Role of the autonomic nervous system and premature atrial contractions in short-term paroxysmal atrial fibrillation forecasting: Insights from machine learning models

Machine learning and deep learning techniques are now used extensively for atrial fibrillation (AF) screening, but their use for AF crisis forecasting has yet to be assessed in a clinical context. To assess the value of two machine learning algorithms for the short-term prediction of paroxysmal AF e...

Full description

Saved in:
Bibliographic Details
Published inArchives of cardiovascular diseases Vol. 115; no. 6-7; pp. 377 - 387
Main Authors Grégoire, Jean-Marie, Gilon, Cédric, Carlier, Stéphane, Bersini, Hugues
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Masson SAS 01.06.2022
Subjects
Online AccessGet full text
ISSN1875-2136
1875-2128
1875-2128
DOI10.1016/j.acvd.2022.04.006

Cover

Abstract Machine learning and deep learning techniques are now used extensively for atrial fibrillation (AF) screening, but their use for AF crisis forecasting has yet to be assessed in a clinical context. To assess the value of two machine learning algorithms for the short-term prediction of paroxysmal AF episodes. We conducted a retrospective study from an outpatient clinic. We developed a deep neural network model that was trained for a supervised binary classification, differentiating between RR interval variations that precede AF onset and RR interval variations far from any AF. We also developed a random forest model to obtain forecast results using heart rate variability variables, with and without premature atrial complexes. In total, 10,484 Holter electrocardiogram recordings were screened, and 250 analysable AF onsets were labelled. The deep neural network model was able to distinguish if a given RR interval window would lead to AF onset in the next 30 beats with a sensitivity of 80.1% (95% confidence interval 78.7–81.6) at the price of a low specificity of 52.8% (95% confidence interval 51.0–54.6). The random forest model indicated that the main factor that precedes the start of a paroxysmal AF episode is autonomic nervous system activity, and that premature complexes add limited additional information. In addition, the onset of AF episodes is preceded by cyclical fluctuations in the low frequency/high frequency ratio of heart rate variability. Each peak is itself followed by an increase in atrial extrasystoles. The use of two machine learning algorithms for the short-term prediction of AF episodes allowed us to confirm that the main cause of AF crises lies in an imbalance in the autonomic nervous system, and not premature atrial contractions, which are, however, required as a final firing trigger. Les réseaux de neurones sont maintenant largement utilisés pour le dépistage de la FA, mais leur utilisation pour la prévision d’une crise de FA n’a pas encore été évaluée dans un contexte clinique. Évaluer la valeur de deux algorithmes d’apprentissage automatique pour la prédiction à court terme des épisodes de FA paroxystique. Nous avons mené une étude rétrospective à partir d’une clinique ambulatoire. Nous avons développé un modèle de réseau neuronal profond, entraîné pour une classification binaire supervisée distinguant les variations des intervalles RR qui précèdent un début de FA et les variations des intervalles RR éloignés de toute FA. Nous avons également mis au point un modèle interprétable de forêt aléatoire utilisant les paramètres de variabilité, avec ou sans extrasystoles supraventriculaires. Au total, 10 484 enregistrements d’électrocardiogrammes Holter ont été analysés et 250 cas de FA ont été labélisés. Le modèle de réseau neuronal profond a permis de prévoir si une fenêtre d’intervalle RR donnée conduisait à un début de FA dans les 30 battements suivants avec une sensibilité de 80,1 % (IC95 % 78,7–81,6) au prix d’une spécificité de 52,8 % (IC95 % 51,0–54,6). Nous avons également mis au point un modèle interprétable de forêt aléatoire utilisant les paramètres de variabilité, avec ou sans extrasystoles supraventriculaires. Le modèle interprétable de forêt aléatoire révèle que le principal facteur prévisionnel se trouve dans l’activité du système nerveux autonome, les extrasystoles supraventriculaires ajoutant des informations supplémentaires limitées. De plus le début des épisodes de FA est précédé par des variations cycliques du rapport basses fréquences/hautes fréquences des paramètres fréquentiels de la variabilité du rythme sinusal. Chaque pic est lui-même suivi d’une augmentation des extrasystoles auriculaires. L’utilisation de deux algorithmes d’apprentissage automatique pour la prédiction à court terme des épisodes de FA nous a permis de confirmer que le principal responsable de la crise de FA est un déséquilibre du système nerveux autonome et non les extrasystoles auriculaires qui sont cependant indispensables en tant que gachette déclenchante finale.
AbstractList Machine learning and deep learning techniques are now used extensively for atrial fibrillation (AF) screening, but their use for AF crisis forecasting has yet to be assessed in a clinical context. To assess the value of two machine learning algorithms for the short-term prediction of paroxysmal AF episodes. We conducted a retrospective study from an outpatient clinic. We developed a deep neural network model that was trained for a supervised binary classification, differentiating between RR interval variations that precede AF onset and RR interval variations far from any AF. We also developed a random forest model to obtain forecast results using heart rate variability variables, with and without premature atrial complexes. In total, 10,484 Holter electrocardiogram recordings were screened, and 250 analysable AF onsets were labelled. The deep neural network model was able to distinguish if a given RR interval window would lead to AF onset in the next 30 beats with a sensitivity of 80.1% (95% confidence interval 78.7–81.6) at the price of a low specificity of 52.8% (95% confidence interval 51.0–54.6). The random forest model indicated that the main factor that precedes the start of a paroxysmal AF episode is autonomic nervous system activity, and that premature complexes add limited additional information. In addition, the onset of AF episodes is preceded by cyclical fluctuations in the low frequency/high frequency ratio of heart rate variability. Each peak is itself followed by an increase in atrial extrasystoles. The use of two machine learning algorithms for the short-term prediction of AF episodes allowed us to confirm that the main cause of AF crises lies in an imbalance in the autonomic nervous system, and not premature atrial contractions, which are, however, required as a final firing trigger. Les réseaux de neurones sont maintenant largement utilisés pour le dépistage de la FA, mais leur utilisation pour la prévision d’une crise de FA n’a pas encore été évaluée dans un contexte clinique. Évaluer la valeur de deux algorithmes d’apprentissage automatique pour la prédiction à court terme des épisodes de FA paroxystique. Nous avons mené une étude rétrospective à partir d’une clinique ambulatoire. Nous avons développé un modèle de réseau neuronal profond, entraîné pour une classification binaire supervisée distinguant les variations des intervalles RR qui précèdent un début de FA et les variations des intervalles RR éloignés de toute FA. Nous avons également mis au point un modèle interprétable de forêt aléatoire utilisant les paramètres de variabilité, avec ou sans extrasystoles supraventriculaires. Au total, 10 484 enregistrements d’électrocardiogrammes Holter ont été analysés et 250 cas de FA ont été labélisés. Le modèle de réseau neuronal profond a permis de prévoir si une fenêtre d’intervalle RR donnée conduisait à un début de FA dans les 30 battements suivants avec une sensibilité de 80,1 % (IC95 % 78,7–81,6) au prix d’une spécificité de 52,8 % (IC95 % 51,0–54,6). Nous avons également mis au point un modèle interprétable de forêt aléatoire utilisant les paramètres de variabilité, avec ou sans extrasystoles supraventriculaires. Le modèle interprétable de forêt aléatoire révèle que le principal facteur prévisionnel se trouve dans l’activité du système nerveux autonome, les extrasystoles supraventriculaires ajoutant des informations supplémentaires limitées. De plus le début des épisodes de FA est précédé par des variations cycliques du rapport basses fréquences/hautes fréquences des paramètres fréquentiels de la variabilité du rythme sinusal. Chaque pic est lui-même suivi d’une augmentation des extrasystoles auriculaires. L’utilisation de deux algorithmes d’apprentissage automatique pour la prédiction à court terme des épisodes de FA nous a permis de confirmer que le principal responsable de la crise de FA est un déséquilibre du système nerveux autonome et non les extrasystoles auriculaires qui sont cependant indispensables en tant que gachette déclenchante finale.
Machine learning and deep learning techniques are now used extensively for atrial fibrillation (AF) screening, but their use for AF crisis forecasting has yet to be assessed in a clinical context.BACKGROUNDMachine learning and deep learning techniques are now used extensively for atrial fibrillation (AF) screening, but their use for AF crisis forecasting has yet to be assessed in a clinical context.To assess the value of two machine learning algorithms for the short-term prediction of paroxysmal AF episodes.AIMSTo assess the value of two machine learning algorithms for the short-term prediction of paroxysmal AF episodes.We conducted a retrospective study from an outpatient clinic. We developed a deep neural network model that was trained for a supervised binary classification, differentiating between RR interval variations that precede AF onset and RR interval variations far from any AF. We also developed a random forest model to obtain forecast results using heart rate variability variables, with and without premature atrial complexes.METHODSWe conducted a retrospective study from an outpatient clinic. We developed a deep neural network model that was trained for a supervised binary classification, differentiating between RR interval variations that precede AF onset and RR interval variations far from any AF. We also developed a random forest model to obtain forecast results using heart rate variability variables, with and without premature atrial complexes.In total, 10,484 Holter electrocardiogram recordings were screened, and 250 analysable AF onsets were labelled. The deep neural network model was able to distinguish if a given RR interval window would lead to AF onset in the next 30 beats with a sensitivity of 80.1% (95% confidence interval 78.7-81.6) at the price of a low specificity of 52.8% (95% confidence interval 51.0-54.6). The random forest model indicated that the main factor that precedes the start of a paroxysmal AF episode is autonomic nervous system activity, and that premature complexes add limited additional information. In addition, the onset of AF episodes is preceded by cyclical fluctuations in the low frequency/high frequency ratio of heart rate variability. Each peak is itself followed by an increase in atrial extrasystoles.RESULTSIn total, 10,484 Holter electrocardiogram recordings were screened, and 250 analysable AF onsets were labelled. The deep neural network model was able to distinguish if a given RR interval window would lead to AF onset in the next 30 beats with a sensitivity of 80.1% (95% confidence interval 78.7-81.6) at the price of a low specificity of 52.8% (95% confidence interval 51.0-54.6). The random forest model indicated that the main factor that precedes the start of a paroxysmal AF episode is autonomic nervous system activity, and that premature complexes add limited additional information. In addition, the onset of AF episodes is preceded by cyclical fluctuations in the low frequency/high frequency ratio of heart rate variability. Each peak is itself followed by an increase in atrial extrasystoles.The use of two machine learning algorithms for the short-term prediction of AF episodes allowed us to confirm that the main cause of AF crises lies in an imbalance in the autonomic nervous system, and not premature atrial contractions, which are, however, required as a final firing trigger.CONCLUSIONSThe use of two machine learning algorithms for the short-term prediction of AF episodes allowed us to confirm that the main cause of AF crises lies in an imbalance in the autonomic nervous system, and not premature atrial contractions, which are, however, required as a final firing trigger.
Machine learning and deep learning techniques are now used extensively for atrial fibrillation (AF) screening, but their use for AF crisis forecasting has yet to be assessed in a clinical context. To assess the value of two machine learning algorithms for the short-term prediction of paroxysmal AF episodes. We conducted a retrospective study from an outpatient clinic. We developed a deep neural network model that was trained for a supervised binary classification, differentiating between RR interval variations that precede AF onset and RR interval variations far from any AF. We also developed a random forest model to obtain forecast results using heart rate variability variables, with and without premature atrial complexes. In total, 10,484 Holter electrocardiogram recordings were screened, and 250 analysable AF onsets were labelled. The deep neural network model was able to distinguish if a given RR interval window would lead to AF onset in the next 30 beats with a sensitivity of 80.1% (95% confidence interval 78.7-81.6) at the price of a low specificity of 52.8% (95% confidence interval 51.0-54.6). The random forest model indicated that the main factor that precedes the start of a paroxysmal AF episode is autonomic nervous system activity, and that premature complexes add limited additional information. In addition, the onset of AF episodes is preceded by cyclical fluctuations in the low frequency/high frequency ratio of heart rate variability. Each peak is itself followed by an increase in atrial extrasystoles. The use of two machine learning algorithms for the short-term prediction of AF episodes allowed us to confirm that the main cause of AF crises lies in an imbalance in the autonomic nervous system, and not premature atrial contractions, which are, however, required as a final firing trigger.
Author Gilon, Cédric
Bersini, Hugues
Carlier, Stéphane
Grégoire, Jean-Marie
Author_xml – sequence: 1
  givenname: Jean-Marie
  surname: Grégoire
  fullname: Grégoire, Jean-Marie
  email: jean-marie.gregoire@ulb.be
  organization: IRIDIA, Université Libre de Bruxelles, 1050 Bruxelles, Belgium
– sequence: 2
  givenname: Cédric
  surname: Gilon
  fullname: Gilon, Cédric
  organization: IRIDIA, Université Libre de Bruxelles, 1050 Bruxelles, Belgium
– sequence: 3
  givenname: Stéphane
  surname: Carlier
  fullname: Carlier, Stéphane
  organization: Department of Cardiology, UMONS (Université de Mons), 7000 Mons, Belgium
– sequence: 4
  givenname: Hugues
  surname: Bersini
  fullname: Bersini, Hugues
  organization: IRIDIA, Université Libre de Bruxelles, 1050 Bruxelles, Belgium
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35672220$$D View this record in MEDLINE/PubMed
BookMark eNqFkctuFDEQRS0URB7wAyyQl2y68aOfERsUQRIpEhKCteW2qzMe_BhszyjzQ3wnbmbIIouwckk-p1S69xyd-OABobeU1JTQ7sO6lmqna0YYq0lTE9K9QGd06NuKUTacPM68O0XnKa0LwPq-e4VOedv1jDFyhn5_CxZwmHFeAZbbHHxwRmEPcRe2Cad9yuCw9BpvIjiZt7FgORppsQo-R6myCT5h43FahZirDNHhjYzhYZ9coY7wbKZorJULjecQQcmUjb-_xLc-mftVTniOwWEn1cp4wBZk9OUfu6DBptfo5SxtgjfH9wL9-PL5-9VNdff1-vbq012lmpbmquV6ojBqPVPgDPjAJ6U7OS0D43qUg5rlPPJWEYAGpn7QjYJp4KPSIww9v0DvD3s3MfzaQsrCmaSgHO6h5CFY1ze86duOFvTdEd1ODrTYRONk3It_2RaAHQAVQ0oR5keEErEUKNZiKVAsBQrSiNJPkYYnkjL5b2ola2OfVz8e1JIX7AxEkZQBr0CbEncWOpjn9csnurLGGyXtT9j_T_4DSuTP8Q
CitedBy_id crossref_primary_10_1186_s12938_025_01349_w
crossref_primary_10_1016_j_hrthm_2024_03_017
crossref_primary_10_37349_edht_2025_101141
crossref_primary_10_1007_s10840_024_01771_5
crossref_primary_10_1016_j_patter_2024_100970
crossref_primary_10_1093_europace_euae043
crossref_primary_10_1002_joa3_13082
crossref_primary_10_3389_fcvm_2024_1509304
Cites_doi 10.1126/science.6166045
10.1016/j.jacc.2013.09.020
10.1253/circj.70.94
10.1002/clc.23190
10.1111/j.1542-474X.2000.tb00381.x
10.1161/01.CIR.100.20.2079
10.1093/europace/eux177
10.1016/j.hrthm.2006.12.006
10.1016/j.ijcard.2018.11.091
10.1093/europace/eux163
10.1111/j.1540-8159.1999.tb00538.x
10.1016/S0140-6736(19)31721-0
10.1016/S0002-8703(98)70066-3
10.1056/NEJMoa2029554
10.1161/01.CIR.84.2.482
10.1016/j.ahj.2016.05.004
10.1161/JAHA.116.005155
10.1056/NEJMoa1105575
10.1016/j.physa.2018.06.022
10.1109/TBME.2003.821030
10.1161/01.CIR.0000018443.44005.D8
10.1016/j.cmpb.2010.07.011
10.1016/j.cmpb.2016.07.016
10.1097/WCO.0000000000000780
10.3389/fphys.2013.00026
10.1016/j.cmpb.2018.07.014
10.1016/j.hrthm.2015.04.015
10.1093/eurheartj/suaa179
10.1056/NEJMoa2029980
10.1161/01.CIR.101.23.e215
10.1016/j.ehj.2004.05.016
10.1093/eurheartj/ehaa612
10.1161/CIRCULATIONAHA.113.005119
10.1016/0735-1097(94)90379-4
10.1016/j.cmpb.2017.10.012
10.1016/S0002-9149(01)01891-4
ContentType Journal Article
Copyright 2022 Elsevier Masson SAS
Copyright © 2022 Elsevier Masson SAS. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Masson SAS
– notice: Copyright © 2022 Elsevier Masson SAS. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.acvd.2022.04.006
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Rôle du système nerveux autonome et des contractions auriculaires prématurées dans la prévision de la fibrillation auriculaire paroxystique à court terme : aperçu des modèles d’apprentissage automatique
EISSN 1875-2128
EndPage 387
ExternalDocumentID 35672220
10_1016_j_acvd_2022_04_006
S1875213622001048
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABFRF
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEXQZ
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BAWUL
BKOJK
BLXMC
BNPGV
CS3
DIK
EBS
EFJIC
EFKBS
EJD
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
IXB
J1W
KOM
LN9
M41
MO0
N9A
O-L
O9-
OAUVE
OA~
OK1
OL0
OZT
P-8
P-9
PC.
Q38
ROL
SDF
SDG
SEM
SES
SPCBC
SSH
SSZ
T5K
UNMZH
Z5R
~G-
6I.
AACTN
AAFTH
AAIAV
ABLVK
ABVKL
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
NCXOZ
RIG
AAYXX
AGRNS
CITATION
NPM
7X8
ACLOT
~HD
ID FETCH-LOGICAL-c451t-53db1e9ddf1e32e383bcd6ab383b23d9a8cfaf935c0ee4eb78d4ceb839cd9e873
IEDL.DBID IXB
ISSN 1875-2136
1875-2128
IngestDate Tue Sep 23 04:44:56 EDT 2025
Thu Apr 03 07:09:47 EDT 2025
Tue Jul 01 00:49:50 EDT 2025
Thu Apr 24 22:57:31 EDT 2025
Fri Feb 23 02:40:39 EST 2024
Tue Aug 26 19:49:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6-7
Keywords AF
DNN
Atrial fibrillation
ANS
CI
Prediction
HRV
AUC
VLF
PAC
RF
Machine learning
Fibrillation auriculaire
Apprentissage machine
Forecasting Autonomic nervous system
CIED
LF
Heart rate variability
Système nerveux autonome
AFPDB
Variabilité du rythme sinusal
HF
Language English
License This article is made available under the Elsevier license.
Copyright © 2022 Elsevier Masson SAS. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-53db1e9ddf1e32e383bcd6ab383b23d9a8cfaf935c0ee4eb78d4ceb839cd9e873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.clinicalkey.com/#!/content/1-s2.0-S1875213622001048
PMID 35672220
PQID 2674347561
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2674347561
pubmed_primary_35672220
crossref_primary_10_1016_j_acvd_2022_04_006
crossref_citationtrail_10_1016_j_acvd_2022_04_006
elsevier_sciencedirect_doi_10_1016_j_acvd_2022_04_006
elsevier_clinicalkey_doi_10_1016_j_acvd_2022_04_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Archives of cardiovascular diseases
PublicationTitleAlternate Arch Cardiovasc Dis
PublicationYear 2022
Publisher Elsevier Masson SAS
Publisher_xml – name: Elsevier Masson SAS
References Vikman, Makikallio, Yli-Mayry (bib0350) 1999; 100
Zong, Mukkamala, Mark (bib0370) 2001; 28
Qin, Zeng, Liu (bib0280) 2019; 42
Heart rate variability (bib0300) 1996; 17
Healey, Connolly, Gold (bib0260) 2012; 366
Brembilla-Perrot, Houriez, Claudon, Beurrier, Preiss (bib0315) 2000; 5
Ebrahimzadeh, Kalantari, Joulani, Shahraki, Fayaz, Ahmadi (bib0385) 2018; 165
Fioranelli, Piccoli, Mileto (bib0330) 1999; 22
Attia, Noseworthy, Lopez-Jimenez (bib0250) 2019; 394
Akselrod, Gordon, Ubel, Shannon, Berger, Cohen (bib0325) 1981; 213
Malliani, Pagani, Lombardi, Cerutti (bib0295) 1991; 84
Goldberger, Amaral, Glass (bib0360) 2000; 101
Chen, Tan (bib0275) 2007; 4
Billman (bib0305) 2013; 4
Linz, Elliott, Hohl (bib0285) 2019; 287
Gorenek, Bax, Boriani (bib0255) 2017; 19
Mohebbi, Ghassemian (bib0390) 2012; 105
Padeletti, Purerfellner, Mont (bib0410) 2015; 12
Linz, Ukena, Mahfoud, Neuberger, Bohm (bib0290) 2014; 63
Andrade, Wells, Deyell (bib0230) 2021; 384
Shin, Yoo, Yi (bib0345) 2006; 70
Hnatkova, Waktare, Murgatroyd (bib0355) 1998; 135
Wazni, Dandamudi, Sood (bib0235) 2021; 384
Healey, Amit, Field (bib0400) 2020; 33
Vogenberg, Isaacson Barash, Pursel (bib0245) 2010; 35
Lombardi, Tarricone, Tundo, Colombo, Belletti, Fiorentini (bib0340) 2004; 25
Narin, Isler, Ozer, Perc (bib0395) 2018; 509
Lane, Skjoth, Lip, Larsen, Kotecha (bib0215) 2017; 6
Hindricks, Potpara, Dagres (bib0220) 2021; 42
Mairesse, Moran, Van Gelder (bib0225) 2017; 19
Chugh, Havmoeller, Narayanan (bib0210) 2014; 129
Niemela, Airaksinen, Huikuri (bib0320) 1994; 23
Thong, McNames, Aboy, Goldstein (bib0365) 2004; 51
Gilon, Grégoire, Bersini (bib0270) 2020
Boriani, Vitolo, Imberti, Potpara, Lip (bib0405) 2020; 22
Bettoni, Zimmermann (bib0310) 2002; 105
Boon, Khalil-Hani, Malarvili, Sia (bib0380) 2016; 134
Abadi, Agarwal, Barham (bib0265) 2015
Boon, Khalil-Hani, Malarvili (bib0375) 2018; 153
Kolb, Nurnberger, Ndrepepa, Zrenner, Schomig, Schmitt (bib0335) 2001; 88
Christophersen, Yin, Larson (bib0240) 2016; 178
Mairesse (10.1016/j.acvd.2022.04.006_bib0225) 2017; 19
Wazni (10.1016/j.acvd.2022.04.006_bib0235) 2021; 384
Hindricks (10.1016/j.acvd.2022.04.006_bib0220) 2021; 42
Narin (10.1016/j.acvd.2022.04.006_bib0395) 2018; 509
Zong (10.1016/j.acvd.2022.04.006_bib0370) 2001; 28
Boon (10.1016/j.acvd.2022.04.006_bib0375) 2018; 153
Lane (10.1016/j.acvd.2022.04.006_bib0215) 2017; 6
Qin (10.1016/j.acvd.2022.04.006_bib0280) 2019; 42
Goldberger (10.1016/j.acvd.2022.04.006_bib0360) 2000; 101
Vogenberg (10.1016/j.acvd.2022.04.006_bib0245) 2010; 35
Chen (10.1016/j.acvd.2022.04.006_bib0275) 2007; 4
Bettoni (10.1016/j.acvd.2022.04.006_bib0310) 2002; 105
Gorenek (10.1016/j.acvd.2022.04.006_bib0255) 2017; 19
Padeletti (10.1016/j.acvd.2022.04.006_bib0410) 2015; 12
Christophersen (10.1016/j.acvd.2022.04.006_bib0240) 2016; 178
Linz (10.1016/j.acvd.2022.04.006_bib0285) 2019; 287
Malliani (10.1016/j.acvd.2022.04.006_bib0295) 1991; 84
Heart rate variability (10.1016/j.acvd.2022.04.006_bib0300) 1996; 17
Mohebbi (10.1016/j.acvd.2022.04.006_bib0390) 2012; 105
Chugh (10.1016/j.acvd.2022.04.006_bib0210) 2014; 129
Linz (10.1016/j.acvd.2022.04.006_bib0290) 2014; 63
Kolb (10.1016/j.acvd.2022.04.006_bib0335) 2001; 88
Healey (10.1016/j.acvd.2022.04.006_bib0400) 2020; 33
Abadi (10.1016/j.acvd.2022.04.006_bib0265) 2015
Vikman (10.1016/j.acvd.2022.04.006_bib0350) 1999; 100
Andrade (10.1016/j.acvd.2022.04.006_bib0230) 2021; 384
Lombardi (10.1016/j.acvd.2022.04.006_bib0340) 2004; 25
Boon (10.1016/j.acvd.2022.04.006_bib0380) 2016; 134
Gilon (10.1016/j.acvd.2022.04.006_bib0270) 2020
Akselrod (10.1016/j.acvd.2022.04.006_bib0325) 1981; 213
Niemela (10.1016/j.acvd.2022.04.006_bib0320) 1994; 23
Healey (10.1016/j.acvd.2022.04.006_bib0260) 2012; 366
Shin (10.1016/j.acvd.2022.04.006_bib0345) 2006; 70
Fioranelli (10.1016/j.acvd.2022.04.006_bib0330) 1999; 22
Thong (10.1016/j.acvd.2022.04.006_bib0365) 2004; 51
Boriani (10.1016/j.acvd.2022.04.006_bib0405) 2020; 22
Billman (10.1016/j.acvd.2022.04.006_bib0305) 2013; 4
Hnatkova (10.1016/j.acvd.2022.04.006_bib0355) 1998; 135
Brembilla-Perrot (10.1016/j.acvd.2022.04.006_bib0315) 2000; 5
Ebrahimzadeh (10.1016/j.acvd.2022.04.006_bib0385) 2018; 165
Attia (10.1016/j.acvd.2022.04.006_bib0250) 2019; 394
References_xml – volume: 17
  start-page: 354
  year: 1996
  end-page: 381
  ident: bib0300
  article-title: Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology
  publication-title: Eur Heart J
– volume: 4
  start-page: 26
  year: 2013
  ident: bib0305
  article-title: The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance
  publication-title: Front Physiol
– volume: 84
  start-page: 482
  year: 1991
  end-page: 492
  ident: bib0295
  article-title: Cardiovascular neural regulation explored in the frequency domain
  publication-title: Circulation
– volume: 384
  start-page: 305
  year: 2021
  end-page: 315
  ident: bib0230
  article-title: Cryoablation or drug therapy for initial treatment of atrial fibrillation
  publication-title: N Engl J Med
– volume: 178
  start-page: 45
  year: 2016
  end-page: 54
  ident: bib0240
  article-title: A comparison of the CHARGE-AF and the CHA2DS2-VASc risk scores for prediction of atrial fibrillation in the Framingham Heart Study
  publication-title: Am Heart J
– volume: 19
  start-page: 1556
  year: 2017
  end-page: 1578
  ident: bib0255
  article-title: Device-detected subclinical atrial tachyarrhythmias: definition, implications and management-an European Heart Rhythm Association (EHRA) consensus document, endorsed by Heart Rhythm Society (HRS), Asia Pacific Heart Rhythm Society (APHRS) and Sociedad Latinoamericana de Estimulacion Cardiaca y Electrofisiologia (SOLEACE)
  publication-title: Europace
– volume: 22
  start-page: O42
  year: 2020
  end-page: O52
  ident: bib0405
  article-title: What do we do about atrial high rate episodes?
  publication-title: Eur Heart J Suppl
– volume: 213
  start-page: 220
  year: 1981
  end-page: 222
  ident: bib0325
  article-title: Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control
  publication-title: Science
– volume: 129
  start-page: 837
  year: 2014
  end-page: 847
  ident: bib0210
  article-title: Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study
  publication-title: Circulation
– volume: 51
  start-page: 561
  year: 2004
  end-page: 569
  ident: bib0365
  article-title: Prediction of paroxysmal atrial fibrillation by analysis of atrial premature complexes
  publication-title: IEEE Trans Biomed Eng
– volume: 134
  start-page: 187
  year: 2016
  end-page: 196
  ident: bib0380
  article-title: Paroxysmal atrial fibrillation prediction method with shorter HRV sequences
  publication-title: Comput Methods Programs Biomed
– volume: 384
  start-page: 316
  year: 2021
  end-page: 324
  ident: bib0235
  article-title: Cryoballoon ablation as initial therapy for atrial fibrillation
  publication-title: N Engl J Med
– volume: 42
  start-page: 644
  year: 2019
  end-page: 652
  ident: bib0280
  article-title: The cardiac autonomic nervous system: a target for modulation of atrial fibrillation
  publication-title: Clin Cardiol
– volume: 23
  start-page: 1370
  year: 1994
  end-page: 1377
  ident: bib0320
  article-title: Effect of beta-blockade on heart rate variability in patients with coronary artery disease
  publication-title: J Am Coll Cardiol
– volume: 153
  start-page: 171
  year: 2018
  end-page: 184
  ident: bib0375
  article-title: Paroxysmal atrial fibrillation prediction based on HRV analysis and non-dominated sorting genetic algorithm III
  publication-title: Comput Methods Programs Biomed
– volume: 101
  start-page: E215
  year: 2000
  end-page: E220
  ident: bib0360
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
– volume: 6
  start-page: e005155
  year: 2017
  ident: bib0215
  article-title: Temporal trends in incidence, prevalence, and mortality of atrial fibrillation in primary care
  publication-title: J Am Heart Assoc
– start-page: 1
  year: 2020
  end-page: 7
  ident: bib0270
  article-title: Forecast of paroxysmal atrial fibrillation using a deep neural network
  publication-title: Proc Int Jt Conf Neural Networks
– volume: 25
  start-page: 1242
  year: 2004
  end-page: 1248
  ident: bib0340
  article-title: Autonomic nervous system and paroxysmal atrial fibrillation: a study based on the analysis of RR interval changes before, during and after paroxysmal atrial fibrillation
  publication-title: Eur Heart J
– year: 2015
  ident: bib0265
  article-title: TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems
– volume: 28
  start-page: 125
  year: 2001
  end-page: 128
  ident: bib0370
  article-title: A methodology for predicting paroxysmal atrial fibrillation based on ECG arrhythmia feature analysis
  publication-title: Comput Cardiol
– volume: 88
  start-page: 853
  year: 2001
  end-page: 857
  ident: bib0335
  article-title: Modes of initiation of paroxysmal atrial fibrillation from analysis of spontaneously occurring episodes using a 12-lead Holter monitoring system
  publication-title: Am J Cardiol
– volume: 105
  start-page: 2753
  year: 2002
  end-page: 2759
  ident: bib0310
  article-title: Autonomic tone variations before the onset of paroxysmal atrial fibrillation
  publication-title: Circulation
– volume: 63
  start-page: 215
  year: 2014
  end-page: 224
  ident: bib0290
  article-title: Atrial autonomic innervation: a target for interventional antiarrhythmic therapy?
  publication-title: J Am Coll Cardiol
– volume: 287
  start-page: 181
  year: 2019
  end-page: 188
  ident: bib0285
  article-title: Role of autonomic nervous system in atrial fibrillation
  publication-title: Int J Cardiol
– volume: 105
  start-page: 40
  year: 2012
  end-page: 49
  ident: bib0390
  article-title: Prediction of paroxysmal atrial fibrillation based on non-linear analysis and spectrum and bispectrum features of the heart rate variability signal
  publication-title: Comput Methods Programs Biomed
– volume: 35
  start-page: 560
  year: 2010
  end-page: 576
  ident: bib0245
  article-title: Personalized medicine: part 1: evolution and development into theranostics
  publication-title: Pharmacol Ther
– volume: 135
  start-page: 1010
  year: 1998
  end-page: 1019
  ident: bib0355
  article-title: Analysis of the cardiac rhythm preceding episodes of paroxysmal atrial fibrillation
  publication-title: Am Heart J
– volume: 165
  start-page: 53
  year: 2018
  end-page: 67
  ident: bib0385
  article-title: Prediction of paroxysmal Atrial Fibrillation: A machine learning based approach using combined feature vector and mixture of expert classification on HRV signal
  publication-title: Comput Methods Programs Biomed
– volume: 509
  start-page: 56
  year: 2018
  end-page: 65
  ident: bib0395
  article-title: Early prediction of paroxysmal atrial fibrillation based on short-term heart rate variability
  publication-title: Phys A Stat Mech Its Appl
– volume: 12
  start-page: 1717
  year: 2015
  end-page: 1725
  ident: bib0410
  article-title: New-generation atrial antitachycardia pacing (Reactive ATP) is associated with reduced risk of persistent or permanent atrial fibrillation in patients with bradycardia: Results from the MINERVA randomized multicenter international trial
  publication-title: Heart Rhythm
– volume: 100
  start-page: 2079
  year: 1999
  end-page: 2084
  ident: bib0350
  article-title: Altered complexity and correlation properties of R-R interval dynamics before the spontaneous onset of paroxysmal atrial fibrillation
  publication-title: Circulation
– volume: 4
  start-page: S61
  year: 2007
  end-page: S64
  ident: bib0275
  article-title: Autonomic nerve activity and atrial fibrillation
  publication-title: Heart Rhythm
– volume: 19
  start-page: 1589
  year: 2017
  end-page: 1623
  ident: bib0225
  article-title: Screening for atrial fibrillation: a European Heart Rhythm Association (EHRA) consensus document endorsed by the Heart Rhythm Society (HRS), Asia Pacific Heart Rhythm Society (APHRS), and Sociedad Latinoamericana de Estimulacion Cardiaca y Electrofisiologia (SOLAECE)
  publication-title: Europace
– volume: 366
  start-page: 120
  year: 2012
  end-page: 129
  ident: bib0260
  article-title: Subclinical atrial fibrillation and the risk of stroke
  publication-title: N Engl J Med
– volume: 33
  start-page: 17
  year: 2020
  end-page: 23
  ident: bib0400
  article-title: Atrial fibrillation and stroke: how much atrial fibrillation is enough to cause a stroke?
  publication-title: Curr Opin Neurol
– volume: 42
  start-page: 373
  year: 2021
  end-page: 498
  ident: bib0220
  article-title: 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC). Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC
  publication-title: Eur Heart J
– volume: 5
  start-page: 158
  year: 2000
  end-page: 165
  ident: bib0315
  article-title: Different action of beta-blockers on daytime and nighttime heart rate variability
  publication-title: Ann Noninvasive Electrocardiol
– volume: 394
  start-page: 861
  year: 2019
  end-page: 867
  ident: bib0250
  article-title: An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction
  publication-title: Lancet
– volume: 22
  start-page: 743
  year: 1999
  end-page: 749
  ident: bib0330
  article-title: Analysis of heart rate variability five minutes before the onset of paroxysmal atrial fibrillation
  publication-title: Pacing Clin Electrophysiol
– volume: 70
  start-page: 94
  year: 2006
  end-page: 99
  ident: bib0345
  article-title: Prediction of paroxysmal atrial fibrillation using nonlinear analysis of the R-R interval dynamics before the spontaneous onset of atrial fibrillation
  publication-title: Circ J
– volume: 213
  start-page: 220
  year: 1981
  ident: 10.1016/j.acvd.2022.04.006_bib0325
  article-title: Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control
  publication-title: Science
  doi: 10.1126/science.6166045
– volume: 63
  start-page: 215
  year: 2014
  ident: 10.1016/j.acvd.2022.04.006_bib0290
  article-title: Atrial autonomic innervation: a target for interventional antiarrhythmic therapy?
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2013.09.020
– volume: 70
  start-page: 94
  year: 2006
  ident: 10.1016/j.acvd.2022.04.006_bib0345
  article-title: Prediction of paroxysmal atrial fibrillation using nonlinear analysis of the R-R interval dynamics before the spontaneous onset of atrial fibrillation
  publication-title: Circ J
  doi: 10.1253/circj.70.94
– year: 2015
  ident: 10.1016/j.acvd.2022.04.006_bib0265
– volume: 42
  start-page: 644
  year: 2019
  ident: 10.1016/j.acvd.2022.04.006_bib0280
  article-title: The cardiac autonomic nervous system: a target for modulation of atrial fibrillation
  publication-title: Clin Cardiol
  doi: 10.1002/clc.23190
– volume: 5
  start-page: 158
  year: 2000
  ident: 10.1016/j.acvd.2022.04.006_bib0315
  article-title: Different action of beta-blockers on daytime and nighttime heart rate variability
  publication-title: Ann Noninvasive Electrocardiol
  doi: 10.1111/j.1542-474X.2000.tb00381.x
– volume: 100
  start-page: 2079
  year: 1999
  ident: 10.1016/j.acvd.2022.04.006_bib0350
  article-title: Altered complexity and correlation properties of R-R interval dynamics before the spontaneous onset of paroxysmal atrial fibrillation
  publication-title: Circulation
  doi: 10.1161/01.CIR.100.20.2079
– volume: 19
  start-page: 1589
  year: 2017
  ident: 10.1016/j.acvd.2022.04.006_bib0225
  publication-title: Europace
  doi: 10.1093/europace/eux177
– volume: 4
  start-page: S61
  year: 2007
  ident: 10.1016/j.acvd.2022.04.006_bib0275
  article-title: Autonomic nerve activity and atrial fibrillation
  publication-title: Heart Rhythm
  doi: 10.1016/j.hrthm.2006.12.006
– volume: 287
  start-page: 181
  year: 2019
  ident: 10.1016/j.acvd.2022.04.006_bib0285
  article-title: Role of autonomic nervous system in atrial fibrillation
  publication-title: Int J Cardiol
  doi: 10.1016/j.ijcard.2018.11.091
– volume: 19
  start-page: 1556
  year: 2017
  ident: 10.1016/j.acvd.2022.04.006_bib0255
  publication-title: Europace
  doi: 10.1093/europace/eux163
– volume: 17
  start-page: 354
  year: 1996
  ident: 10.1016/j.acvd.2022.04.006_bib0300
  article-title: Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology
  publication-title: Eur Heart J
– volume: 22
  start-page: 743
  year: 1999
  ident: 10.1016/j.acvd.2022.04.006_bib0330
  article-title: Analysis of heart rate variability five minutes before the onset of paroxysmal atrial fibrillation
  publication-title: Pacing Clin Electrophysiol
  doi: 10.1111/j.1540-8159.1999.tb00538.x
– volume: 394
  start-page: 861
  year: 2019
  ident: 10.1016/j.acvd.2022.04.006_bib0250
  article-title: An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction
  publication-title: Lancet
  doi: 10.1016/S0140-6736(19)31721-0
– volume: 135
  start-page: 1010
  year: 1998
  ident: 10.1016/j.acvd.2022.04.006_bib0355
  article-title: Analysis of the cardiac rhythm preceding episodes of paroxysmal atrial fibrillation
  publication-title: Am Heart J
  doi: 10.1016/S0002-8703(98)70066-3
– volume: 384
  start-page: 316
  year: 2021
  ident: 10.1016/j.acvd.2022.04.006_bib0235
  article-title: Cryoballoon ablation as initial therapy for atrial fibrillation
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa2029554
– volume: 84
  start-page: 482
  year: 1991
  ident: 10.1016/j.acvd.2022.04.006_bib0295
  article-title: Cardiovascular neural regulation explored in the frequency domain
  publication-title: Circulation
  doi: 10.1161/01.CIR.84.2.482
– volume: 178
  start-page: 45
  year: 2016
  ident: 10.1016/j.acvd.2022.04.006_bib0240
  article-title: A comparison of the CHARGE-AF and the CHA2DS2-VASc risk scores for prediction of atrial fibrillation in the Framingham Heart Study
  publication-title: Am Heart J
  doi: 10.1016/j.ahj.2016.05.004
– volume: 6
  start-page: e005155
  year: 2017
  ident: 10.1016/j.acvd.2022.04.006_bib0215
  article-title: Temporal trends in incidence, prevalence, and mortality of atrial fibrillation in primary care
  publication-title: J Am Heart Assoc
  doi: 10.1161/JAHA.116.005155
– volume: 366
  start-page: 120
  year: 2012
  ident: 10.1016/j.acvd.2022.04.006_bib0260
  article-title: Subclinical atrial fibrillation and the risk of stroke
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1105575
– volume: 509
  start-page: 56
  year: 2018
  ident: 10.1016/j.acvd.2022.04.006_bib0395
  article-title: Early prediction of paroxysmal atrial fibrillation based on short-term heart rate variability
  publication-title: Phys A Stat Mech Its Appl
  doi: 10.1016/j.physa.2018.06.022
– volume: 51
  start-page: 561
  year: 2004
  ident: 10.1016/j.acvd.2022.04.006_bib0365
  article-title: Prediction of paroxysmal atrial fibrillation by analysis of atrial premature complexes
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2003.821030
– volume: 105
  start-page: 2753
  year: 2002
  ident: 10.1016/j.acvd.2022.04.006_bib0310
  article-title: Autonomic tone variations before the onset of paroxysmal atrial fibrillation
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000018443.44005.D8
– volume: 105
  start-page: 40
  year: 2012
  ident: 10.1016/j.acvd.2022.04.006_bib0390
  article-title: Prediction of paroxysmal atrial fibrillation based on non-linear analysis and spectrum and bispectrum features of the heart rate variability signal
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2010.07.011
– volume: 134
  start-page: 187
  year: 2016
  ident: 10.1016/j.acvd.2022.04.006_bib0380
  article-title: Paroxysmal atrial fibrillation prediction method with shorter HRV sequences
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2016.07.016
– volume: 33
  start-page: 17
  year: 2020
  ident: 10.1016/j.acvd.2022.04.006_bib0400
  article-title: Atrial fibrillation and stroke: how much atrial fibrillation is enough to cause a stroke?
  publication-title: Curr Opin Neurol
  doi: 10.1097/WCO.0000000000000780
– volume: 4
  start-page: 26
  year: 2013
  ident: 10.1016/j.acvd.2022.04.006_bib0305
  article-title: The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance
  publication-title: Front Physiol
  doi: 10.3389/fphys.2013.00026
– volume: 28
  start-page: 125
  year: 2001
  ident: 10.1016/j.acvd.2022.04.006_bib0370
  article-title: A methodology for predicting paroxysmal atrial fibrillation based on ECG arrhythmia feature analysis
  publication-title: Comput Cardiol
– volume: 165
  start-page: 53
  year: 2018
  ident: 10.1016/j.acvd.2022.04.006_bib0385
  article-title: Prediction of paroxysmal Atrial Fibrillation: A machine learning based approach using combined feature vector and mixture of expert classification on HRV signal
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2018.07.014
– volume: 12
  start-page: 1717
  year: 2015
  ident: 10.1016/j.acvd.2022.04.006_bib0410
  article-title: New-generation atrial antitachycardia pacing (Reactive ATP) is associated with reduced risk of persistent or permanent atrial fibrillation in patients with bradycardia: Results from the MINERVA randomized multicenter international trial
  publication-title: Heart Rhythm
  doi: 10.1016/j.hrthm.2015.04.015
– volume: 22
  start-page: O42
  issue: Suppl O
  year: 2020
  ident: 10.1016/j.acvd.2022.04.006_bib0405
  article-title: What do we do about atrial high rate episodes?
  publication-title: Eur Heart J Suppl
  doi: 10.1093/eurheartj/suaa179
– volume: 384
  start-page: 305
  year: 2021
  ident: 10.1016/j.acvd.2022.04.006_bib0230
  article-title: Cryoablation or drug therapy for initial treatment of atrial fibrillation
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa2029980
– volume: 101
  start-page: E215
  year: 2000
  ident: 10.1016/j.acvd.2022.04.006_bib0360
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 25
  start-page: 1242
  year: 2004
  ident: 10.1016/j.acvd.2022.04.006_bib0340
  article-title: Autonomic nervous system and paroxysmal atrial fibrillation: a study based on the analysis of RR interval changes before, during and after paroxysmal atrial fibrillation
  publication-title: Eur Heart J
  doi: 10.1016/j.ehj.2004.05.016
– volume: 42
  start-page: 373
  year: 2021
  ident: 10.1016/j.acvd.2022.04.006_bib0220
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehaa612
– volume: 129
  start-page: 837
  year: 2014
  ident: 10.1016/j.acvd.2022.04.006_bib0210
  article-title: Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.113.005119
– volume: 23
  start-page: 1370
  year: 1994
  ident: 10.1016/j.acvd.2022.04.006_bib0320
  article-title: Effect of beta-blockade on heart rate variability in patients with coronary artery disease
  publication-title: J Am Coll Cardiol
  doi: 10.1016/0735-1097(94)90379-4
– volume: 35
  start-page: 560
  year: 2010
  ident: 10.1016/j.acvd.2022.04.006_bib0245
  article-title: Personalized medicine: part 1: evolution and development into theranostics
  publication-title: Pharmacol Ther
– volume: 153
  start-page: 171
  year: 2018
  ident: 10.1016/j.acvd.2022.04.006_bib0375
  article-title: Paroxysmal atrial fibrillation prediction based on HRV analysis and non-dominated sorting genetic algorithm III
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2017.10.012
– start-page: 1
  year: 2020
  ident: 10.1016/j.acvd.2022.04.006_bib0270
  article-title: Forecast of paroxysmal atrial fibrillation using a deep neural network
  publication-title: Proc Int Jt Conf Neural Networks
– volume: 88
  start-page: 853
  year: 2001
  ident: 10.1016/j.acvd.2022.04.006_bib0335
  article-title: Modes of initiation of paroxysmal atrial fibrillation from analysis of spontaneously occurring episodes using a 12-lead Holter monitoring system
  publication-title: Am J Cardiol
  doi: 10.1016/S0002-9149(01)01891-4
SSID ssj0062776
Score 2.3244011
Snippet Machine learning and deep learning techniques are now used extensively for atrial fibrillation (AF) screening, but their use for AF crisis forecasting has yet...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 377
SubjectTerms Apprentissage machine
Atrial fibrillation
Fibrillation auriculaire
Forecasting Autonomic nervous system
Heart rate variability
Machine learning
Prediction
Système nerveux autonome
Variabilité du rythme sinusal
Title Role of the autonomic nervous system and premature atrial contractions in short-term paroxysmal atrial fibrillation forecasting: Insights from machine learning models
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1875213622001048
https://dx.doi.org/10.1016/j.acvd.2022.04.006
https://www.ncbi.nlm.nih.gov/pubmed/35672220
https://www.proquest.com/docview/2674347561
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWWRUJcEN-Uj8pI3FBo7Dhxw21ZseqCdg_ASr1Zjj1Zirpp1bQc-Tn8TmZspxISLBI3JxorVsYeP8vvzTD2Cvfw3AKozAoJmWqwhagIMtl6ARp8ZYOO--y8ml2oD_NyfsCOBy0M0SpT7I8xPUTr9GaS_uZkvVhMPguE2lJgAJYhyQwJfklVSiK--bshGldShwJzZJyRdRLORI6Xdd8pW6iUId0pVT368-b0N_AZNqGTu-xOQo_8KA7wHjuA7j67dZbuxx-wn59WS-CrliOs43a3jaJj3mFAwBM-j2mbue08X28oWetug2ahcAcPnPWocuj5ouP9VwTmGQVuvrbEdemv0CoZtyQUWEYaHUfYC872xJ9-y0-7no77PSfdCr8KVE3gqTbFJQ-Fd_qH7OLk_ZfjWZYqMWROlWKblYVvBNTetwIKCXiqbRy6saGGLHxtp661bV2ULke_Q6OnXjloEHw5X8NUF4_YYbfq4AnjymmQ0qum1k4VTWmrSluvlPS5FX7qRkwMLjAupSmnahlLM_DRvhlymyG3mVwZdNuIvd73WcckHddaF4NnzSA_xYBpcA-5tle57_XbBP1nv5fD5DG4cuk6xnaAPjeS9B9KI4AdscdxVu1HX5SVRuSWP_3Prz5jt-kpctqes8PtZgcvED1tmzG78eaHGLObR6cfZ-fjsFh-AaXgH6s
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKkYALKt8LBYzEDYVNHCdOeqsqqi10e4BW6s1y7ElZtM2uNrsc-Tn8TmZsZyUkKBI3KxkrVsYeP8vvzTD2Fvfw1ADIxGQCEtlgC1ERJKJ1GShwpfE67ulZObmQHy-Lyx12NGhhiFYZY3-I6T5axyfj-DfHy9ls_CVDqC0yDMDCJ5mpbrHbssgVJdB__2PL8yiF8hXmyDoh86icCSQvY79TulAhfL5TKnv0593pb-jT70LHe-x-hI_8MIzwAduB7iG7M40X5I_Yz8-LOfBFyxHXcbNZB9Ux7zAi4BGfh7zN3HSOL1eUrXWzQjNfuYN70nqQOfR81vH-KyLzhCI3Xxoiu_TXaBWNW1IKzAOPjiPuBWt6IlAf8JOup_N-z0m4wq89VxN4LE5xxX3lnf4xuzj-cH40SWIphsTKIlsnRe6aDGrn2gxyAXisbSz6saGGyF1tKtuats4Lm6LjoVGVkxYaRF_W1VCp_Anb7RYdPGNcWgVCONnUysq8KUxZKuOkFC41mavsiGWDC7SNecqpXMZcD4S0b5rcpsltOpUa3TZi77Z9liFLx43W-eBZPehPMWJq3ERu7FVse_02Q__Z780weTQuXbqPMR2gz7UgAYhUiGBH7GmYVdvR50WpELqlz__zq6_Z3cn59FSfnpx9esHu0ZtAcNtnu-vVBl4ilFo3r_xS-QU_5yA1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+the+autonomic+nervous+system+and+premature+atrial+contractions+in+short-term+paroxysmal+atrial+fibrillation+forecasting%3A+Insights+from+machine+learning+models&rft.jtitle=Archives+of+cardiovascular+diseases&rft.au=Gr%C3%A9goire%2C+Jean-Marie&rft.au=Gilon%2C+C%C3%A9dric&rft.au=Carlier%2C+St%C3%A9phane&rft.au=Bersini%2C+Hugues&rft.date=2022-06-01&rft.eissn=1875-2128&rft_id=info:doi/10.1016%2Fj.acvd.2022.04.006&rft_id=info%3Apmid%2F35672220&rft.externalDocID=35672220
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-2136&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-2136&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-2136&client=summon