Self-adaptive spatial-temporal network based on heterogeneous data for air quality prediction

With the development of society and the rise of people's environmental awareness, air pollution is receiving increased public attention. Accurate air quality prediction can provide useful information for government decision-making and residents' activities. However, accurately predicting f...

Full description

Saved in:
Bibliographic Details
Published inConnection science Vol. 33; no. 3; pp. 427 - 446
Main Authors Chang, Feng, Ge, Liang, Li, Siyu, Wu, Kunyan, Wang, Yaqian
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 03.07.2021
Taylor & Francis Ltd
Taylor & Francis Group
Subjects
Online AccessGet full text
ISSN0954-0091
1360-0494
1360-0494
DOI10.1080/09540091.2020.1841095

Cover

Abstract With the development of society and the rise of people's environmental awareness, air pollution is receiving increased public attention. Accurate air quality prediction can provide useful information for government decision-making and residents' activities. However, accurately predicting future air quality remains a challenging task because of the complex spatial-temporal dependencies of air quality. Previous studies failed to explicitly model these spatial-temporal dependencies. In this paper, we propose a self-adaptive spatial-temporal network (SA-STNet) to efficiently and effectively capture the spatial-temporal dependencies of air quality. In order to effectively aggregate spatial information, we employ a self-adaptive graph convolution module that can learn the latent spatial correlations of air quality automatically. In the temporal dimension, we utilise three independent components to capture the recent, daily-periodic, and weekly-periodic temporal dependencies of air quality, respectively. In addition, our model exploits rich external complementary information by means of a features extraction component. A parametric-matrix-based fusion architecture is used to combine the outputs of different components into a joint representation which is used for generating the final prediction results. Extensive experiments carried out on real-world datasets demonstrate the outstanding performance of our model compared with baselines and state-of-the-art methods.
AbstractList With the development of society and the rise of people's environmental awareness, air pollution is receiving increased public attention. Accurate air quality prediction can provide useful information for government decision-making and residents' activities. However, accurately predicting future air quality remains a challenging task because of the complex spatial-temporal dependencies of air quality. Previous studies failed to explicitly model these spatial-temporal dependencies. In this paper, we propose a self-adaptive spatial-temporal network (SA-STNet) to efficiently and effectively capture the spatial-temporal dependencies of air quality. In order to effectively aggregate spatial information, we employ a self-adaptive graph convolution module that can learn the latent spatial correlations of air quality automatically. In the temporal dimension, we utilise three independent components to capture the recent, daily-periodic, and weekly-periodic temporal dependencies of air quality, respectively. In addition, our model exploits rich external complementary information by means of a features extraction component. A parametric-matrix-based fusion architecture is used to combine the outputs of different components into a joint representation which is used for generating the final prediction results. Extensive experiments carried out on real-world datasets demonstrate the outstanding performance of our model compared with baselines and state-of-the-art methods.
Author Wang, Yaqian
Chang, Feng
Wu, Kunyan
Li, Siyu
Ge, Liang
Author_xml – sequence: 1
  givenname: Feng
  surname: Chang
  fullname: Chang, Feng
  organization: Chongqing Key Laboratory of Software Theory & Technology
– sequence: 2
  givenname: Liang
  surname: Ge
  fullname: Ge, Liang
  email: geliang@cqu.edu.cn
  organization: Chongqing Key Laboratory of Software Theory & Technology
– sequence: 3
  givenname: Siyu
  surname: Li
  fullname: Li, Siyu
  organization: Chongqing Key Laboratory of Software Theory & Technology
– sequence: 4
  givenname: Kunyan
  surname: Wu
  fullname: Wu, Kunyan
  organization: Chongqing Key Laboratory of Software Theory & Technology
– sequence: 5
  givenname: Yaqian
  surname: Wang
  fullname: Wang, Yaqian
  organization: Chongqing Key Laboratory of Software Theory & Technology
BookMark eNqNUUtrFTEUDlLB2-pPEAKup55kMi_cKMVHoeBCXUo4eUzNNTeZZjIt99-b6bQuXKirw_n4Hsl3TslJiMES8pLBOYMeXsPQCICBnXPgBeoFK8gTsmN1CxWIQZyQ3cqpVtIzcjrPewBogLEd-f7F-rFCg1N2t5bOE2aHvsr2MMWEngab72L6SRXO1tAY6A-bbYrXNti4zNRgRjrGRNElerOgd_lIp2SN09nF8Jw8HdHP9sXDPCPfPrz_evGpuvr88fLi3VWlRcNy1fccoO9HpVCBGgxruOK2Ro5MG91oa03Tib5Frjut9IgjL7tVAgw0Wuj6jFxuvibiXk7JHTAdZUQn74GYriWm7LS3sqRA16nWDKITHXKlNHDVQ18ScUQoXu3mtYQJj3fo_W9DBnItXD4WLtfC5UPhRfhqE04p3ix2znIflxTKvyXv6k40ou7awnqzsXSK85zsKLXLuJaVEzr_z4zmD_X_vu3tpnOhXOuA5abeyIxHH9OYMGg3y_rvFr8A_PC5aQ
CitedBy_id crossref_primary_10_1080_09540091_2022_2080806
crossref_primary_10_1080_09540091_2022_2061915
crossref_primary_10_2139_ssrn_4840027
crossref_primary_10_1016_j_physa_2022_127627
crossref_primary_10_1080_09540091_2022_2131737
crossref_primary_10_1080_09540091_2022_2115010
crossref_primary_10_3390_atmos14010055
crossref_primary_10_1080_09540091_2021_1996537
crossref_primary_10_3390_su15097624
crossref_primary_10_1016_j_scitotenv_2023_166178
crossref_primary_10_1080_09540091_2022_2067124
crossref_primary_10_3390_s23188003
crossref_primary_10_2298_CSIS201221043N
Cites_doi 10.1609/aaai.v32i1.11871
10.1126/science.1108752
10.1126/science.1092666
10.1609/aaai.v33i01.33015668
10.1109/TKDE.2018.2823740
10.1016/j.atmosenv.2011.10.059
10.1016/j.neucom.2019.12.118
10.1016/j.chemosphere.2018.12.128
10.1007/s00477-009-0361-8
10.1609/aaai.v31i1.10735
10.1371/journal.pone.0182724
10.1162/neco.1997.9.8.1735
10.1109/TBDATA.2017.2651898
10.17265/2159-5313/2016.09.003
10.1016/j.atmosenv.2015.08.040
10.1109/ACCESS.2019.2897028
10.1080/09593331908616664
10.24963/ijcai.2019/603
10.1016/j.matcom.2004.06.023
10.1080/01621459.1970.10481180
10.1080/09540091.2019.1609420
10.1016/j.partic.2013.11.001
10.1080/09540091.2019.1650330
10.1016/j.scitotenv.2011.08.069
10.1145/3274895.3274907
10.24963/ijcai.2019/264
10.1016/j.envpol.2007.06.012
10.1016/j.atmosenv.2014.08.073
10.1007/s11869-018-0619-8
10.1504/IJCSE.2019.101897
10.1080/09540091.2019.1670621
10.24963/ijcai.2018/505
10.1609/aaai.v33i01.33013656
10.1145/3219819.3219822
10.1609/aaai.v32i1.11836
10.1145/2783258.2788573
10.1109/ACCESS.2019.2941732
ContentType Journal Article
Copyright 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
2020 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
– notice: 2020 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
JQ2
NAPCQ
ADTOC
UNPAY
DOA
DOI 10.1080/09540091.2020.1841095
DatabaseName CrossRef
ProQuest Computer Science Collection
Nursing & Allied Health Premium
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Nursing & Allied Health Premium
ProQuest Computer Science Collection
DatabaseTitleList
Nursing & Allied Health Premium

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1360-0494
EndPage 446
ExternalDocumentID oai_doaj_org_article_8fb077b6d94747a2bbc02b808b2eafa0
10.1080/09540091.2020.1841095
10_1080_09540091_2020_1841095
1841095
Genre Research Article
GroupedDBID .4S
.7F
.DC
.QJ
0YH
29F
2DF
30N
4.4
5GY
5VS
AAENE
AAJMT
ABCCY
ABDBF
ABFIM
ABHAV
ABIVO
ABPEM
ABTAI
ACGEJ
ACGFS
ACTIO
ACUHS
ADCVX
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGMYJ
AIJEM
AJWEG
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EAS
EBS
ECS
EDO
EMK
EPL
EPS
ESO
EST
ESX
E~A
E~B
F5P
FEDTE
FRP
GTTXZ
H13
HF~
HVGLF
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
MK~
NA5
NX~
O9-
RIG
S-T
SNACF
TDBHL
TFL
TFT
TFW
TNC
TTHFI
TUS
TWF
UT5
UU3
~S~
AAFWJ
AAYXX
ADMLS
AFPKN
AIYEW
CITATION
JQ2
NAPCQ
07I
4B5
7RV
8FE
8FG
8FI
8FJ
8G5
ABJNI
ABUWG
ADBBV
ADTOC
ADXEU
AEHZU
AEZBV
AFION
AFKRA
AGBLW
AGWUF
AGYFW
AKHJE
AKMBP
ALRRR
ALXIB
ARAPS
AZQEC
BENPR
BGLVJ
BGSSV
BKEYQ
BPHCQ
BVXVI
BWMZZ
C0-
C5H
CAG
CCPQU
COF
CYRSC
DAOYK
DEXXA
DWQXO
EJD
EX3
FETWF
FYUFA
GNUQQ
GROUPED_DOAJ
GUQSH
HCIFZ
IFELN
K6V
K7-
L8C
M2M
M2O
MVM
NUSFT
OPCYK
P62
PCD
PHGZM
PHGZT
PPXIY
PQGLB
PQQKQ
PROAC
PSYQQ
TAJZE
TAP
UB6
UKHRP
UNPAY
WOW
ID FETCH-LOGICAL-c451t-8820088fbbab0b9d152b2e3a2a1cdc5ceed57486a2c7cbcfaf2574eb40d05c4c3
IEDL.DBID UNPAY
ISSN 0954-0091
1360-0494
IngestDate Wed Aug 27 01:32:15 EDT 2025
Tue Aug 19 22:12:39 EDT 2025
Mon Jun 30 06:16:53 EDT 2025
Thu Apr 24 23:00:26 EDT 2025
Wed Oct 01 00:38:50 EDT 2025
Wed Dec 25 09:06:27 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-8820088fbbab0b9d152b2e3a2a1cdc5ceed57486a2c7cbcfaf2574eb40d05c4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.tandfonline.com/doi/pdf/10.1080/09540091.2020.1841095?needAccess=true
PQID 2737454376
PQPubID 32754
PageCount 20
ParticipantIDs crossref_citationtrail_10_1080_09540091_2020_1841095
doaj_primary_oai_doaj_org_article_8fb077b6d94747a2bbc02b808b2eafa0
unpaywall_primary_10_1080_09540091_2020_1841095
crossref_primary_10_1080_09540091_2020_1841095
proquest_journals_2737454376
informaworld_taylorfrancis_310_1080_09540091_2020_1841095
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-03
PublicationDateYYYYMMDD 2021-07-03
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-03
  day: 03
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Connection science
PublicationYear 2021
Publisher Taylor & Francis
Taylor & Francis Ltd
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
– name: Taylor & Francis Group
References CIT0010
CIT0032
CIT0031
CIT0012
CIT0034
CIT0011
CIT0033
Tong W. (CIT0030) 2019; 12
Srivastava N. (CIT0028) 2014; 15
CIT0014
CIT0036
CIT0013
CIT0035
CIT0016
CIT0038
CIT0015
CIT0037
CIT0018
CIT0017
CIT0039
CIT0019
CIT0041
CIT0040
CIT0021
CIT0043
CIT0020
CIT0042
CIT0001
CIT0023
CIT0045
CIT0022
CIT0044
CIT0003
CIT0025
CIT0002
CIT0024
CIT0046
CIT0005
CIT0027
CIT0004
CIT0026
CIT0007
CIT0029
CIT0006
CIT0009
CIT0008
References_xml – ident: CIT0006
  doi: 10.1609/aaai.v32i1.11871
– ident: CIT0015
– ident: CIT0021
  doi: 10.1126/science.1108752
– ident: CIT0001
  doi: 10.1126/science.1092666
– ident: CIT0034
  doi: 10.1609/aaai.v33i01.33015668
– ident: CIT0023
  doi: 10.1109/TKDE.2018.2823740
– ident: CIT0014
  doi: 10.1016/j.atmosenv.2011.10.059
– ident: CIT0009
  doi: 10.1016/j.neucom.2019.12.118
– ident: CIT0041
  doi: 10.1016/j.chemosphere.2018.12.128
– ident: CIT0018
  doi: 10.1007/s00477-009-0361-8
– ident: CIT0040
  doi: 10.1609/aaai.v31i1.10735
– ident: CIT0007
  doi: 10.1371/journal.pone.0182724
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: CIT0028
  publication-title: Journal of Machine Learning Research
– ident: CIT0012
  doi: 10.1162/neco.1997.9.8.1735
– ident: CIT0045
  doi: 10.1109/TBDATA.2017.2651898
– ident: CIT0029
– ident: CIT0026
  doi: 10.17265/2159-5313/2016.09.003
– ident: CIT0031
  doi: 10.1016/j.atmosenv.2015.08.040
– ident: CIT0024
  doi: 10.1109/ACCESS.2019.2897028
– ident: CIT0011
  doi: 10.1080/09593331908616664
– ident: CIT0039
  doi: 10.24963/ijcai.2019/603
– ident: CIT0002
  doi: 10.1016/j.matcom.2004.06.023
– ident: CIT0008
  doi: 10.17265/2159-5313/2016.09.003
– ident: CIT0016
– ident: CIT0004
  doi: 10.1080/01621459.1970.10481180
– ident: CIT0020
– ident: CIT0046
  doi: 10.1080/09540091.2019.1609420
– ident: CIT0022
  doi: 10.1016/j.partic.2013.11.001
– ident: CIT0027
  doi: 10.1080/09540091.2019.1650330
– ident: CIT0017
  doi: 10.1016/j.scitotenv.2011.08.069
– ident: CIT0037
  doi: 10.17265/2159-5313/2016.09.003
– ident: CIT0019
  doi: 10.1145/3274895.3274907
– ident: CIT0032
  doi: 10.24963/ijcai.2019/264
– ident: CIT0003
– ident: CIT0013
  doi: 10.1016/j.envpol.2007.06.012
– ident: CIT0025
  doi: 10.1016/j.atmosenv.2014.08.073
– volume: 12
  start-page: 1
  issue: 1
  year: 2019
  ident: CIT0030
  publication-title: Air Quality, Atmosphere & Health
  doi: 10.1007/s11869-018-0619-8
– ident: CIT0044
  doi: 10.1504/IJCSE.2019.101897
– ident: CIT0033
  doi: 10.1080/09540091.2019.1670621
– ident: CIT0038
  doi: 10.24963/ijcai.2018/505
– ident: CIT0005
  doi: 10.17265/2159-5313/2016.09.003
– ident: CIT0010
  doi: 10.1609/aaai.v33i01.33013656
– ident: CIT0036
  doi: 10.1145/3219819.3219822
– ident: CIT0035
  doi: 10.1609/aaai.v32i1.11836
– ident: CIT0043
  doi: 10.1145/2783258.2788573
– ident: CIT0042
  doi: 10.1109/ACCESS.2019.2941732
SSID ssj0005011
Score 2.3424444
Snippet With the development of society and the rise of people's environmental awareness, air pollution is receiving increased public attention. Accurate air quality...
SourceID doaj
unpaywall
proquest
crossref
informaworld
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 427
SubjectTerms Air pollution
Air quality
Air quality prediction
Decision making
Deep learning
Feature extraction
graph convolutional network
Outdoor air quality
Spatial data
spatial-temporal dependencies
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nq9QwEA_yLnrxW1x9Sg5e60vaSds9qvh4CHrRB-8iYSZJUSjdZT-Q998706bL6mU9CD0NDSTzkfmlnfxGqTdEDBISW6B2Fgto6lRglP4mBJYfQBfkgvPnL_XVNXy6cTdHrb6kJmyiB54Ud9F2ZJqG6rgERr5YEgVTUmtaKhN2OJ7WOY3Nh6m5uMOMnXcZP0DBKMLOd3eEVZtlIuKzYcmiFqyR5hJHWWkk7_-LuvQPAHp3P6zx9hf2_VEuunyo7mcQqd9Nk3-k7qThsXowN2jQOV6fqO9fU9-xVnAtm5reSvU09kWmo-r1MNWAa0llUa8G_UOKY1bsU2m132qpHtU8OY0_N3q6fXmr1xv5tSPmfKquLz9--3BV5H4KRQBndwWDac74rFBCMrSMnLpZiRWWaEMMTtKla6CtsQxNoNBhx_EMicBE4wKE6pk6G1ZDeq60iUBobcIq1uCiWSYnxGDJkOlSC3GhYNanD5lsXHpe9N7OnKTZDF7M4LMZFurtYdh6Yts4NeC9GOvwspBljwJ2IZ9dyJ9yoYVaHpva78ZvJd3U2MRXJyZwPvuFz9G_9QwJG3DAe_dCXRx85d9W9OJ_rOiluldK7Y18hq7O1dlus0-vGDzt6PUYJ78BSwsQEw
  priority: 102
  providerName: Directory of Open Access Journals
Title Self-adaptive spatial-temporal network based on heterogeneous data for air quality prediction
URI https://www.tandfonline.com/doi/abs/10.1080/09540091.2020.1841095
https://www.proquest.com/docview/2737454376
https://www.tandfonline.com/doi/pdf/10.1080/09540091.2020.1841095?needAccess=true
https://doaj.org/article/8fb077b6d94747a2bbc02b808b2eafa0
UnpaywallVersion publishedVersion
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1360-0494
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005011
  issn: 0954-0091
  databaseCode: ABDBF
  dateStart: 19980601
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1360-0494
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005011
  issn: 0954-0091
  databaseCode: ADMLS
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1360-0494
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005011
  issn: 0954-0091
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEC6SzUEvxidujEsfvM6mZ6Z7HgeRVQxBcFF0IR6k6deoOMwMs7uE-OutmseSBCQKwp6a7WW7-puqr3uqvgJ4YQySBI87kMhQByJNfKAd9TcxIsSP0NJSgfP7ZXK2Eu_O5fkefBxrYSitks7QRS8U0flqergbV4wZcSfIChB5OZ3uIhzKRIgjryr09ouuyeDLTbv1-3CQ0DunCRyslh8WX3rNPRHQxL4Wi9IaczFW9fzpd6_Fq07W_4ao6TVqemdbNfryQpfllSh1egjtuL4-OeXnfLsxc_vrhvTjfzXAfbg3cFq26EH4APZ89RAOx34RbHAfj-DrJ18WuEm6IR_L1pTMrctgUMcqWdWnpDOKrI7VFftOuTo1QtzX2zWjZFaGFmH6R8v6YtBL1rT0ponQ9RhWp28_vzkLhvYOgRUy3ATI7ZGAZIUx2nCTO2QSJvKxjnRonZUUvWUqskRHNrXGFrpA9yK8EdxxaYWNn8Ckqiv_FBh3wugw9Dp2iZCO516STpnnhhc-E24KYtxEZQftc2rBUapwlEgdTKrIpGow6RTmu2lNL_5x24TXhJDdl0m7uxuo229qcAUKV8zT1CQuF3iW05Exlkcm4xmuXheaTyG_ii-16a5uir7Piopv-QPHIxjV4IzWChlqKqTAUDKFkx1A_25FR_884xncjSjvh67A42OYEBafI3HbmBnsx3w56649ZsNj-RtxlDa_
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHMqF8hRbCvjANVsnsfM4AqJaoN0LrdQLssaPUESUrHazqsqvZyZxlm0lVKRKOVlx5LHHM5-dmW8Ye2cMggSPK5CpGCKZZz4CR_VNjIzxkaAsJTifzLPZmfxyrs63cmEorJLO0NVAFNHbatrcdBk9hsQdIixA1SvpeJdgUyFjbLnPHihiGqE0DjH_G-Yh-hq81CWiPmMWz78-c80_9TT-N0hMr0HR3XWzgKtLqOstr3S0x-wozxCM8mu67szU_r5B9Xg3gR-zRwG08veDlj1h93zzlO2NBSF4sA_P2Pdvvq5wFWBBRpSvKFob6ijQX9W8GWLOOblOx9uGX1AwTos67Nv1ilO0Kscp4PBzyYdszyu-WNKvJFKf5-zs6NPpx1kU6jdEVqq4ixC8I8IoKmPACFM6hAom8SkkEFtnFblnlcsig8Tm1tgKKrQf0hspnFBW2vQF22naxr9kXDhpII49pC6TyonSKyIi88KIyhfSTZgcV03bQG5ONTZqHY8cqGEKNU2hDlM4YdNNt8XA7nFbhw-kEpuXiZy7b2iXP3TY6xolFnluMldKPKxBYowViSlEgdJDBWLCym2F0l1_N1MNhVR0essADkbt08HarDRC0Fwqib5iwg43Gvl_Eu3fYTBv2e7s9ORYH3-ef33FHiYU7kM33-kB2-mWa_8a8Vpn3vQb8g99Ii-A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSNAL5akuFPCBa7ZOYudx5LUqrxUSVOKCLI_tFESURLtZofLrmUmcpa2EilRpT9Z6lbHHM5-z33zD2HMABAkedyBTsYlknvnIOOpvAjLGjzTKUoHzx2V2dCzffVUTm3AdaJV0h65GoYghVtPh7lw1MeIOERWg55V0u0twqJAxjlxnNzKqM6UqDrH8y_IQQwtemhLRnKmI518_cy49DSr-FzRMzyHRW5umM6e_TF2fSUqLPQaTOSMX5ed808Pc_r6g9Hgle--w2wGy8hejj91l13xzj-1N7SB4iA732bfPvq5wD0xHIZSviatt6iiIX9W8GRnnnBKn423DvxMVp0UP9u1mzYmrynEFuPmx4mOt5ynvVvRHEjnPA3a8ePPl1VEUujdEVqq4jxC6I74oKgADAkqHQAESn5rExNZZRclZ5bLITGJzC7YyFUYP6UEKJ5SVNn3Idpq28fuMCyfBxLE3qcukcqL0imTIvABR-UK6GZPTpmkbpM2pw0at40kBNSyhpiXUYQlnbL6d1o3aHpdNeEkesf0ySXMPA-3qRIeTrtFikeeQuVLiVc0kAFYkUIgCrTeVETNWnvUn3Q9vZqqxjYpOL3mAg8n5dIg1a40ANJdKYqaYscOtQ_6fRY-u8DDP2M1Prxf6w9vl-8dsNyGuD732Tg_YTr_a-CcI1np4OhzHP6zELi0
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG7W2YNeXJ84ukofvGa2k6nO4yAyissiuCg6sB6k6VdUDEnIZJD111uVdIbdBVkFYU7NdEhXV6q-Tr76irHnxiBI8LgDqYx1BFnqI-2ov4mBGH-gpaUC53en6cka3p7Jsz32YaqFIVolnaHLUShiiNX0cLeunBhxR4gK0PMKOt0lOJRDjCMva4z2q6HJ4Iu-2_obbD-lb04ztr8-fb_6PGruQUQTx1osojUWMFX1_Om6l_LVIOt_RdT0EjS9ua1bff5TV9WFLHV8wLppfSM55cdi25uF_XVF-vG_GuAOux0wLV-NTniX7fn6HjuY-kXwED7usy8ffVXiJumWYizfEJlbV1FQx6p4PVLSOWVWx5uafyOuToMu7pvthhOZlaNFuP7e8bEY9Jy3HX1pIu96wNbHbz69PolCe4fIgoz7CLE9ApC8NEYbYQqHSMIkfqkTHVtnJWVvmUGe6sRm1thSlxhewBsQTkgLdvmQzeqm9o8YFw6MjmOvly4F6UThJemUeWFE6XNwcwbTJiobtM-pBUel4kkiNZhUkUlVMOmcLXbT2lH847oJr8hDdn8m7e5hoOm-qhAKFK5YZJlJXQF4ltOJMVYkJhc5rl6XWsxZcdG_VD-8uinHPitqec0NHE7OqEIw2ihEqBlIwFQyZ0c7B_27FT3-5xlP2K2EeD_0Cnx5yGbki08RuPXmWXgUfwPycTT4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-adaptive+spatial-temporal+network+based+on+heterogeneous+data+for+air+quality+prediction&rft.jtitle=Connection+science&rft.au=Chang%2C+Feng&rft.au=Ge%2C+Liang&rft.au=Li%2C+Siyu&rft.au=Wu%2C+Kunyan&rft.date=2021-07-03&rft.pub=Taylor+%26+Francis&rft.issn=0954-0091&rft.eissn=1360-0494&rft.volume=33&rft.issue=3&rft.spage=427&rft.epage=446&rft_id=info:doi/10.1080%2F09540091.2020.1841095&rft.externalDocID=1841095
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0954-0091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0954-0091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0954-0091&client=summon