Digital streaming media distribution and transmission process optimisation based on adaptive recurrent neural network
With the rapid growth of streaming media services, users have higher and higher requirements for streaming media transmission rates and network experience. Experiments show that in multi-path streaming media transmission services, supporting streaming services with high bandwidth and low latency is...
        Saved in:
      
    
          | Published in | Connection science Vol. 34; no. 1; pp. 1169 - 1180 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
        Abingdon
          Taylor & Francis
    
        31.12.2022
     Taylor & Francis Ltd Taylor & Francis Group  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0954-0091 1360-0494 1360-0494  | 
| DOI | 10.1080/09540091.2022.2052264 | 
Cover
| Abstract | With the rapid growth of streaming media services, users have higher and higher requirements for streaming media transmission rates and network experience. Experiments show that in multi-path streaming media transmission services, supporting streaming services with high bandwidth and low latency is a very challenging task. Based on this, this article explores and establishes a digital streaming media distribution and transmission process optimisation model based on an adaptive recurrent neural network. This paper proposes a priority-aware streaming media multi-path data scheduling mechanism, which allows applications to distinguish the relative importance of data and ensure that high-priority data is transmitted on the path with the best quality. The adaptive recurrent neural network algorithm is used in the optimisation process of the distribution and transmission process. By simulating the real environment, it is verified that the model can improve the efficiency of distribution resources and reduce the access rejection rate and data jitter caused by interruption. | 
    
|---|---|
| AbstractList | With the rapid growth of streaming media services, users have higher and higher requirements for streaming media transmission rates and network experience. Experiments show that in multi-path streaming media transmission services, supporting streaming services with high bandwidth and low latency is a very challenging task. Based on this, this article explores and establishes a digital streaming media distribution and transmission process optimisation model based on an adaptive recurrent neural network. This paper proposes a priority-aware streaming media multi-path data scheduling mechanism, which allows applications to distinguish the relative importance of data and ensure that high-priority data is transmitted on the path with the best quality. The adaptive recurrent neural network algorithm is used in the optimisation process of the distribution and transmission process. By simulating the real environment, it is verified that the model can improve the efficiency of distribution resources and reduce the access rejection rate and data jitter caused by interruption. | 
    
| Author | Shan, Wenjing | 
    
| Author_xml | – sequence: 1 givenname: Wenjing surname: Shan fullname: Shan, Wenjing email: jiandan19990730@163.com organization: JiangXi University of Finance and Economics  | 
    
| BookMark | eNqNkcFu1DAURS1UJKaFT0CKxDrl2bETR2xApdBKldjA2nqxnZGHxB5sh2r-vk5TWLAANo50de-xnHNOznzwlpDXFC4pSHgLveAAPb1kwFg5BGMtf0Z2tGmhBt7zM7JbO_VaekHOUzoAgABKd2T56PYu41SlHC3Ozu-r2RqHlXElccOSXfAVelPliD7NLqU1OMagbUpVOGZXMnxsDZisqda6wZL_tFW0eonR-lx5u8Ryi7f5PsTvL8nzEadkXz19L8i3T9dfr27quy-fb68-3NWaC5prKUFIMUhjLFANA1hoUMrW6EaOXWeEpmhoN_Z0MJyDRs61aIDCKM2orW0uyO3GNQEP6hjdjPGkAjr1GIS4Vxiz05NVIFrGjWBaM8GFtkMzCtFLw2zboOnawmo31uKPeLrHafoNpKBWEeqXCLWKUE8iyvDNNiw_7cdiU1aHsERf3q1Y10Lb86Zf8WJr6RhSinb8b_q7P3a6-Fx9FGFu-uf6_bZ2fgxxxiJnMirjaQpxLMK1S6r5O-IBRmPCFw | 
    
| CitedBy_id | crossref_primary_10_4108_eetsis_3832 crossref_primary_10_1155_2022_3410153 crossref_primary_10_1109_TVT_2024_3432739 crossref_primary_10_1155_2022_5732379 crossref_primary_10_1155_2022_9460985 crossref_primary_10_1109_ACCESS_2023_3297642 crossref_primary_10_2478_amns_2021_2_00251 crossref_primary_10_1109_ACCESS_2023_3343393  | 
    
| Cites_doi | 10.1080/09540091.2020.1841111 10.1259/bjr.20150222 10.1007/s11633-020-1239-y 10.23919/INM.2017.7987351 10.1016/j.ins.2020.09.063 10.1109/TWC.2019.2935452 10.1109/LCOMM.2017.2713361 10.1108/17427371211283001 10.1080/09540091.2019.1709045 10.1016/j.patcog.2021.108102 10.1016/j.cmpb.2021.106193 10.1016/j.geoderma.2020.114616 10.1080/09540091.2019.1700911 10.1016/j.apenergy.2020.116177 10.1093/iwc/iwv004 10.1016/j.knosys.2021.107456 10.1109/LCOMM.2017.2740918 10.1109/SKG.2009.77 10.1109/LSP.2020.3032277 10.1007/s00530-014-0421-x 10.1049/iet-epa.2020.0105 10.1007/s00530-014-0434-5 10.1063/1.5117180 10.1109/TCYB.2020.2969377 10.1109/IJCNN52387.2021.9533593 10.1109/FPT.2004.1393289  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2022 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2022 – notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | 0YH AAYXX CITATION JQ2 NAPCQ ADTOC UNPAY DOA  | 
    
| DOI | 10.1080/09540091.2022.2052264 | 
    
| DatabaseName | Taylor & Francis Open Access CrossRef ProQuest Computer Science Collection Nursing & Allied Health Premium Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Nursing & Allied Health Premium ProQuest Computer Science Collection  | 
    
| DatabaseTitleList | Nursing & Allied Health Premium  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1360-0494 | 
    
| EndPage | 1180 | 
    
| ExternalDocumentID | oai_doaj_org_article_05624d52cc2545ceb3f5598d2e63ad76 10.1080/09540091.2022.2052264 10_1080_09540091_2022_2052264 2052264  | 
    
| Genre | Research Article | 
    
| GroupedDBID | .4S .7F .DC .QJ 0YH 29F 2DF 30N 4.4 5GY 5VS AAENE AAFWJ AAJMT ABCCY ABDBF ABFIM ABHAV ABIVO ABPEM ABTAI ACGEJ ACGFS ACTIO ACUHS ADCVX ADMLS ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFPKN AGMYJ AIJEM AIYEW AJWEG ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD ARCSS AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EAP EAS EBS ECS EDO EMK EPL EPS ESO EST ESX E~A E~B F5P FEDTE FRP GROUPED_DOAJ GTTXZ H13 HF~ HVGLF HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z MK~ NA5 NX~ O9- RIG S-T SNACF TDBHL TFL TFW TNC TTHFI TUS TWF UT5 UU3 ~S~ AAYXX CITATION ALIPV JQ2 NAPCQ 07I 4B5 7RV 8FE 8FG 8FI 8FJ 8G5 ABJNI ABUWG ADBBV ADTOC ADXEU AEHZU AEZBV AFION AFKRA AGBLW AGWUF AGYFW AKHJE AKMBP ALRRR ALXIB ARAPS AZQEC BENPR BGLVJ BGSSV BKEYQ BPHCQ BVXVI BWMZZ C0- C5H CAG CCPQU COF CYRSC DAOYK DEXXA DWQXO EJD EX3 FETWF FYUFA GNUQQ GUQSH HCIFZ IFELN K6V K7- L8C M2M M2O MVM NUSFT OPCYK P62 PCD PHGZM PHGZT PPXIY PQGLB PQQKQ PROAC PSYQQ TAJZE TAP UB6 UKHRP UNPAY WOW  | 
    
| ID | FETCH-LOGICAL-c451t-880585b8dde01c0b0e03a886dc38f77d5c1ad17f91bd440ca44c53010f8dfcee3 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 0954-0091 1360-0494  | 
    
| IngestDate | Fri Oct 03 12:52:52 EDT 2025 Tue Aug 19 21:37:28 EDT 2025 Mon Jun 30 14:30:35 EDT 2025 Wed Oct 01 00:38:50 EDT 2025 Thu Apr 24 23:01:05 EDT 2025 Mon Oct 20 23:46:15 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| License | open-access: http://creativecommons.org/licenses/by-nc/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c451t-880585b8dde01c0b0e03a886dc38f77d5c1ad17f91bd440ca44c53010f8dfcee3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| OpenAccessLink | https://doaj.org/article/05624d52cc2545ceb3f5598d2e63ad76 | 
    
| PQID | 2760694396 | 
    
| PQPubID | 32754 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | informaworld_taylorfrancis_310_1080_09540091_2022_2052264 proquest_journals_2760694396 doaj_primary_oai_doaj_org_article_05624d52cc2545ceb3f5598d2e63ad76 crossref_citationtrail_10_1080_09540091_2022_2052264 crossref_primary_10_1080_09540091_2022_2052264 unpaywall_primary_10_1080_09540091_2022_2052264  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-12-31 | 
    
| PublicationDateYYYYMMDD | 2022-12-31 | 
    
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-31 day: 31  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Abingdon | 
    
| PublicationPlace_xml | – name: Abingdon | 
    
| PublicationTitle | Connection science | 
    
| PublicationYear | 2022 | 
    
| Publisher | Taylor & Francis Taylor & Francis Ltd Taylor & Francis Group  | 
    
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd – name: Taylor & Francis Group  | 
    
| References | CIT0030 CIT0010 CIT0031 CIT0011 Qi S. (CIT0022) 2021; 69 CIT0033 Goldfarb David (CIT0012) 2015; 193 Xiang W. A. (CIT0028) 2021; 70 CIT0014 CIT0013 CIT0016 CIT0015 CIT0018 CIT0017 Cai W. (CIT0005) 2021; 69 CIT0019 CIT0021 Yan C. (CIT0029) 2021; 99 CIT0020 CIT0001 CIT0023 Ramamurthy A. (CIT0024) 2017; 80 Zhang L. (CIT0032) 2021; 68 CIT0003 CIT0025 CIT0002 CIT0027 CIT0004 CIT0026 CIT0007 CIT0006 CIT0009 CIT0008  | 
    
| References_xml | – ident: CIT0020 doi: 10.1080/09540091.2020.1841111 – ident: CIT0014 doi: 10.1259/bjr.20150222 – ident: CIT0006 doi: 10.1007/s11633-020-1239-y – ident: CIT0015 doi: 10.23919/INM.2017.7987351 – ident: CIT0004 doi: 10.1016/j.ins.2020.09.063 – ident: CIT0017 doi: 10.1109/TWC.2019.2935452 – ident: CIT0003 doi: 10.1109/LCOMM.2017.2713361 – ident: CIT0009 doi: 10.1108/17427371211283001 – volume: 69 start-page: 130 issue: 1 year: 2021 ident: CIT0022 publication-title: Displays – volume: 99 start-page: 1 year: 2021 ident: CIT0029 publication-title: IEEE Transactions on Multimedia – ident: CIT0027 doi: 10.1080/09540091.2019.1709045 – volume: 193 start-page: 950 issue: 3 year: 2015 ident: CIT0012 publication-title: Journal of Urology – ident: CIT0002 doi: 10.1016/j.patcog.2021.108102 – ident: CIT0026 doi: 10.1016/j.cmpb.2021.106193 – ident: CIT0030 doi: 10.1016/j.geoderma.2020.114616 – ident: CIT0019 doi: 10.1080/09540091.2019.1700911 – ident: CIT0011 doi: 10.1016/j.apenergy.2020.116177 – ident: CIT0018 doi: 10.1093/iwc/iwv004 – ident: CIT0031 doi: 10.1016/j.knosys.2021.107456 – ident: CIT0016 doi: 10.1109/LCOMM.2017.2740918 – ident: CIT0001 doi: 10.1109/SKG.2009.77 – ident: CIT0021 doi: 10.1109/LSP.2020.3032277 – ident: CIT0023 doi: 10.1007/s00530-014-0421-x – ident: CIT0008 doi: 10.1049/iet-epa.2020.0105 – ident: CIT0013 doi: 10.1007/s00530-014-0434-5 – volume: 69 start-page: 322 issue: 1 year: 2021 ident: CIT0005 publication-title: Displays – volume: 80 start-page: 2251 issue: 5 year: 2017 ident: CIT0024 publication-title: Cancer – ident: CIT0010 doi: 10.1063/1.5117180 – volume: 68 issue: 1 year: 2021 ident: CIT0032 publication-title: Displays – volume: 70 start-page: 102 year: 2021 ident: CIT0028 publication-title: Displays – ident: CIT0033 doi: 10.1109/TCYB.2020.2969377 – ident: CIT0007 doi: 10.1109/IJCNN52387.2021.9533593 – ident: CIT0025 doi: 10.1109/FPT.2004.1393289  | 
    
| SSID | ssj0005011 | 
    
| Score | 2.3661056 | 
    
| Snippet | With the rapid growth of streaming media services, users have higher and higher requirements for streaming media transmission rates and network experience.... | 
    
| SourceID | doaj unpaywall proquest crossref informaworld  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1169 | 
    
| SubjectTerms | Algorithms data scheduling Digital streaming media Media Network latency Neural networks Optimization recurrent neural network Recurrent neural networks Rejection rate resource efficiency Streaming media transmission optimisation  | 
    
| SummonAdditionalLinks | – databaseName: Taylor & Francis Open Access dbid: 0YH link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS-QwFA9-HPSyu37huCo5eK02Tdq0R12VYUFPCnoKr0kjwtgZZjrI_ve-16ajLoiCx7ZJm-Z9h_d-j7EjkPhAahuBy2ykdKoiQGUZCQsFgIM8q6h2-Oo6G96qv3dpn004C2mVFEP7Diii1dUk3FDO-oy4E_QKkPMKiu4SqqUiF0Its9VEi4IYO74fvmZ5xG0LXpoS0Zy-iOej17wzTy2K_38Ypu880bV5PYF_zzAavTFKl7_Yj-BN8tOO_Btsqao32c--UwMPgrvF5uePD9QdhFNpCDyhueJtyQh3hJsbWl5x3BDekO1C2tMhGp90VQR8jHrlKeT9cLJ7jtNwBxNSlnxKZ_aE8sQJHRO_Une55dvs9vLi5s8wCg0XIqtS0UQoyxg9lDmqvFjYuIyrWEKeZ87K3GvtUivACe0LUTqlYgtK2RQ1ROxz59Hayh22Uo_rapdxWeSoDtBfdJVSCtLSJxl4j_GdKkWi3YCpfp-NDWjk1BRjZEQPWhrIY4g8JpBnwI4X0yYdHMdnE86IiIvBhKbd3hhPH0wQTkNOoHJpYi2Gy6mtSukJt94lVSbB6WzAircsYJr2MMV3nU-M_GQB-z2_mKAeZibRGRUcywJffbLgoa_90d43FvObrdNlB1S5z1aa6bw6QKeqKQ9bsXkBL5cVHg priority: 102 providerName: Taylor & Francis – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6V7QEulKfYUpAPXLNN4keSA0LLo6qQqEBipXKyHDuuKrbZaMmqgl_PTOys2kqoIHHMw3k4k29mkvm-AXhlOG7ghU2MUzYRhRSJQbBMMmsqY5wpVUPc4U8n6nghPp7K0x34MnJhqKyScmgfhCIGrKaXu3N-rIg7xKgALa-i7C4nLhWFEOJNi2g_H5oMvu7Xm-YO7CqJ4fkEdhcnn-ffguaeSGhg4GJRWWMlRlbPn457zV8Nsv43RE2vhaZ3N21nfl6a5fKKlzrag_V4f6E45fts09cz--uG9ON_nYAHcD_GtGwejPAh7DTtI9gb-0WwCB-PYfP-_Ix6lDAiqJgLdJpsIK4wR-q9sfEWw6tiPXlQtED6lMe6wGVgK0S3i1h9xMj7Oka7O9MRZLM1_TkgrSlGGp14ljZUuD-BxdGHr--Ok9j2IbFCZn2CiII5TF0i8KaZTeu0SbkpS-UsL31ROGkz47LCV1nthEitEcJKxKnUl86jz-dPYdKu2uYZMF6VCEoYtbpGCGFk7XNlvMcsU9RZXrgpiPHhahs10ak1x1Jno3RqnGpNU63jVE9hth3WBVGQ2wa8JcvZ7kya3sOK1fpMR4jQFIoKJ3NrMWmXtqm5J_V8lzeKG1eoKVRX7U73wycdH_qvaH7LBRyMRqojSP3QeaGI9swrPPTh1nD_7o72_3nEc7hHi0Ek8wAmZKMvMKDr65fxFf0Nr5A9_Q priority: 102 providerName: Unpaywall  | 
    
| Title | Digital streaming media distribution and transmission process optimisation based on adaptive recurrent neural network | 
    
| URI | https://www.tandfonline.com/doi/abs/10.1080/09540091.2022.2052264 https://www.proquest.com/docview/2760694396 https://www.tandfonline.com/doi/pdf/10.1080/09540091.2022.2052264?needAccess=true https://doaj.org/article/05624d52cc2545ceb3f5598d2e63ad76  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 34 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1360-0494 dateEnd: 20241231 omitProxy: true ssIdentifier: ssj0005011 issn: 0954-0091 databaseCode: DOA dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1360-0494 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005011 issn: 0954-0091 databaseCode: ABDBF dateStart: 19980601 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1360-0494 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005011 issn: 0954-0091 databaseCode: ADMLS dateStart: 19890101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1360-0494 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005011 issn: 0954-0091 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T-QwELY4KLiGx8HplsfKxbUBO3ZeJU-tkFhRsBJU1sSOTyctYcVlhfj3zCTOaqHZK2hSOHZie8bzsGa-Yew3KHyhMhuBS22ks0RHgMIykhYKAAd5WlHu8O04HU30zUPysFTqi2LCOnjgbuNOSUFrl8TWoiuTWPT9PGGKu7hKFbisBdsWedE7U31wh2gr76L9oCO0ImSfu0Oo2thGTegbxpSJRQaI_qCVWvD-T9ClHwzQzXk9g7dXmE6XdNH1DtsKRiQ_6ya_y9aq-gfb7gs08HBe99j88u8fKgrCKSMEnlBL8TZThDuCyw2VrjjUjjekspDkdHfGZ13yAH9GcfIUwn04qTvHqbuDGclI_kJX9QTuxAkUE_9SdyHl-2xyfXV_MYpCnYXI6kQ2ER5hdBrKHCWdkFaUohIK8jx1VuU-y1xiJTiZ-UKWTmthQWuboGAQPncelaz6ydbr57r6xbgqcpQCaCa6SmsNSenjFLxHt06XMs7cgOl-n40NIORUC2NqZI9VGshjiDwmkGfAThbDZh0Kx6oB50TERWcC0W4bkLVMYC2zirUGrFhmAdO0dyi-K3hi1IoJHPX8YoJU-GfiLKU8Y1Xgp08XPPR_Kzr4ihUdsu_0zQ6o8oitNy_z6hiNqqYcsm_icYRPJcbD9iwN2cZkfHf2-A4knRuS | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZgOSyXPniIpbT1gWsgie08jkCLtuVxAglO1sSOEdJudrVkVfHvmUmc7YJULVKv8SOJx_PUzDeMHYLAAZGaAGxiApkqGQAKyyAykANYyJKSaoevrpPhrfx9p-6WamEorZJ8aNcCRTSympibgtFdStwxmgV49XJy72IqpiIbQq6zDYXmIrVvCO-Hf9M8wqYHLy0JaE1XxfOvbV7ppwbG_w2I6StTtD-vpvD8B0ajJa10_ol98OYkP2np_5mtldUW-9i1auCec7fZ_MfjA7UH4VQbAmPUV7ypGeGWgHN9zyuOJ8JrUl5IfIqi8WlbRsAnKFjGPvGHk-KznKZbmJK05DMK2hPMEyd4THxL1SaX77Db8583Z8PAd1wIjFRRHSAzo_tQZCjzwsiERViGArIssUZkLk2tMhHYKHV5VFgpQwNSGoUiInSZdahuxS7rVZOq3GNc5BnKAzQYbSmlBFW4OAHn0MGTRRSndsBkd87aeDhy6oox0lGHWurJo4k82pNnwI4Wy6YtHseqBadExMVkgtNuHkxmD9pzpyYrUFoVG4P-sjJlIRwB19u4TATYNBmwfPkK6LqJpri29YkWKz7goLsv2suHJx2nCVUcixy3Pl7coff90f5_fMx31h_eXF3qy1_XF1_YJg21qJUHrFfP5uVXtLDq4lvDQi8KgBiB | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT9wwFLYKlYALlE1MgdYHroEktrMc2UbTBcQBpPZkvdgxQhoy0ZBR1X_f9xJnWCQEUq_xksRvt977HmMHIHBApCYAm5hApkoGgMoyiAzkABaypKTa4YvLZHQjv_9SfTbhg0-rpBjadUARra4m4a6t6zPijtArQM7LKbqLqZaKXAi5wD6qDM0bsnT4e_SY5RG2LXhpSUBr-iKe17Z5Zp5aFP8XGKbPPNHlWVXD3z8wHj8xSsNPbNV7k_y4I_86-1BWG2yt79TAveBustnZ3S11B-FUGgL3aK54WzLCLeHm-pZXHA-EN2S7kPZ0icbrroqAT1Cv3Pu8H052z3KabqEmZcmndGdPKE-c0DHxLVWXW77Fbobn16ejwDdcCIxUUROgLGP0UGSo8sLIhEVYhgKyLLFGZC5NrTIR2Ch1eVRYKUMDUhqFGiJ0mXVobcU2W6wmVbnDuMgzVAfoL9pSSgmqcHECzmF8J4soTu2Ayf6ctfFo5NQUY6yjHrTUk0cTebQnz4AdzpfVHRzHWwtOiIjzyYSm3T6YTG-1F05NTqC0KjYGw2VlykI4wq23cZkIsGkyYPlTFtBNe5nius4nWrzxAXs9v2ivHh50nCZUcCxy3PpozkPv-6PP__ExX9nS1dlQ__x2-WOXrdBIh1m5xxab6azcR_-qKb60EvQPSMMXsw | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6V7QEulKfYUpAPXLNN4keSA0LLo6qQqEBipXKyHDuuKrbZaMmqgl_PTOys2kqoIHHMw3k4k29mkvm-AXhlOG7ghU2MUzYRhRSJQbBMMmsqY5wpVUPc4U8n6nghPp7K0x34MnJhqKyScmgfhCIGrKaXu3N-rIg7xKgALa-i7C4nLhWFEOJNi2g_H5oMvu7Xm-YO7CqJ4fkEdhcnn-ffguaeSGhg4GJRWWMlRlbPn457zV8Nsv43RE2vhaZ3N21nfl6a5fKKlzrag_V4f6E45fts09cz--uG9ON_nYAHcD_GtGwejPAh7DTtI9gb-0WwCB-PYfP-_Ix6lDAiqJgLdJpsIK4wR-q9sfEWw6tiPXlQtED6lMe6wGVgK0S3i1h9xMj7Oka7O9MRZLM1_TkgrSlGGp14ljZUuD-BxdGHr--Ok9j2IbFCZn2CiII5TF0i8KaZTeu0SbkpS-UsL31ROGkz47LCV1nthEitEcJKxKnUl86jz-dPYdKu2uYZMF6VCEoYtbpGCGFk7XNlvMcsU9RZXrgpiPHhahs10ak1x1Jno3RqnGpNU63jVE9hth3WBVGQ2wa8JcvZ7kya3sOK1fpMR4jQFIoKJ3NrMWmXtqm5J_V8lzeKG1eoKVRX7U73wycdH_qvaH7LBRyMRqojSP3QeaGI9swrPPTh1nD_7o72_3nEc7hHi0Ek8wAmZKMvMKDr65fxFf0Nr5A9_Q | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digital+streaming+media+distribution+and+transmission+process+optimisation+based+on+adaptive+recurrent+neural+network&rft.jtitle=Connection+science&rft.au=Shan%2C+Wenjing&rft.date=2022-12-31&rft.issn=0954-0091&rft.eissn=1360-0494&rft.volume=34&rft.issue=1&rft.spage=1169&rft.epage=1180&rft_id=info:doi/10.1080%2F09540091.2022.2052264&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_09540091_2022_2052264 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0954-0091&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0954-0091&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0954-0091&client=summon |