ling (10.1016/j.rineng.2023.101274_bib47) 2017; 5 Fu (10.1016/j.rineng.2023.101274_bib16) 2018 Wang (10.1016/j.rineng.2023.101274_bib23) 2021; 304 (10.1016/j.rineng.2023.101274_bib57) 2020; 357 Santamaría-Bonfil (10.1016/j.rineng.2023.101274_bib15) 2016; 85 Zhu (10.1016/j.rineng.2023.101274_bib30) 2005; 38 Qais (10.1016/j.rineng.2023.101274_bib40) 2020; 86 Lydia (10.1016/j.rineng.2023.101274_bib9) 2016; 112 Lian (10.1016/j.rineng.2023.101274_bib36) 2022; 46 Pavlyukevich (10.1016/j.rineng.2023.101274_bib52) 2007; 226 Barbounis (10.1016/j.rineng.2023.101274_bib17) 2006; 21 Wu (10.1016/j.rineng.2023.101274_bib33) 2020; 146 Barthelemy (10.1016/j.rineng.2023.101274_bib55) 2008; 453 Kaur (10.1016/j.rineng.2023.101274_bib41) 2018; 5 Qi (10.1016/j.rineng.2023.101274_bib28) 2020; 14 Pelikan (10.1016/j.rineng.2023.101274_bib5) 2010 Oliva (10.1016/j.rineng.2023.101274_bib43) 2017; 200 Nikolić (10.1016/j.rineng.2023.101274_bib24) 2016; 34 Liu (10.1016/j.rineng.2023.101274_bib27) 2018; 159 Zuo (10.1016/j.rineng.2023.101274_bib3) 2012 Ehsan (10.1016/j.rineng.2023.101274_bib18) 2020 Kumar (10.1016/j.rineng.2023.101274_bib20) 2021 Li (10.1016/j.rineng.2023.101274_bib14) 2010; 87 Ren (10.1016/j.rineng.2023.101274_bib25) 2021 (10.1016/j.rineng.2023.101274_bib1) 2022 Long (10.1016/j.rineng.2023.101274_bib38) 2020; 89 Kamaruzaman (10.1016/j.rineng.2023.101274_bib50) 2013; 421 Prasad (10.1016/j.rineng.2023.101274_bib44) 2017 Erdem (10.1016/j.rineng.2023.101274_bib7) 2011; 88 Yuan (10.1016/j.rineng.2023.101274_bib42) 2018; 54 Kiranvishnu (10.1016/j.rineng.2023.101274_bib12) 2016 Reynolds (10.1016/j.rineng.2023.101274_bib54) 2007; 2 Yin (10.1016/j.rineng.2023.101274_bib37) 2019; 158 Guo (10.1016/j.rineng.2023.101274_bib13) 2011; 24 Huang (10.1016/j.rineng.2023.101274_bib21) 2004 Nair (10.1016/j.rineng.2023.101274_bib11) 2017 Mirjalili (10.1016/j.rineng.2023.101274_bib34) 2016; 95 Sun (10.1016/j.rineng.2023.101274_bib48) 2018; 114 Gao (10.1016/j.rineng.2023.101274_bib2) 2016 |
| References_xml | – start-page: 602 year: 2021 end-page: 607 ident: bib20 article-title: Wind speed prediction using deep learning-LSTM and GRU publication-title: 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC) – volume: 1 year: 2012 ident: bib10 article-title: Wind speed and wind power forecasting using statistical models: autoregressive moving average (ARMA) and artificial neural networks (ANN) publication-title: International Journal of Sustainable Energy Development – start-page: 217 year: 2018 end-page: 222 ident: bib16 article-title: Multi-step ahead wind power forecasting based on recurrent neural networks publication-title: 2018 IEEE PES AsiaPacific Power and Energy Engineering Conference (APPEEC) – volume: 40 year: Sep. 2007 ident: bib53 article-title: Cooling down Lévy flights publication-title: J. Phys. Math. Theor. – start-page: 164 year: 2022 end-page: 171 ident: bib19 publication-title: Multistep Ahead Solar Irradiance and Wind Speed Forecasting Using Bayesian Optimized Long ShortTerm Memory,” 7th International Conference on Communication and Electronics Systems – volume: vol. 675 year: 2020 ident: bib31 article-title: Short-term wind speed forecasting based on PSO-ELM publication-title: Innovative Computing – start-page: 234 year: 2020 end-page: 240 ident: bib18 publication-title: Wind Speed Prediction and Visualization Using Long Short-Term Memory Networks (LSTM), 2020 10th International Conference on Information Science and Technology (ICIST) – volume: 60 start-page: 191 year: 1998 end-page: 198 ident: bib8 article-title: Wind speed forecasting from 1 to 30 minutes publication-title: Theor. Appl. Climatol. – volume: 112 start-page: 115 year: 2016 end-page: 124 ident: bib9 article-title: Linear and non-linear autoregressive models for short-term wind speed forecasting publication-title: Energy Convers. Manag. – start-page: 1 year: 2016 end-page: 6 ident: bib12 publication-title: Comparative Study of Wind Speed Forecasting Techniques, 2016 Biennial International Conference on Power and Energy Systems: towards Sustainable Energy (PESTSE) – volume: 88 start-page: 1405 year: 2011 end-page: 1414 ident: bib7 article-title: ARMA based approaches for forecasting the tuple of wind speed and direction publication-title: Appl. Energy – volume: 46 start-page: 556 year: 2022 end-page: 571 ident: bib36 article-title: Ultra-short-term wind speed prediction based on variational mode decomposition and optimized extreme learning machine publication-title: Wind Eng. – start-page: 188 year: 2021 end-page: 192 ident: bib25 article-title: Short-term wind power prediction based on extreme learning machine publication-title: 2021 International Conference on Digital Society and Intelligent Systems (DSInS) – volume: 158 start-page: 6208 year: 2019 end-page: 6216 ident: bib37 article-title: Optimization for hydro-photovoltaic-wind power generation system based on modified version of multi-objective whale optimization algorithm publication-title: Energy Proc. – start-page: 45 year: 2010 end-page: 48 ident: bib6 article-title: Wind power forecasting by an empirical model using NWP outputs publication-title: 2010, 9th International Conference on Environment and Electrical Engineering (EEEIC – volume: 311 year: 2018 ident: bib56 article-title: Residual compensation extreme learning machine for regression publication-title: Neurocomputing – volume: 86 year: 2020 ident: bib40 article-title: Enhanced whale optimization algorithm for maximum power point tracking of variable-speed wind generators publication-title: Appl. Soft Comput. – volume: 34 start-page: 78 year: 2016 end-page: 83 ident: bib24 article-title: Extreme learning machine approach for sensorless wind speed estimation publication-title: Mechatronics – volume: 1213 year: 2019 ident: bib46 article-title: Whale optimization algorithm with chaos strategy and weight factor publication-title: J. Phys. Conf. – volume: 2 start-page: e354 year: Apr. 2007 ident: bib54 article-title: Free-flight odor tracking in Drosophila is consistent with an optimal intermittent scale-free search publication-title: PLoS One – volume: 35 start-page: 300 year: 2018 end-page: 344 ident: bib45 article-title: A new chaotic whale optimization algorithm for features selection publication-title: J. Classif. – start-page: 311 year: 2017 end-page: 332 ident: bib44 article-title: Transient Stability Constrained Optimal Power Flow Using Chaotic Whale Optimization Algorithm – volume: 2019 year: 2019 ident: bib35 article-title: A systematic and meta-analysis survey of whale optimization algorithm publication-title: Comput. Intell. Neurosci. – volume: 8 start-page: 4 year: 2017 end-page: 8 ident: bib4 article-title: de Freitas wind speed forecasting: a review publication-title: Int. J. Eng. Res. Afr. – volume: 143 start-page: 410 year: 2017 end-page: 430 ident: bib32 article-title: Multi-step wind speed forecasting based on a hybrid forecasting architecture and an improved bat algorithm publication-title: Energy Convers. Manag. – start-page: 45 year: 2010 end-page: 48 ident: bib5 article-title: Wind power forecasting by an empirical model using NWP outputs publication-title: Environment and Electrical Engineering (EEEIC), 2010, 9th International Conference on – volume: 357 start-page: 9885 year: 2020 end-page: 9908 ident: bib58 article-title: Robust extreme learning machine for modeling with unknown noise publication-title: J. Franklin Inst. – volume: 357 year: 2020 ident: bib57 article-title: Non-iterative and fast deep learning: multilayer extreme learning machines publication-title: J. Franklin Inst. – volume: 421 start-page: 496 year: September 2013 end-page: 501 ident: bib50 article-title: Lévy flight algorithm for optimization problems - a literature review publication-title: Appl. Mech. Mater. – start-page: 985 year: 2004 end-page: 990 ident: bib21 article-title: Extreme learning machine: a new learning scheme of feedforward neural networks publication-title: Proceedings of International Joint Conference on Neural Networks (IJCNN2004) – volume: 89 year: 2020 ident: bib38 article-title: Refraction-learning-based whale optimization algorithm for high dimensional problems and parameter estimation of PV model publication-title: Eng. Appl. Artif. Intell. – volume: 25 start-page: 549 year: 2014 end-page: 556 ident: bib22 article-title: Extreme learning machine and its applications publication-title: Neural Comput. Appl. – volume: 85 start-page: 790 year: 2016 end-page: 809 ident: bib15 article-title: Gershenson C Wind speed forecasting for wind farms: a method based on support vector regression publication-title: Renew. Energy – volume: 200 start-page: 141 year: 2017 end-page: 154 ident: bib43 article-title: Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm publication-title: Appl. Energy – volume: 226 start-page: 1830 year: Oct. 2007 end-page: 1844 ident: bib52 article-title: Lévy flights, non-local search and simulated annealing publication-title: J. Comput. Phys. – volume: 54 start-page: 311 year: 2018 end-page: 313 ident: bib42 article-title: Side lobe suppression with constraint for MIMO radar via chaotic whale optimization publication-title: Electron. Lett. – volume: 453 start-page: 495 year: May 2008 end-page: 498 ident: bib55 article-title: A Lévy flight for light publication-title: Nature – start-page: 170 year: 2017 end-page: 175 ident: bib11 article-title: Forecasting of wind speed using ANN, ARIMA and Hybrid models publication-title: 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT) – volume: 14 start-page: 3181 year: 2020 end-page: 3191 ident: bib28 article-title: Wind power interval forecasting based on adaptive decomposition and probabilistic regularized extreme learning machine publication-title: IET Renew. Power Gener. – volume: 87 start-page: 2313 year: 2010 end-page: 2320 ident: bib14 article-title: On comparing three artificial neural networks for wind speed forecasting publication-title: Appl. Energy – volume: 5 start-page: 275 year: 2018 end-page: 284 ident: bib41 article-title: Chaotic whale optimization algorithm publication-title: Journal of Computational Design and Engineering – volume: 146 start-page: 149 year: 2020 end-page: 165 ident: bib33 article-title: A novel hybrid system based on multi-objective optimization for wind speed forecasting publication-title: Renew. Energy – volume: 174 start-page: 388 year: 2018 end-page: 405 ident: bib39 article-title: Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm publication-title: Energy Convers. Manag. – volume: 38 start-page: 1759 year: 2005 end-page: 1763 ident: bib30 article-title: Guang-Bin Huang, Evolutionary extreme learning machine publication-title: Pattern Recogn. – volume: 21 start-page: 273 year: 2006 end-page: 284 ident: bib17 article-title: Long-term wind speed and power forecasting using local recurrent neural network models publication-title: IEEE Trans. Energy Convers. – year: 2022 ident: bib1 article-title: Global Wind Report – volume: 24 start-page: 1048 year: 2011 end-page: 1056 ident: bib13 article-title: A case study on a hybrid wind speed forecasting method using BP neural network publication-title: Knowl. Base Syst. – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: bib34 article-title: The whale optimization algorithm publication-title: Adv. Eng. Software – volume: 114 start-page: 563 year: December 2018 end-page: 577 ident: bib48 article-title: A modified whale optimization algorithm for large-scale global optimization problems publication-title: Expert Syst. Appl. – volume: 35 start-page: 129 year: Dec. 2007 end-page: 138 ident: bib51 article-title: Lévy flights in Dobe Ju/’hoansi Foraging patterns publication-title: Hum. Ecol. – start-page: 435 year: 2016 end-page: 439 ident: bib2 article-title: An overview on development of wind power generation publication-title: 2016 Chinese Control and Decision Conference (CCDC) – volume: 159 start-page: 54 year: 2018 end-page: 64 ident: bib27 article-title: Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, LSTM network and ELM publication-title: Energy Convers. Manag. – volume: 5 start-page: 6168 year: 2017 end-page: 6186 ident: bib47 article-title: Levy flight trajectory-based whale optimization algorithm for global optimization publication-title: IEEE Access – volume: 8 start-page: 68 year: 2017 end-page: 89 ident: bib29 article-title: Short-term forecasting of wind power generation using extreme learning machine and its variants publication-title: Int. J. Power Energy Convers. – volume: 162 start-page: 239 year: 2018 end-page: 250 ident: bib26 article-title: Short-term wind speed prediction using an extreme learning machine model with error correction publication-title: Energy Convers. Manag. – volume: 304 year: 2021 ident: bib23 article-title: A review of wind speed and wind power forecasting with deep neural networks publication-title: Appl. Energy – start-page: 210 year: 2009 end-page: 214 ident: bib49 article-title: Cuckoo search via Lévy flights publication-title: World Congress Nature Biologically Inspired Computer (NaBIC) – start-page: 635 year: 2012 end-page: 638 ident: bib3 article-title: Evaluation on comprehensive benefit of wind power generation and utilization of wind energy publication-title: 2012 IEEE International Conference on Computer Science and Automation Engineering – start-page: 602 year: 2021 ident: 10.1016/j.rineng.2023.101274_bib20 article-title: Wind speed prediction using deep learning-LSTM and GRU – volume: 8 start-page: 68 year: 2017 ident: 10.1016/j.rineng.2023.101274_bib29 article-title: Short-term forecasting of wind power generation using extreme learning machine and its variants publication-title: Int. J. Power Energy Convers. doi: 10.1504/IJPEC.2017.080829 – volume: 114 start-page: 563 year: 2018 ident: 10.1016/j.rineng.2023.101274_bib48 article-title: A modified whale optimization algorithm for large-scale global optimization problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.08.027 – volume: 1 year: 2012 ident: 10.1016/j.rineng.2023.101274_bib10 article-title: Wind speed and wind power forecasting using statistical models: autoregressive moving average (ARMA) and artificial neural networks (ANN) publication-title: International Journal of Sustainable Energy Development doi: 10.20533/ijsed.2046.3707.2012.0007 – start-page: 311 year: 2017 ident: 10.1016/j.rineng.2023.101274_bib44 – volume: 226 start-page: 1830 issue: 2 year: 2007 ident: 10.1016/j.rineng.2023.101274_bib52 article-title: Lévy flights, non-local search and simulated annealing publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2007.06.008 – start-page: 45 year: 2010 ident: 10.1016/j.rineng.2023.101274_bib6 article-title: Wind power forecasting by an empirical model using NWP outputs – volume: 34 start-page: 78 year: 2016 ident: 10.1016/j.rineng.2023.101274_bib24 article-title: Extreme learning machine approach for sensorless wind speed estimation publication-title: Mechatronics doi: 10.1016/j.mechatronics.2015.04.007 – volume: 38 start-page: 1759 issue: 10 year: 2005 ident: 10.1016/j.rineng.2023.101274_bib30 article-title: Guang-Bin Huang, Evolutionary extreme learning machine publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2005.03.028 – volume: 24 start-page: 1048 issue: 7 year: 2011 ident: 10.1016/j.rineng.2023.101274_bib13 article-title: A case study on a hybrid wind speed forecasting method using BP neural network publication-title: Knowl. Base Syst. doi: 10.1016/j.knosys.2011.04.019 – volume: 146 start-page: 149 year: 2020 ident: 10.1016/j.rineng.2023.101274_bib33 article-title: A novel hybrid system based on multi-objective optimization for wind speed forecasting publication-title: Renew. Energy doi: 10.1016/j.renene.2019.04.157 – start-page: 435 year: 2016 ident: 10.1016/j.rineng.2023.101274_bib2 article-title: An overview on development of wind power generation – start-page: 164 year: 2022 ident: 10.1016/j.rineng.2023.101274_bib19 – volume: 89 year: 2020 ident: 10.1016/j.rineng.2023.101274_bib38 article-title: Refraction-learning-based whale optimization algorithm for high dimensional problems and parameter estimation of PV model publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.103457 – volume: 200 start-page: 141 year: 2017 ident: 10.1016/j.rineng.2023.101274_bib43 article-title: Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.05.029 – volume: 1213 year: 2019 ident: 10.1016/j.rineng.2023.101274_bib46 article-title: Whale optimization algorithm with chaos strategy and weight factor publication-title: J. Phys. Conf. doi: 10.1088/1742-6596/1213/3/032004 – volume: 453 start-page: 495 issue: 7194 year: 2008 ident: 10.1016/j.rineng.2023.101274_bib55 article-title: A Lévy flight for light publication-title: Nature doi: 10.1038/nature06948 – volume: 25 start-page: 549 issue: 3–4 year: 2014 ident: 10.1016/j.rineng.2023.101274_bib22 article-title: Extreme learning machine and its applications publication-title: Neural Comput. Appl. doi: 10.1007/s00521-013-1522-8 – year: 2022 ident: 10.1016/j.rineng.2023.101274_bib1 – start-page: 234 year: 2020 ident: 10.1016/j.rineng.2023.101274_bib18 – volume: 112 start-page: 115 year: 2016 ident: 10.1016/j.rineng.2023.101274_bib9 article-title: Linear and non-linear autoregressive models for short-term wind speed forecasting publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2016.01.007 – volume: 35 start-page: 129 issue: 1 year: 2007 ident: 10.1016/j.rineng.2023.101274_bib51 article-title: Lévy flights in Dobe Ju/’hoansi Foraging patterns publication-title: Hum. Ecol. doi: 10.1007/s10745-006-9083-4 – volume: 60 start-page: 191 issue: 1–4 year: 1998 ident: 10.1016/j.rineng.2023.101274_bib8 article-title: Wind speed forecasting from 1 to 30 minutes publication-title: Theor. Appl. Climatol. doi: 10.1007/s007040050043 – start-page: 45 year: 2010 ident: 10.1016/j.rineng.2023.101274_bib5 article-title: Wind power forecasting by an empirical model using NWP outputs – volume: 357 year: 2020 ident: 10.1016/j.rineng.2023.101274_bib57 article-title: Non-iterative and fast deep learning: multilayer extreme learning machines publication-title: J. Franklin Inst. – start-page: 1 year: 2016 ident: 10.1016/j.rineng.2023.101274_bib12 – volume: 357 start-page: 9885 issue: 14 year: 2020 ident: 10.1016/j.rineng.2023.101274_bib58 article-title: Robust extreme learning machine for modeling with unknown noise publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2020.06.027 – volume: 5 start-page: 6168 year: 2017 ident: 10.1016/j.rineng.2023.101274_bib47 article-title: Levy flight trajectory-based whale optimization algorithm for global optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2695498 – volume: 46 start-page: 556 issue: 2 year: 2022 ident: 10.1016/j.rineng.2023.101274_bib36 article-title: Ultra-short-term wind speed prediction based on variational mode decomposition and optimized extreme learning machine publication-title: Wind Eng. doi: 10.1177/0309524X211038547 – volume: 143 start-page: 410 year: 2017 ident: 10.1016/j.rineng.2023.101274_bib32 article-title: Multi-step wind speed forecasting based on a hybrid forecasting architecture and an improved bat algorithm publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.04.012 – volume: vol. 675 year: 2020 ident: 10.1016/j.rineng.2023.101274_bib31 article-title: Short-term wind speed forecasting based on PSO-ELM – start-page: 217 year: 2018 ident: 10.1016/j.rineng.2023.101274_bib16 article-title: Multi-step ahead wind power forecasting based on recurrent neural networks – volume: 54 start-page: 311 issue: 5 year: 2018 ident: 10.1016/j.rineng.2023.101274_bib42 article-title: Side lobe suppression with constraint for MIMO radar via chaotic whale optimization publication-title: Electron. Lett. doi: 10.1049/el.2017.4286 – volume: 8 start-page: 4 issue: 1 year: 2017 ident: 10.1016/j.rineng.2023.101274_bib4 article-title: de Freitas wind speed forecasting: a review publication-title: Int. J. Eng. Res. Afr. – volume: 162 start-page: 239 year: 2018 ident: 10.1016/j.rineng.2023.101274_bib26 article-title: Short-term wind speed prediction using an extreme learning machine model with error correction publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.02.015 – volume: 35 start-page: 300 year: 2018 ident: 10.1016/j.rineng.2023.101274_bib45 article-title: A new chaotic whale optimization algorithm for features selection publication-title: J. Classif. doi: 10.1007/s00357-018-9261-2 – start-page: 635 year: 2012 ident: 10.1016/j.rineng.2023.101274_bib3 article-title: Evaluation on comprehensive benefit of wind power generation and utilization of wind energy – volume: 304 year: 2021 ident: 10.1016/j.rineng.2023.101274_bib23 article-title: A review of wind speed and wind power forecasting with deep neural networks publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.117766 – volume: 158 start-page: 6208 year: 2019 ident: 10.1016/j.rineng.2023.101274_bib37 article-title: Optimization for hydro-photovoltaic-wind power generation system based on modified version of multi-objective whale optimization algorithm publication-title: Energy Proc. doi: 10.1016/j.egypro.2019.01.480 – volume: 159 start-page: 54 year: 2018 ident: 10.1016/j.rineng.2023.101274_bib27 article-title: Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, LSTM network and ELM publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.01.010 – volume: 40 issue: 41 year: 2007 ident: 10.1016/j.rineng.2023.101274_bib53 article-title: Cooling down Lévy flights publication-title: J. Phys. Math. Theor. – volume: 2019 year: 2019 ident: 10.1016/j.rineng.2023.101274_bib35 article-title: A systematic and meta-analysis survey of whale optimization algorithm publication-title: Comput. Intell. Neurosci. doi: 10.1155/2019/8718571 – volume: 21 start-page: 273 issue: 1 year: 2006 ident: 10.1016/j.rineng.2023.101274_bib17 article-title: Long-term wind speed and power forecasting using local recurrent neural network models publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2005.847954 – volume: 14 start-page: 3181 year: 2020 ident: 10.1016/j.rineng.2023.101274_bib28 article-title: Wind power interval forecasting based on adaptive decomposition and probabilistic regularized extreme learning machine publication-title: IET Renew. Power Gener. doi: 10.1049/iet-rpg.2020.0315 – volume: 85 start-page: 790 year: 2016 ident: 10.1016/j.rineng.2023.101274_bib15 article-title: Gershenson C Wind speed forecasting for wind farms: a method based on support vector regression publication-title: Renew. Energy doi: 10.1016/j.renene.2015.07.004 – volume: 311 year: 2018 ident: 10.1016/j.rineng.2023.101274_bib56 article-title: Residual compensation extreme learning machine for regression publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.057 – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.rineng.2023.101274_bib34 article-title: The whale optimization algorithm publication-title: Adv. Eng. Software doi: 10.1016/j.advengsoft.2016.01.008 – start-page: 170 year: 2017 ident: 10.1016/j.rineng.2023.101274_bib11 article-title: Forecasting of wind speed using ANN, ARIMA and Hybrid models – volume: 2 start-page: e354 issue: 4 year: 2007 ident: 10.1016/j.rineng.2023.101274_bib54 article-title: Free-flight odor tracking in Drosophila is consistent with an optimal intermittent scale-free search publication-title: PLoS One doi: 10.1371/journal.pone.0000354 – start-page: 210 year: 2009 ident: 10.1016/j.rineng.2023.101274_bib49 article-title: Cuckoo search via Lévy flights – start-page: 188 year: 2021 ident: 10.1016/j.rineng.2023.101274_bib25 article-title: Short-term wind power prediction based on extreme learning machine – start-page: 985 year: 2004 ident: 10.1016/j.rineng.2023.101274_bib21 article-title: Extreme learning machine: a new learning scheme of feedforward neural networks – volume: 5 start-page: 275 issue: 3 year: 2018 ident: 10.1016/j.rineng.2023.101274_bib41 article-title: Chaotic whale optimization algorithm publication-title: Journal of Computational Design and Engineering doi: 10.1016/j.jcde.2017.12.006 – volume: 421 start-page: 496 year: 2013 ident: 10.1016/j.rineng.2023.101274_bib50 article-title: Lévy flight algorithm for optimization problems - a literature review publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/AMM.421.496 – volume: 174 start-page: 388 year: 2018 ident: 10.1016/j.rineng.2023.101274_bib39 article-title: Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.08.053 – volume: 87 start-page: 2313 issue: 7 year: 2010 ident: 10.1016/j.rineng.2023.101274_bib14 article-title: On comparing three artificial neural networks for wind speed forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2009.12.013 – volume: 88 start-page: 1405 issue: 4 year: 2011 ident: 10.1016/j.rineng.2023.101274_bib7 article-title: ARMA based approaches for forecasting the tuple of wind speed and direction publication-title: Appl. Energy doi: 10.1016/j.apenergy.2010.10.031 – volume: 86 year: 2020 ident: 10.1016/j.rineng.2023.101274_bib40 article-title: Enhanced whale optimization algorithm for maximum power point tracking of variable-speed wind generators publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105937 |
| SSID | ssj0002810137 |
| Score | 2.4724004 |
| Snippet | Efficient and accurate prediction of renewable energy sources (RES) is an interminable challenge in efforts to assure the stable and safe operation of any... |
| SourceID | doaj unpaywall proquest crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 101274 |
| SubjectTerms | algorithms energy Extreme learning machines Lévy flight, Chaotic Optimization Markov chain prediction Recurssive prediction swarms Whale optimization algorithm wind power wind speed Wind speed forecasting |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BekAceKMGAVokrnbt3bUdH0PVqkJQkNqq5bTal520jh0lTkv4R_wO_hgzfkQpl4LE1dpda-Vvdr5Zz3xDyPt4ZBiwIQhLUmY9YTIBNpdpCFVcEmvrAERNguxxfHQmPl5EF13-E9bCQDTng1PwjC3bigbUaCrrvekMzGsv9JbMD7wThhWTDPvdIAhD5uUqlMUi9y_n-X2yE0fAywdk5-z46_gbdpeD4R6O72vnmgQvrK4rcx_7h-MjlohbvqmR8L_lorYo6INVOVfrG1UUW97o8DG56vfRJqFc-ata--bHHxKP_2ejT8ijjrTScYuyp-SeK5-Rh1tShs_Jekwna6z-ogffa7xzpJ1ya04_N_majjZNdyhe_NJPv35er2lW4M0A3Z-oCham5xNwVvQLnGGzrjiUjou8WsCEGQVuTc-npaUnc_C3FDuKGrXEnO0X5PTw4HT_yOvaOnhGRGHtKc54HHEbWaAuFuI1F9kgMFHo0sCkNlXOCTPSIuM2SW0Ya64h6lRhyI2Dk5m_JIOyKt0uoSodCR2llqc6E0AldcKUhvUMz3g8irMh4f33lKaTPMfOG4Xsc9suZYsCiSiQLQqGxNvMmreSH3eM_4BQ2YxFwe7mQbXIZWf_kmNiOgcD0MBghYZA19nUGK2YEVowNiRJDzTZcZ-W08BS0zte_67HpYSjAf_3qNJVq6VErhxAfMuTIfE3gP2rPb361wmvyaBerNwbYGi1ftuZ3m8JDjtP priority: 102 providerName: Unpaywall |
| Title | A hybrid Extreme Learning Machine model with Lévy flight Chaotic Whale Optimization Algorithm for Wind Speed Forecasting |
| URI | https://dx.doi.org/10.1016/j.rineng.2023.101274 https://www.proquest.com/docview/3242062537 https://ars.els-cdn.com/content/image/1-s2.0-S2590123023004012-ga1_lrg.jpg https://doaj.org/article/3eade30e7b3244b282ed9ccba2c4b422 |
| UnpaywallVersion | publishedVersion |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2590-1230 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002810137 issn: 2590-1230 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2590-1230 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002810137 issn: 2590-1230 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2590-1230 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002810137 issn: 2590-1230 databaseCode: AKRWK dateStart: 20190301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQOQAHxFMsj2qQuKYksfPwcam2qhAtSLRqOVl-ZbdVml21u8Be-D_8Dv4YM06ySk_LgUsOUezEmXHm-5zPM4y9y0ubIhpCWiJTFwlbCZxzlUGq4ovcOI9OFASyx_nhqfh4np0PSn2RJqxND9y-uPecFL0cWxoM_cIgQ_BOWmt0aoURafj6xqUckKnLsGSUdAkzEd6T_IDH_b65IO6inXXNdI9qh9OptBC34lJI338rPA3g571Vs9DrH7quB5Ho4BF72EFIGLeP_pjd8c0T9mCQWPApW49htqa9WDD5uaQVQOjyqE7hKKgnPYQSOEDLsPDpz-_va6hq4umwP9Nz7BjOZhg64DN-Ua66rZowrqfza2xwBYh04QzZPHxdYPQDqu9p9Q0pqJ-xk4PJyf5h1BVZiKzIkmWkecrzjLvMIZBwyJ585uLYZomXsZVOau-FLY2ouCukS3LDDXJAnSTceipT_5ztNPPGv2CgZSlMJh2XphII7EyRaoP9WV7xvMyrEeP9G1a2S0BOdTBq1SvNLlVrF0V2Ua1dRizatFq0CTi2XP-BjLe5ltJnhxPoVKpzKrXNqUas6E2vOiTSIgzs6mLL7d_2nqJwotLfF934-epGEXKNkW3yYsT2Ni70T2N6-T_G9Irdpy5bfdxrtrO8Xvk3CKiWZjfMHTwe_Zrssrunx1_G3_4CErkg8Q |
| linkProvider | Directory of Open Access Journals |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BekAceKMGAVokrnbt3bUdH0PVqkJQkNqq5bTal520jh0lTkv4R_wO_hgzfkQpl4LE1dpda-Vvdr5Zz3xDyPt4ZBiwIQhLUmY9YTIBNpdpCFVcEmvrAERNguxxfHQmPl5EF13-E9bCQDTng1PwjC3bigbUaCrrvekMzGsv9JbMD7wThhWTDPvdIAhD5uUqlMUi9y_n-X2yE0fAywdk5-z46_gbdpeD4R6O72vnmgQvrK4rcx_7h-MjlohbvqmR8L_lorYo6INVOVfrG1UUW97o8DG56vfRJqFc-ata--bHHxKP_2ejT8ijjrTScYuyp-SeK5-Rh1tShs_Jekwna6z-ogffa7xzpJ1ya04_N_majjZNdyhe_NJPv35er2lW4M0A3Z-oCham5xNwVvQLnGGzrjiUjou8WsCEGQVuTc-npaUnc_C3FDuKGrXEnO0X5PTw4HT_yOvaOnhGRGHtKc54HHEbWaAuFuI1F9kgMFHo0sCkNlXOCTPSIuM2SW0Ya64h6lRhyI2Dk5m_JIOyKt0uoSodCR2llqc6E0AldcKUhvUMz3g8irMh4f33lKaTPMfOG4Xsc9suZYsCiSiQLQqGxNvMmreSH3eM_4BQ2YxFwe7mQbXIZWf_kmNiOgcD0MBghYZA19nUGK2YEVowNiRJDzTZcZ-W08BS0zte_67HpYSjAf_3qNJVq6VErhxAfMuTIfE3gP2rPb361wmvyaBerNwbYGi1ftuZ3m8JDjtP |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+Extreme+Learning+Machine+model+with+L%C3%A9vy+flight+Chaotic+Whale+Optimization+Algorithm+for+Wind+Speed+Forecasting&rft.jtitle=Results+in+engineering&rft.au=Syama%2C+S.&rft.au=Ramprabhakar%2C+J.&rft.au=Anand%2C+R.&rft.au=Guerrero%2C+Josep+M.&rft.date=2023-09-01&rft.pub=Elsevier+B.V&rft.issn=2590-1230&rft.eissn=2590-1230&rft.volume=19&rft_id=info:doi/10.1016%2Fj.rineng.2023.101274&rft.externalDocID=S2590123023004012 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1230&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1230&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1230&client=summon |