Validation and application of dynamic biplane radiography to study in vivo ankle joint kinematics during high-demand activities
Ankle ligament injuries are the most common musculoskeletal injury in physically active populations. Failure to restore native kinematics post-injury often leads to long-term consequences including chronic instability and arthritis. Using traditional motion capture, it is difficult to distinguish in...
Saved in:
| Published in | Journal of biomechanics Vol. 103; p. 109696 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
16.04.2020
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0021-9290 1873-2380 1873-2380 |
| DOI | 10.1016/j.jbiomech.2020.109696 |
Cover
| Abstract | Ankle ligament injuries are the most common musculoskeletal injury in physically active populations. Failure to restore native kinematics post-injury often leads to long-term consequences including chronic instability and arthritis. Using traditional motion capture, it is difficult to distinguish independent motions of the tibiotalar and subtalar joints to assess the effects of injury, surgical repair, and rehabilitation on ankle joint complex (AJC) kinematics. Therefore, the aims of this study were to determine the accuracy of dynamic biplane radiography for determining in vivo AJC kinematics and arthrokinematics, and to identify sport-related movements that require the largest AJC range of motion (ROM) during support. Two subjects had three to five 1.0 mm diameter tantalum beads implanted into the tibia, fibula, talus, and calcaneus during lateral ankle ligament repair. Six months after surgery, the subjects executed seven movements while biplane radiographs were collected. Bone motion was tracked using radiostereophotogrammetric analysis (RSA) as a “gold standard”, and compared to a volumetric CT model-based tracking algorithm that matched digitally reconstructed radiographs to the original biplane radiographs. Over all movements, the average tibiotalar, subtalar and tibiofibular RMS errors were 0.5 mm ± 0.2 mm, 0.8 mm ± 0.5 mm and 0.8 mm ± 0.3 mm in translation and 1.4° ± 0.4°, 1.5° ± 0.5° and 1.7° ± 0.6° in rotation, respectively. Tibiotalar joint space was determined with an average precision of 0.5 mm. ROM results indicate that jumping and a forward-to-backward push-off movement are the best of the seven sport-related movements evaluated for eliciting full ROM kinematics. |
|---|---|
| AbstractList | Ankle ligament injuries are the most common musculoskeletal injury in physically active populations. Failure to restore native kinematics post-injury often leads to long-term consequences including chronic instability and arthritis. Using traditional motion capture, it is difficult to distinguish independent motions of the tibiotalar and subtalar joints to assess the effects of injury, surgical repair, and rehabilitation on ankle joint complex (AJC) kinematics. Therefore, the aims of this study were to determine the accuracy of dynamic biplane radiography for determining in vivo AJC kinematics and arthrokinematics, and to identify sport-related movements that require the largest AJC range of motion (ROM) during support. Two subjects had three to five 1.0 mm diameter tantalum beads implanted into the tibia, fibula, talus, and calcaneus during lateral ankle ligament repair. Six months after surgery, the subjects executed seven movements while biplane radiographs were collected. Bone motion was tracked using radiostereophotogrammetric analysis (RSA) as a "gold standard", and compared to a volumetric CT model-based tracking algorithm that matched digitally reconstructed radiographs to the original biplane radiographs. Over all movements, the average tibiotalar, subtalar and tibiofibular RMS errors were 0.5 mm ± 0.2 mm, 0.8 mm ± 0.5 mm and 0.8 mm ± 0.3 mm in translation and 1.4° ± 0.4°, 1.5° ± 0.5° and 1.7° ± 0.6° in rotation, respectively. Tibiotalar joint space was determined with an average precision of 0.5 mm. ROM results indicate that jumping and a forward-to-backward push-off movement are the best of the seven sport-related movements evaluated for eliciting full ROM kinematics.Ankle ligament injuries are the most common musculoskeletal injury in physically active populations. Failure to restore native kinematics post-injury often leads to long-term consequences including chronic instability and arthritis. Using traditional motion capture, it is difficult to distinguish independent motions of the tibiotalar and subtalar joints to assess the effects of injury, surgical repair, and rehabilitation on ankle joint complex (AJC) kinematics. Therefore, the aims of this study were to determine the accuracy of dynamic biplane radiography for determining in vivo AJC kinematics and arthrokinematics, and to identify sport-related movements that require the largest AJC range of motion (ROM) during support. Two subjects had three to five 1.0 mm diameter tantalum beads implanted into the tibia, fibula, talus, and calcaneus during lateral ankle ligament repair. Six months after surgery, the subjects executed seven movements while biplane radiographs were collected. Bone motion was tracked using radiostereophotogrammetric analysis (RSA) as a "gold standard", and compared to a volumetric CT model-based tracking algorithm that matched digitally reconstructed radiographs to the original biplane radiographs. Over all movements, the average tibiotalar, subtalar and tibiofibular RMS errors were 0.5 mm ± 0.2 mm, 0.8 mm ± 0.5 mm and 0.8 mm ± 0.3 mm in translation and 1.4° ± 0.4°, 1.5° ± 0.5° and 1.7° ± 0.6° in rotation, respectively. Tibiotalar joint space was determined with an average precision of 0.5 mm. ROM results indicate that jumping and a forward-to-backward push-off movement are the best of the seven sport-related movements evaluated for eliciting full ROM kinematics. Ankle ligament injuries are the most common musculoskeletal injury in physically active populations. Failure to restore native kinematics post-injury often leads to long-term consequences including chronic instability and arthritis. Using traditional motion capture, it is difficult to distinguish independent motions of the tibiotalar and subtalar joints to assess the effects of injury, surgical repair, and rehabilitation on ankle joint complex (AJC) kinematics. Therefore, the aims of this study were to determine the accuracy of dynamic biplane radiography for determining in vivo AJC kinematics and arthrokinematics, and to identify sport-related movements that require the largest AJC range of motion (ROM) during support. Two subjects had three to five 1.0 mm diameter tantalum beads implanted into the tibia, fibula, talus, and calcaneus during lateral ankle ligament repair. Six months after surgery, the subjects executed seven movements while biplane radiographs were collected. Bone motion was tracked using radiostereophotogrammetric analysis (RSA) as a “gold standard”, and compared to a volumetric CT model-based tracking algorithm that matched digitally reconstructed radiographs to the original biplane radiographs. Over all movements, the average tibiotalar, subtalar and tibiofibular RMS errors were 0.5 mm ± 0.2 mm, 0.8 mm ± 0.5 mm and 0.8 mm ± 0.3 mm in translation and 1.4° ± 0.4°, 1.5° ± 0.5° and 1.7° ± 0.6° in rotation, respectively. Tibiotalar joint space was determined with an average precision of 0.5 mm. ROM results indicate that jumping and a forward-to-backward push-off movement are the best of the seven sport-related movements evaluated for eliciting full ROM kinematics. Ankle ligament injuries are the most common musculoskeletal injury in physically active populations. Failure to restore native kinematics post-injury often leads to long-term consequences including chronic instability and arthritis. Using traditional motion capture, it is difficult to distinguish independent motions of the tibiotalar and subtalar joints to assess the effects of injury, surgical repair, and rehabilitation on ankle joint complex (AJC) kinematics. Therefore, the aims of this study were to determine the accuracy of dynamic biplane radiography for determining in vivo AJC kinematics and arthrokinematics, and to identify sport-related movements that require the largest AJC range of motion (ROM) during support. Two subjects had three to five 1.0 mm diameter tantalum beads implanted into the tibia, fibula, talus, and calcaneus during lateral ankle ligament repair. Six months after surgery, the subjects executed seven movements while biplane radiographs were collected. Bone motion was tracked using radiostereophotogrammetric analysis (RSA) as a “gold standard”, and compared to a volumetric CT model-based tracking algorithm that matched digitally reconstructed radiographs to the original biplane radiographs. Over all movements, the average tibiotalar, subtalar and tibiofibular RMS errors were 0.5 mm ± 0.2 mm, 0.8 mm ± 0.5 mm and 0.8 mm ± 0.3 mm in translation and 1.4° ± 0.4°, 1.5° ± 0.5° and 1.7° ± 0.6° in rotation, respectively. Tibiotalar joint space was determined with an average precision of 0.5 mm. ROM results indicate that jumping and a forward-to-backward push-off movement are the best of the seven sport-related movements evaluated for eliciting full ROM kinematics. |
| ArticleNumber | 109696 |
| Author | Pitcairn, Samuel Kromka, Joseph Hogan, MaCalus Anderst, William |
| Author_xml | – sequence: 1 givenname: Samuel surname: Pitcairn fullname: Pitcairn, Samuel – sequence: 2 givenname: Joseph orcidid: 0000-0002-0604-7315 surname: Kromka fullname: Kromka, Joseph – sequence: 3 givenname: MaCalus surname: Hogan fullname: Hogan, MaCalus – sequence: 4 givenname: William surname: Anderst fullname: Anderst, William email: anderst@pitt.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32139098$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkkuPFCEUhYkZ48y0_oUJiRs31fIoiyIxRjPxlUziRt0SCqjuW10FJVCd9Mq_Lm3PuOjNuCLcfOcA53CNLnzwDqEbStaU0Ob1sB46CJMz2zUj7DiUjWyeoCvaCl4x3pILdEUIo5Vkklyi65QGQoiohXyGLjmjXBLZXqHfP_UIVmcIHmtvsZ7nEcxpH3psD15PYHAH86i9w1FbCJuo5-0B54BTXuwBg8d72Iei340ODwF8xjvwbio2JmG7RPAbvIXNtrJleDzFZNhDBpeeo6e9HpN7cb-u0I9PH7_ffqnuvn3-evvhrjL1G5qrVreMEuckMY2UrK9ra4W23Ni-E6Tt6p53xLR9rWsriBDcsdYISiyXjAnC-Qq9OvnOMfxaXMpqgmTceHxVWJJiXNS8oZSSgr48Q4ewRF9up1hNRUm_LuwK3dxTSzc5q-YIk44H9RBtAZoTYGJIKbr-H0KJOnaoBvXQoTp2qE4dFuHbM6GB_LeRHDWMj8vfn-SuxLkHF1Uy4LxxFqIzWdkAj1u8O7MwI_jyLcadO_yPwR8Ho9IZ |
| CitedBy_id | crossref_primary_10_1016_j_gaitpost_2024_12_002 crossref_primary_10_1016_j_jbiomech_2023_111837 crossref_primary_10_1016_j_fcl_2022_10_004 crossref_primary_10_3389_fbioe_2023_1252044 crossref_primary_10_1016_j_jbiomech_2020_109951 crossref_primary_10_1016_j_jbiomech_2020_110220 crossref_primary_10_1016_j_medengphy_2025_104310 crossref_primary_10_1016_j_medengphy_2024_104252 crossref_primary_10_1177_10711007251315163 crossref_primary_10_1002_jor_25806 crossref_primary_10_1177_10711007241231981 crossref_primary_10_3389_fphys_2020_567641 crossref_primary_10_1016_j_medengphy_2024_104151 crossref_primary_10_1016_j_jbiomech_2022_111222 crossref_primary_10_1007_s42235_023_00368_4 crossref_primary_10_1016_j_jbiomech_2022_111236 crossref_primary_10_1016_j_gaitpost_2025_01_027 crossref_primary_10_1038_s41598_024_80716_4 crossref_primary_10_2106_JBJS_20_01787 |
| Cites_doi | 10.2106/00004623-196951050-00007 10.1016/j.spinee.2007.07.390 10.1016/j.gaitpost.2015.07.009 10.1016/j.joca.2009.12.009 10.1016/j.jbiomech.2014.05.016 10.1016/j.jbiomech.2016.05.030 10.1016/j.joca.2006.05.012 10.1177/107110079801901002 10.1002/jor.20142 10.1186/1749-799X-4-41 10.1177/0363546509332500 10.1002/jor.22685 10.1177/028418519003100201 10.1016/0021-9290(93)90098-Y 10.1109/TMI.2007.907323 10.1016/S0021-9290(03)00157-X 10.1016/j.medengphy.2008.03.003 10.1115/1.2206199 10.1177/0363546512454840 10.1097/00003086-198605000-00032 10.1007/s00167-014-3084-4 10.1016/j.gaitpost.2016.06.031 10.1136/bjsports-2016-096188 10.1016/j.gaitpost.2015.03.008 10.1016/S0021-9290(01)00222-6 10.1016/j.arth.2009.12.004 10.1177/0363546509337578 10.1115/1.4034263 10.1016/S0097-8493(99)00076-X 10.1016/j.jbiomech.2018.08.028 10.2519/jospt.2006.2195 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. 2020. Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. – notice: 2020. Elsevier Ltd |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
| DOI | 10.1016/j.jbiomech.2020.109696 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index ProQuest Central Health & Medical Collection (via ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database ProQuest Central Research Library (via ProQuest) Biological science database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Research Library Prep MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering Anatomy & Physiology |
| EISSN | 1873-2380 |
| ExternalDocumentID | 32139098 10_1016_j_jbiomech_2020_109696 S0021929020301123 |
| Genre | Validation Study Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUFD ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRHN AFTJW AFXIZ AGUBO AGYEJ AHHHB AHJVU AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P MO0 N9A O-L O9- OAUVE OH. OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 ROL SCC SDF SDG SDP SEL SES SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT X7M YQT Z5R ZMT ~G- ~HD AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJOXV AMFUW LCYCR .GJ 29J 53G AAQQT AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFJKZ AGHFR AGQPQ AI. AIGII ASPBG AVWKF AZFZN CITATION EBD EJD FEDTE FGOYB G-2 HEE HMK HMO HVGLF HZ~ H~9 I-F ML~ MVM OHT PUEGO R2- RPZ SAE SEW VH1 WUQ XOL XPP ZGI ALIPV CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c451t-8a8210ee90c6992f44dd7ad3cdfb708b4f3b0c8f4a4d70773e28c710d39227033 |
| IEDL.DBID | .~1 |
| ISSN | 0021-9290 1873-2380 |
| IngestDate | Sat Sep 27 18:22:57 EDT 2025 Tue Oct 07 06:20:40 EDT 2025 Thu Apr 03 06:53:55 EDT 2025 Wed Oct 01 05:15:53 EDT 2025 Thu Apr 24 23:06:02 EDT 2025 Fri Feb 23 02:47:36 EST 2024 Tue Oct 14 19:30:11 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Validation Foot and ankle Biplane radiography Kinematics |
| Language | English |
| License | Copyright © 2020 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c451t-8a8210ee90c6992f44dd7ad3cdfb708b4f3b0c8f4a4d70773e28c710d39227033 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
| ORCID | 0000-0002-0604-7315 |
| PMID | 32139098 |
| PQID | 2417016474 |
| PQPubID | 1226346 |
| ParticipantIDs | proquest_miscellaneous_2374361110 proquest_journals_2417016474 pubmed_primary_32139098 crossref_primary_10_1016_j_jbiomech_2020_109696 crossref_citationtrail_10_1016_j_jbiomech_2020_109696 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2020_109696 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2020_109696 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-16 |
| PublicationDateYYYYMMDD | 2020-04-16 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Kidlington |
| PublicationTitle | Journal of biomechanics |
| PublicationTitleAlternate | J Biomech |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Gribble, Bleakley, Caulfield, Docherty (b0095) 2016; 50 Fong, Chan, Mok, Yung (b0085) 2009; 1 Wang, Roach, Kapron, Fiorentino (b0175) 2015; 41 Li, Lin, Busconi (b0105) 2009; 4 Treece, Prager, Gee (b0160) 1999; 23 ASTM (b0020) 2008 Wirth, Eckstein (b0185) 2008; 27 Peltz, Haladik, Hoffman, McDonald (b0130) 2014; 47 Brostroem (b0035) 1964; 128 Norkus, Floyd (b0125) 2001; 36 Evans (b0075) 1953; 46 Eckstein, Wirth, Hunter, Guermazi (b0070) 2010; 18 Koo, Lee, Cha (b0100) 2015; 42 Selvik (b0145) 1990; 31 Anderst, Tashman (b0010) 2003; 36 Brostrom (b0040) 1966; 132 Gerber, Williams, Scoville, Arciero (b0090) 1998; 19 Lin, Gross, Weinhold (b0110) 2006; 36 Wainright, Spritzer, Lee, Easley (b0165) 2012; 40 Winter (b0180) 2009 Campbell, Wilson, LaPrade, Clanton (b0045) 2016; 24 Anderst, Vaidya, Tashman (b0015) 2008; 8 Renault, Aullo-Rasser, Donnez, Parratte (b0135) 2018; 80 Bey, Zauel, Brock, Tashman (b0030) 2006; 128 Nichols, Roach, Fiorentino, Anderson (b0120) 2016; 49 Roach, Wang, Kapron, Fiorentino (b0140) 2016; 138 Caputo, Lee, Spritzer, Easley (b0050) 2009; 37 Anderst, Zauel, Bishop, Demps (b0005) 2009; 31 Beveridge, Heard, Brown, Shrive (b0025) 2014; 32 de Asla, Wan, Rubash, Li (b0065) 2006; 24 Chrisman, Snook (b0060) 1969; 51 Martin, Greco, Klatt, Wright (b0115) 2011; 26 Swenson, Yard, Fields, Comstock (b0155) 2009; 37 Cher, Utturkar, Spritzer, Nunley (b0055) 2016; 49 Soderkvist, Wedin (b0150) 1993; 26 Wan, de Asla, Rubash, Li (b0170) 2006; 14 Eyring, Guthrie (b0080) 1986; 206 Wu, Siegler, Allard, Kirtley (b0190) 2002; 35 Brostrom (10.1016/j.jbiomech.2020.109696_b0040) 1966; 132 Gribble (10.1016/j.jbiomech.2020.109696_b0095) 2016; 50 Anderst (10.1016/j.jbiomech.2020.109696_b0015) 2008; 8 Renault (10.1016/j.jbiomech.2020.109696_b0135) 2018; 80 Anderst (10.1016/j.jbiomech.2020.109696_b0005) 2009; 31 Koo (10.1016/j.jbiomech.2020.109696_b0100) 2015; 42 Anderst (10.1016/j.jbiomech.2020.109696_b0010) 2003; 36 Wainright (10.1016/j.jbiomech.2020.109696_b0165) 2012; 40 Wu (10.1016/j.jbiomech.2020.109696_b0190) 2002; 35 Brostroem (10.1016/j.jbiomech.2020.109696_b0035) 1964; 128 Cher (10.1016/j.jbiomech.2020.109696_b0055) 2016; 49 Beveridge (10.1016/j.jbiomech.2020.109696_b0025) 2014; 32 Treece (10.1016/j.jbiomech.2020.109696_b0160) 1999; 23 de Asla (10.1016/j.jbiomech.2020.109696_b0065) 2006; 24 Caputo (10.1016/j.jbiomech.2020.109696_b0050) 2009; 37 Li (10.1016/j.jbiomech.2020.109696_b0105) 2009; 4 Martin (10.1016/j.jbiomech.2020.109696_b0115) 2011; 26 Wang (10.1016/j.jbiomech.2020.109696_b0175) 2015; 41 Norkus (10.1016/j.jbiomech.2020.109696_b0125) 2001; 36 Fong (10.1016/j.jbiomech.2020.109696_b0085) 2009; 1 Swenson (10.1016/j.jbiomech.2020.109696_b0155) 2009; 37 Winter (10.1016/j.jbiomech.2020.109696_b0180) 2009 Campbell (10.1016/j.jbiomech.2020.109696_b0045) 2016; 24 Eyring (10.1016/j.jbiomech.2020.109696_b0080) 1986; 206 Eckstein (10.1016/j.jbiomech.2020.109696_b0070) 2010; 18 Lin (10.1016/j.jbiomech.2020.109696_b0110) 2006; 36 Gerber (10.1016/j.jbiomech.2020.109696_b0090) 1998; 19 Chrisman (10.1016/j.jbiomech.2020.109696_b0060) 1969; 51 Roach (10.1016/j.jbiomech.2020.109696_b0140) 2016; 138 Selvik (10.1016/j.jbiomech.2020.109696_b0145) 1990; 31 Wan (10.1016/j.jbiomech.2020.109696_b0170) 2006; 14 Wirth (10.1016/j.jbiomech.2020.109696_b0185) 2008; 27 Bey (10.1016/j.jbiomech.2020.109696_b0030) 2006; 128 Peltz (10.1016/j.jbiomech.2020.109696_b0130) 2014; 47 ASTM (10.1016/j.jbiomech.2020.109696_b0020) 2008 Nichols (10.1016/j.jbiomech.2020.109696_b0120) 2016; 49 Evans (10.1016/j.jbiomech.2020.109696_b0075) 1953; 46 Soderkvist (10.1016/j.jbiomech.2020.109696_b0150) 1993; 26 |
| References_xml | – year: 2008 ident: b0020 article-title: Standard practice for use of the terms precision and bias in ASTM test methods – volume: 37 start-page: 1586 year: 2009 end-page: 1593 ident: b0155 article-title: Patterns of recurrent injuries among US high school athletes, 2005–2008 publication-title: Am. J. Sports Med. – volume: 36 start-page: 1291 year: 2003 end-page: 1299 ident: b0010 article-title: A method to estimate in vivo dynamic articular surface interaction publication-title: J. Biomech. – volume: 31 start-page: 10 year: 2009 end-page: 16 ident: b0005 article-title: Validation of three-dimensional model-based tibio-femoral tracking during running publication-title: Med. Eng. Phys. – volume: 32 start-page: 1371 year: 2014 end-page: 1380 ident: b0025 article-title: A new measure of tibiofemoral subchondral bone interactions that correlates with early cartilage damage in injured sheep publication-title: J. Orthop. Res. – volume: 128 start-page: 604 year: 2006 end-page: 609 ident: b0030 article-title: Validation of a new model-based tracking technique for measuring three-dimensional, in vivo glenohumeral joint kinematics publication-title: J. Biomech. Eng. – volume: 128 start-page: 483 year: 1964 end-page: 495 ident: b0035 article-title: Sprained Ankles: Anatomic Lesions in Recent Sprains publication-title: Acta. Chir. Scand. – volume: 51 start-page: 904 year: 1969 end-page: 912 ident: b0060 article-title: Reconstruction of lateral ligament tears of the ankle. an experimental study and clinical evaluation of seven patients treated by a new modification of the Elmslie procedure publication-title: J. Bone Joint. Surg. Am. – volume: 35 start-page: 543 year: 2002 end-page: 548 ident: b0190 article-title: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion–part I: ankle, hip, and spine publication-title: J. Biomech – volume: 14 start-page: 1294 year: 2006 end-page: 1301 ident: b0170 article-title: Determination of in-vivo articular cartilage contact areas of human talocrural joint under weightbearing conditions publication-title: Osteoarth. Cartil. – volume: 49 start-page: 136 year: 2016 end-page: 143 ident: b0120 article-title: Predicting tibiotalar and subtalar joint angles from skin-marker data with dual-fluoroscopy as a reference standard publication-title: Gait Posture – volume: 8 start-page: 991 year: 2008 end-page: 997 ident: b0015 article-title: A technique to measure three-dimensional in vivo rotation of fused and adjacent lumbar vertebrae publication-title: Spine J. – volume: 138 year: 2016 ident: b0140 article-title: In Vivo Kinematics of the Tibiotalar and Subtalar Joints in Asymptomatic Subjects: A High-Speed Dual Fluoroscopy Study publication-title: J. Biomech. Eng. – volume: 37 start-page: 2241 year: 2009 end-page: 2248 ident: b0050 article-title: In vivo kinematics of the tibiotalar joint after lateral ankle instability publication-title: Am. J. Sports Med. – volume: 24 start-page: 1402 year: 2016 end-page: 1408 ident: b0045 article-title: Normative rearfoot motion during barefoot and shod walking using biplane fluoroscopy publication-title: Knee. Surg. Sports Traumatol. Arthrosc. – volume: 23 start-page: 583 year: 1999 end-page: 598 ident: b0160 article-title: Regularized marching tetrahedra: improved iso-surface extraction publication-title: Comput. Graphics – volume: 24 start-page: 1019 year: 2006 end-page: 1027 ident: b0065 article-title: Six DOF in vivo kinematics of the ankle joint complex: Application of a combined dual-orthogonal fluoroscopic and magnetic resonance imaging technique publication-title: J. Orthop. Res. – volume: 1 start-page: 14 year: 2009 ident: b0085 article-title: Understanding acute ankle ligamentous sprain injury in sports publication-title: Sports Med. Arthrosc. Rehabil. Ther. Technol. – volume: 4 start-page: 41 year: 2009 ident: b0105 article-title: Treatment of chronic lateral ankle instability: a modified Brostrom technique using three suture anchors publication-title: J. Orthop. Surg. Res. – year: 2009 ident: b0180 article-title: Biomechanics and Motor Control of Human Movement – volume: 47 start-page: 2647 year: 2014 end-page: 2653 ident: b0130 article-title: Effects of footwear on three-dimensional tibiotalar and subtalar joint motion during running publication-title: J. Biomech. – volume: 27 start-page: 737 year: 2008 end-page: 744 ident: b0185 article-title: A technique for regional analysis of femorotibial cartilage thickness based on quantitative magnetic resonance imaging publication-title: IEEE. Trans. Med. Imaging – volume: 31 start-page: 113 year: 1990 end-page: 126 ident: b0145 article-title: Roentgen stereophotogrammetric analysis publication-title: Acta Radiol. – volume: 18 start-page: 760 year: 2010 end-page: 768 ident: b0070 article-title: Magnitude and regional distribution of cartilage loss associated with grades of joint space narrowing in radiographic osteoarthritis–data from the Osteoarthritis Initiative (OAI) publication-title: Osteoarth. Cartil. – volume: 40 start-page: 2099 year: 2012 end-page: 2104 ident: b0165 article-title: The effect of modified Brostrom-Gould repair for lateral ankle instability on in vivo tibiotalar kinematics publication-title: Am. J. Sports Med. – volume: 19 start-page: 653 year: 1998 end-page: 660 ident: b0090 article-title: Persistent disability associated with ankle sprains: a prospective examination of an athletic population publication-title: Foot. Ankle. Int. – volume: 26 start-page: 1473 year: 1993 end-page: 1477 ident: b0150 article-title: Determining the movements of the skeleton using well-configured markers publication-title: J. Biomech. – volume: 132 start-page: 551 year: 1966 end-page: 565 ident: b0040 article-title: Sprained ankles. VI. Surgical treatment of “chronic” ligament ruptures publication-title: Acta. Chir. Scand. – volume: 42 start-page: 424 year: 2015 end-page: 429 ident: b0100 article-title: Plantar-flexion of the ankle joint complex in terminal stance is initiated by subtalar plantar-flexion: A bi-planar fluoroscopy study publication-title: Gait. Posture – volume: 26 start-page: 88 year: 2011 end-page: 97 ident: b0115 article-title: Model-based tracking of the hip: implications for novel analyses of hip pathology publication-title: J. Arthroplasty. – volume: 80 start-page: 171 year: 2018 end-page: 178 ident: b0135 article-title: Articular-surface-based automatic anatomical coordinate systems for the knee bones publication-title: J. Biomech. – volume: 49 start-page: 3026 year: 2016 end-page: 3030 ident: b0055 article-title: An analysis of changes in in vivo cartilage thickness of the healthy ankle following dynamic activity publication-title: J. Biomech. – volume: 36 start-page: 68 year: 2001 end-page: 73 ident: b0125 article-title: The anatomy and mechanisms of syndesmotic ankle sprains publication-title: J. Athl. Train – volume: 206 start-page: 185 year: 1986 end-page: 191 ident: b0080 article-title: A surgical approach to the problem of severe lateral instability at the ankle publication-title: Clin. Orthop. Relat. Res. – volume: 46 start-page: 343 year: 1953 end-page: 344 ident: b0075 article-title: Recurrent instability of the ankle; a method of surgical treatment publication-title: Proc. R. Soc. Med. – volume: 50 start-page: 1493 year: 2016 end-page: 1495 ident: b0095 article-title: 2016 consensus statement of the International Ankle Consortium: prevalence, impact and long-term consequences of lateral ankle sprains publication-title: Br. J. Sports Med. – volume: 41 start-page: 888 year: 2015 end-page: 893 ident: b0175 article-title: Accuracy and feasibility of high-speed dual fluoroscopy and model-based tracking to measure in vivo ankle arthrokinematics publication-title: Gait Posture – volume: 36 start-page: 372 year: 2006 end-page: 384 ident: b0110 article-title: Ankle syndesmosis injuries: anatomy, biomechanics, mechanism of injury, and clinical guidelines for diagnosis and intervention publication-title: J. Orthop. Sports Phys. Ther. – volume: 51 start-page: 904 issue: 5 year: 1969 ident: 10.1016/j.jbiomech.2020.109696_b0060 article-title: Reconstruction of lateral ligament tears of the ankle. an experimental study and clinical evaluation of seven patients treated by a new modification of the Elmslie procedure publication-title: J. Bone Joint. Surg. Am. doi: 10.2106/00004623-196951050-00007 – volume: 8 start-page: 991 issue: 6 year: 2008 ident: 10.1016/j.jbiomech.2020.109696_b0015 article-title: A technique to measure three-dimensional in vivo rotation of fused and adjacent lumbar vertebrae publication-title: Spine J. doi: 10.1016/j.spinee.2007.07.390 – volume: 42 start-page: 424 issue: 4 year: 2015 ident: 10.1016/j.jbiomech.2020.109696_b0100 article-title: Plantar-flexion of the ankle joint complex in terminal stance is initiated by subtalar plantar-flexion: A bi-planar fluoroscopy study publication-title: Gait. Posture doi: 10.1016/j.gaitpost.2015.07.009 – volume: 18 start-page: 760 issue: 6 year: 2010 ident: 10.1016/j.jbiomech.2020.109696_b0070 article-title: Magnitude and regional distribution of cartilage loss associated with grades of joint space narrowing in radiographic osteoarthritis–data from the Osteoarthritis Initiative (OAI) publication-title: Osteoarth. Cartil. doi: 10.1016/j.joca.2009.12.009 – volume: 47 start-page: 2647 issue: 11 year: 2014 ident: 10.1016/j.jbiomech.2020.109696_b0130 article-title: Effects of footwear on three-dimensional tibiotalar and subtalar joint motion during running publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2014.05.016 – volume: 49 start-page: 3026 issue: 13 year: 2016 ident: 10.1016/j.jbiomech.2020.109696_b0055 article-title: An analysis of changes in in vivo cartilage thickness of the healthy ankle following dynamic activity publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2016.05.030 – volume: 46 start-page: 343 issue: 5 year: 1953 ident: 10.1016/j.jbiomech.2020.109696_b0075 article-title: Recurrent instability of the ankle; a method of surgical treatment publication-title: Proc. R. Soc. Med. – volume: 14 start-page: 1294 issue: 12 year: 2006 ident: 10.1016/j.jbiomech.2020.109696_b0170 article-title: Determination of in-vivo articular cartilage contact areas of human talocrural joint under weightbearing conditions publication-title: Osteoarth. Cartil. doi: 10.1016/j.joca.2006.05.012 – volume: 19 start-page: 653 issue: 10 year: 1998 ident: 10.1016/j.jbiomech.2020.109696_b0090 article-title: Persistent disability associated with ankle sprains: a prospective examination of an athletic population publication-title: Foot. Ankle. Int. doi: 10.1177/107110079801901002 – volume: 24 start-page: 1019 issue: 5 year: 2006 ident: 10.1016/j.jbiomech.2020.109696_b0065 article-title: Six DOF in vivo kinematics of the ankle joint complex: Application of a combined dual-orthogonal fluoroscopic and magnetic resonance imaging technique publication-title: J. Orthop. Res. doi: 10.1002/jor.20142 – volume: 1 start-page: 14 year: 2009 ident: 10.1016/j.jbiomech.2020.109696_b0085 article-title: Understanding acute ankle ligamentous sprain injury in sports publication-title: Sports Med. Arthrosc. Rehabil. Ther. Technol. – volume: 4 start-page: 41 year: 2009 ident: 10.1016/j.jbiomech.2020.109696_b0105 article-title: Treatment of chronic lateral ankle instability: a modified Brostrom technique using three suture anchors publication-title: J. Orthop. Surg. Res. doi: 10.1186/1749-799X-4-41 – volume: 37 start-page: 1586 issue: 8 year: 2009 ident: 10.1016/j.jbiomech.2020.109696_b0155 article-title: Patterns of recurrent injuries among US high school athletes, 2005–2008 publication-title: Am. J. Sports Med. doi: 10.1177/0363546509332500 – volume: 32 start-page: 1371 issue: 10 year: 2014 ident: 10.1016/j.jbiomech.2020.109696_b0025 article-title: A new measure of tibiofemoral subchondral bone interactions that correlates with early cartilage damage in injured sheep publication-title: J. Orthop. Res. doi: 10.1002/jor.22685 – volume: 31 start-page: 113 issue: 2 year: 1990 ident: 10.1016/j.jbiomech.2020.109696_b0145 article-title: Roentgen stereophotogrammetric analysis publication-title: Acta Radiol. doi: 10.1177/028418519003100201 – volume: 26 start-page: 1473 issue: 12 year: 1993 ident: 10.1016/j.jbiomech.2020.109696_b0150 article-title: Determining the movements of the skeleton using well-configured markers publication-title: J. Biomech. doi: 10.1016/0021-9290(93)90098-Y – volume: 27 start-page: 737 issue: 6 year: 2008 ident: 10.1016/j.jbiomech.2020.109696_b0185 article-title: A technique for regional analysis of femorotibial cartilage thickness based on quantitative magnetic resonance imaging publication-title: IEEE. Trans. Med. Imaging doi: 10.1109/TMI.2007.907323 – volume: 36 start-page: 1291 issue: 9 year: 2003 ident: 10.1016/j.jbiomech.2020.109696_b0010 article-title: A method to estimate in vivo dynamic articular surface interaction publication-title: J. Biomech. doi: 10.1016/S0021-9290(03)00157-X – volume: 31 start-page: 10 issue: 1 year: 2009 ident: 10.1016/j.jbiomech.2020.109696_b0005 article-title: Validation of three-dimensional model-based tibio-femoral tracking during running publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2008.03.003 – volume: 128 start-page: 604 issue: 4 year: 2006 ident: 10.1016/j.jbiomech.2020.109696_b0030 article-title: Validation of a new model-based tracking technique for measuring three-dimensional, in vivo glenohumeral joint kinematics publication-title: J. Biomech. Eng. doi: 10.1115/1.2206199 – volume: 132 start-page: 551 issue: 5 year: 1966 ident: 10.1016/j.jbiomech.2020.109696_b0040 article-title: Sprained ankles. VI. Surgical treatment of “chronic” ligament ruptures publication-title: Acta. Chir. Scand. – volume: 40 start-page: 2099 issue: 9 year: 2012 ident: 10.1016/j.jbiomech.2020.109696_b0165 article-title: The effect of modified Brostrom-Gould repair for lateral ankle instability on in vivo tibiotalar kinematics publication-title: Am. J. Sports Med. doi: 10.1177/0363546512454840 – volume: 206 start-page: 185 year: 1986 ident: 10.1016/j.jbiomech.2020.109696_b0080 article-title: A surgical approach to the problem of severe lateral instability at the ankle publication-title: Clin. Orthop. Relat. Res. doi: 10.1097/00003086-198605000-00032 – volume: 24 start-page: 1402 issue: 4 year: 2016 ident: 10.1016/j.jbiomech.2020.109696_b0045 article-title: Normative rearfoot motion during barefoot and shod walking using biplane fluoroscopy publication-title: Knee. Surg. Sports Traumatol. Arthrosc. doi: 10.1007/s00167-014-3084-4 – volume: 49 start-page: 136 year: 2016 ident: 10.1016/j.jbiomech.2020.109696_b0120 article-title: Predicting tibiotalar and subtalar joint angles from skin-marker data with dual-fluoroscopy as a reference standard publication-title: Gait Posture doi: 10.1016/j.gaitpost.2016.06.031 – volume: 36 start-page: 68 issue: 1 year: 2001 ident: 10.1016/j.jbiomech.2020.109696_b0125 article-title: The anatomy and mechanisms of syndesmotic ankle sprains publication-title: J. Athl. Train – year: 2008 ident: 10.1016/j.jbiomech.2020.109696_b0020 – volume: 50 start-page: 1493 issue: 24 year: 2016 ident: 10.1016/j.jbiomech.2020.109696_b0095 article-title: 2016 consensus statement of the International Ankle Consortium: prevalence, impact and long-term consequences of lateral ankle sprains publication-title: Br. J. Sports Med. doi: 10.1136/bjsports-2016-096188 – volume: 41 start-page: 888 issue: 4 year: 2015 ident: 10.1016/j.jbiomech.2020.109696_b0175 article-title: Accuracy and feasibility of high-speed dual fluoroscopy and model-based tracking to measure in vivo ankle arthrokinematics publication-title: Gait Posture doi: 10.1016/j.gaitpost.2015.03.008 – volume: 35 start-page: 543 issue: 4 year: 2002 ident: 10.1016/j.jbiomech.2020.109696_b0190 article-title: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion–part I: ankle, hip, and spine publication-title: J. Biomech doi: 10.1016/S0021-9290(01)00222-6 – volume: 26 start-page: 88 issue: 1 year: 2011 ident: 10.1016/j.jbiomech.2020.109696_b0115 article-title: Model-based tracking of the hip: implications for novel analyses of hip pathology publication-title: J. Arthroplasty. doi: 10.1016/j.arth.2009.12.004 – volume: 37 start-page: 2241 issue: 11 year: 2009 ident: 10.1016/j.jbiomech.2020.109696_b0050 article-title: In vivo kinematics of the tibiotalar joint after lateral ankle instability publication-title: Am. J. Sports Med. doi: 10.1177/0363546509337578 – volume: 138 issue: 9 year: 2016 ident: 10.1016/j.jbiomech.2020.109696_b0140 article-title: In Vivo Kinematics of the Tibiotalar and Subtalar Joints in Asymptomatic Subjects: A High-Speed Dual Fluoroscopy Study publication-title: J. Biomech. Eng. doi: 10.1115/1.4034263 – volume: 23 start-page: 583 year: 1999 ident: 10.1016/j.jbiomech.2020.109696_b0160 article-title: Regularized marching tetrahedra: improved iso-surface extraction publication-title: Comput. Graphics doi: 10.1016/S0097-8493(99)00076-X – year: 2009 ident: 10.1016/j.jbiomech.2020.109696_b0180 – volume: 80 start-page: 171 year: 2018 ident: 10.1016/j.jbiomech.2020.109696_b0135 article-title: Articular-surface-based automatic anatomical coordinate systems for the knee bones publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2018.08.028 – volume: 128 start-page: 483 year: 1964 ident: 10.1016/j.jbiomech.2020.109696_b0035 article-title: Sprained Ankles: Anatomic Lesions in Recent Sprains publication-title: Acta. Chir. Scand. – volume: 36 start-page: 372 issue: 6 year: 2006 ident: 10.1016/j.jbiomech.2020.109696_b0110 article-title: Ankle syndesmosis injuries: anatomy, biomechanics, mechanism of injury, and clinical guidelines for diagnosis and intervention publication-title: J. Orthop. Sports Phys. Ther. doi: 10.2519/jospt.2006.2195 |
| SSID | ssj0007479 |
| Score | 2.4384847 |
| Snippet | Ankle ligament injuries are the most common musculoskeletal injury in physically active populations. Failure to restore native kinematics post-injury often... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 109696 |
| SubjectTerms | Accuracy Adult Algorithms Ankle Ankle Injuries - diagnostic imaging Ankle Joint - diagnostic imaging Arthritis Automation Beads Biomechanical Phenomena Biplane radiography Bone surgery Bones Calcaneus Fibula Foot and ankle Humans In vivo methods and tests Injuries Joint diseases Joints (anatomy) Jumping Kinematics Ligaments Ligaments, Articular - diagnostic imaging Motion capture Motion stability Movement Radiographs Radiography Radiography - methods Range of Motion, Articular Rehabilitation Software Subtalar Joint - diagnostic imaging Surgery Surgical implants Talus Tantalum Tibia Validation |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VrYToAcEW6EJBg4S4mSaO8-EDQgW1qpC6Qoii3qLEdqQskCxtWokTf52xY4c9AOWazWQ3O87Mc2bmPYAXiS5UwyvJasMVE1rWTDYxZ6qJpU5TrrUbFD5dZidn4v15er4FyzALY9sqQ0x0gVr3yr4jP6BMkzvyK_Fm_Z1Z1ShbXQ0SGpWXVtCvHcXYLdjmlhlrBttvj5YfPk6xmcCzb_qIGQGDaGNmePVq5SbeXYmCO56lzFL5_zld_Q2OurR0fA_uejyJh-MCuA9bppvD7mFHe-lvP_Alug5P9-p8Djsb5INzuH3qy-q78PMzofFRXAmrTuNGVRv7BvWoWo91u7atsXhR6dYzXePQo2OoxbbD6_a6R6sBb3DVt92AX-jqjhL2EsdxSLTsyEzTQfstyilX0Fb9AZwdH316d8K8MgNTIo0HVlQF_bvGyEhlUvJGCK3zSidKN3UeFbVokjpSRSMqofMozxPDC0VYRhMa4xRjkocw6_rO7AFWJheRLRaKPBINIb46yerUwkxudCbjBaTBAaXytOVWPeNrGfrTVmVwXGkdV46OW8DBZLceiTtutMiDf8swlkqBtKTccqOlnCw9cBkByX_Z7oelVPrwcVn-XuwLeD59TA--reaQo_srOich8JdRqooW8GhcgtONJpyAfSSLx_---BO4Y3-JLY7F2T7Mhosr85Qw1lA_8w_OL-QPJog priority: 102 providerName: ProQuest |
| Title | Validation and application of dynamic biplane radiography to study in vivo ankle joint kinematics during high-demand activities |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929020301123 https://dx.doi.org/10.1016/j.jbiomech.2020.109696 https://www.ncbi.nlm.nih.gov/pubmed/32139098 https://www.proquest.com/docview/2417016474 https://www.proquest.com/docview/2374361110 |
| Volume | 103 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: AKRWK dateStart: 19680101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1873-2380 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1873-2380 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB9KBdEH0asfZ2sZQXxLL9lsstnHa2k5lR4iVu4tJLsbyKnJ0aaFvrT_emc3m_MEpYIvCfmYfM3u7G8zM78BeBfrTFWskEFpmAq4lmUgq4gFqoqkThKmtUsUPp2nszP-cZEstuBoyIWxYZXe9vc23Vlrv2fiv-ZkVdc2x5d6G5PWlUaNlFnGT86FrWJwcPMrzIPgsg_ziAJ79kaW8PJg6XLcnVOCOWal1JL3_3mA-hsAdQPRyVN44hEkTvuHfAZbphnBzrSh2fPPa3yPLqbT_SwfweMNusERPDz1jvQduP1G-Lsvp4RFo3HDj41thbqvU49lvbLBsHhe6NpzW2PXouOkxbrBq_qqRVv13eCyrZsOv9PVHQnsBfYJkGj5kANNO-1dlKtVQZPz53B2cvz1aBb4WgyB4knUBVmR0eTQGBmqVEpWca61KHSsdFWKMCt5FZehyipecC1CIWLDMkXoRRP-YmRV4hew3bSNeQVYGMFD6x7kIuQVYbwyTsvEAktmdCqjMSSDAnLlicptvYwf-RCRtswHxeVWcXmvuDFM1nKrnqrjXgkx6DcfElHJdOY0mtwrKdeSvzXXf5LdG5pS7g3GRU5ASjhuNz6Gt-vD1NWt_4YU3V7SOTHBvZQGp3AML_smuH7RmBGUD2X2-j8ebBce2S3rK4vSPdjuzi_NG4JcXbnv-hQtxULsw4Pph0-zOa0Pj-efv9wBRsUuWA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVuJxQLDlsVDASMAtbeI4Dx8qVKDVlnZXCLWoN5PYjpSFJks3LdoT_4zfxthxwh6Acuk1m_HuauyZbzwz3wC8CFUqC5pxL9dUekzx3ONFQD1ZBFxFEVXKNgqPJ_HomL0_iU5W4GfXC2PKKjubaA21qqW5I99CT5NY8iv2evbNM1OjTHa1G6GRudEKattSjLnGjgO9-I4h3Hx7_x3q-yWle7tHb0eemzLgSRYFjZdmKYY9WnNfxpzTgjGlkkyFUhV54qc5K8Lcl2nBMqYSP0lCTVOJflkhsqB4XkJc9xqssZBxDP7W3uxOPnzsfQGCdVdkEngIRPylHuXp5tR22NuUCLW8TrEZHfBn9_g3-Gvd4N4duO3wK9lpN9xdWNHVANZ3KozdTxfkFbEVpfaqfgC3lsgOB3B97NL46_DjE6L_dpgTySpFlrLopC6IWlTZaSlJXs5MKS45y1TpmLVJUxPLiEvKilyUFzUxM-c1mdZl1ZAvuLqloJ2Ttv2SGDZmT-FD8y3STsoo9fweHF-Jju7DalVX-iGQTCfMN8lJlvisQISZh3EeGVhLtYp5MISoU4CQjibdTOv4Krp6uKnoFCeM4kSruCFs9XKzlijkUomk06_o2mDRcAv0ZZdK8l7SAaUWAP2X7Ea3lYQzV3Px-3AN4Xn_MRoakz1CRdfn-E6IYDNG1-gP4UG7Bfs_GlIMJHyePvr34s_gxuhofCgO9ycHj-Gm-VUmMRfEG7DanJ3rJ4jvmvypO0QEPl_1uf0FxUxi5A |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIlVwQJBCSSmwSMBtib1ee70HhCpK1FJacaAoN2PvQ3KgdtqkRTnxv_h1zK4f5ACUS69JZpNodma-8cx8A_A80qmyLJe0MExRrmVBpQ0ZVTaUOo6Z1n5Q-Og42T_h7yfxZA1-drMwrq2y84neUetauWfkI4w0wpNf8ZFt2yI-7o3fzM6o2yDlKq3dOo3mihya5XdM3-avD_ZQ1y8YG7_79HafthsGqOJxuKBpnmLKY4wMVCIls5xrLXIdKW0LEaQFt1ERqNTynGsRCBEZliqMyRpRBUNbifDcG3BTRJF07YRi0id7jpe-bS8JKUKQYGU6efpq6mfrfTGEeUanxC0N-HNg_Bvw9QFwfBfutMiV7DZX7R6smWoAm7sVZu2nS_KS-F5S_5B-ALdXaA4HsHHUFvA34cdnxP3NGieSV5qs1M9JbYleVvlpqUhRzlwTLjnPddlyapNFTTwXLikrclle1sRtmzdkWpfVgnzF0z357Jw0g5fE8TBTjS-6b1F-R0Zp5vfh5Fo09ADWq7oyD4HkRvDAlSW5CLhFbFlESRE7QMuMTmQ4hLhTQKZagnS3p-Nb1nXCTbNOcZlTXNYobgijXm7WUIRcKSE6_WbdACy67Ayj2JWSspdsIVIDff5Ldqe7SlnrqObZb7MawrP-bXQxrm6Eiq4v8DMRwswEg2IwhK3mCvZ_NGKYQgQy3f734U9hA601-3BwfPgIbrkf5SpyYbID64vzC_MYgd2ieOItiMCX6zbZXwnuYH4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+and+application+of+dynamic+biplane+radiography+to+study+in+vivo+ankle+joint+kinematics+during+high-demand+activities&rft.jtitle=Journal+of+biomechanics&rft.au=Pitcairn%2C+Samuel&rft.au=Kromka%2C+Joseph&rft.au=Hogan%2C+MaCalus&rft.au=Anderst%2C+William&rft.date=2020-04-16&rft.pub=Elsevier+Ltd&rft.issn=0021-9290&rft.volume=103&rft_id=info:doi/10.1016%2Fj.jbiomech.2020.109696&rft.externalDocID=S0021929020301123 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon |