Enhanced heart disease prediction through hybrid CNN-TLBO-GA optimization: a comparative study with conventional CNN and optimized CNN using FPO algorithm

Cardiovascular diseases (CD), or heart diseases (HD), lead to approximately 17.9 million deaths each year, constituting 32% of global fatalities. Early detection and appropriate treatment of HDs can significantly reduce mortality rates, with timely intervention before disease progression enhancing t...

Full description

Saved in:
Bibliographic Details
Published inCogent engineering Vol. 11; no. 1
Main Authors Ram Kumar, R. P., Raju, S., Annapoorna, Errabelli, Hajari, Manu, Hareesa, Kadali, Vatin, Nikolai Ivanovich, Joshi, Abhishek, AL-Attabi, Kassem
Format Journal Article
LanguageEnglish
Published Abingdon Cogent 31.12.2024
Taylor & Francis Ltd
Taylor & Francis Group
Subjects
Online AccessGet full text
ISSN2331-1916
2331-1916
DOI10.1080/23311916.2024.2384657

Cover

Abstract Cardiovascular diseases (CD), or heart diseases (HD), lead to approximately 17.9 million deaths each year, constituting 32% of global fatalities. Early detection and appropriate treatment of HDs can significantly reduce mortality rates, with timely intervention before disease progression enhancing treatment efficacy. Early detection is achievable through routine medical examinations and monitoring key symptoms, such as cholesterol levels, blood pressure variations, diabetes and obesity. This manuscript introduces a heart disease prediction (HDP) model designed to identify the presence of HDs at an initial stage. The study explores three methodologies: (a) traditional convolutional neural network (CNN), (b) CNN augmented with flower pollination optimization (FPO) algorithm and (c) CNN combining Teaching Learning-Based Optimization (TLBO) coupled with genetic algorithm (GA) for refined HDP. The model progresses through stages of data preparation, model construction, training and evaluation. The traditional CNN model resulted an accuracy of 81.97%, precision of 84%, recall of 81% and F1-score of 83%. Incorporating the FPO algorithm, model's performance is enhanced with accuracy, precision, recall, F1-score of 85.25%, 90%, 81% and 85%, respectively. Further, optimized with TLBO and GA hybrid approach lead to superior performance with an accuracy, precision, recall, F1-score of 86.9%, 87.5%, 87.5% and 87.5%, respectively. The area under curve (AUC) for the receiver operating characteristics (ROC) and precision-recall curve (PRC) highlights the performance of the proposed hybrid methodology. These outcomes underscore the effectiveness of merging bio-inspired algorithms with CNN for early stage HD prediction (HDP), offering significant advancements in healthcare diagnostics.
AbstractList Cardiovascular diseases (CD), or heart diseases (HD), lead to approximately 17.9 million deaths each year, constituting 32% of global fatalities. Early detection and appropriate treatment of HDs can significantly reduce mortality rates, with timely intervention before disease progression enhancing treatment efficacy. Early detection is achievable through routine medical examinations and monitoring key symptoms, such as cholesterol levels, blood pressure variations, diabetes and obesity. This manuscript introduces a heart disease prediction (HDP) model designed to identify the presence of HDs at an initial stage. The study explores three methodologies: (a) traditional convolutional neural network (CNN), (b) CNN augmented with flower pollination optimization (FPO) algorithm and (c) CNN combining Teaching Learning-Based Optimization (TLBO) coupled with genetic algorithm (GA) for refined HDP. The model progresses through stages of data preparation, model construction, training and evaluation. The traditional CNN model resulted an accuracy of 81.97%, precision of 84%, recall of 81% and F1-score of 83%. Incorporating the FPO algorithm, model’s performance is enhanced with accuracy, precision, recall, F1-score of 85.25%, 90%, 81% and 85%, respectively. Further, optimized with TLBO and GA hybrid approach lead to superior performance with an accuracy, precision, recall, F1-score of 86.9%, 87.5%, 87.5% and 87.5%, respectively. The area under curve (AUC) for the receiver operating characteristics (ROC) and precision–recall curve (PRC) highlights the performance of the proposed hybrid methodology. These outcomes underscore the effectiveness of merging bio-inspired algorithms with CNN for early stage HD prediction (HDP), offering significant advancements in healthcare diagnostics.
Author Ram Kumar, R. P.
Hajari, Manu
Vatin, Nikolai Ivanovich
AL-Attabi, Kassem
Annapoorna, Errabelli
Raju, S.
Hareesa, Kadali
Joshi, Abhishek
Author_xml – sequence: 1
  givenname: R. P.
  orcidid: 0000-0001-5687-977X
  surname: Ram Kumar
  fullname: Ram Kumar, R. P.
  organization: Department of Computer Science and Engineering (AI & ML), Gokaraju Rangaraju Institute of Engineering and Technology
– sequence: 2
  givenname: S.
  surname: Raju
  fullname: Raju, S.
  organization: Department of Information Technology, Mahendra Engineering College (Autonomous)
– sequence: 3
  givenname: Errabelli
  surname: Annapoorna
  fullname: Annapoorna, Errabelli
  organization: Department of CSBS, Gokaraju Rangaraju Institute of Engineering and Technology
– sequence: 4
  givenname: Manu
  surname: Hajari
  fullname: Hajari, Manu
  organization: Department of Computer Science and Engineering (Data Science), Gokaraju Rangaraju Institute of Engineering and Technology
– sequence: 5
  givenname: Kadali
  surname: Hareesa
  fullname: Hareesa, Kadali
  organization: Department of Computer Science and Engineering (Data Science), Gokaraju Rangaraju Institute of Engineering and Technology
– sequence: 6
  givenname: Nikolai Ivanovich
  orcidid: 0000-0002-1196-8004
  surname: Vatin
  fullname: Vatin, Nikolai Ivanovich
  organization: Division of Research and Development, Lovely Professional University
– sequence: 7
  givenname: Abhishek
  surname: Joshi
  fullname: Joshi, Abhishek
  organization: Department of Engineering, Uttaranchal University
– sequence: 8
  givenname: Kassem
  surname: AL-Attabi
  fullname: AL-Attabi, Kassem
  organization: Department of Computers Techniques Engineering, College of Technical Engineering, The Islamic University, Najaf
BookMark eNqNksFu1DAQhiNUJErpIyBZ4pzWjhMngQtl1ZZKqy6HcrYm9mTjVdYOttPV8ig8LcluixAH4GR7_H-_R__4dXJincUkecvoBaMVvcw4Z6xm4iKjWX6R8SoXRfkiOZ3r6Xxx8tv-VXIewoZSynhe0JqeJj-ubQdWoSYdgo9Em4AQkAwetVHROEti59247ki3b7zRZHF_nz4sP63S2yvihmi25jvMuvcEiHLbAfx0fEQS4qj3ZGdiN5XtI9pZBP3ME7D6mcWDIxmDsWty82VFoF87P1HbN8nLFvqA50_rWfL15vph8Tldrm7vFlfLVOUFi6mgWKqcFhUXlFPEjKKoRc5UWwpR0iLTDWsEo82UQlVxrRFr5CB4plSeYc3Pkrujr3awkYM3W_B76cDIQ8H5tZySMapHWfOyKQvW5DWyXIiqBtCQCYaasqItZy9x9BrtAPsd9P0vQ0blPDD5PDA5D0w-DWwC3x3BwbtvI4YoN270U15BcpZPBGNCTKoPR5XyLgSPrVQmHtKPHkz_zzeKP-j_7e3jkTO2dX4LO-d7LSPse-dbP_0eMzf5V4ufYrjMQg
CitedBy_id crossref_primary_10_1080_23311916_2024_2423847
crossref_primary_10_1007_s11334_024_00592_z
Cites_doi 10.1080/23311916.2024.2325635
10.1038/s41598-024-51184-7
10.1038/s41598-023-40717-1
10.36948/ijfmr.2023.v05i06.9324
10.3390/ecsa-10-16239
10.1007/978-981-15-1480-7_59
10.3390/a16060308
10.1016/j.ihj.2012.07.001
10.1007/s11042-023-14817-z
10.1155/2024/5080332
10.47852/bonviewAIA3202823
10.1007/s12008-023-01488-1
10.1155/2023/6864343
10.3389/fmed.2023.1150933
10.1038/s41598-024-55991-w
10.22266/ijies2023.0430.42
10.4236/jdaip.2023.111001
10.3390/ecsa-10-16237
10.3390/diagnostics13142392
10.1186/s44147-023-00280-y
10.1007/s12008-023-01448-9
10.1016/j.dajour.2023.100331
10.1007/s42044-023-00148-7
ContentType Journal Article
Copyright 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2024
2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2024
– notice: 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOA
DOI 10.1080/23311916.2024.2384657
DatabaseName Taylor & Francis Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database (Proquest)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ DIrectory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2331-1916
ExternalDocumentID oai_doaj_org_article_937b751b49e146689aada261ed015f79
10.1080/23311916.2024.2384657
10_1080_23311916_2024_2384657
2384657
Genre Research Article
GroupedDBID 0YH
5VS
8FE
8FG
AAFWJ
ABDBF
ABJCF
ACUHS
ADBBV
ADCVX
ADMLS
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AQTUD
BCNDV
BENPR
BGLVJ
CCPQU
EAP
EBS
ESX
GROUPED_DOAJ
H13
HCIFZ
HZ~
KQ8
L6V
M4Z
M7S
M~E
O9-
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TDBHL
TFW
AAYXX
CITATION
PUEGO
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
EJD
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c451t-60e7c405836030ee20e69641cf7667052db1b610b233883ddee9e3a632cc42e93
IEDL.DBID UNPAY
ISSN 2331-1916
IngestDate Fri Oct 03 12:43:05 EDT 2025
Sun Sep 07 11:13:45 EDT 2025
Fri Jul 25 12:06:55 EDT 2025
Wed Oct 01 04:39:14 EDT 2025
Thu Apr 24 22:56:24 EDT 2025
Mon Oct 20 23:47:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-60e7c405836030ee20e69641cf7667052db1b610b233883ddee9e3a632cc42e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5687-977X
0000-0002-1196-8004
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1080/23311916.2024.2384657
PQID 3143111166
PQPubID 2043312
ParticipantIDs proquest_journals_3143111166
crossref_citationtrail_10_1080_23311916_2024_2384657
crossref_primary_10_1080_23311916_2024_2384657
doaj_primary_oai_doaj_org_article_937b751b49e146689aada261ed015f79
informaworld_taylorfrancis_310_1080_23311916_2024_2384657
unpaywall_primary_10_1080_23311916_2024_2384657
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-31
PublicationDateYYYYMMDD 2024-12-31
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-31
  day: 31
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Cogent engineering
PublicationYear 2024
Publisher Cogent
Taylor & Francis Ltd
Taylor & Francis Group
Publisher_xml – name: Cogent
– name: Taylor & Francis Ltd
– name: Taylor & Francis Group
References e_1_3_4_4_1
e_1_3_4_3_1
e_1_3_4_2_1
e_1_3_4_9_1
e_1_3_4_8_1
e_1_3_4_7_1
e_1_3_4_20_1
e_1_3_4_6_1
e_1_3_4_5_1
e_1_3_4_23_1
e_1_3_4_24_1
e_1_3_4_21_1
e_1_3_4_22_1
e_1_3_4_26_1
Vardhan V. H. (e_1_3_4_25_1) 2023; 14
e_1_3_4_12_1
e_1_3_4_13_1
e_1_3_4_10_1
e_1_3_4_11_1
e_1_3_4_16_1
e_1_3_4_17_1
e_1_3_4_14_1
e_1_3_4_15_1
e_1_3_4_18_1
e_1_3_4_19_1
References_xml – ident: e_1_3_4_10_1
  doi: 10.1080/23311916.2024.2325635
– ident: e_1_3_4_18_1
  doi: 10.1038/s41598-024-51184-7
– ident: e_1_3_4_22_1
  doi: 10.1038/s41598-023-40717-1
– ident: e_1_3_4_14_1
  doi: 10.36948/ijfmr.2023.v05i06.9324
– ident: e_1_3_4_16_1
  doi: 10.3390/ecsa-10-16239
– ident: e_1_3_4_19_1
  doi: 10.1007/978-981-15-1480-7_59
– ident: e_1_3_4_5_1
  doi: 10.3390/a16060308
– ident: e_1_3_4_13_1
  doi: 10.1016/j.ihj.2012.07.001
– ident: e_1_3_4_9_1
  doi: 10.1007/s11042-023-14817-z
– ident: e_1_3_4_20_1
  doi: 10.1155/2024/5080332
– ident: e_1_3_4_15_1
  doi: 10.47852/bonviewAIA3202823
– ident: e_1_3_4_3_1
  doi: 10.1007/s12008-023-01488-1
– ident: e_1_3_4_4_1
  doi: 10.1155/2024/5080332
– ident: e_1_3_4_6_1
  doi: 10.1155/2023/6864343
– ident: e_1_3_4_23_1
  doi: 10.3389/fmed.2023.1150933
– ident: e_1_3_4_26_1
  doi: 10.1038/s41598-024-55991-w
– ident: e_1_3_4_7_1
  doi: 10.22266/ijies2023.0430.42
– ident: e_1_3_4_24_1
  doi: 10.4236/jdaip.2023.111001
– volume: 14
  start-page: 440
  issue: 4
  year: 2023
  ident: e_1_3_4_25_1
  article-title: Heart disease prediction using machine learning
  publication-title: Journal of Engineering Sciences,
– ident: e_1_3_4_17_1
  doi: 10.3390/ecsa-10-16237
– ident: e_1_3_4_2_1
  doi: 10.3390/diagnostics13142392
– ident: e_1_3_4_12_1
  doi: 10.1186/s44147-023-00280-y
– ident: e_1_3_4_8_1
  doi: 10.1007/s12008-023-01448-9
– ident: e_1_3_4_21_1
  doi: 10.1016/j.dajour.2023.100331
– ident: e_1_3_4_11_1
  doi: 10.1007/s42044-023-00148-7
SSID ssj0001345090
Score 2.3641028
Snippet Cardiovascular diseases (CD), or heart diseases (HD), lead to approximately 17.9 million deaths each year, constituting 32% of global fatalities. Early...
SourceID doaj
unpaywall
proquest
crossref
informaworld
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Artificial neural networks
Blood pressure
Cardiovascular disease
CNN
Comparative studies
Computation
Computer Engineering
Computer Science (General)
Effectiveness
FPO
Genetic algorithms
Health services
Heart disease
Heart diseases
Machine learning
Optimization
Physical examinations
prediction
Recall
TLBO
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29btwwDBaKLGmHIv1DL00DDl2dsy1ZtrolQa5B0V46JEA2QZLlZLj4DgcHRV4lT1tSli9Ol-tQj4YpSCJF0iL5kbEvaEYtNa5OJJdNIgpXJtYjQ6rSpp47il1RRPfnXJ5fie_XxfWo1RflhPXwwP3GTdF82rLIrFAeD7WslDG1Qbff12jImjKU7qWVGv1MhdsVLtASpkPJTpVOc84Jy4yyEnJxhIZKSDJJI2MUMPv_Qix95nfu3rcr8_DbLBYjEzTbY6-j7wjH_ZzfsBe-fctejRAF37HHs_Y2xPSBOlV3EOMvsFpTQIaYALEzD9w-ULEWnM7nyeWPk4vk2zEsUX_cxcLMr2DAPUGDQ8ChBbq2hXGmOtGDaeuB1ocRgdLpb2D26wLM4ma5Rqq79-xqdnZ5ep7E9guJE0XWJTL1pUN_jso8eOp9nnqppMhcU0pZpkVe28yi92Vxa6uKo570ynMjee6cyL3iH9hOu2z9RwaZqqTKCovaw4isSa2p0RFUheB16ZAtEyYGPmgXscmpRcZCZxHCdGCfJvbpyL4JO9qQrXpwjm0EJ8TkzceErR1eoMTpKHF6m8RNmBqLiO7C1UrT90HRfMsEDgZ50lFZEAl6cfhIOWHTjYz924r2_8eKPrGXNGaPX3nAdrr1vf-MvlZnD8Ox-gPaJBxo
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9swDBW69LDtMOwTzdYVOuzqxrZk2SowDE2RrBg2txhaoDdBkuXkkDpZ4GLoX-mvHelIqbdDu6shCrJJkbQovkfIJwijBomrI8FEHfHM5pFxoJAiN7FjFmtXWNH9UYrTS_7tKrvaIWXohcFrlcEndo66Wlo8Ix8xCOy4vYX4svoVIWsUVlcDhYb21ArV5w5i7AnZTREZa0B2x5Py_Of9qQvjECHj0MpTxKOUMcQ4w9sKKT-EAMYFhqpekOqw_P9BMv0rH31606z07W-9WPRC0_QleeFzSnq8MYJXZMc1r8nzHtLgG3I3aeZdrZ8ig3VLfV2GrtZYqEHlUM_YQ-e32MRFT8oyuvg-Pou-HtMl-JVr37B5RDW195DhtMOnpXicS_s32FGe6qYKsq6bkeI1-xmdnp9RvZjB523n12_J5XRycXIaeVqGyPIsaSMRu9xCnoftHyx2Lo2dkIInts6FyOMsrUxiICsz8GmLgoH_dNIxLVhqLU-dZO_IoFk2bo_QRBZCJpkBr6J5UsdGV5AgyoyzKregliHhQQ_KesxypM5YqMRDmwb1KVSf8uobksOt2GoD2vGYwBiVvB2MmNvdg-V6pvwWVpDImTxLDJcOwosopNaVhh9QV0FKVeewWNk3EdV2Ry71hh9FsUcWsB_sSXkngiLB5IdktLWx_3uj9w9P-IE8w9EbxMp9MmjXN-4jZFetOfBb5g_fdxrd
  priority: 102
  providerName: ProQuest
– databaseName: Taylor & Francis Open Access
  dbid: 0YH
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgHIBDVb7EQovmwDVtEjt2zK2tul0h2HJoJThZtuNsD9vsapsK9a_wa5lJnO0WCRWJvWW1E3nz7JkXz_gNYx8xjDpqXJ1ILutEFF4lLiAgpXJp4J5yV5TR_TqVkwvx-XsxVBNex7JKeoeue6GIzlfT4rbueqiIO8g5J1kyKjDIxT7GHCEL9Zg9yVWmaWKnPyZ32yxcYEhMh7M7f7O-F5U68f4_pEvvEdCnN83S3v608_lGLBrvsO1IIuGwR_0FexSal-z5hrTgK_brpLnskvtALatbiIkYWK4oM0NoQGzRA5e3dGoLjqfT5PzL0VlyeggLdCRX8YTmJ7Dg7zTCoROkBdq_hc2SdbIHfKSDbejuCFRXP4PxtzOw89lihVZXr9nF-OT8eJLEPgyJF0XWJjINyiOxo_MePA0hT4PUUmS-VlKqtMgrlzmkYQ4fbVlydJhBB24lz70XedD8DdtqFk14yyDTpdRZ4dCNWJHVqbMVMkJdCF4pj7CMmBhwMD6KlFOvjLnJopbpAJ8h-EyEb8T212bLXqXjIYMjAnn9YxLZ7r5YrGYmrlmDzM2pInNCB4wnstTWVhbfOEOFHKpWOFi9OUVM2-2x1H1DFMMfGMDuMJ9M9BpkgnQOP1KO2MF6jv3bP3r3H4N5z57RZa9fucu22tVN2EOu1boP3Wr6DZQ8GdY
  priority: 102
  providerName: Taylor & Francis
Title Enhanced heart disease prediction through hybrid CNN-TLBO-GA optimization: a comparative study with conventional CNN and optimized CNN using FPO algorithm
URI https://www.tandfonline.com/doi/abs/10.1080/23311916.2024.2384657
https://www.proquest.com/docview/3143111166
https://doi.org/10.1080/23311916.2024.2384657
https://doaj.org/article/937b751b49e146689aada261ed015f79
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2331-1916
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001345090
  issn: 2331-1916
  databaseCode: KQ8
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2331-1916
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001345090
  issn: 2331-1916
  databaseCode: KQ8
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ DIrectory of Open Access Journals
  customDbUrl:
  eissn: 2331-1916
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001345090
  issn: 2331-1916
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2331-1916
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001345090
  issn: 2331-1916
  databaseCode: ABDBF
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2331-1916
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001345090
  issn: 2331-1916
  databaseCode: ADMLS
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2331-1916
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001345090
  issn: 2331-1916
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2331-1916
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001345090
  issn: 2331-1916
  databaseCode: BENPR
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2331-1916
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001345090
  issn: 2331-1916
  databaseCode: 8FG
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAWR
  databaseName: Taylor & Francis Open Access
  customDbUrl:
  eissn: 2331-1916
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001345090
  issn: 2331-1916
  databaseCode: 0YH
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swEBZr8rDtYb_HsnVBD3t1aluyZO8tKUnD2NwwGmifjCTLLSx1QnAo7Z-yv3Z3tpwlhdHODwYHn5FPZ90X3d13hHwBN6qxcbUnmCg8HhnpaQsTEkvtW2YwdoUR3R-pmM75t_Po3BWrYy3MXvw-9o9CxpCCDJMJQj4A_8JFJA9IV0QAvTukO09nw4u6gRwLPLyxrdL5l-ye_6lp-u-RlO5BzaebcqVub9RiseN1Ji9J2o63STb5NdhUemDu7lE5PvqFXpEXDn_SYWMwr8kTW74hz3dYCd-S3-Pyqs4LoNjtuqIuhkNXawzq4ERS192HXt1iwRc9TlPv7Pvo1DsZ0iWsQdeuuPMrVdT8pRenNZctxa1fupvtjvJUlXkra-snUkzJv6ST2SlVi8vlGqSu35H5ZHx2PPVcCwfP8CioPOFbaQATYqkI860NfSsSwQNTSCGkH4W5DjQgOA1qiWMGa61NLFOChcbw0CbsPemUy9J-IDRIYpEEkYYVSPGg8LXKAUwmEWe5NKDSHuHtxGbG8Ztjm41FFjga1Fb1Gao-c6rvkcFWbNUQfDwkMEKr2d6M_Nz1DzDLmfvcMwB9WkaB5okFVyTiRKlcwZ9VmwP8KiQMNtm1uayqt2eKppdKxh4YwGFroJlbcFAEkCAcQvTI0dZoH_dGH_9b4hN5hpcN4eUh6VTrjf0M4KzSfXLgX0zhHE9O-qQ7Gqezn_16o6PvPtY_zMYqgw
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtswDBaK9tDtMOwXS9dtOmxHN7Yly_aAYmi6ZOmapsWQAr1pkiwnh9RJUxdFXmUPs2cb6cipt8O6S6-GKdggRVIi-X2EfIAwqpG42hNM5B6PTOxpCwpJYu1bZrB2hRXdk6Hon_NvF9HFBvlVz8JgW2XtEytHnc0M3pG3GQR23N5CfJ5fecgahdXVmkJDOWqFbL-CGHODHcd2eQtHuOv9oy-g749h2OuODvueYxnwDI-C0hO-jQ2kLTjNwHxrQ9-KVPDA5LEQsR-FmQ40JBk6hNNcwsAd2NQyJVhoDA8tgjFBCNjijKdw-NvqdIdn3-9ueRiHiOzXo0OJ34ZVEFMNuyNCvgcBkwsMjY2gWHEH_IWc-kf-u31TzNXyVk2njVDYe0qeuByWHqyM7hnZsMVz8riBbPiC_OwWk6q3gCJjdkldHYjOF1gYQmOgjiGITpY4NEYPh0NvNOicel8P6Az82KUbEP1EFTV3EOW0wsOleH1Mmx3zKE9VkdWytlqRYlv_mPbOTqmajkGd5eTyJTl_EAW9IpvFrLCvCQ3SRKRBpMGLKR7kvlYZJKRpxFkWG1BLi_BaD9I4jHSk6pjKwEGp1uqTqD7p1Ncie2ux-Qok5D6BDip5_TJifFcPZouxdC5DQuKo4yjQPLUQzkSSKpUpOPDaDFK4PIaPTZsmIsvqiidf8bFIds8H7Nb2JJ3TQpF6i7VIe21j__dHO_9e8D3Z7o9OBnJwNDx-Qx6h5Aotc5dslosb-xYyu1K_c9uHkh8PvWN_A5_EVgc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtswECXaFOhyKLqiTpOWh16VSOIm5pbNddvUySEB2hNBUpRzcGTDVRDkV_q1mZEoxylQpEB9lD0CrUfOPHGGbwj5BGHUYePqRDJZJVx4lbgAgBTKpYF5zF1hRvf7WI7O-Ncfoq8m_BXLKvEduuqEIlpfjYt7XlZ9Rdx2zhjKkmGBQc63IOZwKdRD8kgUEN5gSqc_R7fbLIxDSEz7szt_s74TlVrx_j-kS-8Q0CeX9dxeX9npdCUWDV-Q55FE0t0O9ZfkQahfkWcr0oKvye_D-rxN7lNsWd3QmIih8wVmZhANGlv00PNrPLVF98fj5PRo7zj5vEtn4Egu4gnNHWqpv9UIp60gLcX9W7paso72FB5pbxvaO1Ksq5_Q4ckxtdPJbAFWF2_I2fDwdH-UxD4MieciaxKZBuWB2OF5D5aGkKdBaskzXykpVSry0mUOaJiDR1sUDBxm0IFZyXLveR40e0vW6lkd3hGa6ULqTDhwI5ZnVepsCYxQC85K5QGWAeE9DsZHkXLslTE1WdQy7eEzCJ-J8A3I1tJs3ql03GewhyAvf4wi2-2F2WJi4po1wNycEpnjOkA8kYW2trTwxhlK4FCVgsHq1SlimnaPpeoaohh2zwA2-vlkotdAE6Bz8JFyQLaXc-zf_tH6fwzmI3l8cjA0R1_G396Tp_hNJ2W5QdaaxWXYBNrVuA_twroB4dscaw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELagewAe-I0oDOQHXt0lsePEvHXTyoQg28MqjSfLdpxNWpdWVSq0_Sn7a7lLnNJOQht5S5SL7PPF9yV39x0hX8CNWmxczSSXFROpy5j1sCB5ZiPPHcauMKL7s5BHU_H9LD0LxepYC7MVv8-jvYRzpCDDZIJEjMC_CJlmj8mOTAF6D8jOtDgZ_2obyPGY4Y19lc6_ZLf8T0vTf4ekdAtqPlnVC3P928xmG15n8oIU_Xi7ZJPL0aqxI3dzh8rxwRN6SZ4H_EnHncG8Io98_Zo822AlfENuD-uLNi-AYrfrhoYYDl0sMaiDC0lDdx96cY0FX_SgKNjpj_1j9m1M57AHXYXizq_UUPeXXpy2XLYUf_3SzWx3lKemLntZ3z6RYkr-OZ2cHFMzO58vQerqLZlODk8Pjlho4cCcSOOGychnDjAhlorwyPsk8lJJEbsqkzKL0qS0sQUEZ0Etec5hr_XKcyN54pxIvOLvyKCe1_49obHKpYpTCzuQEXEVWVMCmFSp4GXmQKVDIvqF1S7wm2ObjZmOAw1qr3qNqtdB9UMyWostOoKP-wT20WrWNyM_d3sBVlmH110D6LNZGluhPLgimStjSgMfq74E-FVlMFi1aXO6aX_PVF0vFc3vGcBub6A6bDgoAkgQDimHZG9ttA-b0Yf_lvhInuJpR3i5SwbNcuU_AThr7OfwSv4BwQomHA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+heart+disease+prediction+through+hybrid+CNN-TLBO-GA+optimization%3A+a+comparative+study+with+conventional+CNN+and+optimized+CNN+using+FPO+algorithm&rft.jtitle=Cogent+engineering&rft.au=R.+P.+Ram+Kumar&rft.au=S.+Raju&rft.au=Errabelli+Annapoorna&rft.au=Manu+Hajari&rft.date=2024-12-31&rft.pub=Taylor+%26+Francis+Group&rft.eissn=2331-1916&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1080%2F23311916.2024.2384657&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_937b751b49e146689aada261ed015f79
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2331-1916&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2331-1916&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2331-1916&client=summon