Enhanced heart disease prediction through hybrid CNN-TLBO-GA optimization: a comparative study with conventional CNN and optimized CNN using FPO algorithm
Cardiovascular diseases (CD), or heart diseases (HD), lead to approximately 17.9 million deaths each year, constituting 32% of global fatalities. Early detection and appropriate treatment of HDs can significantly reduce mortality rates, with timely intervention before disease progression enhancing t...
Saved in:
| Published in | Cogent engineering Vol. 11; no. 1 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Abingdon
Cogent
31.12.2024
Taylor & Francis Ltd Taylor & Francis Group |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2331-1916 2331-1916 |
| DOI | 10.1080/23311916.2024.2384657 |
Cover
| Abstract | Cardiovascular diseases (CD), or heart diseases (HD), lead to approximately 17.9 million deaths each year, constituting 32% of global fatalities. Early detection and appropriate treatment of HDs can significantly reduce mortality rates, with timely intervention before disease progression enhancing treatment efficacy. Early detection is achievable through routine medical examinations and monitoring key symptoms, such as cholesterol levels, blood pressure variations, diabetes and obesity. This manuscript introduces a heart disease prediction (HDP) model designed to identify the presence of HDs at an initial stage. The study explores three methodologies: (a) traditional convolutional neural network (CNN), (b) CNN augmented with flower pollination optimization (FPO) algorithm and (c) CNN combining Teaching Learning-Based Optimization (TLBO) coupled with genetic algorithm (GA) for refined HDP. The model progresses through stages of data preparation, model construction, training and evaluation. The traditional CNN model resulted an accuracy of 81.97%, precision of 84%, recall of 81% and F1-score of 83%. Incorporating the FPO algorithm, model's performance is enhanced with accuracy, precision, recall, F1-score of 85.25%, 90%, 81% and 85%, respectively. Further, optimized with TLBO and GA hybrid approach lead to superior performance with an accuracy, precision, recall, F1-score of 86.9%, 87.5%, 87.5% and 87.5%, respectively. The area under curve (AUC) for the receiver operating characteristics (ROC) and precision-recall curve (PRC) highlights the performance of the proposed hybrid methodology. These outcomes underscore the effectiveness of merging bio-inspired algorithms with CNN for early stage HD prediction (HDP), offering significant advancements in healthcare diagnostics. |
|---|---|
| AbstractList | Cardiovascular diseases (CD), or heart diseases (HD), lead to approximately 17.9 million deaths each year, constituting 32% of global fatalities. Early detection and appropriate treatment of HDs can significantly reduce mortality rates, with timely intervention before disease progression enhancing treatment efficacy. Early detection is achievable through routine medical examinations and monitoring key symptoms, such as cholesterol levels, blood pressure variations, diabetes and obesity. This manuscript introduces a heart disease prediction (HDP) model designed to identify the presence of HDs at an initial stage. The study explores three methodologies: (a) traditional convolutional neural network (CNN), (b) CNN augmented with flower pollination optimization (FPO) algorithm and (c) CNN combining Teaching Learning-Based Optimization (TLBO) coupled with genetic algorithm (GA) for refined HDP. The model progresses through stages of data preparation, model construction, training and evaluation. The traditional CNN model resulted an accuracy of 81.97%, precision of 84%, recall of 81% and F1-score of 83%. Incorporating the FPO algorithm, model’s performance is enhanced with accuracy, precision, recall, F1-score of 85.25%, 90%, 81% and 85%, respectively. Further, optimized with TLBO and GA hybrid approach lead to superior performance with an accuracy, precision, recall, F1-score of 86.9%, 87.5%, 87.5% and 87.5%, respectively. The area under curve (AUC) for the receiver operating characteristics (ROC) and precision–recall curve (PRC) highlights the performance of the proposed hybrid methodology. These outcomes underscore the effectiveness of merging bio-inspired algorithms with CNN for early stage HD prediction (HDP), offering significant advancements in healthcare diagnostics. |
| Author | Ram Kumar, R. P. Hajari, Manu Vatin, Nikolai Ivanovich AL-Attabi, Kassem Annapoorna, Errabelli Raju, S. Hareesa, Kadali Joshi, Abhishek |
| Author_xml | – sequence: 1 givenname: R. P. orcidid: 0000-0001-5687-977X surname: Ram Kumar fullname: Ram Kumar, R. P. organization: Department of Computer Science and Engineering (AI & ML), Gokaraju Rangaraju Institute of Engineering and Technology – sequence: 2 givenname: S. surname: Raju fullname: Raju, S. organization: Department of Information Technology, Mahendra Engineering College (Autonomous) – sequence: 3 givenname: Errabelli surname: Annapoorna fullname: Annapoorna, Errabelli organization: Department of CSBS, Gokaraju Rangaraju Institute of Engineering and Technology – sequence: 4 givenname: Manu surname: Hajari fullname: Hajari, Manu organization: Department of Computer Science and Engineering (Data Science), Gokaraju Rangaraju Institute of Engineering and Technology – sequence: 5 givenname: Kadali surname: Hareesa fullname: Hareesa, Kadali organization: Department of Computer Science and Engineering (Data Science), Gokaraju Rangaraju Institute of Engineering and Technology – sequence: 6 givenname: Nikolai Ivanovich orcidid: 0000-0002-1196-8004 surname: Vatin fullname: Vatin, Nikolai Ivanovich organization: Division of Research and Development, Lovely Professional University – sequence: 7 givenname: Abhishek surname: Joshi fullname: Joshi, Abhishek organization: Department of Engineering, Uttaranchal University – sequence: 8 givenname: Kassem surname: AL-Attabi fullname: AL-Attabi, Kassem organization: Department of Computers Techniques Engineering, College of Technical Engineering, The Islamic University, Najaf |
| BookMark | eNqNksFu1DAQhiNUJErpIyBZ4pzWjhMngQtl1ZZKqy6HcrYm9mTjVdYOttPV8ig8LcluixAH4GR7_H-_R__4dXJincUkecvoBaMVvcw4Z6xm4iKjWX6R8SoXRfkiOZ3r6Xxx8tv-VXIewoZSynhe0JqeJj-ubQdWoSYdgo9Em4AQkAwetVHROEti59247ki3b7zRZHF_nz4sP63S2yvihmi25jvMuvcEiHLbAfx0fEQS4qj3ZGdiN5XtI9pZBP3ME7D6mcWDIxmDsWty82VFoF87P1HbN8nLFvqA50_rWfL15vph8Tldrm7vFlfLVOUFi6mgWKqcFhUXlFPEjKKoRc5UWwpR0iLTDWsEo82UQlVxrRFr5CB4plSeYc3Pkrujr3awkYM3W_B76cDIQ8H5tZySMapHWfOyKQvW5DWyXIiqBtCQCYaasqItZy9x9BrtAPsd9P0vQ0blPDD5PDA5D0w-DWwC3x3BwbtvI4YoN270U15BcpZPBGNCTKoPR5XyLgSPrVQmHtKPHkz_zzeKP-j_7e3jkTO2dX4LO-d7LSPse-dbP_0eMzf5V4ufYrjMQg |
| CitedBy_id | crossref_primary_10_1080_23311916_2024_2423847 crossref_primary_10_1007_s11334_024_00592_z |
| Cites_doi | 10.1080/23311916.2024.2325635 10.1038/s41598-024-51184-7 10.1038/s41598-023-40717-1 10.36948/ijfmr.2023.v05i06.9324 10.3390/ecsa-10-16239 10.1007/978-981-15-1480-7_59 10.3390/a16060308 10.1016/j.ihj.2012.07.001 10.1007/s11042-023-14817-z 10.1155/2024/5080332 10.47852/bonviewAIA3202823 10.1007/s12008-023-01488-1 10.1155/2023/6864343 10.3389/fmed.2023.1150933 10.1038/s41598-024-55991-w 10.22266/ijies2023.0430.42 10.4236/jdaip.2023.111001 10.3390/ecsa-10-16237 10.3390/diagnostics13142392 10.1186/s44147-023-00280-y 10.1007/s12008-023-01448-9 10.1016/j.dajour.2023.100331 10.1007/s42044-023-00148-7 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2024 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2024 – notice: 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 0YH AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY DOA |
| DOI | 10.1080/23311916.2024.2384657 |
| DatabaseName | Taylor & Francis Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database (Proquest) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ DIrectory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2331-1916 |
| ExternalDocumentID | oai_doaj_org_article_937b751b49e146689aada261ed015f79 10.1080/23311916.2024.2384657 10_1080_23311916_2024_2384657 2384657 |
| Genre | Research Article |
| GroupedDBID | 0YH 5VS 8FE 8FG AAFWJ ABDBF ABJCF ACUHS ADBBV ADCVX ADMLS AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AQTUD BCNDV BENPR BGLVJ CCPQU EAP EBS ESX GROUPED_DOAJ H13 HCIFZ HZ~ KQ8 L6V M4Z M7S M~E O9- OK1 PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TDBHL TFW AAYXX CITATION PUEGO ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC EJD IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c451t-60e7c405836030ee20e69641cf7667052db1b610b233883ddee9e3a632cc42e93 |
| IEDL.DBID | UNPAY |
| ISSN | 2331-1916 |
| IngestDate | Fri Oct 03 12:43:05 EDT 2025 Sun Sep 07 11:13:45 EDT 2025 Fri Jul 25 12:06:55 EDT 2025 Wed Oct 01 04:39:14 EDT 2025 Thu Apr 24 22:56:24 EDT 2025 Mon Oct 20 23:47:33 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c451t-60e7c405836030ee20e69641cf7667052db1b610b233883ddee9e3a632cc42e93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5687-977X 0000-0002-1196-8004 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1080/23311916.2024.2384657 |
| PQID | 3143111166 |
| PQPubID | 2043312 |
| ParticipantIDs | proquest_journals_3143111166 crossref_citationtrail_10_1080_23311916_2024_2384657 crossref_primary_10_1080_23311916_2024_2384657 doaj_primary_oai_doaj_org_article_937b751b49e146689aada261ed015f79 informaworld_taylorfrancis_310_1080_23311916_2024_2384657 unpaywall_primary_10_1080_23311916_2024_2384657 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-31 |
| PublicationDateYYYYMMDD | 2024-12-31 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-31 day: 31 |
| PublicationDecade | 2020 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | Cogent engineering |
| PublicationYear | 2024 |
| Publisher | Cogent Taylor & Francis Ltd Taylor & Francis Group |
| Publisher_xml | – name: Cogent – name: Taylor & Francis Ltd – name: Taylor & Francis Group |
| References | e_1_3_4_4_1 e_1_3_4_3_1 e_1_3_4_2_1 e_1_3_4_9_1 e_1_3_4_8_1 e_1_3_4_7_1 e_1_3_4_20_1 e_1_3_4_6_1 e_1_3_4_5_1 e_1_3_4_23_1 e_1_3_4_24_1 e_1_3_4_21_1 e_1_3_4_22_1 e_1_3_4_26_1 Vardhan V. H. (e_1_3_4_25_1) 2023; 14 e_1_3_4_12_1 e_1_3_4_13_1 e_1_3_4_10_1 e_1_3_4_11_1 e_1_3_4_16_1 e_1_3_4_17_1 e_1_3_4_14_1 e_1_3_4_15_1 e_1_3_4_18_1 e_1_3_4_19_1 |
| References_xml | – ident: e_1_3_4_10_1 doi: 10.1080/23311916.2024.2325635 – ident: e_1_3_4_18_1 doi: 10.1038/s41598-024-51184-7 – ident: e_1_3_4_22_1 doi: 10.1038/s41598-023-40717-1 – ident: e_1_3_4_14_1 doi: 10.36948/ijfmr.2023.v05i06.9324 – ident: e_1_3_4_16_1 doi: 10.3390/ecsa-10-16239 – ident: e_1_3_4_19_1 doi: 10.1007/978-981-15-1480-7_59 – ident: e_1_3_4_5_1 doi: 10.3390/a16060308 – ident: e_1_3_4_13_1 doi: 10.1016/j.ihj.2012.07.001 – ident: e_1_3_4_9_1 doi: 10.1007/s11042-023-14817-z – ident: e_1_3_4_20_1 doi: 10.1155/2024/5080332 – ident: e_1_3_4_15_1 doi: 10.47852/bonviewAIA3202823 – ident: e_1_3_4_3_1 doi: 10.1007/s12008-023-01488-1 – ident: e_1_3_4_4_1 doi: 10.1155/2024/5080332 – ident: e_1_3_4_6_1 doi: 10.1155/2023/6864343 – ident: e_1_3_4_23_1 doi: 10.3389/fmed.2023.1150933 – ident: e_1_3_4_26_1 doi: 10.1038/s41598-024-55991-w – ident: e_1_3_4_7_1 doi: 10.22266/ijies2023.0430.42 – ident: e_1_3_4_24_1 doi: 10.4236/jdaip.2023.111001 – volume: 14 start-page: 440 issue: 4 year: 2023 ident: e_1_3_4_25_1 article-title: Heart disease prediction using machine learning publication-title: Journal of Engineering Sciences, – ident: e_1_3_4_17_1 doi: 10.3390/ecsa-10-16237 – ident: e_1_3_4_2_1 doi: 10.3390/diagnostics13142392 – ident: e_1_3_4_12_1 doi: 10.1186/s44147-023-00280-y – ident: e_1_3_4_8_1 doi: 10.1007/s12008-023-01448-9 – ident: e_1_3_4_21_1 doi: 10.1016/j.dajour.2023.100331 – ident: e_1_3_4_11_1 doi: 10.1007/s42044-023-00148-7 |
| SSID | ssj0001345090 |
| Score | 2.3641028 |
| Snippet | Cardiovascular diseases (CD), or heart diseases (HD), lead to approximately 17.9 million deaths each year, constituting 32% of global fatalities. Early... |
| SourceID | doaj unpaywall proquest crossref informaworld |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Accuracy Algorithms Artificial Intelligence Artificial neural networks Blood pressure Cardiovascular disease CNN Comparative studies Computation Computer Engineering Computer Science (General) Effectiveness FPO Genetic algorithms Health services Heart disease Heart diseases Machine learning Optimization Physical examinations prediction Recall TLBO |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29btwwDBaKLGmHIv1DL00DDl2dsy1ZtrolQa5B0V46JEA2QZLlZLj4DgcHRV4lT1tSli9Ol-tQj4YpSCJF0iL5kbEvaEYtNa5OJJdNIgpXJtYjQ6rSpp47il1RRPfnXJ5fie_XxfWo1RflhPXwwP3GTdF82rLIrFAeD7WslDG1Qbff12jImjKU7qWVGv1MhdsVLtASpkPJTpVOc84Jy4yyEnJxhIZKSDJJI2MUMPv_Qix95nfu3rcr8_DbLBYjEzTbY6-j7wjH_ZzfsBe-fctejRAF37HHs_Y2xPSBOlV3EOMvsFpTQIaYALEzD9w-ULEWnM7nyeWPk4vk2zEsUX_cxcLMr2DAPUGDQ8ChBbq2hXGmOtGDaeuB1ocRgdLpb2D26wLM4ma5Rqq79-xqdnZ5ep7E9guJE0XWJTL1pUN_jso8eOp9nnqppMhcU0pZpkVe28yi92Vxa6uKo570ynMjee6cyL3iH9hOu2z9RwaZqqTKCovaw4isSa2p0RFUheB16ZAtEyYGPmgXscmpRcZCZxHCdGCfJvbpyL4JO9qQrXpwjm0EJ8TkzceErR1eoMTpKHF6m8RNmBqLiO7C1UrT90HRfMsEDgZ50lFZEAl6cfhIOWHTjYz924r2_8eKPrGXNGaPX3nAdrr1vf-MvlZnD8Ox-gPaJBxo priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9swDBW69LDtMOwTzdYVOuzqxrZk2SowDE2RrBg2txhaoDdBkuXkkDpZ4GLoX-mvHelIqbdDu6shCrJJkbQovkfIJwijBomrI8FEHfHM5pFxoJAiN7FjFmtXWNH9UYrTS_7tKrvaIWXohcFrlcEndo66Wlo8Ix8xCOy4vYX4svoVIWsUVlcDhYb21ArV5w5i7AnZTREZa0B2x5Py_Of9qQvjECHj0MpTxKOUMcQ4w9sKKT-EAMYFhqpekOqw_P9BMv0rH31606z07W-9WPRC0_QleeFzSnq8MYJXZMc1r8nzHtLgG3I3aeZdrZ8ig3VLfV2GrtZYqEHlUM_YQ-e32MRFT8oyuvg-Pou-HtMl-JVr37B5RDW195DhtMOnpXicS_s32FGe6qYKsq6bkeI1-xmdnp9RvZjB523n12_J5XRycXIaeVqGyPIsaSMRu9xCnoftHyx2Lo2dkIInts6FyOMsrUxiICsz8GmLgoH_dNIxLVhqLU-dZO_IoFk2bo_QRBZCJpkBr6J5UsdGV5AgyoyzKregliHhQQ_KesxypM5YqMRDmwb1KVSf8uobksOt2GoD2vGYwBiVvB2MmNvdg-V6pvwWVpDImTxLDJcOwosopNaVhh9QV0FKVeewWNk3EdV2Ry71hh9FsUcWsB_sSXkngiLB5IdktLWx_3uj9w9P-IE8w9EbxMp9MmjXN-4jZFetOfBb5g_fdxrd priority: 102 providerName: ProQuest – databaseName: Taylor & Francis Open Access dbid: 0YH link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgHIBDVb7EQovmwDVtEjt2zK2tul0h2HJoJThZtuNsD9vsapsK9a_wa5lJnO0WCRWJvWW1E3nz7JkXz_gNYx8xjDpqXJ1ILutEFF4lLiAgpXJp4J5yV5TR_TqVkwvx-XsxVBNex7JKeoeue6GIzlfT4rbueqiIO8g5J1kyKjDIxT7GHCEL9Zg9yVWmaWKnPyZ32yxcYEhMh7M7f7O-F5U68f4_pEvvEdCnN83S3v608_lGLBrvsO1IIuGwR_0FexSal-z5hrTgK_brpLnskvtALatbiIkYWK4oM0NoQGzRA5e3dGoLjqfT5PzL0VlyeggLdCRX8YTmJ7Dg7zTCoROkBdq_hc2SdbIHfKSDbejuCFRXP4PxtzOw89lihVZXr9nF-OT8eJLEPgyJF0XWJjINyiOxo_MePA0hT4PUUmS-VlKqtMgrlzmkYQ4fbVlydJhBB24lz70XedD8DdtqFk14yyDTpdRZ4dCNWJHVqbMVMkJdCF4pj7CMmBhwMD6KlFOvjLnJopbpAJ8h-EyEb8T212bLXqXjIYMjAnn9YxLZ7r5YrGYmrlmDzM2pInNCB4wnstTWVhbfOEOFHKpWOFi9OUVM2-2x1H1DFMMfGMDuMJ9M9BpkgnQOP1KO2MF6jv3bP3r3H4N5z57RZa9fucu22tVN2EOu1boP3Wr6DZQ8GdY priority: 102 providerName: Taylor & Francis |
| Title | Enhanced heart disease prediction through hybrid CNN-TLBO-GA optimization: a comparative study with conventional CNN and optimized CNN using FPO algorithm |
| URI | https://www.tandfonline.com/doi/abs/10.1080/23311916.2024.2384657 https://www.proquest.com/docview/3143111166 https://doi.org/10.1080/23311916.2024.2384657 https://doaj.org/article/937b751b49e146689aada261ed015f79 |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2331-1916 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001345090 issn: 2331-1916 databaseCode: KQ8 dateStart: 20140101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2331-1916 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001345090 issn: 2331-1916 databaseCode: KQ8 dateStart: 20141201 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ DIrectory of Open Access Journals customDbUrl: eissn: 2331-1916 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001345090 issn: 2331-1916 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2331-1916 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001345090 issn: 2331-1916 databaseCode: ABDBF dateStart: 20140101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2331-1916 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001345090 issn: 2331-1916 databaseCode: ADMLS dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2331-1916 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001345090 issn: 2331-1916 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Proquest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2331-1916 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001345090 issn: 2331-1916 databaseCode: BENPR dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2331-1916 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001345090 issn: 2331-1916 databaseCode: 8FG dateStart: 20140101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAWR databaseName: Taylor & Francis Open Access customDbUrl: eissn: 2331-1916 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001345090 issn: 2331-1916 databaseCode: 0YH dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swEBZr8rDtYb_HsnVBD3t1aluyZO8tKUnD2NwwGmifjCTLLSx1QnAo7Z-yv3Z3tpwlhdHODwYHn5FPZ90X3d13hHwBN6qxcbUnmCg8HhnpaQsTEkvtW2YwdoUR3R-pmM75t_Po3BWrYy3MXvw-9o9CxpCCDJMJQj4A_8JFJA9IV0QAvTukO09nw4u6gRwLPLyxrdL5l-ye_6lp-u-RlO5BzaebcqVub9RiseN1Ji9J2o63STb5NdhUemDu7lE5PvqFXpEXDn_SYWMwr8kTW74hz3dYCd-S3-Pyqs4LoNjtuqIuhkNXawzq4ERS192HXt1iwRc9TlPv7Pvo1DsZ0iWsQdeuuPMrVdT8pRenNZctxa1fupvtjvJUlXkra-snUkzJv6ST2SlVi8vlGqSu35H5ZHx2PPVcCwfP8CioPOFbaQATYqkI860NfSsSwQNTSCGkH4W5DjQgOA1qiWMGa61NLFOChcbw0CbsPemUy9J-IDRIYpEEkYYVSPGg8LXKAUwmEWe5NKDSHuHtxGbG8Ztjm41FFjga1Fb1Gao-c6rvkcFWbNUQfDwkMEKr2d6M_Nz1DzDLmfvcMwB9WkaB5okFVyTiRKlcwZ9VmwP8KiQMNtm1uayqt2eKppdKxh4YwGFroJlbcFAEkCAcQvTI0dZoH_dGH_9b4hN5hpcN4eUh6VTrjf0M4KzSfXLgX0zhHE9O-qQ7Gqezn_16o6PvPtY_zMYqgw |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtswDBaK9tDtMOwXS9dtOmxHN7Yly_aAYmi6ZOmapsWQAr1pkiwnh9RJUxdFXmUPs2cb6cipt8O6S6-GKdggRVIi-X2EfIAwqpG42hNM5B6PTOxpCwpJYu1bZrB2hRXdk6Hon_NvF9HFBvlVz8JgW2XtEytHnc0M3pG3GQR23N5CfJ5fecgahdXVmkJDOWqFbL-CGHODHcd2eQtHuOv9oy-g749h2OuODvueYxnwDI-C0hO-jQ2kLTjNwHxrQ9-KVPDA5LEQsR-FmQ40JBk6hNNcwsAd2NQyJVhoDA8tgjFBCNjijKdw-NvqdIdn3-9ueRiHiOzXo0OJ34ZVEFMNuyNCvgcBkwsMjY2gWHEH_IWc-kf-u31TzNXyVk2njVDYe0qeuByWHqyM7hnZsMVz8riBbPiC_OwWk6q3gCJjdkldHYjOF1gYQmOgjiGITpY4NEYPh0NvNOicel8P6Az82KUbEP1EFTV3EOW0wsOleH1Mmx3zKE9VkdWytlqRYlv_mPbOTqmajkGd5eTyJTl_EAW9IpvFrLCvCQ3SRKRBpMGLKR7kvlYZJKRpxFkWG1BLi_BaD9I4jHSk6pjKwEGp1uqTqD7p1Ncie2ux-Qok5D6BDip5_TJifFcPZouxdC5DQuKo4yjQPLUQzkSSKpUpOPDaDFK4PIaPTZsmIsvqiidf8bFIds8H7Nb2JJ3TQpF6i7VIe21j__dHO_9e8D3Z7o9OBnJwNDx-Qx6h5Aotc5dslosb-xYyu1K_c9uHkh8PvWN_A5_EVgc |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtswECXaFOhyKLqiTpOWh16VSOIm5pbNddvUySEB2hNBUpRzcGTDVRDkV_q1mZEoxylQpEB9lD0CrUfOPHGGbwj5BGHUYePqRDJZJVx4lbgAgBTKpYF5zF1hRvf7WI7O-Ncfoq8m_BXLKvEduuqEIlpfjYt7XlZ9Rdx2zhjKkmGBQc63IOZwKdRD8kgUEN5gSqc_R7fbLIxDSEz7szt_s74TlVrx_j-kS-8Q0CeX9dxeX9npdCUWDV-Q55FE0t0O9ZfkQahfkWcr0oKvye_D-rxN7lNsWd3QmIih8wVmZhANGlv00PNrPLVF98fj5PRo7zj5vEtn4Egu4gnNHWqpv9UIp60gLcX9W7paso72FB5pbxvaO1Ksq5_Q4ckxtdPJbAFWF2_I2fDwdH-UxD4MieciaxKZBuWB2OF5D5aGkKdBaskzXykpVSry0mUOaJiDR1sUDBxm0IFZyXLveR40e0vW6lkd3hGa6ULqTDhwI5ZnVepsCYxQC85K5QGWAeE9DsZHkXLslTE1WdQy7eEzCJ-J8A3I1tJs3ql03GewhyAvf4wi2-2F2WJi4po1wNycEpnjOkA8kYW2trTwxhlK4FCVgsHq1SlimnaPpeoaohh2zwA2-vlkotdAE6Bz8JFyQLaXc-zf_tH6fwzmI3l8cjA0R1_G396Tp_hNJ2W5QdaaxWXYBNrVuA_twroB4dscaw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELagewAe-I0oDOQHXt0lsePEvHXTyoQg28MqjSfLdpxNWpdWVSq0_Sn7a7lLnNJOQht5S5SL7PPF9yV39x0hX8CNWmxczSSXFROpy5j1sCB5ZiPPHcauMKL7s5BHU_H9LD0LxepYC7MVv8-jvYRzpCDDZIJEjMC_CJlmj8mOTAF6D8jOtDgZ_2obyPGY4Y19lc6_ZLf8T0vTf4ekdAtqPlnVC3P928xmG15n8oIU_Xi7ZJPL0aqxI3dzh8rxwRN6SZ4H_EnHncG8Io98_Zo822AlfENuD-uLNi-AYrfrhoYYDl0sMaiDC0lDdx96cY0FX_SgKNjpj_1j9m1M57AHXYXizq_UUPeXXpy2XLYUf_3SzWx3lKemLntZ3z6RYkr-OZ2cHFMzO58vQerqLZlODk8Pjlho4cCcSOOGychnDjAhlorwyPsk8lJJEbsqkzKL0qS0sQUEZ0Etec5hr_XKcyN54pxIvOLvyKCe1_49obHKpYpTCzuQEXEVWVMCmFSp4GXmQKVDIvqF1S7wm2ObjZmOAw1qr3qNqtdB9UMyWostOoKP-wT20WrWNyM_d3sBVlmH110D6LNZGluhPLgimStjSgMfq74E-FVlMFi1aXO6aX_PVF0vFc3vGcBub6A6bDgoAkgQDimHZG9ttA-b0Yf_lvhInuJpR3i5SwbNcuU_AThr7OfwSv4BwQomHA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+heart+disease+prediction+through+hybrid+CNN-TLBO-GA+optimization%3A+a+comparative+study+with+conventional+CNN+and+optimized+CNN+using+FPO+algorithm&rft.jtitle=Cogent+engineering&rft.au=R.+P.+Ram+Kumar&rft.au=S.+Raju&rft.au=Errabelli+Annapoorna&rft.au=Manu+Hajari&rft.date=2024-12-31&rft.pub=Taylor+%26+Francis+Group&rft.eissn=2331-1916&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1080%2F23311916.2024.2384657&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_937b751b49e146689aada261ed015f79 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2331-1916&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2331-1916&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2331-1916&client=summon |