4-dimensional local radial basis function interpolation of large, uniformly spaced datasets

•sparse data from MRI velocimetry can be interpolated using radial basis functions.•the interpolation is in time as well as 3D space.•sparse data in the cerebrospinal fluid spaces in the cerebral hemispheres is interpolated.•the velocity field after interpolation has twice as many data points.•this...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine Vol. 228; p. 107235
Main Authors Thewlis, J., Stevens, D., Power, H., Giddings, D., Gowland, P., Vloeberghs, M.
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.01.2023
Subjects
Online AccessGet full text
ISSN0169-2607
1872-7565
1872-7565
DOI10.1016/j.cmpb.2022.107235

Cover

Abstract •sparse data from MRI velocimetry can be interpolated using radial basis functions.•the interpolation is in time as well as 3D space.•sparse data in the cerebrospinal fluid spaces in the cerebral hemispheres is interpolated.•the velocity field after interpolation has twice as many data points.•this velocity field may be useful for further modelling of cerebrospinal fluid for drug delivery. Large, uniformly spaced, complex and time varying datasets derived from high resolution medical image velocimetry can provide a wealth of information regarding small-scale transient physiological flow phenomena and pulsation of anatomical boundaries. However, there remains a need for interpolation techniques to effectively reconstruct a fully 4-dimensional functional relationship from this data. This paper presents a preliminary evaluation of a 4-dimensional local radial basis function (RBF) algorithm as a means of addressing this problem for laminar flows. A 4D interpolation algorithm is proposed based on a Local Hermitian Interpolation (LHI) using a combination of multi-quadric RBF with a partition of unity scheme. The domain is divided into uniform sub-systems with size restricted to immediately neighbouring points. The validity of the algorithm is first established on a known 4D analytical dataset and a CFD based laminar flow phantom. Application is then demonstrated through characterisation of a large 4D laminar flow dataset obtained from magnetic resonance imaging (MRI) measurements of cerebrospinal fluid velocities in the brain. Performance of the algorithm is compared to that of a quad-linear interpolation, demonstrating favourable improvement in accuracy. The technique is shown to be robust, computationally efficient and capable of refined interpolation in Euclidean space and time. Application to MR velocimetry data is shown to produce promising results for the 4D reconstruction of the transient flow field and movement of the fluid boundaries at spatial and temporal locations intermediate to the original data. This study has demonstrated feasibility of an accurate, stable and efficient 4-dimensional local RBF interpolation method for large, transient laminar flow velocimetry datasets. The proposed approach does not suffer from ill-conditioning or high computational cost due to domain decomposition into local stencils where the RBF is only ever applied to a limited number of points. This work offers a potential tool to assist medical diagnoses and drug delivery through better understanding of physiological flow fields such as cerebrospinal fluid. Further work will evaluate the technique on a wider range of flow fields and against CFD simulation.
AbstractList Large, uniformly spaced, complex and time varying datasets derived from high resolution medical image velocimetry can provide a wealth of information regarding small-scale transient physiological flow phenomena and pulsation of anatomical boundaries. However, there remains a need for interpolation techniques to effectively reconstruct a fully 4-dimensional functional relationship from this data. This paper presents a preliminary evaluation of a 4-dimensional local radial basis function (RBF) algorithm as a means of addressing this problem for laminar flows.BACKGROUND AND OBJECTIVELarge, uniformly spaced, complex and time varying datasets derived from high resolution medical image velocimetry can provide a wealth of information regarding small-scale transient physiological flow phenomena and pulsation of anatomical boundaries. However, there remains a need for interpolation techniques to effectively reconstruct a fully 4-dimensional functional relationship from this data. This paper presents a preliminary evaluation of a 4-dimensional local radial basis function (RBF) algorithm as a means of addressing this problem for laminar flows.A 4D interpolation algorithm is proposed based on a Local Hermitian Interpolation (LHI) using a combination of multi-quadric RBF with a partition of unity scheme. The domain is divided into uniform sub-systems with size restricted to immediately neighbouring points. The validity of the algorithm is first established on a known 4D analytical dataset and a CFD based laminar flow phantom. Application is then demonstrated through characterisation of a large 4D laminar flow dataset obtained from magnetic resonance imaging (MRI) measurements of cerebrospinal fluid velocities in the brain.METHODSA 4D interpolation algorithm is proposed based on a Local Hermitian Interpolation (LHI) using a combination of multi-quadric RBF with a partition of unity scheme. The domain is divided into uniform sub-systems with size restricted to immediately neighbouring points. The validity of the algorithm is first established on a known 4D analytical dataset and a CFD based laminar flow phantom. Application is then demonstrated through characterisation of a large 4D laminar flow dataset obtained from magnetic resonance imaging (MRI) measurements of cerebrospinal fluid velocities in the brain.Performance of the algorithm is compared to that of a quad-linear interpolation, demonstrating favourable improvement in accuracy. The technique is shown to be robust, computationally efficient and capable of refined interpolation in Euclidean space and time. Application to MR velocimetry data is shown to produce promising results for the 4D reconstruction of the transient flow field and movement of the fluid boundaries at spatial and temporal locations intermediate to the original data.RESULTSPerformance of the algorithm is compared to that of a quad-linear interpolation, demonstrating favourable improvement in accuracy. The technique is shown to be robust, computationally efficient and capable of refined interpolation in Euclidean space and time. Application to MR velocimetry data is shown to produce promising results for the 4D reconstruction of the transient flow field and movement of the fluid boundaries at spatial and temporal locations intermediate to the original data.This study has demonstrated feasibility of an accurate, stable and efficient 4-dimensional local RBF interpolation method for large, transient laminar flow velocimetry datasets. The proposed approach does not suffer from ill-conditioning or high computational cost due to domain decomposition into local stencils where the RBF is only ever applied to a limited number of points. This work offers a potential tool to assist medical diagnoses and drug delivery through better understanding of physiological flow fields such as cerebrospinal fluid. Further work will evaluate the technique on a wider range of flow fields and against CFD simulation.CONCLUSIONThis study has demonstrated feasibility of an accurate, stable and efficient 4-dimensional local RBF interpolation method for large, transient laminar flow velocimetry datasets. The proposed approach does not suffer from ill-conditioning or high computational cost due to domain decomposition into local stencils where the RBF is only ever applied to a limited number of points. This work offers a potential tool to assist medical diagnoses and drug delivery through better understanding of physiological flow fields such as cerebrospinal fluid. Further work will evaluate the technique on a wider range of flow fields and against CFD simulation.
•sparse data from MRI velocimetry can be interpolated using radial basis functions.•the interpolation is in time as well as 3D space.•sparse data in the cerebrospinal fluid spaces in the cerebral hemispheres is interpolated.•the velocity field after interpolation has twice as many data points.•this velocity field may be useful for further modelling of cerebrospinal fluid for drug delivery. Large, uniformly spaced, complex and time varying datasets derived from high resolution medical image velocimetry can provide a wealth of information regarding small-scale transient physiological flow phenomena and pulsation of anatomical boundaries. However, there remains a need for interpolation techniques to effectively reconstruct a fully 4-dimensional functional relationship from this data. This paper presents a preliminary evaluation of a 4-dimensional local radial basis function (RBF) algorithm as a means of addressing this problem for laminar flows. A 4D interpolation algorithm is proposed based on a Local Hermitian Interpolation (LHI) using a combination of multi-quadric RBF with a partition of unity scheme. The domain is divided into uniform sub-systems with size restricted to immediately neighbouring points. The validity of the algorithm is first established on a known 4D analytical dataset and a CFD based laminar flow phantom. Application is then demonstrated through characterisation of a large 4D laminar flow dataset obtained from magnetic resonance imaging (MRI) measurements of cerebrospinal fluid velocities in the brain. Performance of the algorithm is compared to that of a quad-linear interpolation, demonstrating favourable improvement in accuracy. The technique is shown to be robust, computationally efficient and capable of refined interpolation in Euclidean space and time. Application to MR velocimetry data is shown to produce promising results for the 4D reconstruction of the transient flow field and movement of the fluid boundaries at spatial and temporal locations intermediate to the original data. This study has demonstrated feasibility of an accurate, stable and efficient 4-dimensional local RBF interpolation method for large, transient laminar flow velocimetry datasets. The proposed approach does not suffer from ill-conditioning or high computational cost due to domain decomposition into local stencils where the RBF is only ever applied to a limited number of points. This work offers a potential tool to assist medical diagnoses and drug delivery through better understanding of physiological flow fields such as cerebrospinal fluid. Further work will evaluate the technique on a wider range of flow fields and against CFD simulation.
Large, uniformly spaced, complex and time varying datasets derived from high resolution medical image velocimetry can provide a wealth of information regarding small-scale transient physiological flow phenomena and pulsation of anatomical boundaries. However, there remains a need for interpolation techniques to effectively reconstruct a fully 4-dimensional functional relationship from this data. This paper presents a preliminary evaluation of a 4-dimensional local radial basis function (RBF) algorithm as a means of addressing this problem for laminar flows. A 4D interpolation algorithm is proposed based on a Local Hermitian Interpolation (LHI) using a combination of multi-quadric RBF with a partition of unity scheme. The domain is divided into uniform sub-systems with size restricted to immediately neighbouring points. The validity of the algorithm is first established on a known 4D analytical dataset and a CFD based laminar flow phantom. Application is then demonstrated through characterisation of a large 4D laminar flow dataset obtained from magnetic resonance imaging (MRI) measurements of cerebrospinal fluid velocities in the brain. Performance of the algorithm is compared to that of a quad-linear interpolation, demonstrating favourable improvement in accuracy. The technique is shown to be robust, computationally efficient and capable of refined interpolation in Euclidean space and time. Application to MR velocimetry data is shown to produce promising results for the 4D reconstruction of the transient flow field and movement of the fluid boundaries at spatial and temporal locations intermediate to the original data. This study has demonstrated feasibility of an accurate, stable and efficient 4-dimensional local RBF interpolation method for large, transient laminar flow velocimetry datasets. The proposed approach does not suffer from ill-conditioning or high computational cost due to domain decomposition into local stencils where the RBF is only ever applied to a limited number of points. This work offers a potential tool to assist medical diagnoses and drug delivery through better understanding of physiological flow fields such as cerebrospinal fluid. Further work will evaluate the technique on a wider range of flow fields and against CFD simulation.
ArticleNumber 107235
Author Power, H.
Giddings, D.
Thewlis, J.
Vloeberghs, M.
Stevens, D.
Gowland, P.
Author_xml – sequence: 1
  givenname: J.
  orcidid: 0000-0003-3788-0323
  surname: Thewlis
  fullname: Thewlis, J.
  organization: c/o Rolls-Royce plc, Registered office: Kings Place, 3rd Floor 90 York Way, London N19FX, England
– sequence: 2
  givenname: D.
  surname: Stevens
  fullname: Stevens, D.
  organization: Department of Geography, Geography and Planning Building, Winter Street, Sheffield S37ND, England
– sequence: 3
  givenname: H.
  surname: Power
  fullname: Power, H.
  organization: Deceased, was formerly of University of Nottingham, Faculty of Engineering, United Kingdom
– sequence: 4
  givenname: D.
  surname: Giddings
  fullname: Giddings, D.
  email: donald.giddings@nottingham.ac.uk
  organization: Fluids and Thermal Engineering Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG72RD, United Kingdom
– sequence: 5
  givenname: P.
  surname: Gowland
  fullname: Gowland, P.
  organization: Sir Peter Mansfield Imaging Centre, University Park, Nottingham NG72RD, United Kingdom
– sequence: 6
  givenname: M.
  surname: Vloeberghs
  fullname: Vloeberghs, M.
  organization: Nottingham University Hospitals NHS Trust - Queen's Medical Centre Campus, Derby Road, Nottingham, Nottinghamshire NG72UH, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36413829$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1vFSEUhompsbfVP-DCzNKFc8vHADPGjWn8Spq4aVcuCBfOGK4MjMBo7r-X26kuuqjd8AZ4nxPycIZOQgyA0EuCtwQTcbHfmmnebSmmtB5IyvgTtCG9pK3kgp-gTS0NLRVYnqKznPcYY8q5eIZOmegI6-mwQd-61roJQnYxaN_4aOqatHU1djq73IxLMKXeNi4USHP0-nYXx8br9B3eNEtwY0yTPzR51gZsY3XRGUp-jp6O2md4cZfn6Objh-vLz-3V109fLt9ftabjpLR9DanFyGAYJcWGGyE1hZ3FBISw_SA4wDBoYpigFKQeDBDeWyKhG7tOsnPE1rlLmPXht_ZezclNOh0UweqoSu3VUZU6qlKrqkq9Xqk5xZ8L5KImlw14rwPEJSsq2dAx2lFRq6_uqstuAvtv-l-NtUDXgkkx5wTj4x7Q34OMK7dyS9LOP4y-W1GoWn85SCobB6HKdwlMUTa6h_G393DjXXD163_A4X_wH9xRwVw
CitedBy_id crossref_primary_10_1016_j_cmpb_2024_108057
Cites_doi 10.1260/174830107780122685
10.1016/j.cmpb.2013.11.013
10.1109/IranianMVIP.2013.6780023
10.1090/S0025-5718-1990-0993931-7
10.1148/radiology.185.3.1438741
10.1080/10407790.2013.772004
10.1109/TBME.2005.844021
10.17230/ingciecia.9.17.2
10.1007/s40314-014-0132-0
10.1016/j.mcm.2005.01.002
10.1007/s10915-017-0431-x
10.1016/S0898-1221(00)00071-7
10.1080/10407790.2014.955779
10.1002/(SICI)1522-2586(200004)11:4<438::AID-JMRI12>3.0.CO;2-O
10.1007/s11242-008-9303-z
10.1006/jath.1997.3137
10.1002/nme.1043
10.1016/j.cmpb.2020.105729
10.1097/00004424-200107000-00003
10.1098/rsif.2020.0802
10.1115/1.2402181
10.1016/j.cmpb.2021.105997
10.1007/s10898-019-00853-3
10.1016/j.proeng.2015.11.390
10.1016/0898-1221(92)90047-L
10.1029/JB076i008p01905
10.1007/BF03177517
10.1016/j.enganabound.2004.05.006
10.1137/S1064827599361771
10.1109/TIP.2013.2286903
10.1002/mrm.24221
10.1016/j.ultrasmedbio.2018.10.031
10.1016/j.compbiomed.2019.05.013
10.1007/s40314-013-0104-9
10.1002/jmri.20679
10.1088/0957-0233/24/6/065304
10.1007/s00466-003-0501-9
10.1002/num.20577
10.1007/s00466-003-0416-5
10.1007/s10915-021-01432-z
ContentType Journal Article
Copyright 2022
Copyright © 2022. Published by Elsevier B.V.
Copyright_xml – notice: 2022
– notice: Copyright © 2022. Published by Elsevier B.V.
DBID AAYXX
CITATION
NPM
7X8
ADTOC
UNPAY
DOI 10.1016/j.cmpb.2022.107235
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
ExternalDocumentID oai:nottingham-repository.worktribe.com:14591151
36413829
10_1016_j_cmpb_2022_107235
S0169260722006162
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
~HD
AACTN
AAIAV
ABLVK
ABTAH
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
RIG
AAYXX
CITATION
AFCTW
NPM
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c451t-8c457a6f3e9f720c5c67a2ebd01e66d8965ee99a1c3622e7a9ce158d17e4f4473
IEDL.DBID UNPAY
ISSN 0169-2607
1872-7565
IngestDate Sun Oct 26 04:18:35 EDT 2025
Mon Sep 29 05:43:25 EDT 2025
Wed Feb 19 02:26:23 EST 2025
Thu Oct 02 04:37:58 EDT 2025
Thu Apr 24 22:54:55 EDT 2025
Fri Feb 23 02:38:53 EST 2024
Tue Oct 14 19:36:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Radial basis function
Image reconstruction
Cerebrospinal fluid
Language English
License Copyright © 2022. Published by Elsevier B.V.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-8c457a6f3e9f720c5c67a2ebd01e66d8965ee99a1c3622e7a9ce158d17e4f4473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3788-0323
OpenAccessLink https://proxy.k.utb.cz/login?url=https://nottingham-repository.worktribe.com/output/14591151
PMID 36413829
PQID 2739432426
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1016_j_cmpb_2022_107235
proquest_miscellaneous_2739432426
pubmed_primary_36413829
crossref_primary_10_1016_j_cmpb_2022_107235
crossref_citationtrail_10_1016_j_cmpb_2022_107235
elsevier_sciencedirect_doi_10_1016_j_cmpb_2022_107235
elsevier_clinicalkey_doi_10_1016_j_cmpb_2022_107235
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
2023-Jan
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cavoretto, Schneider, Zulian (bib0042) 2018; 74
Ingber, Chen, Tanski (bib0017) 2004; 60
Chan, Fan (bib0026) 2013; 63
Arzani, Dawson (bib0040) 2021; 18
DiGiamberardino et al., Ed. Taylor and Francis, 2012.
Lee, Liu, Fan (bib0019) 2003; 30
Stevens, Power, Lees, Morvan (bib0022) 2009; 79
Muñoz-Gómez, González-Casanova, Rodriguez-Gómez (bib0015) 2006
Hardy (bib0007) 1971; 76
Bustamante Chaverra, Power, Florez Escobar, Hill Betancourt (bib0024) 2013; 9
2013, pp. 425–429, doi: 10.1109/IranianMVIP.2013.6780023.
Kansa, Hon (bib0047) 2000; 39
Stevens, Power, Lees, Morvan (bib0023) 2011; 27
Divo, Kassab (bib0021) 2006; 129
Balédent, Henry-Feugeas, Idy-Peretti (bib0003) 2001; 36
Klose, Strik, Kiefer, Grodd (bib0002) 2000; 11
Chao, Kim (bib0036) 2019; 110
Wendland (bib0012) 1998; 93
Zhou, Papadopoulou, Hau Leow, Vincent, Tang (bib0034) 2019; 45
Linninger (bib0004) 2005; 52
Beatson, Light, Billings (bib0018) 2000; 22
Ringenberg, Deo, Devabhaktuni, Berenfeld, Snyder, Boyers, Gold (bib0031) 2014; 113
Wang, Huang, Zhang, Xi (bib0027) 2015; 67
Fathi, Perez-Raya, Baghaie, Berg, Janiga, Arzani, D'Souza (bib0038) 2020; 197
Cavoretto (bib0041) 2015; 34
Xiao, Du, Liu, Zhang (bib0037) 2021; 202
Ling, Kansa (bib0014) 2004; 40
Rosales (bib0048) 2005
Cavoretto (bib0043) 2021; 87
Enzmann, Pelc (bib0001) 1992; 185
Zhu, Xenos, Linninger, Penn (bib0005) 2006; 24
Thewlis (bib0028) 2013
Tolstykh, Shirobokov (bib0020) 2003; 33
Wu (bib0011) 1995; 4
Schaback (bib0010) 1995
U. Ponzini, R., Biancolini, M.E., Rizzo, G., Morbiducci, “Computational Modelling of Objects Represented in Images,” in
Madych, Nelson (bib0009) 1990; 54
Monysekar, Sanyasiraju (bib0025) 2015; 127
Bozzini, Rossini (bib0008) 2002; 20
Casa, Krueger (bib0029) 2013; 24
Franke (bib0006) 1982; 38
Golbabai, Mohebianfar, Rabiei (bib0044) 2015; 34
M.T. Rostami, M. Ezoji, R. Ghaderi, and J. Ghasemi, “Brain MRI segmentation using the mixture of FCM and RBF neural network,” in
Brown, Ling, Kansa, Levesley (bib0013) 2005; 29
Rosales, Power (bib0016) 2007; 1
Busch, Giese, Wissmann, Kozerke (bib0033) 2013; 69
Paiement, Mirmehdi, Xie, Hamilton (bib0032) 2014; 23
Kansa (bib0046) 1992; 24
Cavoretto, De Rossi, Mukhametzhanov, Sergeyev (bib0045) 2021; 79
Yatsushiro, Hirayama, Matsumae, Kuroda (bib0039) 2013; 2013
Hardy (10.1016/j.cmpb.2022.107235_bib0007) 1971; 76
Kansa (10.1016/j.cmpb.2022.107235_bib0047) 2000; 39
Wang (10.1016/j.cmpb.2022.107235_bib0027) 2015; 67
Golbabai (10.1016/j.cmpb.2022.107235_bib0044) 2015; 34
Wendland (10.1016/j.cmpb.2022.107235_bib0012) 1998; 93
Ingber (10.1016/j.cmpb.2022.107235_bib0017) 2004; 60
Beatson (10.1016/j.cmpb.2022.107235_bib0018) 2000; 22
Zhou (10.1016/j.cmpb.2022.107235_bib0034) 2019; 45
Fathi (10.1016/j.cmpb.2022.107235_bib0038) 2020; 197
Cavoretto (10.1016/j.cmpb.2022.107235_bib0045) 2021; 79
Monysekar (10.1016/j.cmpb.2022.107235_bib0025) 2015; 127
Muñoz-Gómez (10.1016/j.cmpb.2022.107235_bib0015) 2006
Franke (10.1016/j.cmpb.2022.107235_bib0006) 1982; 38
Rosales (10.1016/j.cmpb.2022.107235_bib0048) 2005
10.1016/j.cmpb.2022.107235_bib0030
Stevens (10.1016/j.cmpb.2022.107235_bib0022) 2009; 79
Ling (10.1016/j.cmpb.2022.107235_bib0014) 2004; 40
Tolstykh (10.1016/j.cmpb.2022.107235_bib0020) 2003; 33
Chan (10.1016/j.cmpb.2022.107235_bib0026) 2013; 63
Zhu (10.1016/j.cmpb.2022.107235_bib0005) 2006; 24
Klose (10.1016/j.cmpb.2022.107235_bib0002) 2000; 11
Divo (10.1016/j.cmpb.2022.107235_bib0021) 2006; 129
10.1016/j.cmpb.2022.107235_bib0035
Stevens (10.1016/j.cmpb.2022.107235_bib0023) 2011; 27
Bozzini (10.1016/j.cmpb.2022.107235_bib0008) 2002; 20
Lee (10.1016/j.cmpb.2022.107235_bib0019) 2003; 30
Casa (10.1016/j.cmpb.2022.107235_bib0029) 2013; 24
Madych (10.1016/j.cmpb.2022.107235_bib0009) 1990; 54
Enzmann (10.1016/j.cmpb.2022.107235_bib0001) 1992; 185
Rosales (10.1016/j.cmpb.2022.107235_bib0016) 2007; 1
Cavoretto (10.1016/j.cmpb.2022.107235_bib0042) 2018; 74
Wu (10.1016/j.cmpb.2022.107235_bib0011) 1995; 4
Balédent (10.1016/j.cmpb.2022.107235_bib0003) 2001; 36
Ringenberg (10.1016/j.cmpb.2022.107235_bib0031) 2014; 113
Brown (10.1016/j.cmpb.2022.107235_bib0013) 2005; 29
Linninger (10.1016/j.cmpb.2022.107235_bib0004) 2005; 52
Xiao (10.1016/j.cmpb.2022.107235_bib0037) 2021; 202
Yatsushiro (10.1016/j.cmpb.2022.107235_bib0039) 2013; 2013
Arzani (10.1016/j.cmpb.2022.107235_bib0040) 2021; 18
Schaback (10.1016/j.cmpb.2022.107235_bib0010) 1995
Kansa (10.1016/j.cmpb.2022.107235_bib0046) 1992; 24
Paiement (10.1016/j.cmpb.2022.107235_bib0032) 2014; 23
Cavoretto (10.1016/j.cmpb.2022.107235_bib0043) 2021; 87
Bustamante Chaverra (10.1016/j.cmpb.2022.107235_bib0024) 2013; 9
Busch (10.1016/j.cmpb.2022.107235_bib0033) 2013; 69
Chao (10.1016/j.cmpb.2022.107235_bib0036) 2019; 110
Cavoretto (10.1016/j.cmpb.2022.107235_bib0041) 2015; 34
Thewlis (10.1016/j.cmpb.2022.107235_bib0028) 2013
References_xml – volume: 34
  start-page: 691
  year: 2015
  end-page: 704
  ident: bib0044
  article-title: On the new variable shape parameter strategies for radial basis functions
  publication-title: Comp. Appl. Math.
– volume: 24
  start-page: 756
  year: 2006
  end-page: 770
  ident: bib0005
  article-title: Dynamics of lateral ventricle and cerebrospinal fluid in normal and hydrocephalic brains
  publication-title: J. Magn. Reson. Imaging
– volume: 22
  start-page: 1717
  year: 2000
  end-page: 1740
  ident: bib0018
  article-title: Fast solution of the radial basis function interpolation equations: domain decomposition methods
  publication-title: SIAM J. Sci. Comput.
– volume: 76
  start-page: 1905
  year: 1971
  end-page: 1915
  ident: bib0007
  article-title: Multiquadric equations of topography and other irregular surfaces
  publication-title: J. Geophys. Res.
– volume: 87
  start-page: 41
  year: 2021
  ident: bib0043
  article-title: Adaptive radial basis function partition of unity interpolation: a bivariate algorithm for unstructured data
  publication-title: J. Sci. Comput.
– volume: 127
  start-page: 418
  year: 2015
  end-page: 423
  ident: bib0025
  article-title: An upwind scheme to solve unsteady convection-diffusion equations using radial basis function based local hermitian interpolation method with PDE centres
  publication-title: Procedia Eng
– volume: 24
  year: 2013
  ident: bib0029
  article-title: Radial basis function interpolation of unstructured, three-dimensional, volumetric particle tracking velocimetry data
  publication-title: Meas. Sci. Technol.
– volume: 40
  start-page: 1413
  year: 2004
  end-page: 1427
  ident: bib0014
  article-title: Preconditioning for radial basis functions with domain decomposition methods
  publication-title: Math. Comput. Model.
– volume: 79
  start-page: 305
  year: 2021
  end-page: 327
  ident: bib0045
  article-title: On the search of the shape parameter in radial basis functions using univariate global optimization methods
  publication-title: J. Global Optimization
– volume: 18
  year: 2021
  ident: bib0040
  article-title: Data-driven cardiovascular flow modelling: examples and opportunities
  publication-title: J. R. Soc. Interface
– reference: U. Ponzini, R., Biancolini, M.E., Rizzo, G., Morbiducci, “Computational Modelling of Objects Represented in Images,” in
– volume: 45
  start-page: 795
  year: 2019
  end-page: 810
  ident: bib0034
  article-title: 3-d flow Reconstruction using divergence-free interpolation of multiple 2-d contrast-enhanced ultrasound particle imaging velocimetry measurements
  publication-title: Ultrasound Med. Biol.
– year: 2013
  ident: bib0028
  article-title: Numerical Modelling of Cerebrospinal Fluid Flow in the Human Ventricular System based on 4-Dimensional Radial Basis Function Interpolation of MRI Data
– start-page: 105
  year: 2006
  end-page: 109
  ident: bib0015
  article-title: Domain decomposition by radial basis functions for time dependent partial differential equations
  publication-title: Proceedings of the 2nd IASTED International Conference on Advances in Computer Science and Technology
– volume: 129
  start-page: 124
  year: 2006
  end-page: 136
  ident: bib0021
  article-title: An efficient localized radial basis function meshless method for fluid flow and conjugate heat transfer
  publication-title: J. Heat Transfer
– volume: 38
  start-page: 181
  year: 1982
  end-page: 200
  ident: bib0006
  article-title: Scattered data interpolation: tests of some method
  publication-title: Math. Comput.
– reference: , 2013, pp. 425–429, doi: 10.1109/IranianMVIP.2013.6780023.
– volume: 4
  start-page: 283
  year: 1995
  ident: bib0011
  article-title: Compactly supported positive definite radial functions
  publication-title: Adv. Comput. Math.
– volume: 24
  start-page: 169
  year: 1992
  end-page: 190
  ident: bib0046
  article-title: A strictly conservative spatial approximation scheme for the governing engineering and physics equations over irregular regions and inhomogeneously scattered nodes
  publication-title: Comput. Math. Appl.
– volume: 39
  start-page: 123
  year: 2000
  end-page: 137
  ident: bib0047
  article-title: Circumventing the ill-conditioning problem with multiquadric radial basis functions: applications to elliptic partial differential equations
  publication-title: Comput. Math. Appl.
– volume: 34
  start-page: 65
  year: 2015
  end-page: 80
  ident: bib0041
  article-title: A numerical algorithm for multidimensional modeling of scattered data points
  publication-title: Comp. Appl. Math.
– volume: 197
  year: 2020
  ident: bib0038
  article-title: Super-resolution and denoising of 4D-Flow MRI using physics-Informed deep neural nets
  publication-title: Comput. Methods Programs Biomed.
– volume: 63
  start-page: 284
  year: 2013
  end-page: 303
  ident: bib0026
  article-title: The local radial basis function collocation method for solving two-dimensional inverse cauchy problems
  publication-title: Numer. Heat Transf. Part B Fundam.
– volume: 33
  start-page: 68
  year: 2003
  end-page: 79
  ident: bib0020
  article-title: On using radial basis functions in a ‘finite difference mode’ with applications to elasticity problems
  publication-title: Comput. Mech.
– volume: 20
  start-page: 111
  year: 2002
  end-page: 113
  ident: bib0008
  article-title: Testing methods for 3D scattered data interpolation
  publication-title: Monogr. la Acad. Ciencias Zaragoza
– volume: 27
  start-page: 1201
  year: 2011
  end-page: 1230
  ident: bib0023
  article-title: A local hermitian RBF meshless numerical method for the solution of multi-zone problems
  publication-title: Numer. Methods Partial Differ. Equ.
– year: 1995
  ident: bib0010
  article-title: Multivariate interpolation and approximation by translates of a basis function
  publication-title: Approximation Theory VIII
– volume: 74
  start-page: 267
  year: 2018
  end-page: 289
  ident: bib0042
  article-title: OPENCL based parallel algorithm for RBF-PUM interpolation
  publication-title: J. Sci. Comput.
– reference: M.T. Rostami, M. Ezoji, R. Ghaderi, and J. Ghasemi, “Brain MRI segmentation using the mixture of FCM and RBF neural network,” in
– volume: 23
  start-page: 110
  year: 2014
  end-page: 125
  ident: bib0032
  article-title: Integrated Segmentation and Interpolation of Sparse Data
  publication-title: IEEE Trans. Image Process.
– year: 2005
  ident: bib0048
  article-title: Development of a numerical model describing the crystallisation process from an oversaturated solution of mineral gypsum in a porous media
– volume: 202
  year: 2021
  ident: bib0037
  article-title: SR-Net: a sequence offset fusion net and refine net for undersampled multislice MR image reconstruction
  publication-title: Comput Methods Programs Biomed
– volume: 29
  start-page: 343
  year: 2005
  end-page: 353
  ident: bib0013
  article-title: On approximate cardinal preconditioning methods for solving PDEs with radial basis functions
  publication-title: Eng. Anal. Bound. Elem.
– volume: 69
  start-page: 200
  year: 2013
  end-page: 210
  ident: bib0033
  article-title: Reconstruction of divergence-free velocity fields from cine 3D phase-contrast flow measurements
  publication-title: Magn. Reson. Med.
– volume: 9
  start-page: 21
  year: 2013
  end-page: 51
  ident: bib0024
  article-title: Two-dimensional meshless solution of the non-linear convection-diffusion-reaction equation by the local hermitian interpolation method
  publication-title: Ingeniería y Ciencia
– volume: 30
  start-page: 396
  year: 2003
  end-page: 409
  ident: bib0019
  article-title: Local multiquadric approximation for solving boundary value problems
  publication-title: Comput. Mech.
– volume: 54
  start-page: 211
  year: 1990
  end-page: 230
  ident: bib0009
  article-title: Multivariate interpolation and conditionally positive definite functions. II
  publication-title: Math. Comput.
– volume: 93
  start-page: 258
  year: 1998
  end-page: 272
  ident: bib0012
  article-title: Error estimates for interpolation by compactly supported radial basis functions of minimal degree
  publication-title: J. Approx. Theory
– volume: 36
  start-page: 368
  year: 2001
  end-page: 377
  ident: bib0003
  article-title: Cerebrospinal fluid dynamics and relation with blood flow: a magnetic resonance study with semiautomated cerebrospinal fluid segmentation
  publication-title: Invest. Radiol.
– volume: 79
  start-page: 149
  year: 2009
  end-page: 169
  ident: bib0022
  article-title: A meshless solution technique for the solution of 3D unsaturated zone problems, based on local Hermitian interpolation with radial basis functions
  publication-title: Transp. Porous Media
– volume: 110
  start-page: 66
  year: 2019
  end-page: 78
  ident: bib0036
  article-title: Slice interpolation of medical images using enhanced fuzzy radial basis function neural networks
  publication-title: Comput. Biol. Med.
– volume: 67
  start-page: 320
  year: 2015
  end-page: 337
  ident: bib0027
  article-title: A meshless local radial basis function method for two-dimensional incompressible Navier-Stokes equations
  publication-title: Numer. Heat Transf. Part B Fundam.
– reference: , DiGiamberardino et al., Ed. Taylor and Francis, 2012.
– volume: 113
  start-page: 483
  year: 2014
  end-page: 493
  ident: bib0031
  article-title: Accurate reconstruction of 3D cardiac geometry from coarsely-sliced MRI
  publication-title: Comput. Methods Programs Biomed.
– volume: 185
  start-page: 653
  year: 1992
  end-page: 660
  ident: bib0001
  article-title: Brain motion: measurement with phase-contrast MR imaging
  publication-title: Radiology
– volume: 52
  start-page: 557
  year: 2005
  end-page: 565
  ident: bib0004
  article-title: Pulsatile cerebrospinal fluid dynamics in the human brain
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 1
  start-page: 127
  year: 2007
  end-page: 159
  ident: bib0016
  article-title: Non-overlapping domain decomposition algorithm for the Hermite radial basis function Meshless collocation approach: applications to convection diffusion problems
  publication-title: J. Algorithm. Comput. Technol.
– volume: 60
  start-page: 2183
  year: 2004
  end-page: 2201
  ident: bib0017
  article-title: A mesh free approach using radial basis functions and parallel domain decomposition for solving three-dimensional diffusion equations
  publication-title: Int. J. Numer. Methods Eng.
– volume: 11
  start-page: 438
  year: 2000
  end-page: 444
  ident: bib0002
  article-title: Detection of a relation between respiration and CSF pulsation with an echoplanar technique
  publication-title: J. Magn. Reson. Imaging
– volume: 2013
  start-page: 6470
  year: 2013
  end-page: 6473
  ident: bib0039
  article-title: Visualization of pulsatile CSF motion separated by membrane-like structure based on four-dimensional phase-contrast (4D-PC) velocity mapping
  publication-title: Proceedings of the Conf. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Conf
– volume: 1
  start-page: 127
  issue: 1
  year: 2007
  ident: 10.1016/j.cmpb.2022.107235_bib0016
  article-title: Non-overlapping domain decomposition algorithm for the Hermite radial basis function Meshless collocation approach: applications to convection diffusion problems
  publication-title: J. Algorithm. Comput. Technol.
  doi: 10.1260/174830107780122685
– volume: 113
  start-page: 483
  year: 2014
  ident: 10.1016/j.cmpb.2022.107235_bib0031
  article-title: Accurate reconstruction of 3D cardiac geometry from coarsely-sliced MRI
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2013.11.013
– ident: 10.1016/j.cmpb.2022.107235_bib0035
  doi: 10.1109/IranianMVIP.2013.6780023
– volume: 2013
  start-page: 6470
  year: 2013
  ident: 10.1016/j.cmpb.2022.107235_bib0039
  article-title: Visualization of pulsatile CSF motion separated by membrane-like structure based on four-dimensional phase-contrast (4D-PC) velocity mapping
– volume: 54
  start-page: 211
  issue: 189
  year: 1990
  ident: 10.1016/j.cmpb.2022.107235_bib0009
  article-title: Multivariate interpolation and conditionally positive definite functions. II
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1990-0993931-7
– volume: 185
  start-page: 653
  issue: 3
  year: 1992
  ident: 10.1016/j.cmpb.2022.107235_bib0001
  article-title: Brain motion: measurement with phase-contrast MR imaging
  publication-title: Radiology
  doi: 10.1148/radiology.185.3.1438741
– volume: 63
  start-page: 284
  issue: 4
  year: 2013
  ident: 10.1016/j.cmpb.2022.107235_bib0026
  article-title: The local radial basis function collocation method for solving two-dimensional inverse cauchy problems
  publication-title: Numer. Heat Transf. Part B Fundam.
  doi: 10.1080/10407790.2013.772004
– year: 1995
  ident: 10.1016/j.cmpb.2022.107235_bib0010
  article-title: Multivariate interpolation and approximation by translates of a basis function
– volume: 52
  start-page: 557
  issue: 4
  year: 2005
  ident: 10.1016/j.cmpb.2022.107235_bib0004
  article-title: Pulsatile cerebrospinal fluid dynamics in the human brain
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2005.844021
– volume: 9
  start-page: 21
  year: 2013
  ident: 10.1016/j.cmpb.2022.107235_bib0024
  article-title: Two-dimensional meshless solution of the non-linear convection-diffusion-reaction equation by the local hermitian interpolation method
  publication-title: Ingeniería y Ciencia
  doi: 10.17230/ingciecia.9.17.2
– volume: 34
  start-page: 691
  year: 2015
  ident: 10.1016/j.cmpb.2022.107235_bib0044
  article-title: On the new variable shape parameter strategies for radial basis functions
  publication-title: Comp. Appl. Math.
  doi: 10.1007/s40314-014-0132-0
– volume: 40
  start-page: 1413
  issue: 13
  year: 2004
  ident: 10.1016/j.cmpb.2022.107235_bib0014
  article-title: Preconditioning for radial basis functions with domain decomposition methods
  publication-title: Math. Comput. Model.
  doi: 10.1016/j.mcm.2005.01.002
– volume: 74
  start-page: 267
  year: 2018
  ident: 10.1016/j.cmpb.2022.107235_bib0042
  article-title: OPENCL based parallel algorithm for RBF-PUM interpolation
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-017-0431-x
– volume: 39
  start-page: 123
  issue: 7–8
  year: 2000
  ident: 10.1016/j.cmpb.2022.107235_bib0047
  article-title: Circumventing the ill-conditioning problem with multiquadric radial basis functions: applications to elliptic partial differential equations
  publication-title: Comput. Math. Appl.
  doi: 10.1016/S0898-1221(00)00071-7
– volume: 67
  start-page: 320
  issue: 4
  year: 2015
  ident: 10.1016/j.cmpb.2022.107235_bib0027
  article-title: A meshless local radial basis function method for two-dimensional incompressible Navier-Stokes equations
  publication-title: Numer. Heat Transf. Part B Fundam.
  doi: 10.1080/10407790.2014.955779
– volume: 11
  start-page: 438
  issue: 4
  year: 2000
  ident: 10.1016/j.cmpb.2022.107235_bib0002
  article-title: Detection of a relation between respiration and CSF pulsation with an echoplanar technique
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/(SICI)1522-2586(200004)11:4<438::AID-JMRI12>3.0.CO;2-O
– start-page: 105
  year: 2006
  ident: 10.1016/j.cmpb.2022.107235_bib0015
  article-title: Domain decomposition by radial basis functions for time dependent partial differential equations
– volume: 79
  start-page: 149
  issue: 2
  year: 2009
  ident: 10.1016/j.cmpb.2022.107235_bib0022
  article-title: A meshless solution technique for the solution of 3D unsaturated zone problems, based on local Hermitian interpolation with radial basis functions
  publication-title: Transp. Porous Media
  doi: 10.1007/s11242-008-9303-z
– ident: 10.1016/j.cmpb.2022.107235_bib0030
– volume: 93
  start-page: 258
  issue: 2
  year: 1998
  ident: 10.1016/j.cmpb.2022.107235_bib0012
  article-title: Error estimates for interpolation by compactly supported radial basis functions of minimal degree
  publication-title: J. Approx. Theory
  doi: 10.1006/jath.1997.3137
– volume: 60
  start-page: 2183
  issue: 13
  year: 2004
  ident: 10.1016/j.cmpb.2022.107235_bib0017
  article-title: A mesh free approach using radial basis functions and parallel domain decomposition for solving three-dimensional diffusion equations
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1043
– volume: 197
  year: 2020
  ident: 10.1016/j.cmpb.2022.107235_bib0038
  article-title: Super-resolution and denoising of 4D-Flow MRI using physics-Informed deep neural nets
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105729
– volume: 36
  start-page: 368
  issue: 7
  year: 2001
  ident: 10.1016/j.cmpb.2022.107235_bib0003
  article-title: Cerebrospinal fluid dynamics and relation with blood flow: a magnetic resonance study with semiautomated cerebrospinal fluid segmentation
  publication-title: Invest. Radiol.
  doi: 10.1097/00004424-200107000-00003
– year: 2013
  ident: 10.1016/j.cmpb.2022.107235_bib0028
– volume: 18
  year: 2021
  ident: 10.1016/j.cmpb.2022.107235_bib0040
  article-title: Data-driven cardiovascular flow modelling: examples and opportunities
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2020.0802
– volume: 129
  start-page: 124
  issue: 2
  year: 2006
  ident: 10.1016/j.cmpb.2022.107235_bib0021
  article-title: An efficient localized radial basis function meshless method for fluid flow and conjugate heat transfer
  publication-title: J. Heat Transfer
  doi: 10.1115/1.2402181
– volume: 202
  year: 2021
  ident: 10.1016/j.cmpb.2022.107235_bib0037
  article-title: SR-Net: a sequence offset fusion net and refine net for undersampled multislice MR image reconstruction
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2021.105997
– volume: 79
  start-page: 305
  year: 2021
  ident: 10.1016/j.cmpb.2022.107235_bib0045
  article-title: On the search of the shape parameter in radial basis functions using univariate global optimization methods
  publication-title: J. Global Optimization
  doi: 10.1007/s10898-019-00853-3
– volume: 127
  start-page: 418
  year: 2015
  ident: 10.1016/j.cmpb.2022.107235_bib0025
  article-title: An upwind scheme to solve unsteady convection-diffusion equations using radial basis function based local hermitian interpolation method with PDE centres
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2015.11.390
– volume: 24
  start-page: 169
  issue: 5–6
  year: 1992
  ident: 10.1016/j.cmpb.2022.107235_bib0046
  article-title: A strictly conservative spatial approximation scheme for the governing engineering and physics equations over irregular regions and inhomogeneously scattered nodes
  publication-title: Comput. Math. Appl.
  doi: 10.1016/0898-1221(92)90047-L
– year: 2005
  ident: 10.1016/j.cmpb.2022.107235_bib0048
– volume: 76
  start-page: 1905
  issue: 8
  year: 1971
  ident: 10.1016/j.cmpb.2022.107235_bib0007
  article-title: Multiquadric equations of topography and other irregular surfaces
  publication-title: J. Geophys. Res.
  doi: 10.1029/JB076i008p01905
– volume: 4
  start-page: 283
  issue: 1
  year: 1995
  ident: 10.1016/j.cmpb.2022.107235_bib0011
  article-title: Compactly supported positive definite radial functions
  publication-title: Adv. Comput. Math.
  doi: 10.1007/BF03177517
– volume: 29
  start-page: 343
  issue: 4
  year: 2005
  ident: 10.1016/j.cmpb.2022.107235_bib0013
  article-title: On approximate cardinal preconditioning methods for solving PDEs with radial basis functions
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2004.05.006
– volume: 22
  start-page: 1717
  issue: 5
  year: 2000
  ident: 10.1016/j.cmpb.2022.107235_bib0018
  article-title: Fast solution of the radial basis function interpolation equations: domain decomposition methods
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827599361771
– volume: 23
  start-page: 110
  issue: 1
  year: 2014
  ident: 10.1016/j.cmpb.2022.107235_bib0032
  article-title: Integrated Segmentation and Interpolation of Sparse Data
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2013.2286903
– volume: 69
  start-page: 200
  issue: 1
  year: 2013
  ident: 10.1016/j.cmpb.2022.107235_bib0033
  article-title: Reconstruction of divergence-free velocity fields from cine 3D phase-contrast flow measurements
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24221
– volume: 45
  start-page: 795
  issue: 3
  year: 2019
  ident: 10.1016/j.cmpb.2022.107235_bib0034
  article-title: 3-d flow Reconstruction using divergence-free interpolation of multiple 2-d contrast-enhanced ultrasound particle imaging velocimetry measurements
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2018.10.031
– volume: 110
  start-page: 66
  year: 2019
  ident: 10.1016/j.cmpb.2022.107235_bib0036
  article-title: Slice interpolation of medical images using enhanced fuzzy radial basis function neural networks
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.05.013
– volume: 34
  start-page: 65
  year: 2015
  ident: 10.1016/j.cmpb.2022.107235_bib0041
  article-title: A numerical algorithm for multidimensional modeling of scattered data points
  publication-title: Comp. Appl. Math.
  doi: 10.1007/s40314-013-0104-9
– volume: 24
  start-page: 756
  issue: 4
  year: 2006
  ident: 10.1016/j.cmpb.2022.107235_bib0005
  article-title: Dynamics of lateral ventricle and cerebrospinal fluid in normal and hydrocephalic brains
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.20679
– volume: 38
  start-page: 181
  issue: 157
  year: 1982
  ident: 10.1016/j.cmpb.2022.107235_bib0006
  article-title: Scattered data interpolation: tests of some method
  publication-title: Math. Comput.
– volume: 20
  start-page: 111
  year: 2002
  ident: 10.1016/j.cmpb.2022.107235_bib0008
  article-title: Testing methods for 3D scattered data interpolation
  publication-title: Monogr. la Acad. Ciencias Zaragoza
– volume: 24
  year: 2013
  ident: 10.1016/j.cmpb.2022.107235_bib0029
  article-title: Radial basis function interpolation of unstructured, three-dimensional, volumetric particle tracking velocimetry data
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/24/6/065304
– volume: 33
  start-page: 68
  issue: 1
  year: 2003
  ident: 10.1016/j.cmpb.2022.107235_bib0020
  article-title: On using radial basis functions in a ‘finite difference mode’ with applications to elasticity problems
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-003-0501-9
– volume: 27
  start-page: 1201
  issue: 5
  year: 2011
  ident: 10.1016/j.cmpb.2022.107235_bib0023
  article-title: A local hermitian RBF meshless numerical method for the solution of multi-zone problems
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.20577
– volume: 30
  start-page: 396
  issue: 5
  year: 2003
  ident: 10.1016/j.cmpb.2022.107235_bib0019
  article-title: Local multiquadric approximation for solving boundary value problems
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-003-0416-5
– volume: 87
  start-page: 41
  year: 2021
  ident: 10.1016/j.cmpb.2022.107235_bib0043
  article-title: Adaptive radial basis function partition of unity interpolation: a bivariate algorithm for unstructured data
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-021-01432-z
SSID ssj0002556
Score 2.360094
Snippet •sparse data from MRI velocimetry can be interpolated using radial basis functions.•the interpolation is in time as well as 3D space.•sparse data in the...
Large, uniformly spaced, complex and time varying datasets derived from high resolution medical image velocimetry can provide a wealth of information regarding...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 107235
SubjectTerms Cerebrospinal fluid
Image reconstruction
Radial basis function
SummonAdditionalLinks – databaseName: ScienceDirect (Elsevier)
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6WHJr0UJo0bTYvVOitUdcP2bKOYUkIgfTSBgI5CK0esMXxLtldSi797Z2x7G1DSlp6MhYSyDOjeVgz3wB8kOilegyteOLygotgFVfGFRzVQm5dQKlJqMD56nN5cS0ub4qbAYz7WhhKq-x0f9TprbbuRkYdNUfz6XT0hXBE0BuXGUXFaauHhZDUxeDTj19pHgSxFfG9FafZXeFMzPGyd_MJxohZhgMya1u-_dE4PXU-X8Lmqpmbh--mrn8zSOev4VXnSbLTuNltGPhmB15cdXflb-BWcEfQ_RF2g7VGi90TFEHN0HZNF4xsGvGFTWOzrZgWx2aB1ZQffsJWDdVt3dUPDPUOkopRPunCLxe7cH1-9nV8wbtWCtyKIl3yCh_SlCH3KsgssYUtpcn8xCWpL0tXqbLwXimTWjRomZdGWZ8WlUulFwGpmr-FjWbW-D1gYeKCRcMekMMiVEmFIZb1wWDs6FAi_BDSnobadjjj1O6i1n1C2TdNdNdEdx3pPoSP6zXziLLx7Oy8Z43u60dR42k0As-uKtarHknYX9e977mv8ejRfYpp_Gy10Oj5KQI0zMohvItisd59XgpCd1RDOFnLyT982v5_bvIAtvAtj_-GDmFjeb_yR-gtLSfH7XH4CW8IEKE
  priority: 102
  providerName: Elsevier
Title 4-dimensional local radial basis function interpolation of large, uniformly spaced datasets
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260722006162
https://dx.doi.org/10.1016/j.cmpb.2022.107235
https://www.ncbi.nlm.nih.gov/pubmed/36413829
https://www.proquest.com/docview/2739432426
https://nottingham-repository.worktribe.com/output/14591151
UnpaywallVersion submittedVersion
Volume 228
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AKRWK
  dateStart: 19850501
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFD6sM6D44P0yokME39yMvSRtg0-DuIzKDj44sKJQ0lzY0U47bFtkffC3ezJpB1FZL0-F0gMN5yTnS_Kd7wA8SRGlGtxa0UDHnDKrBBVSc4rLQqy0xagJXIHz8TJZrNjrE35yAM-HWpiq3tF9T-WGukPzZu2ummeOo-QaQPnzpbprt137LGQcZ6ornx4nHIH4CMar5dv5e6_mLSgi9V1rlSxFDIm4pS-Z8ewutdkWuDuMInyRRrtmb79NS7_Czqtwpau28vyLLMsfUtHRdfg4DMIzUD7PuraYqa8_6Tv-5yhvwLUeopK5j6mbcGCqW3D5uL-Evw0fGNWuJ4DX8yC7bEjOnMZBSTAprhvikqVzOFn7Ll6eb0dqS0pHPD8kXeUKwjblOcEFTRlNHFG1MW1zB1ZHL9-9WNC-RwNVjIctzfCRysTGRtg0ChRXSSojU-ggNEmiM5FwY4SQocJMGZlUCmVCnukwNcwylsZ3YVTVlbkPxBbaKkQMFkOH2SzIcO-mjJW4KdUYamYC4eCiXPUC5q6PRpkPTLVPuXNr7tyae7dO4OneZuvlOy78Oh48nw-FqbiU5phdLrTie6setng48ke7x0Nw5Tin3UWNrEzdNTlCSuGUEqNkAvd81O3_Pk6Yk40UEzjch-FfDO3Bv33-EEbtWWceIeBqiylcmn0LpzCev3qzWE77afYd3B8wEg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED9KC-v2MPa97FODva1abFmyrMdRWrKt6ctaKOxBKLIEGa4TmoTRl_3tvYvsrGOjG3syyBLId6f7sO5-B_BWo5caMLTiWV0oLqM33LhacVQLha8jSk1GBc7j43J0Kj-dqbMt2O9rYSitstP9SaevtXU3MuyoOZxPp8MvhCOC3rgWFBXnpId3pBKaIrD3P37meRDGVgL4Npymd5UzKcnLn88nGCQKgQNarHu-_dE6_e593oHdVTt3l99d01yzSIf34G7nSrIPabf3YSu0D-DWuLssfwhfJa8Juz_hbrC11WIXhEXQMDRe0wUjo0aMYdPUbSvlxbFZZA0liO-xVUuFW-fNJUPFg7RilFC6CMvFIzg9PDjZH_GulwL3UuVLXuFDuzIWwUQtMq98qZ0IkzrLQ1nWlSlVCMa43KNFE0E740OuqjrXQUYpdfEYtttZG54Ci5M6erTsEVksY5VVGGP5EB0GjzWKRBhA3tPQ-g5onPpdNLbPKPtmie6W6G4T3QfwbrNmnmA2bpxd9KyxfQEpqjyLVuDGVWqz6hcR--u6Nz33LZ49ulBxbZitFhZdP0OIhqIcwJMkFpvdF6UkeEczgL2NnPzDpz37z02-ht3RyfjIHn08_vwcbuObIv0oegHby4tVeImu03Lyan00rgAuYRPE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zi9RAEG6WWVB88D5GVFrwze0xRx9pfFrEZRF28cGBFYXQ6QNHM8mwSZD111s1nQyish5PgZCCNFXd9XX3V18R8kwBSvWwtWKJywXjwWqmjRMMloXcugBRk2CB88mpPF7yN2fibI-8nGphmnZL9_1k1gwPzbsVXjUvkKOEDaDi-VI79Juhf5FyATMVy6f3pQAgPiP7y9O3h--jmrdmgNS3rVUKBRgScMtYMhPZXXa9qWB3mGXwQmXbZm-_TUu_ws5r5OrQbMzFV1PXP6Sioxvk4zSIyED5shj6amG__aTv-J-jvEmujxCVHsaYukX2fHObXDkZL-HvkA-cOewJEPU86DYb0nPUOKgpJMVVRzFZosPpKnbxinw72gZaI_H8gA4NFoSt6wsKC5r1jiJRtfN9d5csj16_e3XMxh4NzHKR9qyAhzIy5F4HlSVWWKlM5iuXpF5KV2gpvNfapBYyZeaV0danonCp8jxwrvJ7ZNa0jX9AaKhcsIAYAoQOD0VSwN7N-mBgU-og1PycpJOLSjsKmGMfjbqcmGqfS3RriW4to1vn5PnOZhPlOy79Op88X06FqbCUlpBdLrUSO6sRtkQ48ke7p1NwlTCn8aLGNL4duhIgpUalxEzOyf0Ydbu_zyVH2Ug9Jwe7MPyLoT38t88fkVl_PvjHALj66sk4sb4DUlAthg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=4-dimensional+local+radial+basis+function+interpolation+of+large%2C+uniformly+spaced+datasets&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Thewlis%2C+J.&rft.au=Stevens%2C+D.&rft.au=Power%2C+H.&rft.au=Giddings%2C+D.&rft.date=2023-01-01&rft.issn=0169-2607&rft.volume=228&rft.spage=107235&rft_id=info:doi/10.1016%2Fj.cmpb.2022.107235&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cmpb_2022_107235
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon