Active-Learning Class Activities and Shiny Applications for Teaching Support Vector Classifiers
Support vector classifiers are one of the most popular linear classification techniques for binary classification. Different from some commonly seen model fitting criteria in statistics, such as the ordinary least squares criterion and the maximum likelihood method, its algorithm depends on an optim...
Saved in:
| Published in | Journal of statistics and data science education Vol. ahead-of-print; no. ahead-of-print; pp. 1 - 15 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Alexandria
Taylor & Francis
03.05.2024
Taylor & Francis Ltd Taylor & Francis Group |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2693-9169 2693-9169 |
| DOI | 10.1080/26939169.2023.2231065 |
Cover
| Abstract | Support vector classifiers are one of the most popular linear classification techniques for binary classification. Different from some commonly seen model fitting criteria in statistics, such as the ordinary least squares criterion and the maximum likelihood method, its algorithm depends on an optimization problem under constraints, which is unconventional to many students in a second or third course in statistics or data science. As a result, this topic is often not as intuitive to students as some of the more traditional statistical modeling tools. In order to facilitate students' mastery of the topic and promote active learning, we developed some in-class activities and their accompanying Shiny applications for teaching support vector classifiers. The designed course materials aim at engaging students through group work and solidifying students' understanding of the algorithm via hands-on explorations. The Shiny applications offer interactive demonstration of the changes of the components of a support vector classifier when altering its determining parameters. With the goal of benefiting the broader statistics and data science education community, we have made the developed Shiny applications publicly available. In addition, a detailed in-class activity worksheet and a real data example are also provided in the online
supplementary materials
. |
|---|---|
| AbstractList | Support vector classifiers are one of the most popular linear classification techniques for binary classification. Different from some commonly seen model fitting criteria in statistics, such as the ordinary least squares criterion and the maximum likelihood method, its algorithm depends on an optimization problem under constraints, which is unconventional to many students in a second or third course in statistics or data science. As a result, this topic is often not as intuitive to students as some of the more traditional statistical modeling tools. In order to facilitate students’ mastery of the topic and promote active learning, we developed some in-class activities and their accompanying Shiny applications for teaching support vector classifiers. The designed course materials aim at engaging students through group work and solidifying students’ understanding of the algorithm via hands-on explorations. The Shiny applications offer interactive demonstration of the changes of the components of a support vector classifier when altering its determining parameters. With the goal of benefiting the broader statistics and data science education community, we have made the developed Shiny applications publicly available. In addition, a detailed in-class activity worksheet and a real data example are also provided in the online supplementary materials. Support vector classifiers are one of the most popular linear classification techniques for binary classification. Different from some commonly seen model fitting criteria in statistics, such as the ordinary least squares criterion and the maximum likelihood method, its algorithm depends on an optimization problem under constraints, which is unconventional to many students in a second or third course in statistics or data science. As a result, this topic is often not as intuitive to students as some of the more traditional statistical modeling tools. In order to facilitate students' mastery of the topic and promote active learning, we developed some in-class activities and their accompanying Shiny applications for teaching support vector classifiers. The designed course materials aim at engaging students through group work and solidifying students' understanding of the algorithm via hands-on explorations. The Shiny applications offer interactive demonstration of the changes of the components of a support vector classifier when altering its determining parameters. With the goal of benefiting the broader statistics and data science education community, we have made the developed Shiny applications publicly available. In addition, a detailed in-class activity worksheet and a real data example are also provided in the online supplementary materials . AbstractSupport vector classifiers are one of the most popular linear classification techniques for binary classification. Different from some commonly seen model fitting criteria in statistics, such as the ordinary least squares criterion and the maximum likelihood method, its algorithm depends on an optimization problem under constraints, which is unconventional to many students in a second or third course in statistics or data science. As a result, this topic is often not as intuitive to students as some of the more traditional statistical modeling tools. In order to facilitate students’ mastery of the topic and promote active learning, we developed some in-class activities and their accompanying Shiny applications for teaching support vector classifiers. The designed course materials aim at engaging students through group work and solidifying students’ understanding of the algorithm via hands-on explorations. The Shiny applications offer interactive demonstration of the changes of the components of a support vector classifier when altering its determining parameters. With the goal of benefiting the broader statistics and data science education community, we have made the developed Shiny applications publicly available. In addition, a detailed in-class activity worksheet and a real data example are also provided in the online supplementary materials. |
| Author | Cai, Xizhen Wang, Qing |
| Author_xml | – sequence: 1 givenname: Qing surname: Wang fullname: Wang, Qing organization: Department of Mathematics, Wellesley College – sequence: 2 givenname: Xizhen surname: Cai fullname: Cai, Xizhen organization: Department of Mathematics and Statistics, Williams College |
| BookMark | eNqNkV1rFDEUhgepYK39CcKA17PmYz4SvHFZrBYWvGj1NpwmJ22WNBmTrGX_vTM7tUgv1KuE95z3OZz3vK5OQgxYVW8pWVEiyHvWSy5pL1eMML5ijFPSdy-q01lv5sLJH_9X1XnOO0II6yjnAz-t1FoX9xObLUIKLtzWGw8510fVFYe5hmDqqzsXDvV6HL3TUFwMubYx1dcI-m42Xe3HMaZSf0ddJv3IcNZhym-qlxZ8xvPH96z6dvHpevOl2X79fLlZbxvddrQ0Q6ttJ4ZhgE4Qbo0hSCUXfUfFYLhAsBpukBlqsOVoJAoBDHBgQCwlIPlZdblwTYSdGpO7h3RQEZw6CjHdKkjFaY9K6A4psUL3lLdAyY2Q0E5DOtsTajWdWP3C2ocRDg_g_ROQEjWnrn6nrubU1WPqk_HdYhxT_LHHXNQu7lOY9lZMimk_2dK5q1u6dIo5J7T_Tf_wzKddOV6jJHD-n-6Pi9uF6XT38BCTN6rAwcdkEwTtsuJ_R_wCkXS5TQ |
| CitedBy_id | crossref_primary_10_1080_10494820_2025_2465441 |
| Cites_doi | 10.5430/ijhe.v7n2p175 10.1002/j.2168-9830.2004.tb00809.x 10.1080/10691898.2019.1677533 10.1080/26939169.2021.1995545 10.1080/26939169.2021.1971586 10.1080/10691898.2013.11889662 10.1007/978-1-4419-9650-3 10.1080/26939169.2021.1946450 10.1007/BF00994018 10.1187/cbe.09-03-0025 10.1080/10691898.1993.11910455 10.1007/978-0-387-84858-7 10.1080/10691898.2020.1799727 10.1080/10691898.2016.1158017 10.1080/10691898.2019.1604106 10.1007/978-1-4757-2440-0 10.1080/10691898.2011.11889596 10.1080/00031305.2016.1201005 10.1073/pnas.1319030111 10.1080/26939169.2021.1997128 10.1007/978-1-4614-7138-7 10.1007/978-1-4757-3843-8 |
| ContentType | Journal Article |
| Copyright | 2023 The Author(s). Published with license by Taylor & Francis Group, LLC 2023 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023 The Author(s). Published with license by Taylor & Francis Group, LLC 2023 – notice: 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 0YH AAYXX CITATION 3V. 7XB 8FK 8G5 ABUWG AFKRA AHOVV AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH M2O MBDVC PHGZM PHGZT PKEHL PQEDU PQEST PQQKQ PQUKI PRINS Q9U ADTOC UNPAY DOA |
| DOI | 10.1080/26939169.2023.2231065 |
| DatabaseName | Taylor & Francis Open Access CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Education Research Index ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest Research Library Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Education ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef ProQuest One Education Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | ProQuest One Education |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2693-9169 |
| EndPage | 15 |
| ExternalDocumentID | oai_doaj_org_article_8c5e10f8c6134a10b89a4d385f601fc1 10.1080/26939169.2023.2231065 10_1080_26939169_2023_2231065 2231065 |
| Genre | Research Article |
| GroupedDBID | 0YH 8G5 AAFWJ ABUWG AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AQTUD AZQEC BENPR CCPQU DWQXO EBS GNUQQ GROUPED_DOAJ GUQSH H13 M2O M4Z M~E PHGZM PHGZT PQEDU TDBHL AAYXX CITATION PUEGO 3V. 7XB 8FK AHOVV MBDVC PKEHL PQEST PQQKQ PQUKI PRINS Q9U ADTOC UNPAY |
| ID | FETCH-LOGICAL-c451t-74cf58777a5803fdd0e193865187d38eafcabe2d1de43ed9e88a2ae72a0f10a93 |
| IEDL.DBID | BENPR |
| ISSN | 2693-9169 |
| IngestDate | Fri Oct 03 12:47:30 EDT 2025 Tue Aug 19 22:35:02 EDT 2025 Sat Aug 23 12:30:55 EDT 2025 Wed Oct 01 05:12:55 EDT 2025 Thu Apr 24 22:52:41 EDT 2025 Mon Oct 20 23:45:41 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | ahead-of-print |
| Language | English |
| License | open-access: http://creativecommons.org/licenses/by-nc/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent. http://creativecommons.org/licenses/by-nc/4.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c451t-74cf58777a5803fdd0e193865187d38eafcabe2d1de43ed9e88a2ae72a0f10a93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.tandfonline.com/doi/pdf/10.1080/26939169.2023.2231065?needAccess=true&role=button |
| PQID | 2985879415 |
| PQPubID | 3934956 |
| PageCount | 15 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8c5e10f8c6134a10b89a4d385f601fc1 proquest_journals_2985879415 crossref_citationtrail_10_1080_26939169_2023_2231065 informaworld_taylorfrancis_310_1080_26939169_2023_2231065 unpaywall_primary_10_1080_26939169_2023_2231065 crossref_primary_10_1080_26939169_2023_2231065 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-03 |
| PublicationDateYYYYMMDD | 2024-05-03 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-03 day: 03 |
| PublicationDecade | 2020 |
| PublicationPlace | Alexandria |
| PublicationPlace_xml | – name: Alexandria |
| PublicationTitle | Journal of statistics and data science education |
| PublicationYear | 2024 |
| Publisher | Taylor & Francis Taylor & Francis Ltd Taylor & Francis Group |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd – name: Taylor & Francis Group |
| References | e_1_3_4_3_1 e_1_3_4_2_1 Misseyanni A. (e_1_3_4_25_1) 2018 e_1_3_4_9_1 e_1_3_4_8_1 e_1_3_4_7_1 e_1_3_4_20_1 e_1_3_4_6_1 e_1_3_4_5_1 Johnson R. A. (e_1_3_4_19_1) 2014 e_1_3_4_23_1 e_1_3_4_24_1 e_1_3_4_22_1 e_1_3_4_27_1 e_1_3_4_28_1 e_1_3_4_26_1 e_1_3_4_29_1 Izenman A. (e_1_3_4_17_1) 2008 e_1_3_4_31_1 e_1_3_4_30_1 e_1_3_4_12_1 e_1_3_4_13_1 e_1_3_4_34_1 e_1_3_4_10_1 e_1_3_4_33_1 e_1_3_4_11_1 e_1_3_4_32_1 e_1_3_4_16_1 e_1_3_4_14_1 Kutner M. H. (e_1_3_4_21_1) 2005 e_1_3_4_15_1 e_1_3_4_18_1 Berk R. A. (e_1_3_4_4_1) 2008 |
| References_xml | – ident: e_1_3_4_2_1 doi: 10.5430/ijhe.v7n2p175 – ident: e_1_3_4_28_1 doi: 10.1002/j.2168-9830.2004.tb00809.x – ident: e_1_3_4_22_1 doi: 10.1080/10691898.2019.1677533 – ident: e_1_3_4_34_1 doi: 10.1080/26939169.2021.1995545 – ident: e_1_3_4_8_1 – ident: e_1_3_4_16_1 – volume-title: Applied Linear Statistical Models year: 2005 ident: e_1_3_4_21_1 – ident: e_1_3_4_26_1 doi: 10.1080/26939169.2021.1971586 – ident: e_1_3_4_30_1 doi: 10.1080/10691898.2013.11889662 – volume-title: Innovation, and Creativity year: 2018 ident: e_1_3_4_25_1 – ident: e_1_3_4_11_1 doi: 10.1007/978-1-4419-9650-3 – ident: e_1_3_4_27_1 doi: 10.1080/26939169.2021.1946450 – ident: e_1_3_4_32_1 doi: 10.1007/BF00994018 – ident: e_1_3_4_3_1 doi: 10.1187/cbe.09-03-0025 – volume-title: Applied Multivariate Statistical Analysis year: 2014 ident: e_1_3_4_19_1 – ident: e_1_3_4_13_1 doi: 10.1080/10691898.1993.11910455 – ident: e_1_3_4_24_1 – ident: e_1_3_4_15_1 doi: 10.1007/978-0-387-84858-7 – ident: e_1_3_4_5_1 doi: 10.1080/10691898.2020.1799727 – ident: e_1_3_4_23_1 doi: 10.1080/10691898.2016.1158017 – ident: e_1_3_4_29_1 – ident: e_1_3_4_20_1 – ident: e_1_3_4_10_1 doi: 10.1080/10691898.2019.1604106 – volume-title: Statistical Learning from a Regression Perspective year: 2008 ident: e_1_3_4_4_1 – ident: e_1_3_4_31_1 doi: 10.1007/978-1-4757-2440-0 – ident: e_1_3_4_6_1 doi: 10.1080/10691898.2011.11889596 – volume-title: Modern Multivariate Statistical Techniques. Regression, Classification and Manifold Learning year: 2008 ident: e_1_3_4_17_1 – ident: e_1_3_4_33_1 doi: 10.1080/00031305.2016.1201005 – ident: e_1_3_4_7_1 – ident: e_1_3_4_12_1 doi: 10.1073/pnas.1319030111 – ident: e_1_3_4_9_1 doi: 10.1080/26939169.2021.1997128 – ident: e_1_3_4_18_1 doi: 10.1007/978-1-4614-7138-7 – ident: e_1_3_4_14_1 doi: 10.1007/978-1-4757-3843-8 |
| SSID | ssj0002513373 |
| Score | 2.2848058 |
| Snippet | Support vector classifiers are one of the most popular linear classification techniques for binary classification. Different from some commonly seen model... AbstractSupport vector classifiers are one of the most popular linear classification techniques for binary classification. Different from some commonly seen... |
| SourceID | doaj unpaywall proquest crossref informaworld |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Active Learning Addition Algorithms Artificial Intelligence Basic Skills Binary classification Class Activities Classroom Communication Course Content Data Analysis Data science Demonstrations (Educational) Discriminant Analysis Educational Development Experiential Learning Group Activities Hands on Science Hands-on learning Informal Assessment Instructional Materials Learner Engagement Learning Activities Least Squares Statistics Machine learning Mathematics Education Maximum likelihood method Maximum Likelihood Statistics Multivariate data analysis Regression (Statistics) Science Curriculum Science education Students Teamwork |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELaqXIBDBaWoKRT5wHUTP3fHx7QqQkj0Aqm4WV4_ACnaRiUI8e-xvU605ZIeuFpry54Ze2a84-9D6CyBiNMApGqcigmKbNqqbYisal4LRaJ_5iHdQ179qi_m4vJW3g6ovlJNWA8P3AtuClZ6SgLY6HeEoaQFZYTjIENMJYLNiQ8BNUim0hnMEm1Jw9dPdoBMWa3SG9P0NoXxCUthTXIoA2eUMfvfIJb-E3fuPHVL8_JsFouBCzrfRx9L7Ihn_ZwP0AfffUJ7Vxvg1cdDpGf5_KoKbOodzqSXOLdm7FRsOoev7x-6Fzwb_LvGcTL4plRW4kT1GcNy_Dtf6fdjPIREmv0Zzc9_3vy4qAqHQmWFpKuqETbIhPlnJBAenCM-hmxQSwpNlKI3wZrWM0edF9w75QEMM75hhgRKjOJHaNT96fwXhDmE6Mp4lJwFAXVQzDurGi4sWGUpHSOxFqa2BWA88VwsNC04pGsd6KQDXXQwRpNNt2WPsLGtw_ekqc3HCSA7N0Sz0cVs9DazGSM11LNe5fuR0JOZaL5lAidro9Blxz9qpiDKWcV4aIymG0P5vxV9fY8VHaPdOKbIxZj8BI1Wf5_8txgwrdrTvDdeAYsFCUU priority: 102 providerName: Directory of Open Access Journals – databaseName: Taylor & Francis Open Access dbid: 0YH link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-wwFA5eXXhdiI8rji-ycFvNs0mWoyiDoBsf6CqkaeIVhirOiPjvTdK0jIIouGxoyklOTs6X05PvALAfScSxl6gQtQoHFC6qohKIFyUtmULBP1Mf45DnF-Xomp3d8i6bcJLTKuMZ2rdEEWmvjsZtqkmXEXdIShWvi8ZrJoQekIhQSv4HLBCBVVzY6G7Uh1lIrF8iaHd356veH7xSIu__RF36AYAuvjRP5u3VjMczvuh0BSxnEAmHrdZXwZxr1sDSec_AOlkHepg2siLzp97DVP0SptZEogrD8OHl_4fmDQ5nfmLDIAy8yimWMNb8DPgc3qTYfvuNBx-rZ_8D16cnV8ejIhdTKCzjeFoIZj2P5H-GS0R9XSMXsJssOZaiptIZb03lSI1rx6irlZPSEOMEMchjZBTdAPPNY-M2AaTSB59Gw8xZyWTpFXG1VYIyK62yGA8A6yZT28w0HgtejDXOhKSdDnTUgc46GICDvttTS7XxXYejqKn-5ciUnRoen-91NjwtLXcYeWkDbmEGo0oqw8KAuQ9HUW-DsGpWz3qaAiW-rWqi6TcC7HSLQmfTn2iiZJhnFYDRABz2C-VnI9r6hTDb4G94ZCkZk-6A-enzi9sNgGla7SWTeAclKQZ9 priority: 102 providerName: Taylor & Francis – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELXK9gAc-EYsFOQD12zj2E7sA0ILoqqQWiHRReWALMex24pVdtVmhcqB386M46y2lVDhwDFWbNmTycwbe_yGkNdIIs6CyrOq0RCgyKrO6iqXWclLoXPwzzzgPuTBYbk_Ex-P5fEW-TbchcG0SoyhQ08UEW01_tzLJgwZcbtFqfG6KF4zKfikQIRSyrctWPtpLDL4pjvHfOUFyLpedQChbpHtUgJUH5Ht2eGn6VcsOAdjZDjIcKvnT-Ne8VeR1v8aqekVaHp71S7t5Q87n294qb375Newvj455ftk1dUT9_Ma9eN_E8ADci_hWzrtFfIh2fLtI3L3YE0Oe_GYmGm0sVmidj2hsTAnja2R35XCxOjn07P2kk43ztcpSIMepexPiuVIIXSgX-KxQz_GWcDC3k_IbO_D0fv9LNV5yJyQrMsq4YJEXkIrVc5D0-QeYKUqJVNVw5W3wdnaFw1rvOC-0V4pW1hfFTYPLLeaPyWjdtH6Z4RyFcDdcpCIU0KVQRe-cbriwimnHWNjIoavaVwiQcdaHHPDElfqIFuDsjVJtmMyWXdb9iwgN3V4h6qyfhlJvGPD4vzEJJtglJOe5UE5gFTCsrxW2gpYsAwQJQcHk9Wbima6uIcT-oIrht8wgZ1BK02yShem0ArkrAGzjcnuWlP_bkXP_7nHC3IHHkXMDuU7ZIRK-RIQXFe_Sv_hb4GVOFQ priority: 102 providerName: Unpaywall |
| Title | Active-Learning Class Activities and Shiny Applications for Teaching Support Vector Classifiers |
| URI | https://www.tandfonline.com/doi/abs/10.1080/26939169.2023.2231065 https://www.proquest.com/docview/2985879415 https://www.tandfonline.com/doi/pdf/10.1080/26939169.2023.2231065?needAccess=true&role=button https://doaj.org/article/8c5e10f8c6134a10b89a4d385f601fc1 |
| UnpaywallVersion | publishedVersion |
| Volume | ahead-of-print |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2693-9169 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002513373 issn: 2693-9169 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2693-9169 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002513373 issn: 2693-9169 databaseCode: M~E dateStart: 20210101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2693-9169 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002513373 issn: 2693-9169 databaseCode: BENPR dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELba9AAcKp4itEQ-cN3Gz137gFBapYqQElXQoPZkef0olaJNaFOhXvjt2I53GzhQLnuwbMv2zM6Mx_b3AfAhgohjL1BRWRk2KLyqi7pCvChpySQK_pn6mIeczsrJnH2-4Bc7YNa-hYnXKlubmAy1XZqYIx8SKbgIyoP5p9WPIrJGxdPVlkJDZ2oF-zFBjO2CPRKRsXpg73g8O_vSZV1IpDOpaPuUR6AhKWV8exrfrBB6RGK4Ex3NlpNKWP5_IZn-EY8-uWtW-v6nXiy2XNPpc7CfY0o42ijBC7Djmpfg2bQDZL19BdQo2bUiw6lewUSGCVNpwlSFurHw6_fr5h6Ots60YRgMPM83LmGkAA3hOvyWUv2bPq59JNN-Dean4_OTSZG5FQrDOF4XFTOeRyxAzQWi3lrkQignyrB4laXCaW907YjF1jHqrHRCaKJdRTTyGGlJ34Bes2zcWwCp8MHF0bByRjBRekmcNbKizAgjDcZ9wNrFVCYDj0f-i4XCGZ-0lYGKMlBZBn1w1DVbbZA3HmtwHCXVVY7A2algeXOl8n-ohOEOIy9MCGOYxqgWUrMwYe7DztSbMFi5LWe1TnkTvyE5UfSRARy2SqGyJbhVD3rbB8NOUf5vRu_-3eEBeBpqs3T9kh6C3vrmzr0PIdK6HoBddDkZZO0fpERD-E5_jUPZfHY2uvwNx8QMhg |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbhMxFLWqdlFYIJ4iUMALWE7j54y9qFAKrVLaRAhS1J3x-NFWiiahSVXl5_g2bMcTAgvKpltrbHl87fuy7zkAvI0g4tgLVFRWhgCFV3VRV4gXJS2ZRME-Ux_zkINh2T9ln8742Qb42dbCxGeVrU5MitpOTMyRd4kUXITNg_n76Y8iskbF29WWQkNnagW7lyDGcmHHsVvchBButnf0Mcj7HSGHB6MP_SKzDBSGcTwvKmY8j6h4mgtEvbXIBadGlGGYylLhtDe6dsRi6xh1VjohNNGuIhp5jHQEYwomYItRJkPwt7V_MPz8ZZXlIZE-paJt6ZBAXVLKWOsaa2QI3SXRvYqGbc0oJu6Av5BT__B_t6-bqV7c6PF4zRQePgQPsg8Le8tN9whsuOYxuD9YAcDOngDVS3q0yPCt5zCRb8LUmjBcoW4s_Hpx2Sxgb-0OHYbJwFF-4Qkj5WgID-C3dLWwHOPSR_Lup-D0Tlb5GdhsJo17DiAVPphUGlbOCCZKL4mzRlaUGWGkwbgDWLuYymSg88i3MVY446G2MlBRBirLoAN2V92mS6SP2zrsR0mtPo5A3alhcnWu8rlXwnCHkRcmuE1MY1QLqVn4Ye5DJOxNmKxcl7OapzyNX5KqKHrLBHbaTaGy5pmp3-ekA7qrjfJ_f_Ti3wO-Adv90eBEnRwNj1-Ce6EnS08_6Q7YnF9du1fBPZvXr_MZgOD7XR-7XxqIRbI |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSEAPiFfFlgI-cE3rZ2Ifl8dqebRCokVwshw_SqVVuupuhfrvGTtOtEVCReLqxNHY4_F8noy_Qeh1IhGnUZGq8RoOKLJpq7Yhsqp5LTQB_8xjikMeHtXzE_HxuxyyCVclrTKdoWNPFJH36mTcSx-HjLgDVut0XTRdM2F8nyWEUsvb6I5U4N5gSZMf8zHMwlL9koYPd3f-1vuaV8rk_X9Ql14DoPcuu6W9-mUXiw1fNHuIHhQQiae91h-hW6F7jLYPRwbW1RNkpnkjqwp_6inO1S9xbs0kqhiGj7_-POuu8HTjJzYGYfBxSbHEqeYn4HP8Lcf2-2-cxVQ9-yk6mb0_fjuvSjGFyglJ11UjXJSJ_M9KRXj0ngTAbqqWVDWeq2Cjs21gnvogePA6KGWZDQ2zJFJiNd9BW915F54hzFUEn8Zh5pwSqo6aBe90w4VTTjtKJ0gMk2lcYRpPBS8WhhZC0kEHJunAFB1M0P7YbdlTbdzU4U3S1PhyYsrODecXp6YYnlFOBkqicoBbhKWkVdoKGLCMcBSNDoTVm3o26xwoiX1VE8NvEGBvWBSmmP7KMK1gnjUAowk6GBfKv41o9z-EeYXufnk3M58_HH16ju7DE5HzMvke2lpfXIYXgJ3W7ctsHb8BnD4JEg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELXK9gAc-EYsFOQD12zj2E7sA0ILoqqQWiHRReWALMex24pVdtVmhcqB386M46y2lVDhwDFWbNmTycwbe_yGkNdIIs6CyrOq0RCgyKrO6iqXWclLoXPwzzzgPuTBYbk_Ex-P5fEW-TbchcG0SoyhQ08UEW01_tzLJgwZcbtFqfG6KF4zKfikQIRSyrctWPtpLDL4pjvHfOUFyLpedQChbpHtUgJUH5Ht2eGn6VcsOAdjZDjIcKvnT-Ne8VeR1v8aqekVaHp71S7t5Q87n294qb375Newvj455ftk1dUT9_Ma9eN_E8ADci_hWzrtFfIh2fLtI3L3YE0Oe_GYmGm0sVmidj2hsTAnja2R35XCxOjn07P2kk43ztcpSIMepexPiuVIIXSgX-KxQz_GWcDC3k_IbO_D0fv9LNV5yJyQrMsq4YJEXkIrVc5D0-QeYKUqJVNVw5W3wdnaFw1rvOC-0V4pW1hfFTYPLLeaPyWjdtH6Z4RyFcDdcpCIU0KVQRe-cbriwimnHWNjIoavaVwiQcdaHHPDElfqIFuDsjVJtmMyWXdb9iwgN3V4h6qyfhlJvGPD4vzEJJtglJOe5UE5gFTCsrxW2gpYsAwQJQcHk9Wbima6uIcT-oIrht8wgZ1BK02yShem0ArkrAGzjcnuWlP_bkXP_7nHC3IHHkXMDuU7ZIRK-RIQXFe_Sv_hb4GVOFQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Active-Learning+Class+Activities+and+Shiny+Applications+for+Teaching+Support+Vector+Classifiers&rft.jtitle=Journal+of+statistics+and+data+science+education&rft.au=Wang%2C+Qing&rft.au=Cai%2C+Xizhen&rft.date=2024-05-03&rft.pub=Taylor+%26+Francis+Ltd&rft.eissn=2693-9169&rft.volume=32&rft.issue=2&rft.spage=202&rft.epage=216&rft_id=info:doi/10.1080%2F26939169.2023.2231065 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2693-9169&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2693-9169&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2693-9169&client=summon |