Self-adaptive spatial-temporal network based on heterogeneous data for air quality prediction
With the development of society and the rise of people's environmental awareness, air pollution is receiving increased public attention. Accurate air quality prediction can provide useful information for government decision-making and residents' activities. However, accurately predicting f...
Saved in:
Published in | Connection science Vol. 33; no. 3; pp. 427 - 446 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
03.07.2021
Taylor & Francis Ltd Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
ISSN | 0954-0091 1360-0494 1360-0494 |
DOI | 10.1080/09540091.2020.1841095 |
Cover
Abstract | With the development of society and the rise of people's environmental awareness, air pollution is receiving increased public attention. Accurate air quality prediction can provide useful information for government decision-making and residents' activities. However, accurately predicting future air quality remains a challenging task because of the complex spatial-temporal dependencies of air quality. Previous studies failed to explicitly model these spatial-temporal dependencies. In this paper, we propose a self-adaptive spatial-temporal network (SA-STNet) to efficiently and effectively capture the spatial-temporal dependencies of air quality. In order to effectively aggregate spatial information, we employ a self-adaptive graph convolution module that can learn the latent spatial correlations of air quality automatically. In the temporal dimension, we utilise three independent components to capture the recent, daily-periodic, and weekly-periodic temporal dependencies of air quality, respectively. In addition, our model exploits rich external complementary information by means of a features extraction component. A parametric-matrix-based fusion architecture is used to combine the outputs of different components into a joint representation which is used for generating the final prediction results. Extensive experiments carried out on real-world datasets demonstrate the outstanding performance of our model compared with baselines and state-of-the-art methods. |
---|---|
AbstractList | With the development of society and the rise of people's environmental awareness, air pollution is receiving increased public attention. Accurate air quality prediction can provide useful information for government decision-making and residents' activities. However, accurately predicting future air quality remains a challenging task because of the complex spatial-temporal dependencies of air quality. Previous studies failed to explicitly model these spatial-temporal dependencies. In this paper, we propose a self-adaptive spatial-temporal network (SA-STNet) to efficiently and effectively capture the spatial-temporal dependencies of air quality. In order to effectively aggregate spatial information, we employ a self-adaptive graph convolution module that can learn the latent spatial correlations of air quality automatically. In the temporal dimension, we utilise three independent components to capture the recent, daily-periodic, and weekly-periodic temporal dependencies of air quality, respectively. In addition, our model exploits rich external complementary information by means of a features extraction component. A parametric-matrix-based fusion architecture is used to combine the outputs of different components into a joint representation which is used for generating the final prediction results. Extensive experiments carried out on real-world datasets demonstrate the outstanding performance of our model compared with baselines and state-of-the-art methods. |
Author | Wang, Yaqian Chang, Feng Wu, Kunyan Li, Siyu Ge, Liang |
Author_xml | – sequence: 1 givenname: Feng surname: Chang fullname: Chang, Feng organization: Chongqing Key Laboratory of Software Theory & Technology – sequence: 2 givenname: Liang surname: Ge fullname: Ge, Liang email: geliang@cqu.edu.cn organization: Chongqing Key Laboratory of Software Theory & Technology – sequence: 3 givenname: Siyu surname: Li fullname: Li, Siyu organization: Chongqing Key Laboratory of Software Theory & Technology – sequence: 4 givenname: Kunyan surname: Wu fullname: Wu, Kunyan organization: Chongqing Key Laboratory of Software Theory & Technology – sequence: 5 givenname: Yaqian surname: Wang fullname: Wang, Yaqian organization: Chongqing Key Laboratory of Software Theory & Technology |
BookMark | eNqNUUtrFTEUDlLB2-pPEAKup55kMi_cKMVHoeBCXUo4eUzNNTeZZjIt99-b6bQuXKirw_n4Hsl3TslJiMES8pLBOYMeXsPQCICBnXPgBeoFK8gTsmN1CxWIQZyQ3cqpVtIzcjrPewBogLEd-f7F-rFCg1N2t5bOE2aHvsr2MMWEngab72L6SRXO1tAY6A-bbYrXNti4zNRgRjrGRNElerOgd_lIp2SN09nF8Jw8HdHP9sXDPCPfPrz_evGpuvr88fLi3VWlRcNy1fccoO9HpVCBGgxruOK2Ro5MG91oa03Tib5Frjut9IgjL7tVAgw0Wuj6jFxuvibiXk7JHTAdZUQn74GYriWm7LS3sqRA16nWDKITHXKlNHDVQ18ScUQoXu3mtYQJj3fo_W9DBnItXD4WLtfC5UPhRfhqE04p3ix2znIflxTKvyXv6k40ou7awnqzsXSK85zsKLXLuJaVEzr_z4zmD_X_vu3tpnOhXOuA5abeyIxHH9OYMGg3y_rvFr8A_PC5aQ |
CitedBy_id | crossref_primary_10_1080_09540091_2022_2080806 crossref_primary_10_1080_09540091_2022_2061915 crossref_primary_10_2139_ssrn_4840027 crossref_primary_10_1016_j_physa_2022_127627 crossref_primary_10_1080_09540091_2022_2131737 crossref_primary_10_1080_09540091_2022_2115010 crossref_primary_10_3390_atmos14010055 crossref_primary_10_1080_09540091_2021_1996537 crossref_primary_10_3390_su15097624 crossref_primary_10_1016_j_scitotenv_2023_166178 crossref_primary_10_1080_09540091_2022_2067124 crossref_primary_10_3390_s23188003 crossref_primary_10_2298_CSIS201221043N |
Cites_doi | 10.1609/aaai.v32i1.11871 10.1126/science.1108752 10.1126/science.1092666 10.1609/aaai.v33i01.33015668 10.1109/TKDE.2018.2823740 10.1016/j.atmosenv.2011.10.059 10.1016/j.neucom.2019.12.118 10.1016/j.chemosphere.2018.12.128 10.1007/s00477-009-0361-8 10.1609/aaai.v31i1.10735 10.1371/journal.pone.0182724 10.1162/neco.1997.9.8.1735 10.1109/TBDATA.2017.2651898 10.17265/2159-5313/2016.09.003 10.1016/j.atmosenv.2015.08.040 10.1109/ACCESS.2019.2897028 10.1080/09593331908616664 10.24963/ijcai.2019/603 10.1016/j.matcom.2004.06.023 10.1080/01621459.1970.10481180 10.1080/09540091.2019.1609420 10.1016/j.partic.2013.11.001 10.1080/09540091.2019.1650330 10.1016/j.scitotenv.2011.08.069 10.1145/3274895.3274907 10.24963/ijcai.2019/264 10.1016/j.envpol.2007.06.012 10.1016/j.atmosenv.2014.08.073 10.1007/s11869-018-0619-8 10.1504/IJCSE.2019.101897 10.1080/09540091.2019.1670621 10.24963/ijcai.2018/505 10.1609/aaai.v33i01.33013656 10.1145/3219819.3219822 10.1609/aaai.v32i1.11836 10.1145/2783258.2788573 10.1109/ACCESS.2019.2941732 |
ContentType | Journal Article |
Copyright | 2020 Informa UK Limited, trading as Taylor & Francis Group 2020 2020 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020 – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION JQ2 NAPCQ ADTOC UNPAY DOA |
DOI | 10.1080/09540091.2020.1841095 |
DatabaseName | CrossRef ProQuest Computer Science Collection Nursing & Allied Health Premium Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Nursing & Allied Health Premium ProQuest Computer Science Collection |
DatabaseTitleList | Nursing & Allied Health Premium |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1360-0494 |
EndPage | 446 |
ExternalDocumentID | oai_doaj_org_article_8fb077b6d94747a2bbc02b808b2eafa0 10.1080/09540091.2020.1841095 10_1080_09540091_2020_1841095 1841095 |
Genre | Research Article |
GroupedDBID | .4S .7F .DC .QJ 0YH 29F 2DF 30N 4.4 5GY 5VS AAENE AAJMT ABCCY ABDBF ABFIM ABHAV ABIVO ABPEM ABTAI ACGEJ ACGFS ACTIO ACUHS ADCVX ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGMYJ AIJEM AJWEG ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH ARCSS AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EAP EAS EBS ECS EDO EMK EPL EPS ESO EST ESX E~A E~B F5P FEDTE FRP GTTXZ H13 HF~ HVGLF HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z MK~ NA5 NX~ O9- RIG S-T SNACF TDBHL TFL TFT TFW TNC TTHFI TUS TWF UT5 UU3 ~S~ AAFWJ AAYXX ADMLS AFPKN AIYEW CITATION JQ2 NAPCQ 07I 4B5 7RV 8FE 8FG 8FI 8FJ 8G5 ABJNI ABUWG ADBBV ADTOC ADXEU AEHZU AEZBV AFION AFKRA AGBLW AGWUF AGYFW AKHJE AKMBP ALRRR ALXIB ARAPS AZQEC BENPR BGLVJ BGSSV BKEYQ BPHCQ BVXVI BWMZZ C0- C5H CAG CCPQU COF CYRSC DAOYK DEXXA DWQXO EJD EX3 FETWF FYUFA GNUQQ GROUPED_DOAJ GUQSH HCIFZ IFELN K6V K7- L8C M2M M2O MVM NUSFT OPCYK P62 PCD PHGZM PHGZT PPXIY PQGLB PQQKQ PROAC PSYQQ TAJZE TAP UB6 UKHRP UNPAY WOW |
ID | FETCH-LOGICAL-c451t-8820088fbbab0b9d152b2e3a2a1cdc5ceed57486a2c7cbcfaf2574eb40d05c4c3 |
IEDL.DBID | UNPAY |
ISSN | 0954-0091 1360-0494 |
IngestDate | Wed Aug 27 01:32:15 EDT 2025 Tue Aug 19 22:12:39 EDT 2025 Mon Jun 30 06:16:53 EDT 2025 Thu Apr 24 23:00:26 EDT 2025 Wed Oct 01 00:38:50 EDT 2025 Wed Dec 25 09:06:27 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-8820088fbbab0b9d152b2e3a2a1cdc5ceed57486a2c7cbcfaf2574eb40d05c4c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.tandfonline.com/doi/pdf/10.1080/09540091.2020.1841095?needAccess=true |
PQID | 2737454376 |
PQPubID | 32754 |
PageCount | 20 |
ParticipantIDs | crossref_citationtrail_10_1080_09540091_2020_1841095 doaj_primary_oai_doaj_org_article_8fb077b6d94747a2bbc02b808b2eafa0 unpaywall_primary_10_1080_09540091_2020_1841095 crossref_primary_10_1080_09540091_2020_1841095 proquest_journals_2737454376 informaworld_taylorfrancis_310_1080_09540091_2020_1841095 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-03 |
PublicationDateYYYYMMDD | 2021-07-03 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Connection science |
PublicationYear | 2021 |
Publisher | Taylor & Francis Taylor & Francis Ltd Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd – name: Taylor & Francis Group |
References | CIT0010 CIT0032 CIT0031 CIT0012 CIT0034 CIT0011 CIT0033 Tong W. (CIT0030) 2019; 12 Srivastava N. (CIT0028) 2014; 15 CIT0014 CIT0036 CIT0013 CIT0035 CIT0016 CIT0038 CIT0015 CIT0037 CIT0018 CIT0017 CIT0039 CIT0019 CIT0041 CIT0040 CIT0021 CIT0043 CIT0020 CIT0042 CIT0001 CIT0023 CIT0045 CIT0022 CIT0044 CIT0003 CIT0025 CIT0002 CIT0024 CIT0046 CIT0005 CIT0027 CIT0004 CIT0026 CIT0007 CIT0029 CIT0006 CIT0009 CIT0008 |
References_xml | – ident: CIT0006 doi: 10.1609/aaai.v32i1.11871 – ident: CIT0015 – ident: CIT0021 doi: 10.1126/science.1108752 – ident: CIT0001 doi: 10.1126/science.1092666 – ident: CIT0034 doi: 10.1609/aaai.v33i01.33015668 – ident: CIT0023 doi: 10.1109/TKDE.2018.2823740 – ident: CIT0014 doi: 10.1016/j.atmosenv.2011.10.059 – ident: CIT0009 doi: 10.1016/j.neucom.2019.12.118 – ident: CIT0041 doi: 10.1016/j.chemosphere.2018.12.128 – ident: CIT0018 doi: 10.1007/s00477-009-0361-8 – ident: CIT0040 doi: 10.1609/aaai.v31i1.10735 – ident: CIT0007 doi: 10.1371/journal.pone.0182724 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: CIT0028 publication-title: Journal of Machine Learning Research – ident: CIT0012 doi: 10.1162/neco.1997.9.8.1735 – ident: CIT0045 doi: 10.1109/TBDATA.2017.2651898 – ident: CIT0029 – ident: CIT0026 doi: 10.17265/2159-5313/2016.09.003 – ident: CIT0031 doi: 10.1016/j.atmosenv.2015.08.040 – ident: CIT0024 doi: 10.1109/ACCESS.2019.2897028 – ident: CIT0011 doi: 10.1080/09593331908616664 – ident: CIT0039 doi: 10.24963/ijcai.2019/603 – ident: CIT0002 doi: 10.1016/j.matcom.2004.06.023 – ident: CIT0008 doi: 10.17265/2159-5313/2016.09.003 – ident: CIT0016 – ident: CIT0004 doi: 10.1080/01621459.1970.10481180 – ident: CIT0020 – ident: CIT0046 doi: 10.1080/09540091.2019.1609420 – ident: CIT0022 doi: 10.1016/j.partic.2013.11.001 – ident: CIT0027 doi: 10.1080/09540091.2019.1650330 – ident: CIT0017 doi: 10.1016/j.scitotenv.2011.08.069 – ident: CIT0037 doi: 10.17265/2159-5313/2016.09.003 – ident: CIT0019 doi: 10.1145/3274895.3274907 – ident: CIT0032 doi: 10.24963/ijcai.2019/264 – ident: CIT0003 – ident: CIT0013 doi: 10.1016/j.envpol.2007.06.012 – ident: CIT0025 doi: 10.1016/j.atmosenv.2014.08.073 – volume: 12 start-page: 1 issue: 1 year: 2019 ident: CIT0030 publication-title: Air Quality, Atmosphere & Health doi: 10.1007/s11869-018-0619-8 – ident: CIT0044 doi: 10.1504/IJCSE.2019.101897 – ident: CIT0033 doi: 10.1080/09540091.2019.1670621 – ident: CIT0038 doi: 10.24963/ijcai.2018/505 – ident: CIT0005 doi: 10.17265/2159-5313/2016.09.003 – ident: CIT0010 doi: 10.1609/aaai.v33i01.33013656 – ident: CIT0036 doi: 10.1145/3219819.3219822 – ident: CIT0035 doi: 10.1609/aaai.v32i1.11836 – ident: CIT0043 doi: 10.1145/2783258.2788573 – ident: CIT0042 doi: 10.1109/ACCESS.2019.2941732 |
SSID | ssj0005011 |
Score | 2.3424444 |
Snippet | With the development of society and the rise of people's environmental awareness, air pollution is receiving increased public attention. Accurate air quality... |
SourceID | doaj unpaywall proquest crossref informaworld |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 427 |
SubjectTerms | Air pollution Air quality Air quality prediction Decision making Deep learning Feature extraction graph convolutional network Outdoor air quality Spatial data spatial-temporal dependencies |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nq9QwEA_yLnrxW1x9Sg5e60vaSds9qvh4CHrRB-8iYSZJUSjdZT-Q998706bL6mU9CD0NDSTzkfmlnfxGqTdEDBISW6B2Fgto6lRglP4mBJYfQBfkgvPnL_XVNXy6cTdHrb6kJmyiB54Ud9F2ZJqG6rgERr5YEgVTUmtaKhN2OJ7WOY3Nh6m5uMOMnXcZP0DBKMLOd3eEVZtlIuKzYcmiFqyR5hJHWWkk7_-LuvQPAHp3P6zx9hf2_VEuunyo7mcQqd9Nk3-k7qThsXowN2jQOV6fqO9fU9-xVnAtm5reSvU09kWmo-r1MNWAa0llUa8G_UOKY1bsU2m132qpHtU8OY0_N3q6fXmr1xv5tSPmfKquLz9--3BV5H4KRQBndwWDac74rFBCMrSMnLpZiRWWaEMMTtKla6CtsQxNoNBhx_EMicBE4wKE6pk6G1ZDeq60iUBobcIq1uCiWSYnxGDJkOlSC3GhYNanD5lsXHpe9N7OnKTZDF7M4LMZFurtYdh6Yts4NeC9GOvwspBljwJ2IZ9dyJ9yoYVaHpva78ZvJd3U2MRXJyZwPvuFz9G_9QwJG3DAe_dCXRx85d9W9OJ_rOiluldK7Y18hq7O1dlus0-vGDzt6PUYJ78BSwsQEw priority: 102 providerName: Directory of Open Access Journals |
Title | Self-adaptive spatial-temporal network based on heterogeneous data for air quality prediction |
URI | https://www.tandfonline.com/doi/abs/10.1080/09540091.2020.1841095 https://www.proquest.com/docview/2737454376 https://www.tandfonline.com/doi/pdf/10.1080/09540091.2020.1841095?needAccess=true https://doaj.org/article/8fb077b6d94747a2bbc02b808b2eafa0 |
UnpaywallVersion | publishedVersion |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1360-0494 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005011 issn: 0954-0091 databaseCode: ABDBF dateStart: 19980601 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1360-0494 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005011 issn: 0954-0091 databaseCode: ADMLS dateStart: 19890101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1360-0494 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005011 issn: 0954-0091 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEC6SzUEvxidujEsfvM6mZ6Z7HgeRVQxBcFF0IR6k6deoOMwMs7uE-OutmseSBCQKwp6a7WW7-puqr3uqvgJ4YQySBI87kMhQByJNfKAd9TcxIsSP0NJSgfP7ZXK2Eu_O5fkefBxrYSitks7QRS8U0flqergbV4wZcSfIChB5OZ3uIhzKRIgjryr09ouuyeDLTbv1-3CQ0DunCRyslh8WX3rNPRHQxL4Wi9IaczFW9fzpd6_Fq07W_4ao6TVqemdbNfryQpfllSh1egjtuL4-OeXnfLsxc_vrhvTjfzXAfbg3cFq26EH4APZ89RAOx34RbHAfj-DrJ18WuEm6IR_L1pTMrctgUMcqWdWnpDOKrI7VFftOuTo1QtzX2zWjZFaGFmH6R8v6YtBL1rT0ponQ9RhWp28_vzkLhvYOgRUy3ATI7ZGAZIUx2nCTO2QSJvKxjnRonZUUvWUqskRHNrXGFrpA9yK8EdxxaYWNn8Ckqiv_FBh3wugw9Dp2iZCO516STpnnhhc-E24KYtxEZQftc2rBUapwlEgdTKrIpGow6RTmu2lNL_5x24TXhJDdl0m7uxuo229qcAUKV8zT1CQuF3iW05Exlkcm4xmuXheaTyG_ii-16a5uir7Piopv-QPHIxjV4IzWChlqKqTAUDKFkx1A_25FR_884xncjSjvh67A42OYEBafI3HbmBnsx3w56649ZsNj-RtxlDa_ |
linkProvider | Unpaywall |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHMqF8hRbCvjANVsnsfM4AqJaoN0LrdQLssaPUESUrHazqsqvZyZxlm0lVKRKOVlx5LHHM5-dmW8Ye2cMggSPK5CpGCKZZz4CR_VNjIzxkaAsJTifzLPZmfxyrs63cmEorJLO0NVAFNHbatrcdBk9hsQdIixA1SvpeJdgUyFjbLnPHihiGqE0DjH_G-Yh-hq81CWiPmMWz78-c80_9TT-N0hMr0HR3XWzgKtLqOstr3S0x-wozxCM8mu67szU_r5B9Xg3gR-zRwG08veDlj1h93zzlO2NBSF4sA_P2Pdvvq5wFWBBRpSvKFob6ijQX9W8GWLOOblOx9uGX1AwTos67Nv1ilO0Kscp4PBzyYdszyu-WNKvJFKf5-zs6NPpx1kU6jdEVqq4ixC8I8IoKmPACFM6hAom8SkkEFtnFblnlcsig8Tm1tgKKrQf0hspnFBW2vQF22naxr9kXDhpII49pC6TyonSKyIi88KIyhfSTZgcV03bQG5ONTZqHY8cqGEKNU2hDlM4YdNNt8XA7nFbhw-kEpuXiZy7b2iXP3TY6xolFnluMldKPKxBYowViSlEgdJDBWLCym2F0l1_N1MNhVR0essADkbt08HarDRC0Fwqib5iwg43Gvl_Eu3fYTBv2e7s9ORYH3-ef33FHiYU7kM33-kB2-mWa_8a8Vpn3vQb8g99Ii-A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSNAL5akuFPCBa7ZOYudx5LUqrxUSVOKCLI_tFESURLtZofLrmUmcpa2EilRpT9Z6lbHHM5-z33zD2HMABAkedyBTsYlknvnIOOpvAjLGjzTKUoHzx2V2dCzffVUTm3AdaJV0h65GoYghVtPh7lw1MeIOERWg55V0u0twqJAxjlxnNzKqM6UqDrH8y_IQQwtemhLRnKmI518_cy49DSr-FzRMzyHRW5umM6e_TF2fSUqLPQaTOSMX5ed808Pc_r6g9Hgle--w2wGy8hejj91l13xzj-1N7SB4iA732bfPvq5wD0xHIZSviatt6iiIX9W8GRnnnBKn423DvxMVp0UP9u1mzYmrynEFuPmx4mOt5ynvVvRHEjnPA3a8ePPl1VEUujdEVqq4jxC6I74oKgADAkqHQAESn5rExNZZRclZ5bLITGJzC7YyFUYP6UEKJ5SVNn3Idpq28fuMCyfBxLE3qcukcqL0imTIvABR-UK6GZPTpmkbpM2pw0at40kBNSyhpiXUYQlnbL6d1o3aHpdNeEkesf0ySXMPA-3qRIeTrtFikeeQuVLiVc0kAFYkUIgCrTeVETNWnvUn3Q9vZqqxjYpOL3mAg8n5dIg1a40ANJdKYqaYscOtQ_6fRY-u8DDP2M1Prxf6w9vl-8dsNyGuD732Tg_YTr_a-CcI1np4OhzHP6zELi0 |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG7W2YNeXJ84ukofvGa2k6nO4yAyissiuCg6sB6k6VdUDEnIZJD111uVdIbdBVkFYU7NdEhXV6q-Tr76irHnxiBI8LgDqYx1BFnqI-2ov4mBGH-gpaUC53en6cka3p7Jsz32YaqFIVolnaHLUShiiNX0cLeunBhxR4gK0PMKOt0lOJRDjCMva4z2q6HJ4Iu-2_obbD-lb04ztr8-fb_6PGruQUQTx1osojUWMFX1_Om6l_LVIOt_RdT0EjS9ua1bff5TV9WFLHV8wLppfSM55cdi25uF_XVF-vG_GuAOux0wLV-NTniX7fn6HjuY-kXwED7usy8ffVXiJumWYizfEJlbV1FQx6p4PVLSOWVWx5uafyOuToMu7pvthhOZlaNFuP7e8bEY9Jy3HX1pIu96wNbHbz69PolCe4fIgoz7CLE9ApC8NEYbYQqHSMIkfqkTHVtnJWVvmUGe6sRm1thSlxhewBsQTkgLdvmQzeqm9o8YFw6MjmOvly4F6UThJemUeWFE6XNwcwbTJiobtM-pBUel4kkiNZhUkUlVMOmcLXbT2lH847oJr8hDdn8m7e5hoOm-qhAKFK5YZJlJXQF4ltOJMVYkJhc5rl6XWsxZcdG_VD-8uinHPitqec0NHE7OqEIw2ihEqBlIwFQyZ0c7B_27FT3-5xlP2K2EeD_0Cnx5yGbki08RuPXmWXgUfwPycTT4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-adaptive+spatial-temporal+network+based+on+heterogeneous+data+for+air+quality+prediction&rft.jtitle=Connection+science&rft.au=Chang%2C+Feng&rft.au=Ge%2C+Liang&rft.au=Li%2C+Siyu&rft.au=Wu%2C+Kunyan&rft.date=2021-07-03&rft.pub=Taylor+%26+Francis&rft.issn=0954-0091&rft.eissn=1360-0494&rft.volume=33&rft.issue=3&rft.spage=427&rft.epage=446&rft_id=info:doi/10.1080%2F09540091.2020.1841095&rft.externalDocID=1841095 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0954-0091&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0954-0091&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0954-0091&client=summon |