Active-Learning Class Activities and Shiny Applications for Teaching Support Vector Classifiers

Support vector classifiers are one of the most popular linear classification techniques for binary classification. Different from some commonly seen model fitting criteria in statistics, such as the ordinary least squares criterion and the maximum likelihood method, its algorithm depends on an optim...

Full description

Saved in:
Bibliographic Details
Published inJournal of statistics and data science education Vol. ahead-of-print; no. ahead-of-print; pp. 1 - 15
Main Authors Wang, Qing, Cai, Xizhen
Format Journal Article
LanguageEnglish
Published Alexandria Taylor & Francis 03.05.2024
Taylor & Francis Ltd
Taylor & Francis Group
Subjects
Online AccessGet full text
ISSN2693-9169
2693-9169
DOI10.1080/26939169.2023.2231065

Cover

Abstract Support vector classifiers are one of the most popular linear classification techniques for binary classification. Different from some commonly seen model fitting criteria in statistics, such as the ordinary least squares criterion and the maximum likelihood method, its algorithm depends on an optimization problem under constraints, which is unconventional to many students in a second or third course in statistics or data science. As a result, this topic is often not as intuitive to students as some of the more traditional statistical modeling tools. In order to facilitate students' mastery of the topic and promote active learning, we developed some in-class activities and their accompanying Shiny applications for teaching support vector classifiers. The designed course materials aim at engaging students through group work and solidifying students' understanding of the algorithm via hands-on explorations. The Shiny applications offer interactive demonstration of the changes of the components of a support vector classifier when altering its determining parameters. With the goal of benefiting the broader statistics and data science education community, we have made the developed Shiny applications publicly available. In addition, a detailed in-class activity worksheet and a real data example are also provided in the online supplementary materials .
AbstractList Support vector classifiers are one of the most popular linear classification techniques for binary classification. Different from some commonly seen model fitting criteria in statistics, such as the ordinary least squares criterion and the maximum likelihood method, its algorithm depends on an optimization problem under constraints, which is unconventional to many students in a second or third course in statistics or data science. As a result, this topic is often not as intuitive to students as some of the more traditional statistical modeling tools. In order to facilitate students’ mastery of the topic and promote active learning, we developed some in-class activities and their accompanying Shiny applications for teaching support vector classifiers. The designed course materials aim at engaging students through group work and solidifying students’ understanding of the algorithm via hands-on explorations. The Shiny applications offer interactive demonstration of the changes of the components of a support vector classifier when altering its determining parameters. With the goal of benefiting the broader statistics and data science education community, we have made the developed Shiny applications publicly available. In addition, a detailed in-class activity worksheet and a real data example are also provided in the online supplementary materials.
Support vector classifiers are one of the most popular linear classification techniques for binary classification. Different from some commonly seen model fitting criteria in statistics, such as the ordinary least squares criterion and the maximum likelihood method, its algorithm depends on an optimization problem under constraints, which is unconventional to many students in a second or third course in statistics or data science. As a result, this topic is often not as intuitive to students as some of the more traditional statistical modeling tools. In order to facilitate students' mastery of the topic and promote active learning, we developed some in-class activities and their accompanying Shiny applications for teaching support vector classifiers. The designed course materials aim at engaging students through group work and solidifying students' understanding of the algorithm via hands-on explorations. The Shiny applications offer interactive demonstration of the changes of the components of a support vector classifier when altering its determining parameters. With the goal of benefiting the broader statistics and data science education community, we have made the developed Shiny applications publicly available. In addition, a detailed in-class activity worksheet and a real data example are also provided in the online supplementary materials .
AbstractSupport vector classifiers are one of the most popular linear classification techniques for binary classification. Different from some commonly seen model fitting criteria in statistics, such as the ordinary least squares criterion and the maximum likelihood method, its algorithm depends on an optimization problem under constraints, which is unconventional to many students in a second or third course in statistics or data science. As a result, this topic is often not as intuitive to students as some of the more traditional statistical modeling tools. In order to facilitate students’ mastery of the topic and promote active learning, we developed some in-class activities and their accompanying Shiny applications for teaching support vector classifiers. The designed course materials aim at engaging students through group work and solidifying students’ understanding of the algorithm via hands-on explorations. The Shiny applications offer interactive demonstration of the changes of the components of a support vector classifier when altering its determining parameters. With the goal of benefiting the broader statistics and data science education community, we have made the developed Shiny applications publicly available. In addition, a detailed in-class activity worksheet and a real data example are also provided in the online supplementary materials.
Author Cai, Xizhen
Wang, Qing
Author_xml – sequence: 1
  givenname: Qing
  surname: Wang
  fullname: Wang, Qing
  organization: Department of Mathematics, Wellesley College
– sequence: 2
  givenname: Xizhen
  surname: Cai
  fullname: Cai, Xizhen
  organization: Department of Mathematics and Statistics, Williams College
BookMark eNqNkV1rFDEUhgepYK39CcKA17PmYz4SvHFZrBYWvGj1NpwmJ22WNBmTrGX_vTM7tUgv1KuE95z3OZz3vK5OQgxYVW8pWVEiyHvWSy5pL1eMML5ijFPSdy-q01lv5sLJH_9X1XnOO0II6yjnAz-t1FoX9xObLUIKLtzWGw8510fVFYe5hmDqqzsXDvV6HL3TUFwMubYx1dcI-m42Xe3HMaZSf0ddJv3IcNZhym-qlxZ8xvPH96z6dvHpevOl2X79fLlZbxvddrQ0Q6ttJ4ZhgE4Qbo0hSCUXfUfFYLhAsBpukBlqsOVoJAoBDHBgQCwlIPlZdblwTYSdGpO7h3RQEZw6CjHdKkjFaY9K6A4psUL3lLdAyY2Q0E5DOtsTajWdWP3C2ocRDg_g_ROQEjWnrn6nrubU1WPqk_HdYhxT_LHHXNQu7lOY9lZMimk_2dK5q1u6dIo5J7T_Tf_wzKddOV6jJHD-n-6Pi9uF6XT38BCTN6rAwcdkEwTtsuJ_R_wCkXS5TQ
CitedBy_id crossref_primary_10_1080_10494820_2025_2465441
Cites_doi 10.5430/ijhe.v7n2p175
10.1002/j.2168-9830.2004.tb00809.x
10.1080/10691898.2019.1677533
10.1080/26939169.2021.1995545
10.1080/26939169.2021.1971586
10.1080/10691898.2013.11889662
10.1007/978-1-4419-9650-3
10.1080/26939169.2021.1946450
10.1007/BF00994018
10.1187/cbe.09-03-0025
10.1080/10691898.1993.11910455
10.1007/978-0-387-84858-7
10.1080/10691898.2020.1799727
10.1080/10691898.2016.1158017
10.1080/10691898.2019.1604106
10.1007/978-1-4757-2440-0
10.1080/10691898.2011.11889596
10.1080/00031305.2016.1201005
10.1073/pnas.1319030111
10.1080/26939169.2021.1997128
10.1007/978-1-4614-7138-7
10.1007/978-1-4757-3843-8
ContentType Journal Article
Copyright 2023 The Author(s). Published with license by Taylor & Francis Group, LLC 2023
2023 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Author(s). Published with license by Taylor & Francis Group, LLC 2023
– notice: 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
3V.
7XB
8FK
8G5
ABUWG
AFKRA
AHOVV
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
M2O
MBDVC
PHGZM
PHGZT
PKEHL
PQEDU
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
DOA
DOI 10.1080/26939169.2023.2231065
DatabaseName Taylor & Francis Open Access
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Education Research Index
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest Research Library
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Education
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
ProQuest One Education
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList ProQuest One Education


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2693-9169
EndPage 15
ExternalDocumentID oai_doaj_org_article_8c5e10f8c6134a10b89a4d385f601fc1
10.1080/26939169.2023.2231065
10_1080_26939169_2023_2231065
2231065
Genre Research Article
GroupedDBID 0YH
8G5
AAFWJ
ABUWG
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AQTUD
AZQEC
BENPR
CCPQU
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
GUQSH
H13
M2O
M4Z
M~E
PHGZM
PHGZT
PQEDU
TDBHL
AAYXX
CITATION
PUEGO
3V.
7XB
8FK
AHOVV
MBDVC
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c451t-74cf58777a5803fdd0e193865187d38eafcabe2d1de43ed9e88a2ae72a0f10a93
IEDL.DBID BENPR
ISSN 2693-9169
IngestDate Fri Oct 03 12:47:30 EDT 2025
Tue Aug 19 22:35:02 EDT 2025
Sat Aug 23 12:30:55 EDT 2025
Wed Oct 01 05:12:55 EDT 2025
Thu Apr 24 22:52:41 EDT 2025
Mon Oct 20 23:45:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue ahead-of-print
Language English
License open-access: http://creativecommons.org/licenses/by-nc/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
http://creativecommons.org/licenses/by-nc/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-74cf58777a5803fdd0e193865187d38eafcabe2d1de43ed9e88a2ae72a0f10a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.tandfonline.com/doi/pdf/10.1080/26939169.2023.2231065?needAccess=true&role=button
PQID 2985879415
PQPubID 3934956
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_8c5e10f8c6134a10b89a4d385f601fc1
proquest_journals_2985879415
crossref_citationtrail_10_1080_26939169_2023_2231065
informaworld_taylorfrancis_310_1080_26939169_2023_2231065
unpaywall_primary_10_1080_26939169_2023_2231065
crossref_primary_10_1080_26939169_2023_2231065
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-03
PublicationDateYYYYMMDD 2024-05-03
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-03
  day: 03
PublicationDecade 2020
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of statistics and data science education
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Ltd
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
– name: Taylor & Francis Group
References e_1_3_4_3_1
e_1_3_4_2_1
Misseyanni A. (e_1_3_4_25_1) 2018
e_1_3_4_9_1
e_1_3_4_8_1
e_1_3_4_7_1
e_1_3_4_20_1
e_1_3_4_6_1
e_1_3_4_5_1
Johnson R. A. (e_1_3_4_19_1) 2014
e_1_3_4_23_1
e_1_3_4_24_1
e_1_3_4_22_1
e_1_3_4_27_1
e_1_3_4_28_1
e_1_3_4_26_1
e_1_3_4_29_1
Izenman A. (e_1_3_4_17_1) 2008
e_1_3_4_31_1
e_1_3_4_30_1
e_1_3_4_12_1
e_1_3_4_13_1
e_1_3_4_34_1
e_1_3_4_10_1
e_1_3_4_33_1
e_1_3_4_11_1
e_1_3_4_32_1
e_1_3_4_16_1
e_1_3_4_14_1
Kutner M. H. (e_1_3_4_21_1) 2005
e_1_3_4_15_1
e_1_3_4_18_1
Berk R. A. (e_1_3_4_4_1) 2008
References_xml – ident: e_1_3_4_2_1
  doi: 10.5430/ijhe.v7n2p175
– ident: e_1_3_4_28_1
  doi: 10.1002/j.2168-9830.2004.tb00809.x
– ident: e_1_3_4_22_1
  doi: 10.1080/10691898.2019.1677533
– ident: e_1_3_4_34_1
  doi: 10.1080/26939169.2021.1995545
– ident: e_1_3_4_8_1
– ident: e_1_3_4_16_1
– volume-title: Applied Linear Statistical Models
  year: 2005
  ident: e_1_3_4_21_1
– ident: e_1_3_4_26_1
  doi: 10.1080/26939169.2021.1971586
– ident: e_1_3_4_30_1
  doi: 10.1080/10691898.2013.11889662
– volume-title: Innovation, and Creativity
  year: 2018
  ident: e_1_3_4_25_1
– ident: e_1_3_4_11_1
  doi: 10.1007/978-1-4419-9650-3
– ident: e_1_3_4_27_1
  doi: 10.1080/26939169.2021.1946450
– ident: e_1_3_4_32_1
  doi: 10.1007/BF00994018
– ident: e_1_3_4_3_1
  doi: 10.1187/cbe.09-03-0025
– volume-title: Applied Multivariate Statistical Analysis
  year: 2014
  ident: e_1_3_4_19_1
– ident: e_1_3_4_13_1
  doi: 10.1080/10691898.1993.11910455
– ident: e_1_3_4_24_1
– ident: e_1_3_4_15_1
  doi: 10.1007/978-0-387-84858-7
– ident: e_1_3_4_5_1
  doi: 10.1080/10691898.2020.1799727
– ident: e_1_3_4_23_1
  doi: 10.1080/10691898.2016.1158017
– ident: e_1_3_4_29_1
– ident: e_1_3_4_20_1
– ident: e_1_3_4_10_1
  doi: 10.1080/10691898.2019.1604106
– volume-title: Statistical Learning from a Regression Perspective
  year: 2008
  ident: e_1_3_4_4_1
– ident: e_1_3_4_31_1
  doi: 10.1007/978-1-4757-2440-0
– ident: e_1_3_4_6_1
  doi: 10.1080/10691898.2011.11889596
– volume-title: Modern Multivariate Statistical Techniques. Regression, Classification and Manifold Learning
  year: 2008
  ident: e_1_3_4_17_1
– ident: e_1_3_4_33_1
  doi: 10.1080/00031305.2016.1201005
– ident: e_1_3_4_7_1
– ident: e_1_3_4_12_1
  doi: 10.1073/pnas.1319030111
– ident: e_1_3_4_9_1
  doi: 10.1080/26939169.2021.1997128
– ident: e_1_3_4_18_1
  doi: 10.1007/978-1-4614-7138-7
– ident: e_1_3_4_14_1
  doi: 10.1007/978-1-4757-3843-8
SSID ssj0002513373
Score 2.2848058
Snippet Support vector classifiers are one of the most popular linear classification techniques for binary classification. Different from some commonly seen model...
AbstractSupport vector classifiers are one of the most popular linear classification techniques for binary classification. Different from some commonly seen...
SourceID doaj
unpaywall
proquest
crossref
informaworld
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Active Learning
Addition
Algorithms
Artificial Intelligence
Basic Skills
Binary classification
Class Activities
Classroom Communication
Course Content
Data Analysis
Data science
Demonstrations (Educational)
Discriminant Analysis
Educational Development
Experiential Learning
Group Activities
Hands on Science
Hands-on learning
Informal Assessment
Instructional Materials
Learner Engagement
Learning Activities
Least Squares Statistics
Machine learning
Mathematics Education
Maximum likelihood method
Maximum Likelihood Statistics
Multivariate data analysis
Regression (Statistics)
Science Curriculum
Science education
Students
Teamwork
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELaqXIBDBaWoKRT5wHUTP3fHx7QqQkj0Aqm4WV4_ACnaRiUI8e-xvU605ZIeuFpry54Ze2a84-9D6CyBiNMApGqcigmKbNqqbYisal4LRaJ_5iHdQ179qi_m4vJW3g6ovlJNWA8P3AtuClZ6SgLY6HeEoaQFZYTjIENMJYLNiQ8BNUim0hnMEm1Jw9dPdoBMWa3SG9P0NoXxCUthTXIoA2eUMfvfIJb-E3fuPHVL8_JsFouBCzrfRx9L7Ihn_ZwP0AfffUJ7Vxvg1cdDpGf5_KoKbOodzqSXOLdm7FRsOoev7x-6Fzwb_LvGcTL4plRW4kT1GcNy_Dtf6fdjPIREmv0Zzc9_3vy4qAqHQmWFpKuqETbIhPlnJBAenCM-hmxQSwpNlKI3wZrWM0edF9w75QEMM75hhgRKjOJHaNT96fwXhDmE6Mp4lJwFAXVQzDurGi4sWGUpHSOxFqa2BWA88VwsNC04pGsd6KQDXXQwRpNNt2WPsLGtw_ekqc3HCSA7N0Sz0cVs9DazGSM11LNe5fuR0JOZaL5lAidro9Blxz9qpiDKWcV4aIymG0P5vxV9fY8VHaPdOKbIxZj8BI1Wf5_8txgwrdrTvDdeAYsFCUU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Taylor & Francis Open Access
  dbid: 0YH
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-wwFA5eXXhdiI8rji-ycFvNs0mWoyiDoBsf6CqkaeIVhirOiPjvTdK0jIIouGxoyklOTs6X05PvALAfScSxl6gQtQoHFC6qohKIFyUtmULBP1Mf45DnF-Xomp3d8i6bcJLTKuMZ2rdEEWmvjsZtqkmXEXdIShWvi8ZrJoQekIhQSv4HLBCBVVzY6G7Uh1lIrF8iaHd356veH7xSIu__RF36AYAuvjRP5u3VjMczvuh0BSxnEAmHrdZXwZxr1sDSec_AOlkHepg2siLzp97DVP0SptZEogrD8OHl_4fmDQ5nfmLDIAy8yimWMNb8DPgc3qTYfvuNBx-rZ_8D16cnV8ejIhdTKCzjeFoIZj2P5H-GS0R9XSMXsJssOZaiptIZb03lSI1rx6irlZPSEOMEMchjZBTdAPPNY-M2AaTSB59Gw8xZyWTpFXG1VYIyK62yGA8A6yZT28w0HgtejDXOhKSdDnTUgc46GICDvttTS7XxXYejqKn-5ciUnRoen-91NjwtLXcYeWkDbmEGo0oqw8KAuQ9HUW-DsGpWz3qaAiW-rWqi6TcC7HSLQmfTn2iiZJhnFYDRABz2C-VnI9r6hTDb4G94ZCkZk-6A-enzi9sNgGla7SWTeAclKQZ9
  priority: 102
  providerName: Taylor & Francis
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELXK9gAc-EYsFOQD12zj2E7sA0ILoqqQWiHRReWALMex24pVdtVmhcqB386M46y2lVDhwDFWbNmTycwbe_yGkNdIIs6CyrOq0RCgyKrO6iqXWclLoXPwzzzgPuTBYbk_Ex-P5fEW-TbchcG0SoyhQ08UEW01_tzLJgwZcbtFqfG6KF4zKfikQIRSyrctWPtpLDL4pjvHfOUFyLpedQChbpHtUgJUH5Ht2eGn6VcsOAdjZDjIcKvnT-Ne8VeR1v8aqekVaHp71S7t5Q87n294qb375Newvj455ftk1dUT9_Ma9eN_E8ADci_hWzrtFfIh2fLtI3L3YE0Oe_GYmGm0sVmidj2hsTAnja2R35XCxOjn07P2kk43ztcpSIMepexPiuVIIXSgX-KxQz_GWcDC3k_IbO_D0fv9LNV5yJyQrMsq4YJEXkIrVc5D0-QeYKUqJVNVw5W3wdnaFw1rvOC-0V4pW1hfFTYPLLeaPyWjdtH6Z4RyFcDdcpCIU0KVQRe-cbriwimnHWNjIoavaVwiQcdaHHPDElfqIFuDsjVJtmMyWXdb9iwgN3V4h6qyfhlJvGPD4vzEJJtglJOe5UE5gFTCsrxW2gpYsAwQJQcHk9Wbima6uIcT-oIrht8wgZ1BK02yShem0ArkrAGzjcnuWlP_bkXP_7nHC3IHHkXMDuU7ZIRK-RIQXFe_Sv_hb4GVOFQ
  priority: 102
  providerName: Unpaywall
Title Active-Learning Class Activities and Shiny Applications for Teaching Support Vector Classifiers
URI https://www.tandfonline.com/doi/abs/10.1080/26939169.2023.2231065
https://www.proquest.com/docview/2985879415
https://www.tandfonline.com/doi/pdf/10.1080/26939169.2023.2231065?needAccess=true&role=button
https://doaj.org/article/8c5e10f8c6134a10b89a4d385f601fc1
UnpaywallVersion publishedVersion
Volume ahead-of-print
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2693-9169
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002513373
  issn: 2693-9169
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2693-9169
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002513373
  issn: 2693-9169
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2693-9169
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002513373
  issn: 2693-9169
  databaseCode: BENPR
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELba9AAcKp4itEQ-cN3Gz137gFBapYqQElXQoPZkef0olaJNaFOhXvjt2I53GzhQLnuwbMv2zM6Mx_b3AfAhgohjL1BRWRk2KLyqi7pCvChpySQK_pn6mIeczsrJnH2-4Bc7YNa-hYnXKlubmAy1XZqYIx8SKbgIyoP5p9WPIrJGxdPVlkJDZ2oF-zFBjO2CPRKRsXpg73g8O_vSZV1IpDOpaPuUR6AhKWV8exrfrBB6RGK4Ex3NlpNKWP5_IZn-EY8-uWtW-v6nXiy2XNPpc7CfY0o42ijBC7Djmpfg2bQDZL19BdQo2bUiw6lewUSGCVNpwlSFurHw6_fr5h6Ots60YRgMPM83LmGkAA3hOvyWUv2bPq59JNN-Dean4_OTSZG5FQrDOF4XFTOeRyxAzQWi3lrkQignyrB4laXCaW907YjF1jHqrHRCaKJdRTTyGGlJ34Bes2zcWwCp8MHF0bByRjBRekmcNbKizAgjDcZ9wNrFVCYDj0f-i4XCGZ-0lYGKMlBZBn1w1DVbbZA3HmtwHCXVVY7A2algeXOl8n-ohOEOIy9MCGOYxqgWUrMwYe7DztSbMFi5LWe1TnkTvyE5UfSRARy2SqGyJbhVD3rbB8NOUf5vRu_-3eEBeBpqs3T9kh6C3vrmzr0PIdK6HoBddDkZZO0fpERD-E5_jUPZfHY2uvwNx8QMhg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbhMxFLWqdlFYIJ4iUMALWE7j54y9qFAKrVLaRAhS1J3x-NFWiiahSVXl5_g2bMcTAgvKpltrbHl87fuy7zkAvI0g4tgLVFRWhgCFV3VRV4gXJS2ZRME-Ux_zkINh2T9ln8742Qb42dbCxGeVrU5MitpOTMyRd4kUXITNg_n76Y8iskbF29WWQkNnagW7lyDGcmHHsVvchBButnf0Mcj7HSGHB6MP_SKzDBSGcTwvKmY8j6h4mgtEvbXIBadGlGGYylLhtDe6dsRi6xh1VjohNNGuIhp5jHQEYwomYItRJkPwt7V_MPz8ZZXlIZE-paJt6ZBAXVLKWOsaa2QI3SXRvYqGbc0oJu6Av5BT__B_t6-bqV7c6PF4zRQePgQPsg8Le8tN9whsuOYxuD9YAcDOngDVS3q0yPCt5zCRb8LUmjBcoW4s_Hpx2Sxgb-0OHYbJwFF-4Qkj5WgID-C3dLWwHOPSR_Lup-D0Tlb5GdhsJo17DiAVPphUGlbOCCZKL4mzRlaUGWGkwbgDWLuYymSg88i3MVY446G2MlBRBirLoAN2V92mS6SP2zrsR0mtPo5A3alhcnWu8rlXwnCHkRcmuE1MY1QLqVn4Ye5DJOxNmKxcl7OapzyNX5KqKHrLBHbaTaGy5pmp3-ekA7qrjfJ_f_Ti3wO-Adv90eBEnRwNj1-Ce6EnS08_6Q7YnF9du1fBPZvXr_MZgOD7XR-7XxqIRbI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSEAPiFfFlgI-cE3rZ2Ifl8dqebRCokVwshw_SqVVuupuhfrvGTtOtEVCReLqxNHY4_F8noy_Qeh1IhGnUZGq8RoOKLJpq7Yhsqp5LTQB_8xjikMeHtXzE_HxuxyyCVclrTKdoWNPFJH36mTcSx-HjLgDVut0XTRdM2F8nyWEUsvb6I5U4N5gSZMf8zHMwlL9koYPd3f-1vuaV8rk_X9Ql14DoPcuu6W9-mUXiw1fNHuIHhQQiae91h-hW6F7jLYPRwbW1RNkpnkjqwp_6inO1S9xbs0kqhiGj7_-POuu8HTjJzYGYfBxSbHEqeYn4HP8Lcf2-2-cxVQ9-yk6mb0_fjuvSjGFyglJ11UjXJSJ_M9KRXj0ngTAbqqWVDWeq2Cjs21gnvogePA6KGWZDQ2zJFJiNd9BW915F54hzFUEn8Zh5pwSqo6aBe90w4VTTjtKJ0gMk2lcYRpPBS8WhhZC0kEHJunAFB1M0P7YbdlTbdzU4U3S1PhyYsrODecXp6YYnlFOBkqicoBbhKWkVdoKGLCMcBSNDoTVm3o26xwoiX1VE8NvEGBvWBSmmP7KMK1gnjUAowk6GBfKv41o9z-EeYXufnk3M58_HH16ju7DE5HzMvke2lpfXIYXgJ3W7ctsHb8BnD4JEg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELXK9gAc-EYsFOQD12zj2E7sA0ILoqqQWiHRReWALMex24pVdtVmhcqB386M46y2lVDhwDFWbNmTycwbe_yGkNdIIs6CyrOq0RCgyKrO6iqXWclLoXPwzzzgPuTBYbk_Ex-P5fEW-TbchcG0SoyhQ08UEW01_tzLJgwZcbtFqfG6KF4zKfikQIRSyrctWPtpLDL4pjvHfOUFyLpedQChbpHtUgJUH5Ht2eGn6VcsOAdjZDjIcKvnT-Ne8VeR1v8aqekVaHp71S7t5Q87n294qb375Newvj455ftk1dUT9_Ma9eN_E8ADci_hWzrtFfIh2fLtI3L3YE0Oe_GYmGm0sVmidj2hsTAnja2R35XCxOjn07P2kk43ztcpSIMepexPiuVIIXSgX-KxQz_GWcDC3k_IbO_D0fv9LNV5yJyQrMsq4YJEXkIrVc5D0-QeYKUqJVNVw5W3wdnaFw1rvOC-0V4pW1hfFTYPLLeaPyWjdtH6Z4RyFcDdcpCIU0KVQRe-cbriwimnHWNjIoavaVwiQcdaHHPDElfqIFuDsjVJtmMyWXdb9iwgN3V4h6qyfhlJvGPD4vzEJJtglJOe5UE5gFTCsrxW2gpYsAwQJQcHk9Wbima6uIcT-oIrht8wgZ1BK02yShem0ArkrAGzjcnuWlP_bkXP_7nHC3IHHkXMDuU7ZIRK-RIQXFe_Sv_hb4GVOFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Active-Learning+Class+Activities+and+Shiny+Applications+for+Teaching+Support+Vector+Classifiers&rft.jtitle=Journal+of+statistics+and+data+science+education&rft.au=Wang%2C+Qing&rft.au=Cai%2C+Xizhen&rft.date=2024-05-03&rft.pub=Taylor+%26+Francis+Ltd&rft.eissn=2693-9169&rft.volume=32&rft.issue=2&rft.spage=202&rft.epage=216&rft_id=info:doi/10.1080%2F26939169.2023.2231065
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2693-9169&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2693-9169&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2693-9169&client=summon