Validation and application of dynamic biplane radiography to study in vivo ankle joint kinematics during high-demand activities

Ankle ligament injuries are the most common musculoskeletal injury in physically active populations. Failure to restore native kinematics post-injury often leads to long-term consequences including chronic instability and arthritis. Using traditional motion capture, it is difficult to distinguish in...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 103; p. 109696
Main Authors Pitcairn, Samuel, Kromka, Joseph, Hogan, MaCalus, Anderst, William
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 16.04.2020
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0021-9290
1873-2380
1873-2380
DOI10.1016/j.jbiomech.2020.109696

Cover

Abstract Ankle ligament injuries are the most common musculoskeletal injury in physically active populations. Failure to restore native kinematics post-injury often leads to long-term consequences including chronic instability and arthritis. Using traditional motion capture, it is difficult to distinguish independent motions of the tibiotalar and subtalar joints to assess the effects of injury, surgical repair, and rehabilitation on ankle joint complex (AJC) kinematics. Therefore, the aims of this study were to determine the accuracy of dynamic biplane radiography for determining in vivo AJC kinematics and arthrokinematics, and to identify sport-related movements that require the largest AJC range of motion (ROM) during support. Two subjects had three to five 1.0 mm diameter tantalum beads implanted into the tibia, fibula, talus, and calcaneus during lateral ankle ligament repair. Six months after surgery, the subjects executed seven movements while biplane radiographs were collected. Bone motion was tracked using radiostereophotogrammetric analysis (RSA) as a “gold standard”, and compared to a volumetric CT model-based tracking algorithm that matched digitally reconstructed radiographs to the original biplane radiographs. Over all movements, the average tibiotalar, subtalar and tibiofibular RMS errors were 0.5 mm ± 0.2 mm, 0.8 mm ± 0.5 mm and 0.8 mm ± 0.3 mm in translation and 1.4° ± 0.4°, 1.5° ± 0.5° and 1.7° ± 0.6° in rotation, respectively. Tibiotalar joint space was determined with an average precision of 0.5 mm. ROM results indicate that jumping and a forward-to-backward push-off movement are the best of the seven sport-related movements evaluated for eliciting full ROM kinematics.
AbstractList Ankle ligament injuries are the most common musculoskeletal injury in physically active populations. Failure to restore native kinematics post-injury often leads to long-term consequences including chronic instability and arthritis. Using traditional motion capture, it is difficult to distinguish independent motions of the tibiotalar and subtalar joints to assess the effects of injury, surgical repair, and rehabilitation on ankle joint complex (AJC) kinematics. Therefore, the aims of this study were to determine the accuracy of dynamic biplane radiography for determining in vivo AJC kinematics and arthrokinematics, and to identify sport-related movements that require the largest AJC range of motion (ROM) during support. Two subjects had three to five 1.0 mm diameter tantalum beads implanted into the tibia, fibula, talus, and calcaneus during lateral ankle ligament repair. Six months after surgery, the subjects executed seven movements while biplane radiographs were collected. Bone motion was tracked using radiostereophotogrammetric analysis (RSA) as a "gold standard", and compared to a volumetric CT model-based tracking algorithm that matched digitally reconstructed radiographs to the original biplane radiographs. Over all movements, the average tibiotalar, subtalar and tibiofibular RMS errors were 0.5 mm ± 0.2 mm, 0.8 mm ± 0.5 mm and 0.8 mm ± 0.3 mm in translation and 1.4° ± 0.4°, 1.5° ± 0.5° and 1.7° ± 0.6° in rotation, respectively. Tibiotalar joint space was determined with an average precision of 0.5 mm. ROM results indicate that jumping and a forward-to-backward push-off movement are the best of the seven sport-related movements evaluated for eliciting full ROM kinematics.Ankle ligament injuries are the most common musculoskeletal injury in physically active populations. Failure to restore native kinematics post-injury often leads to long-term consequences including chronic instability and arthritis. Using traditional motion capture, it is difficult to distinguish independent motions of the tibiotalar and subtalar joints to assess the effects of injury, surgical repair, and rehabilitation on ankle joint complex (AJC) kinematics. Therefore, the aims of this study were to determine the accuracy of dynamic biplane radiography for determining in vivo AJC kinematics and arthrokinematics, and to identify sport-related movements that require the largest AJC range of motion (ROM) during support. Two subjects had three to five 1.0 mm diameter tantalum beads implanted into the tibia, fibula, talus, and calcaneus during lateral ankle ligament repair. Six months after surgery, the subjects executed seven movements while biplane radiographs were collected. Bone motion was tracked using radiostereophotogrammetric analysis (RSA) as a "gold standard", and compared to a volumetric CT model-based tracking algorithm that matched digitally reconstructed radiographs to the original biplane radiographs. Over all movements, the average tibiotalar, subtalar and tibiofibular RMS errors were 0.5 mm ± 0.2 mm, 0.8 mm ± 0.5 mm and 0.8 mm ± 0.3 mm in translation and 1.4° ± 0.4°, 1.5° ± 0.5° and 1.7° ± 0.6° in rotation, respectively. Tibiotalar joint space was determined with an average precision of 0.5 mm. ROM results indicate that jumping and a forward-to-backward push-off movement are the best of the seven sport-related movements evaluated for eliciting full ROM kinematics.
Ankle ligament injuries are the most common musculoskeletal injury in physically active populations. Failure to restore native kinematics post-injury often leads to long-term consequences including chronic instability and arthritis. Using traditional motion capture, it is difficult to distinguish independent motions of the tibiotalar and subtalar joints to assess the effects of injury, surgical repair, and rehabilitation on ankle joint complex (AJC) kinematics. Therefore, the aims of this study were to determine the accuracy of dynamic biplane radiography for determining in vivo AJC kinematics and arthrokinematics, and to identify sport-related movements that require the largest AJC range of motion (ROM) during support. Two subjects had three to five 1.0 mm diameter tantalum beads implanted into the tibia, fibula, talus, and calcaneus during lateral ankle ligament repair. Six months after surgery, the subjects executed seven movements while biplane radiographs were collected. Bone motion was tracked using radiostereophotogrammetric analysis (RSA) as a “gold standard”, and compared to a volumetric CT model-based tracking algorithm that matched digitally reconstructed radiographs to the original biplane radiographs. Over all movements, the average tibiotalar, subtalar and tibiofibular RMS errors were 0.5 mm ± 0.2 mm, 0.8 mm ± 0.5 mm and 0.8 mm ± 0.3 mm in translation and 1.4° ± 0.4°, 1.5° ± 0.5° and 1.7° ± 0.6° in rotation, respectively. Tibiotalar joint space was determined with an average precision of 0.5 mm. ROM results indicate that jumping and a forward-to-backward push-off movement are the best of the seven sport-related movements evaluated for eliciting full ROM kinematics.
Ankle ligament injuries are the most common musculoskeletal injury in physically active populations. Failure to restore native kinematics post-injury often leads to long-term consequences including chronic instability and arthritis. Using traditional motion capture, it is difficult to distinguish independent motions of the tibiotalar and subtalar joints to assess the effects of injury, surgical repair, and rehabilitation on ankle joint complex (AJC) kinematics. Therefore, the aims of this study were to determine the accuracy of dynamic biplane radiography for determining in vivo AJC kinematics and arthrokinematics, and to identify sport-related movements that require the largest AJC range of motion (ROM) during support. Two subjects had three to five 1.0 mm diameter tantalum beads implanted into the tibia, fibula, talus, and calcaneus during lateral ankle ligament repair. Six months after surgery, the subjects executed seven movements while biplane radiographs were collected. Bone motion was tracked using radiostereophotogrammetric analysis (RSA) as a “gold standard”, and compared to a volumetric CT model-based tracking algorithm that matched digitally reconstructed radiographs to the original biplane radiographs. Over all movements, the average tibiotalar, subtalar and tibiofibular RMS errors were 0.5 mm ± 0.2 mm, 0.8 mm ± 0.5 mm and 0.8 mm ± 0.3 mm in translation and 1.4° ± 0.4°, 1.5° ± 0.5° and 1.7° ± 0.6° in rotation, respectively. Tibiotalar joint space was determined with an average precision of 0.5 mm. ROM results indicate that jumping and a forward-to-backward push-off movement are the best of the seven sport-related movements evaluated for eliciting full ROM kinematics.
ArticleNumber 109696
Author Pitcairn, Samuel
Kromka, Joseph
Hogan, MaCalus
Anderst, William
Author_xml – sequence: 1
  givenname: Samuel
  surname: Pitcairn
  fullname: Pitcairn, Samuel
– sequence: 2
  givenname: Joseph
  orcidid: 0000-0002-0604-7315
  surname: Kromka
  fullname: Kromka, Joseph
– sequence: 3
  givenname: MaCalus
  surname: Hogan
  fullname: Hogan, MaCalus
– sequence: 4
  givenname: William
  surname: Anderst
  fullname: Anderst, William
  email: anderst@pitt.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32139098$$D View this record in MEDLINE/PubMed
BookMark eNqNkkuPFCEUhYkZ48y0_oUJiRs31fIoiyIxRjPxlUziRt0SCqjuW10FJVCd9Mq_Lm3PuOjNuCLcfOcA53CNLnzwDqEbStaU0Ob1sB46CJMz2zUj7DiUjWyeoCvaCl4x3pILdEUIo5Vkklyi65QGQoiohXyGLjmjXBLZXqHfP_UIVmcIHmtvsZ7nEcxpH3psD15PYHAH86i9w1FbCJuo5-0B54BTXuwBg8d72Iei340ODwF8xjvwbio2JmG7RPAbvIXNtrJleDzFZNhDBpeeo6e9HpN7cb-u0I9PH7_ffqnuvn3-evvhrjL1G5qrVreMEuckMY2UrK9ra4W23Ni-E6Tt6p53xLR9rWsriBDcsdYISiyXjAnC-Qq9OvnOMfxaXMpqgmTceHxVWJJiXNS8oZSSgr48Q4ewRF9up1hNRUm_LuwK3dxTSzc5q-YIk44H9RBtAZoTYGJIKbr-H0KJOnaoBvXQoTp2qE4dFuHbM6GB_LeRHDWMj8vfn-SuxLkHF1Uy4LxxFqIzWdkAj1u8O7MwI_jyLcadO_yPwR8Ho9IZ
CitedBy_id crossref_primary_10_1016_j_gaitpost_2024_12_002
crossref_primary_10_1016_j_jbiomech_2023_111837
crossref_primary_10_1016_j_fcl_2022_10_004
crossref_primary_10_3389_fbioe_2023_1252044
crossref_primary_10_1016_j_jbiomech_2020_109951
crossref_primary_10_1016_j_jbiomech_2020_110220
crossref_primary_10_1016_j_medengphy_2025_104310
crossref_primary_10_1016_j_medengphy_2024_104252
crossref_primary_10_1177_10711007251315163
crossref_primary_10_1002_jor_25806
crossref_primary_10_1177_10711007241231981
crossref_primary_10_3389_fphys_2020_567641
crossref_primary_10_1016_j_medengphy_2024_104151
crossref_primary_10_1016_j_jbiomech_2022_111222
crossref_primary_10_1007_s42235_023_00368_4
crossref_primary_10_1016_j_jbiomech_2022_111236
crossref_primary_10_1016_j_gaitpost_2025_01_027
crossref_primary_10_1038_s41598_024_80716_4
crossref_primary_10_2106_JBJS_20_01787
Cites_doi 10.2106/00004623-196951050-00007
10.1016/j.spinee.2007.07.390
10.1016/j.gaitpost.2015.07.009
10.1016/j.joca.2009.12.009
10.1016/j.jbiomech.2014.05.016
10.1016/j.jbiomech.2016.05.030
10.1016/j.joca.2006.05.012
10.1177/107110079801901002
10.1002/jor.20142
10.1186/1749-799X-4-41
10.1177/0363546509332500
10.1002/jor.22685
10.1177/028418519003100201
10.1016/0021-9290(93)90098-Y
10.1109/TMI.2007.907323
10.1016/S0021-9290(03)00157-X
10.1016/j.medengphy.2008.03.003
10.1115/1.2206199
10.1177/0363546512454840
10.1097/00003086-198605000-00032
10.1007/s00167-014-3084-4
10.1016/j.gaitpost.2016.06.031
10.1136/bjsports-2016-096188
10.1016/j.gaitpost.2015.03.008
10.1016/S0021-9290(01)00222-6
10.1016/j.arth.2009.12.004
10.1177/0363546509337578
10.1115/1.4034263
10.1016/S0097-8493(99)00076-X
10.1016/j.jbiomech.2018.08.028
10.2519/jospt.2006.2195
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
2020. Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
– notice: 2020. Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7TB
7TS
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.jbiomech.2020.109696
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
ProQuest Central Health & Medical Collection (via ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Research Library (via ProQuest)
Biological science database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Research Library Prep
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
ExternalDocumentID 32139098
10_1016_j_jbiomech_2020_109696
S0021929020301123
Genre Validation Study
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABUFD
ABUWG
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
JJJVA
KOM
LK8
M1P
M29
M2O
M31
M41
M7P
MO0
N9A
O-L
O9-
OAUVE
OH.
OT.
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
ROL
SCC
SDF
SDG
SDP
SEL
SES
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
X7M
YQT
Z5R
ZMT
~G-
~HD
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJOXV
AMFUW
LCYCR
.GJ
29J
53G
AAQQT
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFJKZ
AGHFR
AGQPQ
AI.
AIGII
ASPBG
AVWKF
AZFZN
CITATION
EBD
EJD
FEDTE
FGOYB
G-2
HEE
HMK
HMO
HVGLF
HZ~
H~9
I-F
ML~
MVM
OHT
PUEGO
R2-
RPZ
SAE
SEW
VH1
WUQ
XOL
XPP
ZGI
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7TB
7TS
7XB
8FD
8FK
FR3
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c451t-8a8210ee90c6992f44dd7ad3cdfb708b4f3b0c8f4a4d70773e28c710d39227033
IEDL.DBID .~1
ISSN 0021-9290
1873-2380
IngestDate Sat Sep 27 18:22:57 EDT 2025
Tue Oct 07 06:20:40 EDT 2025
Thu Apr 03 06:53:55 EDT 2025
Wed Oct 01 05:15:53 EDT 2025
Thu Apr 24 23:06:02 EDT 2025
Fri Feb 23 02:47:36 EST 2024
Tue Oct 14 19:30:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Validation
Foot and ankle
Biplane radiography
Kinematics
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-8a8210ee90c6992f44dd7ad3cdfb708b4f3b0c8f4a4d70773e28c710d39227033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
ORCID 0000-0002-0604-7315
PMID 32139098
PQID 2417016474
PQPubID 1226346
ParticipantIDs proquest_miscellaneous_2374361110
proquest_journals_2417016474
pubmed_primary_32139098
crossref_primary_10_1016_j_jbiomech_2020_109696
crossref_citationtrail_10_1016_j_jbiomech_2020_109696
elsevier_sciencedirect_doi_10_1016_j_jbiomech_2020_109696
elsevier_clinicalkey_doi_10_1016_j_jbiomech_2020_109696
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-16
PublicationDateYYYYMMDD 2020-04-16
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-16
  day: 16
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Kidlington
PublicationTitle Journal of biomechanics
PublicationTitleAlternate J Biomech
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Gribble, Bleakley, Caulfield, Docherty (b0095) 2016; 50
Fong, Chan, Mok, Yung (b0085) 2009; 1
Wang, Roach, Kapron, Fiorentino (b0175) 2015; 41
Li, Lin, Busconi (b0105) 2009; 4
Treece, Prager, Gee (b0160) 1999; 23
ASTM (b0020) 2008
Wirth, Eckstein (b0185) 2008; 27
Peltz, Haladik, Hoffman, McDonald (b0130) 2014; 47
Brostroem (b0035) 1964; 128
Norkus, Floyd (b0125) 2001; 36
Evans (b0075) 1953; 46
Eckstein, Wirth, Hunter, Guermazi (b0070) 2010; 18
Koo, Lee, Cha (b0100) 2015; 42
Selvik (b0145) 1990; 31
Anderst, Tashman (b0010) 2003; 36
Brostrom (b0040) 1966; 132
Gerber, Williams, Scoville, Arciero (b0090) 1998; 19
Lin, Gross, Weinhold (b0110) 2006; 36
Wainright, Spritzer, Lee, Easley (b0165) 2012; 40
Winter (b0180) 2009
Campbell, Wilson, LaPrade, Clanton (b0045) 2016; 24
Anderst, Vaidya, Tashman (b0015) 2008; 8
Renault, Aullo-Rasser, Donnez, Parratte (b0135) 2018; 80
Bey, Zauel, Brock, Tashman (b0030) 2006; 128
Nichols, Roach, Fiorentino, Anderson (b0120) 2016; 49
Roach, Wang, Kapron, Fiorentino (b0140) 2016; 138
Caputo, Lee, Spritzer, Easley (b0050) 2009; 37
Anderst, Zauel, Bishop, Demps (b0005) 2009; 31
Beveridge, Heard, Brown, Shrive (b0025) 2014; 32
de Asla, Wan, Rubash, Li (b0065) 2006; 24
Chrisman, Snook (b0060) 1969; 51
Martin, Greco, Klatt, Wright (b0115) 2011; 26
Swenson, Yard, Fields, Comstock (b0155) 2009; 37
Cher, Utturkar, Spritzer, Nunley (b0055) 2016; 49
Soderkvist, Wedin (b0150) 1993; 26
Wan, de Asla, Rubash, Li (b0170) 2006; 14
Eyring, Guthrie (b0080) 1986; 206
Wu, Siegler, Allard, Kirtley (b0190) 2002; 35
Brostrom (10.1016/j.jbiomech.2020.109696_b0040) 1966; 132
Gribble (10.1016/j.jbiomech.2020.109696_b0095) 2016; 50
Anderst (10.1016/j.jbiomech.2020.109696_b0015) 2008; 8
Renault (10.1016/j.jbiomech.2020.109696_b0135) 2018; 80
Anderst (10.1016/j.jbiomech.2020.109696_b0005) 2009; 31
Koo (10.1016/j.jbiomech.2020.109696_b0100) 2015; 42
Anderst (10.1016/j.jbiomech.2020.109696_b0010) 2003; 36
Wainright (10.1016/j.jbiomech.2020.109696_b0165) 2012; 40
Wu (10.1016/j.jbiomech.2020.109696_b0190) 2002; 35
Brostroem (10.1016/j.jbiomech.2020.109696_b0035) 1964; 128
Cher (10.1016/j.jbiomech.2020.109696_b0055) 2016; 49
Beveridge (10.1016/j.jbiomech.2020.109696_b0025) 2014; 32
Treece (10.1016/j.jbiomech.2020.109696_b0160) 1999; 23
de Asla (10.1016/j.jbiomech.2020.109696_b0065) 2006; 24
Caputo (10.1016/j.jbiomech.2020.109696_b0050) 2009; 37
Li (10.1016/j.jbiomech.2020.109696_b0105) 2009; 4
Martin (10.1016/j.jbiomech.2020.109696_b0115) 2011; 26
Wang (10.1016/j.jbiomech.2020.109696_b0175) 2015; 41
Norkus (10.1016/j.jbiomech.2020.109696_b0125) 2001; 36
Fong (10.1016/j.jbiomech.2020.109696_b0085) 2009; 1
Swenson (10.1016/j.jbiomech.2020.109696_b0155) 2009; 37
Winter (10.1016/j.jbiomech.2020.109696_b0180) 2009
Campbell (10.1016/j.jbiomech.2020.109696_b0045) 2016; 24
Eyring (10.1016/j.jbiomech.2020.109696_b0080) 1986; 206
Eckstein (10.1016/j.jbiomech.2020.109696_b0070) 2010; 18
Lin (10.1016/j.jbiomech.2020.109696_b0110) 2006; 36
Gerber (10.1016/j.jbiomech.2020.109696_b0090) 1998; 19
Chrisman (10.1016/j.jbiomech.2020.109696_b0060) 1969; 51
Roach (10.1016/j.jbiomech.2020.109696_b0140) 2016; 138
Selvik (10.1016/j.jbiomech.2020.109696_b0145) 1990; 31
Wan (10.1016/j.jbiomech.2020.109696_b0170) 2006; 14
Wirth (10.1016/j.jbiomech.2020.109696_b0185) 2008; 27
Bey (10.1016/j.jbiomech.2020.109696_b0030) 2006; 128
Peltz (10.1016/j.jbiomech.2020.109696_b0130) 2014; 47
ASTM (10.1016/j.jbiomech.2020.109696_b0020) 2008
Nichols (10.1016/j.jbiomech.2020.109696_b0120) 2016; 49
Evans (10.1016/j.jbiomech.2020.109696_b0075) 1953; 46
Soderkvist (10.1016/j.jbiomech.2020.109696_b0150) 1993; 26
References_xml – year: 2008
  ident: b0020
  article-title: Standard practice for use of the terms precision and bias in ASTM test methods
– volume: 37
  start-page: 1586
  year: 2009
  end-page: 1593
  ident: b0155
  article-title: Patterns of recurrent injuries among US high school athletes, 2005–2008
  publication-title: Am. J. Sports Med.
– volume: 36
  start-page: 1291
  year: 2003
  end-page: 1299
  ident: b0010
  article-title: A method to estimate in vivo dynamic articular surface interaction
  publication-title: J. Biomech.
– volume: 31
  start-page: 10
  year: 2009
  end-page: 16
  ident: b0005
  article-title: Validation of three-dimensional model-based tibio-femoral tracking during running
  publication-title: Med. Eng. Phys.
– volume: 32
  start-page: 1371
  year: 2014
  end-page: 1380
  ident: b0025
  article-title: A new measure of tibiofemoral subchondral bone interactions that correlates with early cartilage damage in injured sheep
  publication-title: J. Orthop. Res.
– volume: 128
  start-page: 604
  year: 2006
  end-page: 609
  ident: b0030
  article-title: Validation of a new model-based tracking technique for measuring three-dimensional, in vivo glenohumeral joint kinematics
  publication-title: J. Biomech. Eng.
– volume: 128
  start-page: 483
  year: 1964
  end-page: 495
  ident: b0035
  article-title: Sprained Ankles: Anatomic Lesions in Recent Sprains
  publication-title: Acta. Chir. Scand.
– volume: 51
  start-page: 904
  year: 1969
  end-page: 912
  ident: b0060
  article-title: Reconstruction of lateral ligament tears of the ankle. an experimental study and clinical evaluation of seven patients treated by a new modification of the Elmslie procedure
  publication-title: J. Bone Joint. Surg. Am.
– volume: 35
  start-page: 543
  year: 2002
  end-page: 548
  ident: b0190
  article-title: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion–part I: ankle, hip, and spine
  publication-title: J. Biomech
– volume: 14
  start-page: 1294
  year: 2006
  end-page: 1301
  ident: b0170
  article-title: Determination of in-vivo articular cartilage contact areas of human talocrural joint under weightbearing conditions
  publication-title: Osteoarth. Cartil.
– volume: 49
  start-page: 136
  year: 2016
  end-page: 143
  ident: b0120
  article-title: Predicting tibiotalar and subtalar joint angles from skin-marker data with dual-fluoroscopy as a reference standard
  publication-title: Gait Posture
– volume: 8
  start-page: 991
  year: 2008
  end-page: 997
  ident: b0015
  article-title: A technique to measure three-dimensional in vivo rotation of fused and adjacent lumbar vertebrae
  publication-title: Spine J.
– volume: 138
  year: 2016
  ident: b0140
  article-title: In Vivo Kinematics of the Tibiotalar and Subtalar Joints in Asymptomatic Subjects: A High-Speed Dual Fluoroscopy Study
  publication-title: J. Biomech. Eng.
– volume: 37
  start-page: 2241
  year: 2009
  end-page: 2248
  ident: b0050
  article-title: In vivo kinematics of the tibiotalar joint after lateral ankle instability
  publication-title: Am. J. Sports Med.
– volume: 24
  start-page: 1402
  year: 2016
  end-page: 1408
  ident: b0045
  article-title: Normative rearfoot motion during barefoot and shod walking using biplane fluoroscopy
  publication-title: Knee. Surg. Sports Traumatol. Arthrosc.
– volume: 23
  start-page: 583
  year: 1999
  end-page: 598
  ident: b0160
  article-title: Regularized marching tetrahedra: improved iso-surface extraction
  publication-title: Comput. Graphics
– volume: 24
  start-page: 1019
  year: 2006
  end-page: 1027
  ident: b0065
  article-title: Six DOF in vivo kinematics of the ankle joint complex: Application of a combined dual-orthogonal fluoroscopic and magnetic resonance imaging technique
  publication-title: J. Orthop. Res.
– volume: 1
  start-page: 14
  year: 2009
  ident: b0085
  article-title: Understanding acute ankle ligamentous sprain injury in sports
  publication-title: Sports Med. Arthrosc. Rehabil. Ther. Technol.
– volume: 4
  start-page: 41
  year: 2009
  ident: b0105
  article-title: Treatment of chronic lateral ankle instability: a modified Brostrom technique using three suture anchors
  publication-title: J. Orthop. Surg. Res.
– year: 2009
  ident: b0180
  article-title: Biomechanics and Motor Control of Human Movement
– volume: 47
  start-page: 2647
  year: 2014
  end-page: 2653
  ident: b0130
  article-title: Effects of footwear on three-dimensional tibiotalar and subtalar joint motion during running
  publication-title: J. Biomech.
– volume: 27
  start-page: 737
  year: 2008
  end-page: 744
  ident: b0185
  article-title: A technique for regional analysis of femorotibial cartilage thickness based on quantitative magnetic resonance imaging
  publication-title: IEEE. Trans. Med. Imaging
– volume: 31
  start-page: 113
  year: 1990
  end-page: 126
  ident: b0145
  article-title: Roentgen stereophotogrammetric analysis
  publication-title: Acta Radiol.
– volume: 18
  start-page: 760
  year: 2010
  end-page: 768
  ident: b0070
  article-title: Magnitude and regional distribution of cartilage loss associated with grades of joint space narrowing in radiographic osteoarthritis–data from the Osteoarthritis Initiative (OAI)
  publication-title: Osteoarth. Cartil.
– volume: 40
  start-page: 2099
  year: 2012
  end-page: 2104
  ident: b0165
  article-title: The effect of modified Brostrom-Gould repair for lateral ankle instability on in vivo tibiotalar kinematics
  publication-title: Am. J. Sports Med.
– volume: 19
  start-page: 653
  year: 1998
  end-page: 660
  ident: b0090
  article-title: Persistent disability associated with ankle sprains: a prospective examination of an athletic population
  publication-title: Foot. Ankle. Int.
– volume: 26
  start-page: 1473
  year: 1993
  end-page: 1477
  ident: b0150
  article-title: Determining the movements of the skeleton using well-configured markers
  publication-title: J. Biomech.
– volume: 132
  start-page: 551
  year: 1966
  end-page: 565
  ident: b0040
  article-title: Sprained ankles. VI. Surgical treatment of “chronic” ligament ruptures
  publication-title: Acta. Chir. Scand.
– volume: 42
  start-page: 424
  year: 2015
  end-page: 429
  ident: b0100
  article-title: Plantar-flexion of the ankle joint complex in terminal stance is initiated by subtalar plantar-flexion: A bi-planar fluoroscopy study
  publication-title: Gait. Posture
– volume: 26
  start-page: 88
  year: 2011
  end-page: 97
  ident: b0115
  article-title: Model-based tracking of the hip: implications for novel analyses of hip pathology
  publication-title: J. Arthroplasty.
– volume: 80
  start-page: 171
  year: 2018
  end-page: 178
  ident: b0135
  article-title: Articular-surface-based automatic anatomical coordinate systems for the knee bones
  publication-title: J. Biomech.
– volume: 49
  start-page: 3026
  year: 2016
  end-page: 3030
  ident: b0055
  article-title: An analysis of changes in in vivo cartilage thickness of the healthy ankle following dynamic activity
  publication-title: J. Biomech.
– volume: 36
  start-page: 68
  year: 2001
  end-page: 73
  ident: b0125
  article-title: The anatomy and mechanisms of syndesmotic ankle sprains
  publication-title: J. Athl. Train
– volume: 206
  start-page: 185
  year: 1986
  end-page: 191
  ident: b0080
  article-title: A surgical approach to the problem of severe lateral instability at the ankle
  publication-title: Clin. Orthop. Relat. Res.
– volume: 46
  start-page: 343
  year: 1953
  end-page: 344
  ident: b0075
  article-title: Recurrent instability of the ankle; a method of surgical treatment
  publication-title: Proc. R. Soc. Med.
– volume: 50
  start-page: 1493
  year: 2016
  end-page: 1495
  ident: b0095
  article-title: 2016 consensus statement of the International Ankle Consortium: prevalence, impact and long-term consequences of lateral ankle sprains
  publication-title: Br. J. Sports Med.
– volume: 41
  start-page: 888
  year: 2015
  end-page: 893
  ident: b0175
  article-title: Accuracy and feasibility of high-speed dual fluoroscopy and model-based tracking to measure in vivo ankle arthrokinematics
  publication-title: Gait Posture
– volume: 36
  start-page: 372
  year: 2006
  end-page: 384
  ident: b0110
  article-title: Ankle syndesmosis injuries: anatomy, biomechanics, mechanism of injury, and clinical guidelines for diagnosis and intervention
  publication-title: J. Orthop. Sports Phys. Ther.
– volume: 51
  start-page: 904
  issue: 5
  year: 1969
  ident: 10.1016/j.jbiomech.2020.109696_b0060
  article-title: Reconstruction of lateral ligament tears of the ankle. an experimental study and clinical evaluation of seven patients treated by a new modification of the Elmslie procedure
  publication-title: J. Bone Joint. Surg. Am.
  doi: 10.2106/00004623-196951050-00007
– volume: 8
  start-page: 991
  issue: 6
  year: 2008
  ident: 10.1016/j.jbiomech.2020.109696_b0015
  article-title: A technique to measure three-dimensional in vivo rotation of fused and adjacent lumbar vertebrae
  publication-title: Spine J.
  doi: 10.1016/j.spinee.2007.07.390
– volume: 42
  start-page: 424
  issue: 4
  year: 2015
  ident: 10.1016/j.jbiomech.2020.109696_b0100
  article-title: Plantar-flexion of the ankle joint complex in terminal stance is initiated by subtalar plantar-flexion: A bi-planar fluoroscopy study
  publication-title: Gait. Posture
  doi: 10.1016/j.gaitpost.2015.07.009
– volume: 18
  start-page: 760
  issue: 6
  year: 2010
  ident: 10.1016/j.jbiomech.2020.109696_b0070
  article-title: Magnitude and regional distribution of cartilage loss associated with grades of joint space narrowing in radiographic osteoarthritis–data from the Osteoarthritis Initiative (OAI)
  publication-title: Osteoarth. Cartil.
  doi: 10.1016/j.joca.2009.12.009
– volume: 47
  start-page: 2647
  issue: 11
  year: 2014
  ident: 10.1016/j.jbiomech.2020.109696_b0130
  article-title: Effects of footwear on three-dimensional tibiotalar and subtalar joint motion during running
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2014.05.016
– volume: 49
  start-page: 3026
  issue: 13
  year: 2016
  ident: 10.1016/j.jbiomech.2020.109696_b0055
  article-title: An analysis of changes in in vivo cartilage thickness of the healthy ankle following dynamic activity
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2016.05.030
– volume: 46
  start-page: 343
  issue: 5
  year: 1953
  ident: 10.1016/j.jbiomech.2020.109696_b0075
  article-title: Recurrent instability of the ankle; a method of surgical treatment
  publication-title: Proc. R. Soc. Med.
– volume: 14
  start-page: 1294
  issue: 12
  year: 2006
  ident: 10.1016/j.jbiomech.2020.109696_b0170
  article-title: Determination of in-vivo articular cartilage contact areas of human talocrural joint under weightbearing conditions
  publication-title: Osteoarth. Cartil.
  doi: 10.1016/j.joca.2006.05.012
– volume: 19
  start-page: 653
  issue: 10
  year: 1998
  ident: 10.1016/j.jbiomech.2020.109696_b0090
  article-title: Persistent disability associated with ankle sprains: a prospective examination of an athletic population
  publication-title: Foot. Ankle. Int.
  doi: 10.1177/107110079801901002
– volume: 24
  start-page: 1019
  issue: 5
  year: 2006
  ident: 10.1016/j.jbiomech.2020.109696_b0065
  article-title: Six DOF in vivo kinematics of the ankle joint complex: Application of a combined dual-orthogonal fluoroscopic and magnetic resonance imaging technique
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.20142
– volume: 1
  start-page: 14
  year: 2009
  ident: 10.1016/j.jbiomech.2020.109696_b0085
  article-title: Understanding acute ankle ligamentous sprain injury in sports
  publication-title: Sports Med. Arthrosc. Rehabil. Ther. Technol.
– volume: 4
  start-page: 41
  year: 2009
  ident: 10.1016/j.jbiomech.2020.109696_b0105
  article-title: Treatment of chronic lateral ankle instability: a modified Brostrom technique using three suture anchors
  publication-title: J. Orthop. Surg. Res.
  doi: 10.1186/1749-799X-4-41
– volume: 37
  start-page: 1586
  issue: 8
  year: 2009
  ident: 10.1016/j.jbiomech.2020.109696_b0155
  article-title: Patterns of recurrent injuries among US high school athletes, 2005–2008
  publication-title: Am. J. Sports Med.
  doi: 10.1177/0363546509332500
– volume: 32
  start-page: 1371
  issue: 10
  year: 2014
  ident: 10.1016/j.jbiomech.2020.109696_b0025
  article-title: A new measure of tibiofemoral subchondral bone interactions that correlates with early cartilage damage in injured sheep
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.22685
– volume: 31
  start-page: 113
  issue: 2
  year: 1990
  ident: 10.1016/j.jbiomech.2020.109696_b0145
  article-title: Roentgen stereophotogrammetric analysis
  publication-title: Acta Radiol.
  doi: 10.1177/028418519003100201
– volume: 26
  start-page: 1473
  issue: 12
  year: 1993
  ident: 10.1016/j.jbiomech.2020.109696_b0150
  article-title: Determining the movements of the skeleton using well-configured markers
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(93)90098-Y
– volume: 27
  start-page: 737
  issue: 6
  year: 2008
  ident: 10.1016/j.jbiomech.2020.109696_b0185
  article-title: A technique for regional analysis of femorotibial cartilage thickness based on quantitative magnetic resonance imaging
  publication-title: IEEE. Trans. Med. Imaging
  doi: 10.1109/TMI.2007.907323
– volume: 36
  start-page: 1291
  issue: 9
  year: 2003
  ident: 10.1016/j.jbiomech.2020.109696_b0010
  article-title: A method to estimate in vivo dynamic articular surface interaction
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(03)00157-X
– volume: 31
  start-page: 10
  issue: 1
  year: 2009
  ident: 10.1016/j.jbiomech.2020.109696_b0005
  article-title: Validation of three-dimensional model-based tibio-femoral tracking during running
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2008.03.003
– volume: 128
  start-page: 604
  issue: 4
  year: 2006
  ident: 10.1016/j.jbiomech.2020.109696_b0030
  article-title: Validation of a new model-based tracking technique for measuring three-dimensional, in vivo glenohumeral joint kinematics
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2206199
– volume: 132
  start-page: 551
  issue: 5
  year: 1966
  ident: 10.1016/j.jbiomech.2020.109696_b0040
  article-title: Sprained ankles. VI. Surgical treatment of “chronic” ligament ruptures
  publication-title: Acta. Chir. Scand.
– volume: 40
  start-page: 2099
  issue: 9
  year: 2012
  ident: 10.1016/j.jbiomech.2020.109696_b0165
  article-title: The effect of modified Brostrom-Gould repair for lateral ankle instability on in vivo tibiotalar kinematics
  publication-title: Am. J. Sports Med.
  doi: 10.1177/0363546512454840
– volume: 206
  start-page: 185
  year: 1986
  ident: 10.1016/j.jbiomech.2020.109696_b0080
  article-title: A surgical approach to the problem of severe lateral instability at the ankle
  publication-title: Clin. Orthop. Relat. Res.
  doi: 10.1097/00003086-198605000-00032
– volume: 24
  start-page: 1402
  issue: 4
  year: 2016
  ident: 10.1016/j.jbiomech.2020.109696_b0045
  article-title: Normative rearfoot motion during barefoot and shod walking using biplane fluoroscopy
  publication-title: Knee. Surg. Sports Traumatol. Arthrosc.
  doi: 10.1007/s00167-014-3084-4
– volume: 49
  start-page: 136
  year: 2016
  ident: 10.1016/j.jbiomech.2020.109696_b0120
  article-title: Predicting tibiotalar and subtalar joint angles from skin-marker data with dual-fluoroscopy as a reference standard
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2016.06.031
– volume: 36
  start-page: 68
  issue: 1
  year: 2001
  ident: 10.1016/j.jbiomech.2020.109696_b0125
  article-title: The anatomy and mechanisms of syndesmotic ankle sprains
  publication-title: J. Athl. Train
– year: 2008
  ident: 10.1016/j.jbiomech.2020.109696_b0020
– volume: 50
  start-page: 1493
  issue: 24
  year: 2016
  ident: 10.1016/j.jbiomech.2020.109696_b0095
  article-title: 2016 consensus statement of the International Ankle Consortium: prevalence, impact and long-term consequences of lateral ankle sprains
  publication-title: Br. J. Sports Med.
  doi: 10.1136/bjsports-2016-096188
– volume: 41
  start-page: 888
  issue: 4
  year: 2015
  ident: 10.1016/j.jbiomech.2020.109696_b0175
  article-title: Accuracy and feasibility of high-speed dual fluoroscopy and model-based tracking to measure in vivo ankle arthrokinematics
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2015.03.008
– volume: 35
  start-page: 543
  issue: 4
  year: 2002
  ident: 10.1016/j.jbiomech.2020.109696_b0190
  article-title: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion–part I: ankle, hip, and spine
  publication-title: J. Biomech
  doi: 10.1016/S0021-9290(01)00222-6
– volume: 26
  start-page: 88
  issue: 1
  year: 2011
  ident: 10.1016/j.jbiomech.2020.109696_b0115
  article-title: Model-based tracking of the hip: implications for novel analyses of hip pathology
  publication-title: J. Arthroplasty.
  doi: 10.1016/j.arth.2009.12.004
– volume: 37
  start-page: 2241
  issue: 11
  year: 2009
  ident: 10.1016/j.jbiomech.2020.109696_b0050
  article-title: In vivo kinematics of the tibiotalar joint after lateral ankle instability
  publication-title: Am. J. Sports Med.
  doi: 10.1177/0363546509337578
– volume: 138
  issue: 9
  year: 2016
  ident: 10.1016/j.jbiomech.2020.109696_b0140
  article-title: In Vivo Kinematics of the Tibiotalar and Subtalar Joints in Asymptomatic Subjects: A High-Speed Dual Fluoroscopy Study
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4034263
– volume: 23
  start-page: 583
  year: 1999
  ident: 10.1016/j.jbiomech.2020.109696_b0160
  article-title: Regularized marching tetrahedra: improved iso-surface extraction
  publication-title: Comput. Graphics
  doi: 10.1016/S0097-8493(99)00076-X
– year: 2009
  ident: 10.1016/j.jbiomech.2020.109696_b0180
– volume: 80
  start-page: 171
  year: 2018
  ident: 10.1016/j.jbiomech.2020.109696_b0135
  article-title: Articular-surface-based automatic anatomical coordinate systems for the knee bones
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2018.08.028
– volume: 128
  start-page: 483
  year: 1964
  ident: 10.1016/j.jbiomech.2020.109696_b0035
  article-title: Sprained Ankles: Anatomic Lesions in Recent Sprains
  publication-title: Acta. Chir. Scand.
– volume: 36
  start-page: 372
  issue: 6
  year: 2006
  ident: 10.1016/j.jbiomech.2020.109696_b0110
  article-title: Ankle syndesmosis injuries: anatomy, biomechanics, mechanism of injury, and clinical guidelines for diagnosis and intervention
  publication-title: J. Orthop. Sports Phys. Ther.
  doi: 10.2519/jospt.2006.2195
SSID ssj0007479
Score 2.4384847
Snippet Ankle ligament injuries are the most common musculoskeletal injury in physically active populations. Failure to restore native kinematics post-injury often...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 109696
SubjectTerms Accuracy
Adult
Algorithms
Ankle
Ankle Injuries - diagnostic imaging
Ankle Joint - diagnostic imaging
Arthritis
Automation
Beads
Biomechanical Phenomena
Biplane radiography
Bone surgery
Bones
Calcaneus
Fibula
Foot and ankle
Humans
In vivo methods and tests
Injuries
Joint diseases
Joints (anatomy)
Jumping
Kinematics
Ligaments
Ligaments, Articular - diagnostic imaging
Motion capture
Motion stability
Movement
Radiographs
Radiography
Radiography - methods
Range of Motion, Articular
Rehabilitation
Software
Subtalar Joint - diagnostic imaging
Surgery
Surgical implants
Talus
Tantalum
Tibia
Validation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VrYToAcEW6EJBg4S4mSaO8-EDQgW1qpC6Qoii3qLEdqQskCxtWokTf52xY4c9AOWazWQ3O87Mc2bmPYAXiS5UwyvJasMVE1rWTDYxZ6qJpU5TrrUbFD5dZidn4v15er4FyzALY9sqQ0x0gVr3yr4jP6BMkzvyK_Fm_Z1Z1ShbXQ0SGpWXVtCvHcXYLdjmlhlrBttvj5YfPk6xmcCzb_qIGQGDaGNmePVq5SbeXYmCO56lzFL5_zld_Q2OurR0fA_uejyJh-MCuA9bppvD7mFHe-lvP_Alug5P9-p8Djsb5INzuH3qy-q78PMzofFRXAmrTuNGVRv7BvWoWo91u7atsXhR6dYzXePQo2OoxbbD6_a6R6sBb3DVt92AX-jqjhL2EsdxSLTsyEzTQfstyilX0Fb9AZwdH316d8K8MgNTIo0HVlQF_bvGyEhlUvJGCK3zSidKN3UeFbVokjpSRSMqofMozxPDC0VYRhMa4xRjkocw6_rO7AFWJheRLRaKPBINIb46yerUwkxudCbjBaTBAaXytOVWPeNrGfrTVmVwXGkdV46OW8DBZLceiTtutMiDf8swlkqBtKTccqOlnCw9cBkByX_Z7oelVPrwcVn-XuwLeD59TA--reaQo_srOich8JdRqooW8GhcgtONJpyAfSSLx_---BO4Y3-JLY7F2T7Mhosr85Qw1lA_8w_OL-QPJog
  priority: 102
  providerName: ProQuest
Title Validation and application of dynamic biplane radiography to study in vivo ankle joint kinematics during high-demand activities
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0021929020301123
https://dx.doi.org/10.1016/j.jbiomech.2020.109696
https://www.ncbi.nlm.nih.gov/pubmed/32139098
https://www.proquest.com/docview/2417016474
https://www.proquest.com/docview/2374361110
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: AKRWK
  dateStart: 19680101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1873-2380
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB9KBdEH0asfZ2sZQXxLL9lsstnHa2k5lR4iVu4tJLsbyKnJ0aaFvrT_emc3m_MEpYIvCfmYfM3u7G8zM78BeBfrTFWskEFpmAq4lmUgq4gFqoqkThKmtUsUPp2nszP-cZEstuBoyIWxYZXe9vc23Vlrv2fiv-ZkVdc2x5d6G5PWlUaNlFnGT86FrWJwcPMrzIPgsg_ziAJ79kaW8PJg6XLcnVOCOWal1JL3_3mA-hsAdQPRyVN44hEkTvuHfAZbphnBzrSh2fPPa3yPLqbT_SwfweMNusERPDz1jvQduP1G-Lsvp4RFo3HDj41thbqvU49lvbLBsHhe6NpzW2PXouOkxbrBq_qqRVv13eCyrZsOv9PVHQnsBfYJkGj5kANNO-1dlKtVQZPz53B2cvz1aBb4WgyB4knUBVmR0eTQGBmqVEpWca61KHSsdFWKMCt5FZehyipecC1CIWLDMkXoRRP-YmRV4hew3bSNeQVYGMFD6x7kIuQVYbwyTsvEAktmdCqjMSSDAnLlicptvYwf-RCRtswHxeVWcXmvuDFM1nKrnqrjXgkx6DcfElHJdOY0mtwrKdeSvzXXf5LdG5pS7g3GRU5ASjhuNz6Gt-vD1NWt_4YU3V7SOTHBvZQGp3AML_smuH7RmBGUD2X2-j8ebBce2S3rK4vSPdjuzi_NG4JcXbnv-hQtxULsw4Pph0-zOa0Pj-efv9wBRsUuWA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVuJxQLDlsVDASMAtbeI4Dx8qVKDVlnZXCLWoN5PYjpSFJks3LdoT_4zfxthxwh6Acuk1m_HuauyZbzwz3wC8CFUqC5pxL9dUekzx3ONFQD1ZBFxFEVXKNgqPJ_HomL0_iU5W4GfXC2PKKjubaA21qqW5I99CT5NY8iv2evbNM1OjTHa1G6GRudEKattSjLnGjgO9-I4h3Hx7_x3q-yWle7tHb0eemzLgSRYFjZdmKYY9WnNfxpzTgjGlkkyFUhV54qc5K8Lcl2nBMqYSP0lCTVOJflkhsqB4XkJc9xqssZBxDP7W3uxOPnzsfQGCdVdkEngIRPylHuXp5tR22NuUCLW8TrEZHfBn9_g3-Gvd4N4duO3wK9lpN9xdWNHVANZ3KozdTxfkFbEVpfaqfgC3lsgOB3B97NL46_DjE6L_dpgTySpFlrLopC6IWlTZaSlJXs5MKS45y1TpmLVJUxPLiEvKilyUFzUxM-c1mdZl1ZAvuLqloJ2Ttv2SGDZmT-FD8y3STsoo9fweHF-Jju7DalVX-iGQTCfMN8lJlvisQISZh3EeGVhLtYp5MISoU4CQjibdTOv4Krp6uKnoFCeM4kSruCFs9XKzlijkUomk06_o2mDRcAv0ZZdK8l7SAaUWAP2X7Ea3lYQzV3Px-3AN4Xn_MRoakz1CRdfn-E6IYDNG1-gP4UG7Bfs_GlIMJHyePvr34s_gxuhofCgO9ycHj-Gm-VUmMRfEG7DanJ3rJ4jvmvypO0QEPl_1uf0FxUxi5A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIlVwQJBCSSmwSMBtib1ee70HhCpK1FJacaAoN2PvQ3KgdtqkRTnxv_h1zK4f5ACUS69JZpNodma-8cx8A_A80qmyLJe0MExRrmVBpQ0ZVTaUOo6Z1n5Q-Og42T_h7yfxZA1-drMwrq2y84neUetauWfkI4w0wpNf8ZFt2yI-7o3fzM6o2yDlKq3dOo3mihya5XdM3-avD_ZQ1y8YG7_79HafthsGqOJxuKBpnmLKY4wMVCIls5xrLXIdKW0LEaQFt1ERqNTynGsRCBEZliqMyRpRBUNbifDcG3BTRJF07YRi0id7jpe-bS8JKUKQYGU6efpq6mfrfTGEeUanxC0N-HNg_Bvw9QFwfBfutMiV7DZX7R6smWoAm7sVZu2nS_KS-F5S_5B-ALdXaA4HsHHUFvA34cdnxP3NGieSV5qs1M9JbYleVvlpqUhRzlwTLjnPddlyapNFTTwXLikrclle1sRtmzdkWpfVgnzF0z357Jw0g5fE8TBTjS-6b1F-R0Zp5vfh5Fo09ADWq7oyD4HkRvDAlSW5CLhFbFlESRE7QMuMTmQ4hLhTQKZagnS3p-Nb1nXCTbNOcZlTXNYobgijXm7WUIRcKSE6_WbdACy67Ayj2JWSspdsIVIDff5Ldqe7SlnrqObZb7MawrP-bXQxrm6Eiq4v8DMRwswEg2IwhK3mCvZ_NGKYQgQy3f734U9hA601-3BwfPgIbrkf5SpyYbID64vzC_MYgd2ieOItiMCX6zbZXwnuYH4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+and+application+of+dynamic+biplane+radiography+to+study+in+vivo+ankle+joint+kinematics+during+high-demand+activities&rft.jtitle=Journal+of+biomechanics&rft.au=Pitcairn%2C+Samuel&rft.au=Kromka%2C+Joseph&rft.au=Hogan%2C+MaCalus&rft.au=Anderst%2C+William&rft.date=2020-04-16&rft.pub=Elsevier+Ltd&rft.issn=0021-9290&rft.volume=103&rft_id=info:doi/10.1016%2Fj.jbiomech.2020.109696&rft.externalDocID=S0021929020301123
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon