4-dimensional local radial basis function interpolation of large, uniformly spaced datasets
•sparse data from MRI velocimetry can be interpolated using radial basis functions.•the interpolation is in time as well as 3D space.•sparse data in the cerebrospinal fluid spaces in the cerebral hemispheres is interpolated.•the velocity field after interpolation has twice as many data points.•this...
Saved in:
| Published in | Computer methods and programs in biomedicine Vol. 228; p. 107235 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Ireland
Elsevier B.V
01.01.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0169-2607 1872-7565 1872-7565 |
| DOI | 10.1016/j.cmpb.2022.107235 |
Cover
| Abstract | •sparse data from MRI velocimetry can be interpolated using radial basis functions.•the interpolation is in time as well as 3D space.•sparse data in the cerebrospinal fluid spaces in the cerebral hemispheres is interpolated.•the velocity field after interpolation has twice as many data points.•this velocity field may be useful for further modelling of cerebrospinal fluid for drug delivery.
Large, uniformly spaced, complex and time varying datasets derived from high resolution medical image velocimetry can provide a wealth of information regarding small-scale transient physiological flow phenomena and pulsation of anatomical boundaries. However, there remains a need for interpolation techniques to effectively reconstruct a fully 4-dimensional functional relationship from this data. This paper presents a preliminary evaluation of a 4-dimensional local radial basis function (RBF) algorithm as a means of addressing this problem for laminar flows.
A 4D interpolation algorithm is proposed based on a Local Hermitian Interpolation (LHI) using a combination of multi-quadric RBF with a partition of unity scheme. The domain is divided into uniform sub-systems with size restricted to immediately neighbouring points. The validity of the algorithm is first established on a known 4D analytical dataset and a CFD based laminar flow phantom. Application is then demonstrated through characterisation of a large 4D laminar flow dataset obtained from magnetic resonance imaging (MRI) measurements of cerebrospinal fluid velocities in the brain.
Performance of the algorithm is compared to that of a quad-linear interpolation, demonstrating favourable improvement in accuracy. The technique is shown to be robust, computationally efficient and capable of refined interpolation in Euclidean space and time. Application to MR velocimetry data is shown to produce promising results for the 4D reconstruction of the transient flow field and movement of the fluid boundaries at spatial and temporal locations intermediate to the original data.
This study has demonstrated feasibility of an accurate, stable and efficient 4-dimensional local RBF interpolation method for large, transient laminar flow velocimetry datasets. The proposed approach does not suffer from ill-conditioning or high computational cost due to domain decomposition into local stencils where the RBF is only ever applied to a limited number of points. This work offers a potential tool to assist medical diagnoses and drug delivery through better understanding of physiological flow fields such as cerebrospinal fluid. Further work will evaluate the technique on a wider range of flow fields and against CFD simulation. |
|---|---|
| AbstractList | Large, uniformly spaced, complex and time varying datasets derived from high resolution medical image velocimetry can provide a wealth of information regarding small-scale transient physiological flow phenomena and pulsation of anatomical boundaries. However, there remains a need for interpolation techniques to effectively reconstruct a fully 4-dimensional functional relationship from this data. This paper presents a preliminary evaluation of a 4-dimensional local radial basis function (RBF) algorithm as a means of addressing this problem for laminar flows.BACKGROUND AND OBJECTIVELarge, uniformly spaced, complex and time varying datasets derived from high resolution medical image velocimetry can provide a wealth of information regarding small-scale transient physiological flow phenomena and pulsation of anatomical boundaries. However, there remains a need for interpolation techniques to effectively reconstruct a fully 4-dimensional functional relationship from this data. This paper presents a preliminary evaluation of a 4-dimensional local radial basis function (RBF) algorithm as a means of addressing this problem for laminar flows.A 4D interpolation algorithm is proposed based on a Local Hermitian Interpolation (LHI) using a combination of multi-quadric RBF with a partition of unity scheme. The domain is divided into uniform sub-systems with size restricted to immediately neighbouring points. The validity of the algorithm is first established on a known 4D analytical dataset and a CFD based laminar flow phantom. Application is then demonstrated through characterisation of a large 4D laminar flow dataset obtained from magnetic resonance imaging (MRI) measurements of cerebrospinal fluid velocities in the brain.METHODSA 4D interpolation algorithm is proposed based on a Local Hermitian Interpolation (LHI) using a combination of multi-quadric RBF with a partition of unity scheme. The domain is divided into uniform sub-systems with size restricted to immediately neighbouring points. The validity of the algorithm is first established on a known 4D analytical dataset and a CFD based laminar flow phantom. Application is then demonstrated through characterisation of a large 4D laminar flow dataset obtained from magnetic resonance imaging (MRI) measurements of cerebrospinal fluid velocities in the brain.Performance of the algorithm is compared to that of a quad-linear interpolation, demonstrating favourable improvement in accuracy. The technique is shown to be robust, computationally efficient and capable of refined interpolation in Euclidean space and time. Application to MR velocimetry data is shown to produce promising results for the 4D reconstruction of the transient flow field and movement of the fluid boundaries at spatial and temporal locations intermediate to the original data.RESULTSPerformance of the algorithm is compared to that of a quad-linear interpolation, demonstrating favourable improvement in accuracy. The technique is shown to be robust, computationally efficient and capable of refined interpolation in Euclidean space and time. Application to MR velocimetry data is shown to produce promising results for the 4D reconstruction of the transient flow field and movement of the fluid boundaries at spatial and temporal locations intermediate to the original data.This study has demonstrated feasibility of an accurate, stable and efficient 4-dimensional local RBF interpolation method for large, transient laminar flow velocimetry datasets. The proposed approach does not suffer from ill-conditioning or high computational cost due to domain decomposition into local stencils where the RBF is only ever applied to a limited number of points. This work offers a potential tool to assist medical diagnoses and drug delivery through better understanding of physiological flow fields such as cerebrospinal fluid. Further work will evaluate the technique on a wider range of flow fields and against CFD simulation.CONCLUSIONThis study has demonstrated feasibility of an accurate, stable and efficient 4-dimensional local RBF interpolation method for large, transient laminar flow velocimetry datasets. The proposed approach does not suffer from ill-conditioning or high computational cost due to domain decomposition into local stencils where the RBF is only ever applied to a limited number of points. This work offers a potential tool to assist medical diagnoses and drug delivery through better understanding of physiological flow fields such as cerebrospinal fluid. Further work will evaluate the technique on a wider range of flow fields and against CFD simulation. •sparse data from MRI velocimetry can be interpolated using radial basis functions.•the interpolation is in time as well as 3D space.•sparse data in the cerebrospinal fluid spaces in the cerebral hemispheres is interpolated.•the velocity field after interpolation has twice as many data points.•this velocity field may be useful for further modelling of cerebrospinal fluid for drug delivery. Large, uniformly spaced, complex and time varying datasets derived from high resolution medical image velocimetry can provide a wealth of information regarding small-scale transient physiological flow phenomena and pulsation of anatomical boundaries. However, there remains a need for interpolation techniques to effectively reconstruct a fully 4-dimensional functional relationship from this data. This paper presents a preliminary evaluation of a 4-dimensional local radial basis function (RBF) algorithm as a means of addressing this problem for laminar flows. A 4D interpolation algorithm is proposed based on a Local Hermitian Interpolation (LHI) using a combination of multi-quadric RBF with a partition of unity scheme. The domain is divided into uniform sub-systems with size restricted to immediately neighbouring points. The validity of the algorithm is first established on a known 4D analytical dataset and a CFD based laminar flow phantom. Application is then demonstrated through characterisation of a large 4D laminar flow dataset obtained from magnetic resonance imaging (MRI) measurements of cerebrospinal fluid velocities in the brain. Performance of the algorithm is compared to that of a quad-linear interpolation, demonstrating favourable improvement in accuracy. The technique is shown to be robust, computationally efficient and capable of refined interpolation in Euclidean space and time. Application to MR velocimetry data is shown to produce promising results for the 4D reconstruction of the transient flow field and movement of the fluid boundaries at spatial and temporal locations intermediate to the original data. This study has demonstrated feasibility of an accurate, stable and efficient 4-dimensional local RBF interpolation method for large, transient laminar flow velocimetry datasets. The proposed approach does not suffer from ill-conditioning or high computational cost due to domain decomposition into local stencils where the RBF is only ever applied to a limited number of points. This work offers a potential tool to assist medical diagnoses and drug delivery through better understanding of physiological flow fields such as cerebrospinal fluid. Further work will evaluate the technique on a wider range of flow fields and against CFD simulation. Large, uniformly spaced, complex and time varying datasets derived from high resolution medical image velocimetry can provide a wealth of information regarding small-scale transient physiological flow phenomena and pulsation of anatomical boundaries. However, there remains a need for interpolation techniques to effectively reconstruct a fully 4-dimensional functional relationship from this data. This paper presents a preliminary evaluation of a 4-dimensional local radial basis function (RBF) algorithm as a means of addressing this problem for laminar flows. A 4D interpolation algorithm is proposed based on a Local Hermitian Interpolation (LHI) using a combination of multi-quadric RBF with a partition of unity scheme. The domain is divided into uniform sub-systems with size restricted to immediately neighbouring points. The validity of the algorithm is first established on a known 4D analytical dataset and a CFD based laminar flow phantom. Application is then demonstrated through characterisation of a large 4D laminar flow dataset obtained from magnetic resonance imaging (MRI) measurements of cerebrospinal fluid velocities in the brain. Performance of the algorithm is compared to that of a quad-linear interpolation, demonstrating favourable improvement in accuracy. The technique is shown to be robust, computationally efficient and capable of refined interpolation in Euclidean space and time. Application to MR velocimetry data is shown to produce promising results for the 4D reconstruction of the transient flow field and movement of the fluid boundaries at spatial and temporal locations intermediate to the original data. This study has demonstrated feasibility of an accurate, stable and efficient 4-dimensional local RBF interpolation method for large, transient laminar flow velocimetry datasets. The proposed approach does not suffer from ill-conditioning or high computational cost due to domain decomposition into local stencils where the RBF is only ever applied to a limited number of points. This work offers a potential tool to assist medical diagnoses and drug delivery through better understanding of physiological flow fields such as cerebrospinal fluid. Further work will evaluate the technique on a wider range of flow fields and against CFD simulation. |
| ArticleNumber | 107235 |
| Author | Power, H. Giddings, D. Thewlis, J. Vloeberghs, M. Stevens, D. Gowland, P. |
| Author_xml | – sequence: 1 givenname: J. orcidid: 0000-0003-3788-0323 surname: Thewlis fullname: Thewlis, J. organization: c/o Rolls-Royce plc, Registered office: Kings Place, 3rd Floor 90 York Way, London N19FX, England – sequence: 2 givenname: D. surname: Stevens fullname: Stevens, D. organization: Department of Geography, Geography and Planning Building, Winter Street, Sheffield S37ND, England – sequence: 3 givenname: H. surname: Power fullname: Power, H. organization: Deceased, was formerly of University of Nottingham, Faculty of Engineering, United Kingdom – sequence: 4 givenname: D. surname: Giddings fullname: Giddings, D. email: donald.giddings@nottingham.ac.uk organization: Fluids and Thermal Engineering Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG72RD, United Kingdom – sequence: 5 givenname: P. surname: Gowland fullname: Gowland, P. organization: Sir Peter Mansfield Imaging Centre, University Park, Nottingham NG72RD, United Kingdom – sequence: 6 givenname: M. surname: Vloeberghs fullname: Vloeberghs, M. organization: Nottingham University Hospitals NHS Trust - Queen's Medical Centre Campus, Derby Road, Nottingham, Nottinghamshire NG72UH, United Kingdom |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36413829$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU1vFSEUhompsbfVP-DCzNKFc8vHADPGjWn8Spq4aVcuCBfOGK4MjMBo7r-X26kuuqjd8AZ4nxPycIZOQgyA0EuCtwQTcbHfmmnebSmmtB5IyvgTtCG9pK3kgp-gTS0NLRVYnqKznPcYY8q5eIZOmegI6-mwQd-61roJQnYxaN_4aOqatHU1djq73IxLMKXeNi4USHP0-nYXx8br9B3eNEtwY0yTPzR51gZsY3XRGUp-jp6O2md4cZfn6Objh-vLz-3V109fLt9ftabjpLR9DanFyGAYJcWGGyE1hZ3FBISw_SA4wDBoYpigFKQeDBDeWyKhG7tOsnPE1rlLmPXht_ZezclNOh0UweqoSu3VUZU6qlKrqkq9Xqk5xZ8L5KImlw14rwPEJSsq2dAx2lFRq6_uqstuAvtv-l-NtUDXgkkx5wTj4x7Q34OMK7dyS9LOP4y-W1GoWn85SCobB6HKdwlMUTa6h_G393DjXXD163_A4X_wH9xRwVw |
| CitedBy_id | crossref_primary_10_1016_j_cmpb_2024_108057 |
| Cites_doi | 10.1260/174830107780122685 10.1016/j.cmpb.2013.11.013 10.1109/IranianMVIP.2013.6780023 10.1090/S0025-5718-1990-0993931-7 10.1148/radiology.185.3.1438741 10.1080/10407790.2013.772004 10.1109/TBME.2005.844021 10.17230/ingciecia.9.17.2 10.1007/s40314-014-0132-0 10.1016/j.mcm.2005.01.002 10.1007/s10915-017-0431-x 10.1016/S0898-1221(00)00071-7 10.1080/10407790.2014.955779 10.1002/(SICI)1522-2586(200004)11:4<438::AID-JMRI12>3.0.CO;2-O 10.1007/s11242-008-9303-z 10.1006/jath.1997.3137 10.1002/nme.1043 10.1016/j.cmpb.2020.105729 10.1097/00004424-200107000-00003 10.1098/rsif.2020.0802 10.1115/1.2402181 10.1016/j.cmpb.2021.105997 10.1007/s10898-019-00853-3 10.1016/j.proeng.2015.11.390 10.1016/0898-1221(92)90047-L 10.1029/JB076i008p01905 10.1007/BF03177517 10.1016/j.enganabound.2004.05.006 10.1137/S1064827599361771 10.1109/TIP.2013.2286903 10.1002/mrm.24221 10.1016/j.ultrasmedbio.2018.10.031 10.1016/j.compbiomed.2019.05.013 10.1007/s40314-013-0104-9 10.1002/jmri.20679 10.1088/0957-0233/24/6/065304 10.1007/s00466-003-0501-9 10.1002/num.20577 10.1007/s00466-003-0416-5 10.1007/s10915-021-01432-z |
| ContentType | Journal Article |
| Copyright | 2022 Copyright © 2022. Published by Elsevier B.V. |
| Copyright_xml | – notice: 2022 – notice: Copyright © 2022. Published by Elsevier B.V. |
| DBID | AAYXX CITATION NPM 7X8 ADTOC UNPAY |
| DOI | 10.1016/j.cmpb.2022.107235 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1872-7565 |
| ExternalDocumentID | oai:nottingham-repository.worktribe.com:14591151 36413829 10_1016_j_cmpb_2022_107235 S0169260722006162 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .1- .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMK HMO HVGLF HZ~ IHE J1W KOM LG9 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SBC SDF SDG SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WUQ XPP Z5R ZGI ZY4 ~G- ~HD AACTN AAIAV ABLVK ABTAH ABYKQ AFKWA AJBFU AJOXV AMFUW LCYCR RIG AAYXX CITATION AFCTW NPM 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c451t-8c457a6f3e9f720c5c67a2ebd01e66d8965ee99a1c3622e7a9ce158d17e4f4473 |
| IEDL.DBID | UNPAY |
| ISSN | 0169-2607 1872-7565 |
| IngestDate | Sun Oct 26 04:18:35 EDT 2025 Mon Sep 29 05:43:25 EDT 2025 Wed Feb 19 02:26:23 EST 2025 Thu Oct 02 04:37:58 EDT 2025 Thu Apr 24 22:54:55 EDT 2025 Fri Feb 23 02:38:53 EST 2024 Tue Oct 14 19:36:37 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Radial basis function Image reconstruction Cerebrospinal fluid |
| Language | English |
| License | Copyright © 2022. Published by Elsevier B.V. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c451t-8c457a6f3e9f720c5c67a2ebd01e66d8965ee99a1c3622e7a9ce158d17e4f4473 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-3788-0323 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://nottingham-repository.worktribe.com/output/14591151 |
| PMID | 36413829 |
| PQID | 2739432426 |
| PQPubID | 23479 |
| ParticipantIDs | unpaywall_primary_10_1016_j_cmpb_2022_107235 proquest_miscellaneous_2739432426 pubmed_primary_36413829 crossref_primary_10_1016_j_cmpb_2022_107235 crossref_citationtrail_10_1016_j_cmpb_2022_107235 elsevier_sciencedirect_doi_10_1016_j_cmpb_2022_107235 elsevier_clinicalkey_doi_10_1016_j_cmpb_2022_107235 |
| PublicationCentury | 2000 |
| PublicationDate | January 2023 2023-01-00 2023-Jan 20230101 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | Ireland |
| PublicationPlace_xml | – name: Ireland |
| PublicationTitle | Computer methods and programs in biomedicine |
| PublicationTitleAlternate | Comput Methods Programs Biomed |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Cavoretto, Schneider, Zulian (bib0042) 2018; 74 Ingber, Chen, Tanski (bib0017) 2004; 60 Chan, Fan (bib0026) 2013; 63 Arzani, Dawson (bib0040) 2021; 18 DiGiamberardino et al., Ed. Taylor and Francis, 2012. Lee, Liu, Fan (bib0019) 2003; 30 Stevens, Power, Lees, Morvan (bib0022) 2009; 79 Muñoz-Gómez, González-Casanova, Rodriguez-Gómez (bib0015) 2006 Hardy (bib0007) 1971; 76 Bustamante Chaverra, Power, Florez Escobar, Hill Betancourt (bib0024) 2013; 9 2013, pp. 425–429, doi: 10.1109/IranianMVIP.2013.6780023. Kansa, Hon (bib0047) 2000; 39 Stevens, Power, Lees, Morvan (bib0023) 2011; 27 Divo, Kassab (bib0021) 2006; 129 Balédent, Henry-Feugeas, Idy-Peretti (bib0003) 2001; 36 Klose, Strik, Kiefer, Grodd (bib0002) 2000; 11 Chao, Kim (bib0036) 2019; 110 Wendland (bib0012) 1998; 93 Zhou, Papadopoulou, Hau Leow, Vincent, Tang (bib0034) 2019; 45 Linninger (bib0004) 2005; 52 Beatson, Light, Billings (bib0018) 2000; 22 Ringenberg, Deo, Devabhaktuni, Berenfeld, Snyder, Boyers, Gold (bib0031) 2014; 113 Wang, Huang, Zhang, Xi (bib0027) 2015; 67 Fathi, Perez-Raya, Baghaie, Berg, Janiga, Arzani, D'Souza (bib0038) 2020; 197 Cavoretto (bib0041) 2015; 34 Xiao, Du, Liu, Zhang (bib0037) 2021; 202 Ling, Kansa (bib0014) 2004; 40 Rosales (bib0048) 2005 Cavoretto (bib0043) 2021; 87 Enzmann, Pelc (bib0001) 1992; 185 Zhu, Xenos, Linninger, Penn (bib0005) 2006; 24 Thewlis (bib0028) 2013 Tolstykh, Shirobokov (bib0020) 2003; 33 Wu (bib0011) 1995; 4 Schaback (bib0010) 1995 U. Ponzini, R., Biancolini, M.E., Rizzo, G., Morbiducci, “Computational Modelling of Objects Represented in Images,” in Madych, Nelson (bib0009) 1990; 54 Monysekar, Sanyasiraju (bib0025) 2015; 127 Bozzini, Rossini (bib0008) 2002; 20 Casa, Krueger (bib0029) 2013; 24 Franke (bib0006) 1982; 38 Golbabai, Mohebianfar, Rabiei (bib0044) 2015; 34 M.T. Rostami, M. Ezoji, R. Ghaderi, and J. Ghasemi, “Brain MRI segmentation using the mixture of FCM and RBF neural network,” in Brown, Ling, Kansa, Levesley (bib0013) 2005; 29 Rosales, Power (bib0016) 2007; 1 Busch, Giese, Wissmann, Kozerke (bib0033) 2013; 69 Paiement, Mirmehdi, Xie, Hamilton (bib0032) 2014; 23 Kansa (bib0046) 1992; 24 Cavoretto, De Rossi, Mukhametzhanov, Sergeyev (bib0045) 2021; 79 Yatsushiro, Hirayama, Matsumae, Kuroda (bib0039) 2013; 2013 Hardy (10.1016/j.cmpb.2022.107235_bib0007) 1971; 76 Kansa (10.1016/j.cmpb.2022.107235_bib0047) 2000; 39 Wang (10.1016/j.cmpb.2022.107235_bib0027) 2015; 67 Golbabai (10.1016/j.cmpb.2022.107235_bib0044) 2015; 34 Wendland (10.1016/j.cmpb.2022.107235_bib0012) 1998; 93 Ingber (10.1016/j.cmpb.2022.107235_bib0017) 2004; 60 Beatson (10.1016/j.cmpb.2022.107235_bib0018) 2000; 22 Zhou (10.1016/j.cmpb.2022.107235_bib0034) 2019; 45 Fathi (10.1016/j.cmpb.2022.107235_bib0038) 2020; 197 Cavoretto (10.1016/j.cmpb.2022.107235_bib0045) 2021; 79 Monysekar (10.1016/j.cmpb.2022.107235_bib0025) 2015; 127 Muñoz-Gómez (10.1016/j.cmpb.2022.107235_bib0015) 2006 Franke (10.1016/j.cmpb.2022.107235_bib0006) 1982; 38 Rosales (10.1016/j.cmpb.2022.107235_bib0048) 2005 10.1016/j.cmpb.2022.107235_bib0030 Stevens (10.1016/j.cmpb.2022.107235_bib0022) 2009; 79 Ling (10.1016/j.cmpb.2022.107235_bib0014) 2004; 40 Tolstykh (10.1016/j.cmpb.2022.107235_bib0020) 2003; 33 Chan (10.1016/j.cmpb.2022.107235_bib0026) 2013; 63 Zhu (10.1016/j.cmpb.2022.107235_bib0005) 2006; 24 Klose (10.1016/j.cmpb.2022.107235_bib0002) 2000; 11 Divo (10.1016/j.cmpb.2022.107235_bib0021) 2006; 129 10.1016/j.cmpb.2022.107235_bib0035 Stevens (10.1016/j.cmpb.2022.107235_bib0023) 2011; 27 Bozzini (10.1016/j.cmpb.2022.107235_bib0008) 2002; 20 Lee (10.1016/j.cmpb.2022.107235_bib0019) 2003; 30 Casa (10.1016/j.cmpb.2022.107235_bib0029) 2013; 24 Madych (10.1016/j.cmpb.2022.107235_bib0009) 1990; 54 Enzmann (10.1016/j.cmpb.2022.107235_bib0001) 1992; 185 Rosales (10.1016/j.cmpb.2022.107235_bib0016) 2007; 1 Cavoretto (10.1016/j.cmpb.2022.107235_bib0042) 2018; 74 Wu (10.1016/j.cmpb.2022.107235_bib0011) 1995; 4 Balédent (10.1016/j.cmpb.2022.107235_bib0003) 2001; 36 Ringenberg (10.1016/j.cmpb.2022.107235_bib0031) 2014; 113 Brown (10.1016/j.cmpb.2022.107235_bib0013) 2005; 29 Linninger (10.1016/j.cmpb.2022.107235_bib0004) 2005; 52 Xiao (10.1016/j.cmpb.2022.107235_bib0037) 2021; 202 Yatsushiro (10.1016/j.cmpb.2022.107235_bib0039) 2013; 2013 Arzani (10.1016/j.cmpb.2022.107235_bib0040) 2021; 18 Schaback (10.1016/j.cmpb.2022.107235_bib0010) 1995 Kansa (10.1016/j.cmpb.2022.107235_bib0046) 1992; 24 Paiement (10.1016/j.cmpb.2022.107235_bib0032) 2014; 23 Cavoretto (10.1016/j.cmpb.2022.107235_bib0043) 2021; 87 Bustamante Chaverra (10.1016/j.cmpb.2022.107235_bib0024) 2013; 9 Busch (10.1016/j.cmpb.2022.107235_bib0033) 2013; 69 Chao (10.1016/j.cmpb.2022.107235_bib0036) 2019; 110 Cavoretto (10.1016/j.cmpb.2022.107235_bib0041) 2015; 34 Thewlis (10.1016/j.cmpb.2022.107235_bib0028) 2013 |
| References_xml | – volume: 34 start-page: 691 year: 2015 end-page: 704 ident: bib0044 article-title: On the new variable shape parameter strategies for radial basis functions publication-title: Comp. Appl. Math. – volume: 24 start-page: 756 year: 2006 end-page: 770 ident: bib0005 article-title: Dynamics of lateral ventricle and cerebrospinal fluid in normal and hydrocephalic brains publication-title: J. Magn. Reson. Imaging – volume: 22 start-page: 1717 year: 2000 end-page: 1740 ident: bib0018 article-title: Fast solution of the radial basis function interpolation equations: domain decomposition methods publication-title: SIAM J. Sci. Comput. – volume: 76 start-page: 1905 year: 1971 end-page: 1915 ident: bib0007 article-title: Multiquadric equations of topography and other irregular surfaces publication-title: J. Geophys. Res. – volume: 87 start-page: 41 year: 2021 ident: bib0043 article-title: Adaptive radial basis function partition of unity interpolation: a bivariate algorithm for unstructured data publication-title: J. Sci. Comput. – volume: 127 start-page: 418 year: 2015 end-page: 423 ident: bib0025 article-title: An upwind scheme to solve unsteady convection-diffusion equations using radial basis function based local hermitian interpolation method with PDE centres publication-title: Procedia Eng – volume: 24 year: 2013 ident: bib0029 article-title: Radial basis function interpolation of unstructured, three-dimensional, volumetric particle tracking velocimetry data publication-title: Meas. Sci. Technol. – volume: 40 start-page: 1413 year: 2004 end-page: 1427 ident: bib0014 article-title: Preconditioning for radial basis functions with domain decomposition methods publication-title: Math. Comput. Model. – volume: 79 start-page: 305 year: 2021 end-page: 327 ident: bib0045 article-title: On the search of the shape parameter in radial basis functions using univariate global optimization methods publication-title: J. Global Optimization – volume: 18 year: 2021 ident: bib0040 article-title: Data-driven cardiovascular flow modelling: examples and opportunities publication-title: J. R. Soc. Interface – reference: U. Ponzini, R., Biancolini, M.E., Rizzo, G., Morbiducci, “Computational Modelling of Objects Represented in Images,” in – volume: 45 start-page: 795 year: 2019 end-page: 810 ident: bib0034 article-title: 3-d flow Reconstruction using divergence-free interpolation of multiple 2-d contrast-enhanced ultrasound particle imaging velocimetry measurements publication-title: Ultrasound Med. Biol. – year: 2013 ident: bib0028 article-title: Numerical Modelling of Cerebrospinal Fluid Flow in the Human Ventricular System based on 4-Dimensional Radial Basis Function Interpolation of MRI Data – start-page: 105 year: 2006 end-page: 109 ident: bib0015 article-title: Domain decomposition by radial basis functions for time dependent partial differential equations publication-title: Proceedings of the 2nd IASTED International Conference on Advances in Computer Science and Technology – volume: 129 start-page: 124 year: 2006 end-page: 136 ident: bib0021 article-title: An efficient localized radial basis function meshless method for fluid flow and conjugate heat transfer publication-title: J. Heat Transfer – volume: 38 start-page: 181 year: 1982 end-page: 200 ident: bib0006 article-title: Scattered data interpolation: tests of some method publication-title: Math. Comput. – reference: , 2013, pp. 425–429, doi: 10.1109/IranianMVIP.2013.6780023. – volume: 4 start-page: 283 year: 1995 ident: bib0011 article-title: Compactly supported positive definite radial functions publication-title: Adv. Comput. Math. – volume: 24 start-page: 169 year: 1992 end-page: 190 ident: bib0046 article-title: A strictly conservative spatial approximation scheme for the governing engineering and physics equations over irregular regions and inhomogeneously scattered nodes publication-title: Comput. Math. Appl. – volume: 39 start-page: 123 year: 2000 end-page: 137 ident: bib0047 article-title: Circumventing the ill-conditioning problem with multiquadric radial basis functions: applications to elliptic partial differential equations publication-title: Comput. Math. Appl. – volume: 34 start-page: 65 year: 2015 end-page: 80 ident: bib0041 article-title: A numerical algorithm for multidimensional modeling of scattered data points publication-title: Comp. Appl. Math. – volume: 197 year: 2020 ident: bib0038 article-title: Super-resolution and denoising of 4D-Flow MRI using physics-Informed deep neural nets publication-title: Comput. Methods Programs Biomed. – volume: 63 start-page: 284 year: 2013 end-page: 303 ident: bib0026 article-title: The local radial basis function collocation method for solving two-dimensional inverse cauchy problems publication-title: Numer. Heat Transf. Part B Fundam. – volume: 33 start-page: 68 year: 2003 end-page: 79 ident: bib0020 article-title: On using radial basis functions in a ‘finite difference mode’ with applications to elasticity problems publication-title: Comput. Mech. – volume: 20 start-page: 111 year: 2002 end-page: 113 ident: bib0008 article-title: Testing methods for 3D scattered data interpolation publication-title: Monogr. la Acad. Ciencias Zaragoza – volume: 27 start-page: 1201 year: 2011 end-page: 1230 ident: bib0023 article-title: A local hermitian RBF meshless numerical method for the solution of multi-zone problems publication-title: Numer. Methods Partial Differ. Equ. – year: 1995 ident: bib0010 article-title: Multivariate interpolation and approximation by translates of a basis function publication-title: Approximation Theory VIII – volume: 74 start-page: 267 year: 2018 end-page: 289 ident: bib0042 article-title: OPENCL based parallel algorithm for RBF-PUM interpolation publication-title: J. Sci. Comput. – reference: M.T. Rostami, M. Ezoji, R. Ghaderi, and J. Ghasemi, “Brain MRI segmentation using the mixture of FCM and RBF neural network,” in – volume: 23 start-page: 110 year: 2014 end-page: 125 ident: bib0032 article-title: Integrated Segmentation and Interpolation of Sparse Data publication-title: IEEE Trans. Image Process. – year: 2005 ident: bib0048 article-title: Development of a numerical model describing the crystallisation process from an oversaturated solution of mineral gypsum in a porous media – volume: 202 year: 2021 ident: bib0037 article-title: SR-Net: a sequence offset fusion net and refine net for undersampled multislice MR image reconstruction publication-title: Comput Methods Programs Biomed – volume: 29 start-page: 343 year: 2005 end-page: 353 ident: bib0013 article-title: On approximate cardinal preconditioning methods for solving PDEs with radial basis functions publication-title: Eng. Anal. Bound. Elem. – volume: 69 start-page: 200 year: 2013 end-page: 210 ident: bib0033 article-title: Reconstruction of divergence-free velocity fields from cine 3D phase-contrast flow measurements publication-title: Magn. Reson. Med. – volume: 9 start-page: 21 year: 2013 end-page: 51 ident: bib0024 article-title: Two-dimensional meshless solution of the non-linear convection-diffusion-reaction equation by the local hermitian interpolation method publication-title: Ingeniería y Ciencia – volume: 30 start-page: 396 year: 2003 end-page: 409 ident: bib0019 article-title: Local multiquadric approximation for solving boundary value problems publication-title: Comput. Mech. – volume: 54 start-page: 211 year: 1990 end-page: 230 ident: bib0009 article-title: Multivariate interpolation and conditionally positive definite functions. II publication-title: Math. Comput. – volume: 93 start-page: 258 year: 1998 end-page: 272 ident: bib0012 article-title: Error estimates for interpolation by compactly supported radial basis functions of minimal degree publication-title: J. Approx. Theory – volume: 36 start-page: 368 year: 2001 end-page: 377 ident: bib0003 article-title: Cerebrospinal fluid dynamics and relation with blood flow: a magnetic resonance study with semiautomated cerebrospinal fluid segmentation publication-title: Invest. Radiol. – volume: 79 start-page: 149 year: 2009 end-page: 169 ident: bib0022 article-title: A meshless solution technique for the solution of 3D unsaturated zone problems, based on local Hermitian interpolation with radial basis functions publication-title: Transp. Porous Media – volume: 110 start-page: 66 year: 2019 end-page: 78 ident: bib0036 article-title: Slice interpolation of medical images using enhanced fuzzy radial basis function neural networks publication-title: Comput. Biol. Med. – volume: 67 start-page: 320 year: 2015 end-page: 337 ident: bib0027 article-title: A meshless local radial basis function method for two-dimensional incompressible Navier-Stokes equations publication-title: Numer. Heat Transf. Part B Fundam. – reference: , DiGiamberardino et al., Ed. Taylor and Francis, 2012. – volume: 113 start-page: 483 year: 2014 end-page: 493 ident: bib0031 article-title: Accurate reconstruction of 3D cardiac geometry from coarsely-sliced MRI publication-title: Comput. Methods Programs Biomed. – volume: 185 start-page: 653 year: 1992 end-page: 660 ident: bib0001 article-title: Brain motion: measurement with phase-contrast MR imaging publication-title: Radiology – volume: 52 start-page: 557 year: 2005 end-page: 565 ident: bib0004 article-title: Pulsatile cerebrospinal fluid dynamics in the human brain publication-title: IEEE Trans. Biomed. Eng. – volume: 1 start-page: 127 year: 2007 end-page: 159 ident: bib0016 article-title: Non-overlapping domain decomposition algorithm for the Hermite radial basis function Meshless collocation approach: applications to convection diffusion problems publication-title: J. Algorithm. Comput. Technol. – volume: 60 start-page: 2183 year: 2004 end-page: 2201 ident: bib0017 article-title: A mesh free approach using radial basis functions and parallel domain decomposition for solving three-dimensional diffusion equations publication-title: Int. J. Numer. Methods Eng. – volume: 11 start-page: 438 year: 2000 end-page: 444 ident: bib0002 article-title: Detection of a relation between respiration and CSF pulsation with an echoplanar technique publication-title: J. Magn. Reson. Imaging – volume: 2013 start-page: 6470 year: 2013 end-page: 6473 ident: bib0039 article-title: Visualization of pulsatile CSF motion separated by membrane-like structure based on four-dimensional phase-contrast (4D-PC) velocity mapping publication-title: Proceedings of the Conf. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Conf – volume: 1 start-page: 127 issue: 1 year: 2007 ident: 10.1016/j.cmpb.2022.107235_bib0016 article-title: Non-overlapping domain decomposition algorithm for the Hermite radial basis function Meshless collocation approach: applications to convection diffusion problems publication-title: J. Algorithm. Comput. Technol. doi: 10.1260/174830107780122685 – volume: 113 start-page: 483 year: 2014 ident: 10.1016/j.cmpb.2022.107235_bib0031 article-title: Accurate reconstruction of 3D cardiac geometry from coarsely-sliced MRI publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2013.11.013 – ident: 10.1016/j.cmpb.2022.107235_bib0035 doi: 10.1109/IranianMVIP.2013.6780023 – volume: 2013 start-page: 6470 year: 2013 ident: 10.1016/j.cmpb.2022.107235_bib0039 article-title: Visualization of pulsatile CSF motion separated by membrane-like structure based on four-dimensional phase-contrast (4D-PC) velocity mapping – volume: 54 start-page: 211 issue: 189 year: 1990 ident: 10.1016/j.cmpb.2022.107235_bib0009 article-title: Multivariate interpolation and conditionally positive definite functions. II publication-title: Math. Comput. doi: 10.1090/S0025-5718-1990-0993931-7 – volume: 185 start-page: 653 issue: 3 year: 1992 ident: 10.1016/j.cmpb.2022.107235_bib0001 article-title: Brain motion: measurement with phase-contrast MR imaging publication-title: Radiology doi: 10.1148/radiology.185.3.1438741 – volume: 63 start-page: 284 issue: 4 year: 2013 ident: 10.1016/j.cmpb.2022.107235_bib0026 article-title: The local radial basis function collocation method for solving two-dimensional inverse cauchy problems publication-title: Numer. Heat Transf. Part B Fundam. doi: 10.1080/10407790.2013.772004 – year: 1995 ident: 10.1016/j.cmpb.2022.107235_bib0010 article-title: Multivariate interpolation and approximation by translates of a basis function – volume: 52 start-page: 557 issue: 4 year: 2005 ident: 10.1016/j.cmpb.2022.107235_bib0004 article-title: Pulsatile cerebrospinal fluid dynamics in the human brain publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2005.844021 – volume: 9 start-page: 21 year: 2013 ident: 10.1016/j.cmpb.2022.107235_bib0024 article-title: Two-dimensional meshless solution of the non-linear convection-diffusion-reaction equation by the local hermitian interpolation method publication-title: Ingeniería y Ciencia doi: 10.17230/ingciecia.9.17.2 – volume: 34 start-page: 691 year: 2015 ident: 10.1016/j.cmpb.2022.107235_bib0044 article-title: On the new variable shape parameter strategies for radial basis functions publication-title: Comp. Appl. Math. doi: 10.1007/s40314-014-0132-0 – volume: 40 start-page: 1413 issue: 13 year: 2004 ident: 10.1016/j.cmpb.2022.107235_bib0014 article-title: Preconditioning for radial basis functions with domain decomposition methods publication-title: Math. Comput. Model. doi: 10.1016/j.mcm.2005.01.002 – volume: 74 start-page: 267 year: 2018 ident: 10.1016/j.cmpb.2022.107235_bib0042 article-title: OPENCL based parallel algorithm for RBF-PUM interpolation publication-title: J. Sci. Comput. doi: 10.1007/s10915-017-0431-x – volume: 39 start-page: 123 issue: 7–8 year: 2000 ident: 10.1016/j.cmpb.2022.107235_bib0047 article-title: Circumventing the ill-conditioning problem with multiquadric radial basis functions: applications to elliptic partial differential equations publication-title: Comput. Math. Appl. doi: 10.1016/S0898-1221(00)00071-7 – volume: 67 start-page: 320 issue: 4 year: 2015 ident: 10.1016/j.cmpb.2022.107235_bib0027 article-title: A meshless local radial basis function method for two-dimensional incompressible Navier-Stokes equations publication-title: Numer. Heat Transf. Part B Fundam. doi: 10.1080/10407790.2014.955779 – volume: 11 start-page: 438 issue: 4 year: 2000 ident: 10.1016/j.cmpb.2022.107235_bib0002 article-title: Detection of a relation between respiration and CSF pulsation with an echoplanar technique publication-title: J. Magn. Reson. Imaging doi: 10.1002/(SICI)1522-2586(200004)11:4<438::AID-JMRI12>3.0.CO;2-O – start-page: 105 year: 2006 ident: 10.1016/j.cmpb.2022.107235_bib0015 article-title: Domain decomposition by radial basis functions for time dependent partial differential equations – volume: 79 start-page: 149 issue: 2 year: 2009 ident: 10.1016/j.cmpb.2022.107235_bib0022 article-title: A meshless solution technique for the solution of 3D unsaturated zone problems, based on local Hermitian interpolation with radial basis functions publication-title: Transp. Porous Media doi: 10.1007/s11242-008-9303-z – ident: 10.1016/j.cmpb.2022.107235_bib0030 – volume: 93 start-page: 258 issue: 2 year: 1998 ident: 10.1016/j.cmpb.2022.107235_bib0012 article-title: Error estimates for interpolation by compactly supported radial basis functions of minimal degree publication-title: J. Approx. Theory doi: 10.1006/jath.1997.3137 – volume: 60 start-page: 2183 issue: 13 year: 2004 ident: 10.1016/j.cmpb.2022.107235_bib0017 article-title: A mesh free approach using radial basis functions and parallel domain decomposition for solving three-dimensional diffusion equations publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1043 – volume: 197 year: 2020 ident: 10.1016/j.cmpb.2022.107235_bib0038 article-title: Super-resolution and denoising of 4D-Flow MRI using physics-Informed deep neural nets publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2020.105729 – volume: 36 start-page: 368 issue: 7 year: 2001 ident: 10.1016/j.cmpb.2022.107235_bib0003 article-title: Cerebrospinal fluid dynamics and relation with blood flow: a magnetic resonance study with semiautomated cerebrospinal fluid segmentation publication-title: Invest. Radiol. doi: 10.1097/00004424-200107000-00003 – year: 2013 ident: 10.1016/j.cmpb.2022.107235_bib0028 – volume: 18 year: 2021 ident: 10.1016/j.cmpb.2022.107235_bib0040 article-title: Data-driven cardiovascular flow modelling: examples and opportunities publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2020.0802 – volume: 129 start-page: 124 issue: 2 year: 2006 ident: 10.1016/j.cmpb.2022.107235_bib0021 article-title: An efficient localized radial basis function meshless method for fluid flow and conjugate heat transfer publication-title: J. Heat Transfer doi: 10.1115/1.2402181 – volume: 202 year: 2021 ident: 10.1016/j.cmpb.2022.107235_bib0037 article-title: SR-Net: a sequence offset fusion net and refine net for undersampled multislice MR image reconstruction publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2021.105997 – volume: 79 start-page: 305 year: 2021 ident: 10.1016/j.cmpb.2022.107235_bib0045 article-title: On the search of the shape parameter in radial basis functions using univariate global optimization methods publication-title: J. Global Optimization doi: 10.1007/s10898-019-00853-3 – volume: 127 start-page: 418 year: 2015 ident: 10.1016/j.cmpb.2022.107235_bib0025 article-title: An upwind scheme to solve unsteady convection-diffusion equations using radial basis function based local hermitian interpolation method with PDE centres publication-title: Procedia Eng doi: 10.1016/j.proeng.2015.11.390 – volume: 24 start-page: 169 issue: 5–6 year: 1992 ident: 10.1016/j.cmpb.2022.107235_bib0046 article-title: A strictly conservative spatial approximation scheme for the governing engineering and physics equations over irregular regions and inhomogeneously scattered nodes publication-title: Comput. Math. Appl. doi: 10.1016/0898-1221(92)90047-L – year: 2005 ident: 10.1016/j.cmpb.2022.107235_bib0048 – volume: 76 start-page: 1905 issue: 8 year: 1971 ident: 10.1016/j.cmpb.2022.107235_bib0007 article-title: Multiquadric equations of topography and other irregular surfaces publication-title: J. Geophys. Res. doi: 10.1029/JB076i008p01905 – volume: 4 start-page: 283 issue: 1 year: 1995 ident: 10.1016/j.cmpb.2022.107235_bib0011 article-title: Compactly supported positive definite radial functions publication-title: Adv. Comput. Math. doi: 10.1007/BF03177517 – volume: 29 start-page: 343 issue: 4 year: 2005 ident: 10.1016/j.cmpb.2022.107235_bib0013 article-title: On approximate cardinal preconditioning methods for solving PDEs with radial basis functions publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2004.05.006 – volume: 22 start-page: 1717 issue: 5 year: 2000 ident: 10.1016/j.cmpb.2022.107235_bib0018 article-title: Fast solution of the radial basis function interpolation equations: domain decomposition methods publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827599361771 – volume: 23 start-page: 110 issue: 1 year: 2014 ident: 10.1016/j.cmpb.2022.107235_bib0032 article-title: Integrated Segmentation and Interpolation of Sparse Data publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2013.2286903 – volume: 69 start-page: 200 issue: 1 year: 2013 ident: 10.1016/j.cmpb.2022.107235_bib0033 article-title: Reconstruction of divergence-free velocity fields from cine 3D phase-contrast flow measurements publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24221 – volume: 45 start-page: 795 issue: 3 year: 2019 ident: 10.1016/j.cmpb.2022.107235_bib0034 article-title: 3-d flow Reconstruction using divergence-free interpolation of multiple 2-d contrast-enhanced ultrasound particle imaging velocimetry measurements publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2018.10.031 – volume: 110 start-page: 66 year: 2019 ident: 10.1016/j.cmpb.2022.107235_bib0036 article-title: Slice interpolation of medical images using enhanced fuzzy radial basis function neural networks publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.05.013 – volume: 34 start-page: 65 year: 2015 ident: 10.1016/j.cmpb.2022.107235_bib0041 article-title: A numerical algorithm for multidimensional modeling of scattered data points publication-title: Comp. Appl. Math. doi: 10.1007/s40314-013-0104-9 – volume: 24 start-page: 756 issue: 4 year: 2006 ident: 10.1016/j.cmpb.2022.107235_bib0005 article-title: Dynamics of lateral ventricle and cerebrospinal fluid in normal and hydrocephalic brains publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.20679 – volume: 38 start-page: 181 issue: 157 year: 1982 ident: 10.1016/j.cmpb.2022.107235_bib0006 article-title: Scattered data interpolation: tests of some method publication-title: Math. Comput. – volume: 20 start-page: 111 year: 2002 ident: 10.1016/j.cmpb.2022.107235_bib0008 article-title: Testing methods for 3D scattered data interpolation publication-title: Monogr. la Acad. Ciencias Zaragoza – volume: 24 year: 2013 ident: 10.1016/j.cmpb.2022.107235_bib0029 article-title: Radial basis function interpolation of unstructured, three-dimensional, volumetric particle tracking velocimetry data publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/24/6/065304 – volume: 33 start-page: 68 issue: 1 year: 2003 ident: 10.1016/j.cmpb.2022.107235_bib0020 article-title: On using radial basis functions in a ‘finite difference mode’ with applications to elasticity problems publication-title: Comput. Mech. doi: 10.1007/s00466-003-0501-9 – volume: 27 start-page: 1201 issue: 5 year: 2011 ident: 10.1016/j.cmpb.2022.107235_bib0023 article-title: A local hermitian RBF meshless numerical method for the solution of multi-zone problems publication-title: Numer. Methods Partial Differ. Equ. doi: 10.1002/num.20577 – volume: 30 start-page: 396 issue: 5 year: 2003 ident: 10.1016/j.cmpb.2022.107235_bib0019 article-title: Local multiquadric approximation for solving boundary value problems publication-title: Comput. Mech. doi: 10.1007/s00466-003-0416-5 – volume: 87 start-page: 41 year: 2021 ident: 10.1016/j.cmpb.2022.107235_bib0043 article-title: Adaptive radial basis function partition of unity interpolation: a bivariate algorithm for unstructured data publication-title: J. Sci. Comput. doi: 10.1007/s10915-021-01432-z |
| SSID | ssj0002556 |
| Score | 2.360094 |
| Snippet | •sparse data from MRI velocimetry can be interpolated using radial basis functions.•the interpolation is in time as well as 3D space.•sparse data in the... Large, uniformly spaced, complex and time varying datasets derived from high resolution medical image velocimetry can provide a wealth of information regarding... |
| SourceID | unpaywall proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 107235 |
| SubjectTerms | Cerebrospinal fluid Image reconstruction Radial basis function |
| SummonAdditionalLinks | – databaseName: ScienceDirect (Elsevier) dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6WHJr0UJo0bTYvVOitUdcP2bKOYUkIgfTSBgI5CK0esMXxLtldSi797Z2x7G1DSlp6MhYSyDOjeVgz3wB8kOilegyteOLygotgFVfGFRzVQm5dQKlJqMD56nN5cS0ub4qbAYz7WhhKq-x0f9TprbbuRkYdNUfz6XT0hXBE0BuXGUXFaauHhZDUxeDTj19pHgSxFfG9FafZXeFMzPGyd_MJxohZhgMya1u-_dE4PXU-X8Lmqpmbh--mrn8zSOev4VXnSbLTuNltGPhmB15cdXflb-BWcEfQ_RF2g7VGi90TFEHN0HZNF4xsGvGFTWOzrZgWx2aB1ZQffsJWDdVt3dUPDPUOkopRPunCLxe7cH1-9nV8wbtWCtyKIl3yCh_SlCH3KsgssYUtpcn8xCWpL0tXqbLwXimTWjRomZdGWZ8WlUulFwGpmr-FjWbW-D1gYeKCRcMekMMiVEmFIZb1wWDs6FAi_BDSnobadjjj1O6i1n1C2TdNdNdEdx3pPoSP6zXziLLx7Oy8Z43u60dR42k0As-uKtarHknYX9e977mv8ejRfYpp_Gy10Oj5KQI0zMohvItisd59XgpCd1RDOFnLyT982v5_bvIAtvAtj_-GDmFjeb_yR-gtLSfH7XH4CW8IEKE priority: 102 providerName: Elsevier |
| Title | 4-dimensional local radial basis function interpolation of large, uniformly spaced datasets |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0169260722006162 https://dx.doi.org/10.1016/j.cmpb.2022.107235 https://www.ncbi.nlm.nih.gov/pubmed/36413829 https://www.proquest.com/docview/2739432426 https://nottingham-repository.worktribe.com/output/14591151 |
| UnpaywallVersion | submittedVersion |
| Volume | 228 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: AKRWK dateStart: 19850501 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFD6sM6D44P0yokME39yMvSRtg0-DuIzKDj44sKJQ0lzY0U47bFtkffC3ezJpB1FZL0-F0gMN5yTnS_Kd7wA8SRGlGtxa0UDHnDKrBBVSc4rLQqy0xagJXIHz8TJZrNjrE35yAM-HWpiq3tF9T-WGukPzZu2ummeOo-QaQPnzpbprt137LGQcZ6ornx4nHIH4CMar5dv5e6_mLSgi9V1rlSxFDIm4pS-Z8ewutdkWuDuMInyRRrtmb79NS7_Czqtwpau28vyLLMsfUtHRdfg4DMIzUD7PuraYqa8_6Tv-5yhvwLUeopK5j6mbcGCqW3D5uL-Evw0fGNWuJ4DX8yC7bEjOnMZBSTAprhvikqVzOFn7Ll6eb0dqS0pHPD8kXeUKwjblOcEFTRlNHFG1MW1zB1ZHL9-9WNC-RwNVjIctzfCRysTGRtg0ChRXSSojU-ggNEmiM5FwY4SQocJMGZlUCmVCnukwNcwylsZ3YVTVlbkPxBbaKkQMFkOH2SzIcO-mjJW4KdUYamYC4eCiXPUC5q6PRpkPTLVPuXNr7tyae7dO4OneZuvlOy78Oh48nw-FqbiU5phdLrTie6setng48ke7x0Nw5Tin3UWNrEzdNTlCSuGUEqNkAvd81O3_Pk6Yk40UEzjch-FfDO3Bv33-EEbtWWceIeBqiylcmn0LpzCev3qzWE77afYd3B8wEg |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED9KC-v2MPa97FODva1abFmyrMdRWrKt6ctaKOxBKLIEGa4TmoTRl_3tvYvsrGOjG3syyBLId6f7sO5-B_BWo5caMLTiWV0oLqM33LhacVQLha8jSk1GBc7j43J0Kj-dqbMt2O9rYSitstP9SaevtXU3MuyoOZxPp8MvhCOC3rgWFBXnpId3pBKaIrD3P37meRDGVgL4Npymd5UzKcnLn88nGCQKgQNarHu-_dE6_e593oHdVTt3l99d01yzSIf34G7nSrIPabf3YSu0D-DWuLssfwhfJa8Juz_hbrC11WIXhEXQMDRe0wUjo0aMYdPUbSvlxbFZZA0liO-xVUuFW-fNJUPFg7RilFC6CMvFIzg9PDjZH_GulwL3UuVLXuFDuzIWwUQtMq98qZ0IkzrLQ1nWlSlVCMa43KNFE0E740OuqjrXQUYpdfEYtttZG54Ci5M6erTsEVksY5VVGGP5EB0GjzWKRBhA3tPQ-g5onPpdNLbPKPtmie6W6G4T3QfwbrNmnmA2bpxd9KyxfQEpqjyLVuDGVWqz6hcR--u6Nz33LZ49ulBxbZitFhZdP0OIhqIcwJMkFpvdF6UkeEczgL2NnPzDpz37z02-ht3RyfjIHn08_vwcbuObIv0oegHby4tVeImu03Lyan00rgAuYRPE |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zi9RAEG6WWVB88D5GVFrwze0xRx9pfFrEZRF28cGBFYXQ6QNHM8mwSZD111s1nQyish5PgZCCNFXd9XX3V18R8kwBSvWwtWKJywXjwWqmjRMMloXcugBRk2CB88mpPF7yN2fibI-8nGphmnZL9_1k1gwPzbsVXjUvkKOEDaDi-VI79Juhf5FyATMVy6f3pQAgPiP7y9O3h--jmrdmgNS3rVUKBRgScMtYMhPZXXa9qWB3mGXwQmXbZm-_TUu_ws5r5OrQbMzFV1PXP6Sioxvk4zSIyED5shj6amG__aTv-J-jvEmujxCVHsaYukX2fHObXDkZL-HvkA-cOewJEPU86DYb0nPUOKgpJMVVRzFZosPpKnbxinw72gZaI_H8gA4NFoSt6wsKC5r1jiJRtfN9d5csj16_e3XMxh4NzHKR9qyAhzIy5F4HlSVWWKlM5iuXpF5KV2gpvNfapBYyZeaV0danonCp8jxwrvJ7ZNa0jX9AaKhcsIAYAoQOD0VSwN7N-mBgU-og1PycpJOLSjsKmGMfjbqcmGqfS3RriW4to1vn5PnOZhPlOy79Op88X06FqbCUlpBdLrUSO6sRtkQ48ke7p1NwlTCn8aLGNL4duhIgpUalxEzOyf0Ydbu_zyVH2Ug9Jwe7MPyLoT38t88fkVl_PvjHALj66sk4sb4DUlAthg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=4-dimensional+local+radial+basis+function+interpolation+of+large%2C+uniformly+spaced+datasets&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Thewlis%2C+J.&rft.au=Stevens%2C+D.&rft.au=Power%2C+H.&rft.au=Giddings%2C+D.&rft.date=2023-01-01&rft.issn=0169-2607&rft.volume=228&rft.spage=107235&rft_id=info:doi/10.1016%2Fj.cmpb.2022.107235&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cmpb_2022_107235 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon |