Role of the autonomic nervous system and premature atrial contractions in short-term paroxysmal atrial fibrillation forecasting: Insights from machine learning models
Machine learning and deep learning techniques are now used extensively for atrial fibrillation (AF) screening, but their use for AF crisis forecasting has yet to be assessed in a clinical context. To assess the value of two machine learning algorithms for the short-term prediction of paroxysmal AF e...
Saved in:
Published in | Archives of cardiovascular diseases Vol. 115; no. 6-7; pp. 377 - 387 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Masson SAS
01.06.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1875-2136 1875-2128 1875-2128 |
DOI | 10.1016/j.acvd.2022.04.006 |
Cover
Abstract | Machine learning and deep learning techniques are now used extensively for atrial fibrillation (AF) screening, but their use for AF crisis forecasting has yet to be assessed in a clinical context.
To assess the value of two machine learning algorithms for the short-term prediction of paroxysmal AF episodes.
We conducted a retrospective study from an outpatient clinic. We developed a deep neural network model that was trained for a supervised binary classification, differentiating between RR interval variations that precede AF onset and RR interval variations far from any AF. We also developed a random forest model to obtain forecast results using heart rate variability variables, with and without premature atrial complexes.
In total, 10,484 Holter electrocardiogram recordings were screened, and 250 analysable AF onsets were labelled. The deep neural network model was able to distinguish if a given RR interval window would lead to AF onset in the next 30 beats with a sensitivity of 80.1% (95% confidence interval 78.7–81.6) at the price of a low specificity of 52.8% (95% confidence interval 51.0–54.6). The random forest model indicated that the main factor that precedes the start of a paroxysmal AF episode is autonomic nervous system activity, and that premature complexes add limited additional information. In addition, the onset of AF episodes is preceded by cyclical fluctuations in the low frequency/high frequency ratio of heart rate variability. Each peak is itself followed by an increase in atrial extrasystoles.
The use of two machine learning algorithms for the short-term prediction of AF episodes allowed us to confirm that the main cause of AF crises lies in an imbalance in the autonomic nervous system, and not premature atrial contractions, which are, however, required as a final firing trigger.
Les réseaux de neurones sont maintenant largement utilisés pour le dépistage de la FA, mais leur utilisation pour la prévision d’une crise de FA n’a pas encore été évaluée dans un contexte clinique.
Évaluer la valeur de deux algorithmes d’apprentissage automatique pour la prédiction à court terme des épisodes de FA paroxystique.
Nous avons mené une étude rétrospective à partir d’une clinique ambulatoire. Nous avons développé un modèle de réseau neuronal profond, entraîné pour une classification binaire supervisée distinguant les variations des intervalles RR qui précèdent un début de FA et les variations des intervalles RR éloignés de toute FA. Nous avons également mis au point un modèle interprétable de forêt aléatoire utilisant les paramètres de variabilité, avec ou sans extrasystoles supraventriculaires.
Au total, 10 484 enregistrements d’électrocardiogrammes Holter ont été analysés et 250 cas de FA ont été labélisés. Le modèle de réseau neuronal profond a permis de prévoir si une fenêtre d’intervalle RR donnée conduisait à un début de FA dans les 30 battements suivants avec une sensibilité de 80,1 % (IC95 % 78,7–81,6) au prix d’une spécificité de 52,8 % (IC95 % 51,0–54,6). Nous avons également mis au point un modèle interprétable de forêt aléatoire utilisant les paramètres de variabilité, avec ou sans extrasystoles supraventriculaires. Le modèle interprétable de forêt aléatoire révèle que le principal facteur prévisionnel se trouve dans l’activité du système nerveux autonome, les extrasystoles supraventriculaires ajoutant des informations supplémentaires limitées. De plus le début des épisodes de FA est précédé par des variations cycliques du rapport basses fréquences/hautes fréquences des paramètres fréquentiels de la variabilité du rythme sinusal. Chaque pic est lui-même suivi d’une augmentation des extrasystoles auriculaires.
L’utilisation de deux algorithmes d’apprentissage automatique pour la prédiction à court terme des épisodes de FA nous a permis de confirmer que le principal responsable de la crise de FA est un déséquilibre du système nerveux autonome et non les extrasystoles auriculaires qui sont cependant indispensables en tant que gachette déclenchante finale. |
---|---|
AbstractList | Machine learning and deep learning techniques are now used extensively for atrial fibrillation (AF) screening, but their use for AF crisis forecasting has yet to be assessed in a clinical context.
To assess the value of two machine learning algorithms for the short-term prediction of paroxysmal AF episodes.
We conducted a retrospective study from an outpatient clinic. We developed a deep neural network model that was trained for a supervised binary classification, differentiating between RR interval variations that precede AF onset and RR interval variations far from any AF. We also developed a random forest model to obtain forecast results using heart rate variability variables, with and without premature atrial complexes.
In total, 10,484 Holter electrocardiogram recordings were screened, and 250 analysable AF onsets were labelled. The deep neural network model was able to distinguish if a given RR interval window would lead to AF onset in the next 30 beats with a sensitivity of 80.1% (95% confidence interval 78.7–81.6) at the price of a low specificity of 52.8% (95% confidence interval 51.0–54.6). The random forest model indicated that the main factor that precedes the start of a paroxysmal AF episode is autonomic nervous system activity, and that premature complexes add limited additional information. In addition, the onset of AF episodes is preceded by cyclical fluctuations in the low frequency/high frequency ratio of heart rate variability. Each peak is itself followed by an increase in atrial extrasystoles.
The use of two machine learning algorithms for the short-term prediction of AF episodes allowed us to confirm that the main cause of AF crises lies in an imbalance in the autonomic nervous system, and not premature atrial contractions, which are, however, required as a final firing trigger.
Les réseaux de neurones sont maintenant largement utilisés pour le dépistage de la FA, mais leur utilisation pour la prévision d’une crise de FA n’a pas encore été évaluée dans un contexte clinique.
Évaluer la valeur de deux algorithmes d’apprentissage automatique pour la prédiction à court terme des épisodes de FA paroxystique.
Nous avons mené une étude rétrospective à partir d’une clinique ambulatoire. Nous avons développé un modèle de réseau neuronal profond, entraîné pour une classification binaire supervisée distinguant les variations des intervalles RR qui précèdent un début de FA et les variations des intervalles RR éloignés de toute FA. Nous avons également mis au point un modèle interprétable de forêt aléatoire utilisant les paramètres de variabilité, avec ou sans extrasystoles supraventriculaires.
Au total, 10 484 enregistrements d’électrocardiogrammes Holter ont été analysés et 250 cas de FA ont été labélisés. Le modèle de réseau neuronal profond a permis de prévoir si une fenêtre d’intervalle RR donnée conduisait à un début de FA dans les 30 battements suivants avec une sensibilité de 80,1 % (IC95 % 78,7–81,6) au prix d’une spécificité de 52,8 % (IC95 % 51,0–54,6). Nous avons également mis au point un modèle interprétable de forêt aléatoire utilisant les paramètres de variabilité, avec ou sans extrasystoles supraventriculaires. Le modèle interprétable de forêt aléatoire révèle que le principal facteur prévisionnel se trouve dans l’activité du système nerveux autonome, les extrasystoles supraventriculaires ajoutant des informations supplémentaires limitées. De plus le début des épisodes de FA est précédé par des variations cycliques du rapport basses fréquences/hautes fréquences des paramètres fréquentiels de la variabilité du rythme sinusal. Chaque pic est lui-même suivi d’une augmentation des extrasystoles auriculaires.
L’utilisation de deux algorithmes d’apprentissage automatique pour la prédiction à court terme des épisodes de FA nous a permis de confirmer que le principal responsable de la crise de FA est un déséquilibre du système nerveux autonome et non les extrasystoles auriculaires qui sont cependant indispensables en tant que gachette déclenchante finale. Machine learning and deep learning techniques are now used extensively for atrial fibrillation (AF) screening, but their use for AF crisis forecasting has yet to be assessed in a clinical context.BACKGROUNDMachine learning and deep learning techniques are now used extensively for atrial fibrillation (AF) screening, but their use for AF crisis forecasting has yet to be assessed in a clinical context.To assess the value of two machine learning algorithms for the short-term prediction of paroxysmal AF episodes.AIMSTo assess the value of two machine learning algorithms for the short-term prediction of paroxysmal AF episodes.We conducted a retrospective study from an outpatient clinic. We developed a deep neural network model that was trained for a supervised binary classification, differentiating between RR interval variations that precede AF onset and RR interval variations far from any AF. We also developed a random forest model to obtain forecast results using heart rate variability variables, with and without premature atrial complexes.METHODSWe conducted a retrospective study from an outpatient clinic. We developed a deep neural network model that was trained for a supervised binary classification, differentiating between RR interval variations that precede AF onset and RR interval variations far from any AF. We also developed a random forest model to obtain forecast results using heart rate variability variables, with and without premature atrial complexes.In total, 10,484 Holter electrocardiogram recordings were screened, and 250 analysable AF onsets were labelled. The deep neural network model was able to distinguish if a given RR interval window would lead to AF onset in the next 30 beats with a sensitivity of 80.1% (95% confidence interval 78.7-81.6) at the price of a low specificity of 52.8% (95% confidence interval 51.0-54.6). The random forest model indicated that the main factor that precedes the start of a paroxysmal AF episode is autonomic nervous system activity, and that premature complexes add limited additional information. In addition, the onset of AF episodes is preceded by cyclical fluctuations in the low frequency/high frequency ratio of heart rate variability. Each peak is itself followed by an increase in atrial extrasystoles.RESULTSIn total, 10,484 Holter electrocardiogram recordings were screened, and 250 analysable AF onsets were labelled. The deep neural network model was able to distinguish if a given RR interval window would lead to AF onset in the next 30 beats with a sensitivity of 80.1% (95% confidence interval 78.7-81.6) at the price of a low specificity of 52.8% (95% confidence interval 51.0-54.6). The random forest model indicated that the main factor that precedes the start of a paroxysmal AF episode is autonomic nervous system activity, and that premature complexes add limited additional information. In addition, the onset of AF episodes is preceded by cyclical fluctuations in the low frequency/high frequency ratio of heart rate variability. Each peak is itself followed by an increase in atrial extrasystoles.The use of two machine learning algorithms for the short-term prediction of AF episodes allowed us to confirm that the main cause of AF crises lies in an imbalance in the autonomic nervous system, and not premature atrial contractions, which are, however, required as a final firing trigger.CONCLUSIONSThe use of two machine learning algorithms for the short-term prediction of AF episodes allowed us to confirm that the main cause of AF crises lies in an imbalance in the autonomic nervous system, and not premature atrial contractions, which are, however, required as a final firing trigger. Machine learning and deep learning techniques are now used extensively for atrial fibrillation (AF) screening, but their use for AF crisis forecasting has yet to be assessed in a clinical context. To assess the value of two machine learning algorithms for the short-term prediction of paroxysmal AF episodes. We conducted a retrospective study from an outpatient clinic. We developed a deep neural network model that was trained for a supervised binary classification, differentiating between RR interval variations that precede AF onset and RR interval variations far from any AF. We also developed a random forest model to obtain forecast results using heart rate variability variables, with and without premature atrial complexes. In total, 10,484 Holter electrocardiogram recordings were screened, and 250 analysable AF onsets were labelled. The deep neural network model was able to distinguish if a given RR interval window would lead to AF onset in the next 30 beats with a sensitivity of 80.1% (95% confidence interval 78.7-81.6) at the price of a low specificity of 52.8% (95% confidence interval 51.0-54.6). The random forest model indicated that the main factor that precedes the start of a paroxysmal AF episode is autonomic nervous system activity, and that premature complexes add limited additional information. In addition, the onset of AF episodes is preceded by cyclical fluctuations in the low frequency/high frequency ratio of heart rate variability. Each peak is itself followed by an increase in atrial extrasystoles. The use of two machine learning algorithms for the short-term prediction of AF episodes allowed us to confirm that the main cause of AF crises lies in an imbalance in the autonomic nervous system, and not premature atrial contractions, which are, however, required as a final firing trigger. |
Author | Gilon, Cédric Bersini, Hugues Carlier, Stéphane Grégoire, Jean-Marie |
Author_xml | – sequence: 1 givenname: Jean-Marie surname: Grégoire fullname: Grégoire, Jean-Marie email: jean-marie.gregoire@ulb.be organization: IRIDIA, Université Libre de Bruxelles, 1050 Bruxelles, Belgium – sequence: 2 givenname: Cédric surname: Gilon fullname: Gilon, Cédric organization: IRIDIA, Université Libre de Bruxelles, 1050 Bruxelles, Belgium – sequence: 3 givenname: Stéphane surname: Carlier fullname: Carlier, Stéphane organization: Department of Cardiology, UMONS (Université de Mons), 7000 Mons, Belgium – sequence: 4 givenname: Hugues surname: Bersini fullname: Bersini, Hugues organization: IRIDIA, Université Libre de Bruxelles, 1050 Bruxelles, Belgium |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35672220$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctuFDEQRS0URB7wAyyQl2y68aOfERsUQRIpEhKCteW2qzMe_BhszyjzQ3wnbmbIIouwckk-p1S69xyd-OABobeU1JTQ7sO6lmqna0YYq0lTE9K9QGd06NuKUTacPM68O0XnKa0LwPq-e4VOedv1jDFyhn5_CxZwmHFeAZbbHHxwRmEPcRe2Cad9yuCw9BpvIjiZt7FgORppsQo-R6myCT5h43FahZirDNHhjYzhYZ9coY7wbKZorJULjecQQcmUjb-_xLc-mftVTniOwWEn1cp4wBZk9OUfu6DBptfo5SxtgjfH9wL9-PL5-9VNdff1-vbq012lmpbmquV6ojBqPVPgDPjAJ6U7OS0D43qUg5rlPPJWEYAGpn7QjYJp4KPSIww9v0DvD3s3MfzaQsrCmaSgHO6h5CFY1ze86duOFvTdEd1ODrTYRONk3It_2RaAHQAVQ0oR5keEErEUKNZiKVAsBQrSiNJPkYYnkjL5b2ola2OfVz8e1JIX7AxEkZQBr0CbEncWOpjn9csnurLGGyXtT9j_T_4DSuTP8Q |
CitedBy_id | crossref_primary_10_1186_s12938_025_01349_w crossref_primary_10_1016_j_hrthm_2024_03_017 crossref_primary_10_37349_edht_2025_101141 crossref_primary_10_1007_s10840_024_01771_5 crossref_primary_10_1016_j_patter_2024_100970 crossref_primary_10_1093_europace_euae043 crossref_primary_10_1002_joa3_13082 crossref_primary_10_3389_fcvm_2024_1509304 |
Cites_doi | 10.1126/science.6166045 10.1016/j.jacc.2013.09.020 10.1253/circj.70.94 10.1002/clc.23190 10.1111/j.1542-474X.2000.tb00381.x 10.1161/01.CIR.100.20.2079 10.1093/europace/eux177 10.1016/j.hrthm.2006.12.006 10.1016/j.ijcard.2018.11.091 10.1093/europace/eux163 10.1111/j.1540-8159.1999.tb00538.x 10.1016/S0140-6736(19)31721-0 10.1016/S0002-8703(98)70066-3 10.1056/NEJMoa2029554 10.1161/01.CIR.84.2.482 10.1016/j.ahj.2016.05.004 10.1161/JAHA.116.005155 10.1056/NEJMoa1105575 10.1016/j.physa.2018.06.022 10.1109/TBME.2003.821030 10.1161/01.CIR.0000018443.44005.D8 10.1016/j.cmpb.2010.07.011 10.1016/j.cmpb.2016.07.016 10.1097/WCO.0000000000000780 10.3389/fphys.2013.00026 10.1016/j.cmpb.2018.07.014 10.1016/j.hrthm.2015.04.015 10.1093/eurheartj/suaa179 10.1056/NEJMoa2029980 10.1161/01.CIR.101.23.e215 10.1016/j.ehj.2004.05.016 10.1093/eurheartj/ehaa612 10.1161/CIRCULATIONAHA.113.005119 10.1016/0735-1097(94)90379-4 10.1016/j.cmpb.2017.10.012 10.1016/S0002-9149(01)01891-4 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Masson SAS Copyright © 2022 Elsevier Masson SAS. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier Masson SAS – notice: Copyright © 2022 Elsevier Masson SAS. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.acvd.2022.04.006 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | Rôle du système nerveux autonome et des contractions auriculaires prématurées dans la prévision de la fibrillation auriculaire paroxystique à court terme : aperçu des modèles d’apprentissage automatique |
EISSN | 1875-2128 |
EndPage | 387 |
ExternalDocumentID | 35672220 10_1016_j_acvd_2022_04_006 S1875213622001048 |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 1B1 1P~ 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABFRF ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AEXQZ AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR BAWUL BKOJK BLXMC BNPGV CS3 DIK EBS EFJIC EFKBS EJD EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ IXB J1W KOM LN9 M41 MO0 N9A O-L O9- OAUVE OA~ OK1 OL0 OZT P-8 P-9 PC. Q38 ROL SDF SDG SEM SES SPCBC SSH SSZ T5K UNMZH Z5R ~G- 6I. AACTN AAFTH AAIAV ABLVK ABVKL ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW EFLBG LCYCR NCXOZ RIG AAYXX AGRNS CITATION NPM 7X8 ACLOT ~HD |
ID | FETCH-LOGICAL-c451t-53db1e9ddf1e32e383bcd6ab383b23d9a8cfaf935c0ee4eb78d4ceb839cd9e873 |
IEDL.DBID | IXB |
ISSN | 1875-2136 1875-2128 |
IngestDate | Tue Sep 23 04:44:56 EDT 2025 Thu Apr 03 07:09:47 EDT 2025 Tue Jul 01 00:49:50 EDT 2025 Thu Apr 24 22:57:31 EDT 2025 Fri Feb 23 02:40:39 EST 2024 Tue Aug 26 19:49:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6-7 |
Keywords | AF DNN Atrial fibrillation ANS CI Prediction HRV AUC VLF PAC RF Machine learning Fibrillation auriculaire Apprentissage machine Forecasting Autonomic nervous system CIED LF Heart rate variability Système nerveux autonome AFPDB Variabilité du rythme sinusal HF |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2022 Elsevier Masson SAS. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-53db1e9ddf1e32e383bcd6ab383b23d9a8cfaf935c0ee4eb78d4ceb839cd9e873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.clinicalkey.com/#!/content/1-s2.0-S1875213622001048 |
PMID | 35672220 |
PQID | 2674347561 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2674347561 pubmed_primary_35672220 crossref_primary_10_1016_j_acvd_2022_04_006 crossref_citationtrail_10_1016_j_acvd_2022_04_006 elsevier_sciencedirect_doi_10_1016_j_acvd_2022_04_006 elsevier_clinicalkey_doi_10_1016_j_acvd_2022_04_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Archives of cardiovascular diseases |
PublicationTitleAlternate | Arch Cardiovasc Dis |
PublicationYear | 2022 |
Publisher | Elsevier Masson SAS |
Publisher_xml | – name: Elsevier Masson SAS |
References | Vikman, Makikallio, Yli-Mayry (bib0350) 1999; 100 Zong, Mukkamala, Mark (bib0370) 2001; 28 Qin, Zeng, Liu (bib0280) 2019; 42 Heart rate variability (bib0300) 1996; 17 Healey, Connolly, Gold (bib0260) 2012; 366 Brembilla-Perrot, Houriez, Claudon, Beurrier, Preiss (bib0315) 2000; 5 Ebrahimzadeh, Kalantari, Joulani, Shahraki, Fayaz, Ahmadi (bib0385) 2018; 165 Fioranelli, Piccoli, Mileto (bib0330) 1999; 22 Attia, Noseworthy, Lopez-Jimenez (bib0250) 2019; 394 Akselrod, Gordon, Ubel, Shannon, Berger, Cohen (bib0325) 1981; 213 Malliani, Pagani, Lombardi, Cerutti (bib0295) 1991; 84 Goldberger, Amaral, Glass (bib0360) 2000; 101 Chen, Tan (bib0275) 2007; 4 Billman (bib0305) 2013; 4 Linz, Elliott, Hohl (bib0285) 2019; 287 Gorenek, Bax, Boriani (bib0255) 2017; 19 Mohebbi, Ghassemian (bib0390) 2012; 105 Padeletti, Purerfellner, Mont (bib0410) 2015; 12 Linz, Ukena, Mahfoud, Neuberger, Bohm (bib0290) 2014; 63 Andrade, Wells, Deyell (bib0230) 2021; 384 Shin, Yoo, Yi (bib0345) 2006; 70 Hnatkova, Waktare, Murgatroyd (bib0355) 1998; 135 Wazni, Dandamudi, Sood (bib0235) 2021; 384 Healey, Amit, Field (bib0400) 2020; 33 Vogenberg, Isaacson Barash, Pursel (bib0245) 2010; 35 Lombardi, Tarricone, Tundo, Colombo, Belletti, Fiorentini (bib0340) 2004; 25 Narin, Isler, Ozer, Perc (bib0395) 2018; 509 Lane, Skjoth, Lip, Larsen, Kotecha (bib0215) 2017; 6 Hindricks, Potpara, Dagres (bib0220) 2021; 42 Mairesse, Moran, Van Gelder (bib0225) 2017; 19 Chugh, Havmoeller, Narayanan (bib0210) 2014; 129 Niemela, Airaksinen, Huikuri (bib0320) 1994; 23 Thong, McNames, Aboy, Goldstein (bib0365) 2004; 51 Gilon, Grégoire, Bersini (bib0270) 2020 Boriani, Vitolo, Imberti, Potpara, Lip (bib0405) 2020; 22 Bettoni, Zimmermann (bib0310) 2002; 105 Boon, Khalil-Hani, Malarvili, Sia (bib0380) 2016; 134 Abadi, Agarwal, Barham (bib0265) 2015 Boon, Khalil-Hani, Malarvili (bib0375) 2018; 153 Kolb, Nurnberger, Ndrepepa, Zrenner, Schomig, Schmitt (bib0335) 2001; 88 Christophersen, Yin, Larson (bib0240) 2016; 178 Mairesse (10.1016/j.acvd.2022.04.006_bib0225) 2017; 19 Wazni (10.1016/j.acvd.2022.04.006_bib0235) 2021; 384 Hindricks (10.1016/j.acvd.2022.04.006_bib0220) 2021; 42 Narin (10.1016/j.acvd.2022.04.006_bib0395) 2018; 509 Zong (10.1016/j.acvd.2022.04.006_bib0370) 2001; 28 Boon (10.1016/j.acvd.2022.04.006_bib0375) 2018; 153 Lane (10.1016/j.acvd.2022.04.006_bib0215) 2017; 6 Qin (10.1016/j.acvd.2022.04.006_bib0280) 2019; 42 Goldberger (10.1016/j.acvd.2022.04.006_bib0360) 2000; 101 Vogenberg (10.1016/j.acvd.2022.04.006_bib0245) 2010; 35 Chen (10.1016/j.acvd.2022.04.006_bib0275) 2007; 4 Bettoni (10.1016/j.acvd.2022.04.006_bib0310) 2002; 105 Gorenek (10.1016/j.acvd.2022.04.006_bib0255) 2017; 19 Padeletti (10.1016/j.acvd.2022.04.006_bib0410) 2015; 12 Christophersen (10.1016/j.acvd.2022.04.006_bib0240) 2016; 178 Linz (10.1016/j.acvd.2022.04.006_bib0285) 2019; 287 Malliani (10.1016/j.acvd.2022.04.006_bib0295) 1991; 84 Heart rate variability (10.1016/j.acvd.2022.04.006_bib0300) 1996; 17 Mohebbi (10.1016/j.acvd.2022.04.006_bib0390) 2012; 105 Chugh (10.1016/j.acvd.2022.04.006_bib0210) 2014; 129 Linz (10.1016/j.acvd.2022.04.006_bib0290) 2014; 63 Kolb (10.1016/j.acvd.2022.04.006_bib0335) 2001; 88 Healey (10.1016/j.acvd.2022.04.006_bib0400) 2020; 33 Abadi (10.1016/j.acvd.2022.04.006_bib0265) 2015 Vikman (10.1016/j.acvd.2022.04.006_bib0350) 1999; 100 Andrade (10.1016/j.acvd.2022.04.006_bib0230) 2021; 384 Lombardi (10.1016/j.acvd.2022.04.006_bib0340) 2004; 25 Boon (10.1016/j.acvd.2022.04.006_bib0380) 2016; 134 Gilon (10.1016/j.acvd.2022.04.006_bib0270) 2020 Akselrod (10.1016/j.acvd.2022.04.006_bib0325) 1981; 213 Niemela (10.1016/j.acvd.2022.04.006_bib0320) 1994; 23 Healey (10.1016/j.acvd.2022.04.006_bib0260) 2012; 366 Shin (10.1016/j.acvd.2022.04.006_bib0345) 2006; 70 Fioranelli (10.1016/j.acvd.2022.04.006_bib0330) 1999; 22 Thong (10.1016/j.acvd.2022.04.006_bib0365) 2004; 51 Boriani (10.1016/j.acvd.2022.04.006_bib0405) 2020; 22 Billman (10.1016/j.acvd.2022.04.006_bib0305) 2013; 4 Hnatkova (10.1016/j.acvd.2022.04.006_bib0355) 1998; 135 Brembilla-Perrot (10.1016/j.acvd.2022.04.006_bib0315) 2000; 5 Ebrahimzadeh (10.1016/j.acvd.2022.04.006_bib0385) 2018; 165 Attia (10.1016/j.acvd.2022.04.006_bib0250) 2019; 394 |
References_xml | – volume: 17 start-page: 354 year: 1996 end-page: 381 ident: bib0300 article-title: Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology publication-title: Eur Heart J – volume: 4 start-page: 26 year: 2013 ident: bib0305 article-title: The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance publication-title: Front Physiol – volume: 84 start-page: 482 year: 1991 end-page: 492 ident: bib0295 article-title: Cardiovascular neural regulation explored in the frequency domain publication-title: Circulation – volume: 384 start-page: 305 year: 2021 end-page: 315 ident: bib0230 article-title: Cryoablation or drug therapy for initial treatment of atrial fibrillation publication-title: N Engl J Med – volume: 178 start-page: 45 year: 2016 end-page: 54 ident: bib0240 article-title: A comparison of the CHARGE-AF and the CHA2DS2-VASc risk scores for prediction of atrial fibrillation in the Framingham Heart Study publication-title: Am Heart J – volume: 19 start-page: 1556 year: 2017 end-page: 1578 ident: bib0255 article-title: Device-detected subclinical atrial tachyarrhythmias: definition, implications and management-an European Heart Rhythm Association (EHRA) consensus document, endorsed by Heart Rhythm Society (HRS), Asia Pacific Heart Rhythm Society (APHRS) and Sociedad Latinoamericana de Estimulacion Cardiaca y Electrofisiologia (SOLEACE) publication-title: Europace – volume: 22 start-page: O42 year: 2020 end-page: O52 ident: bib0405 article-title: What do we do about atrial high rate episodes? publication-title: Eur Heart J Suppl – volume: 213 start-page: 220 year: 1981 end-page: 222 ident: bib0325 article-title: Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control publication-title: Science – volume: 129 start-page: 837 year: 2014 end-page: 847 ident: bib0210 article-title: Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study publication-title: Circulation – volume: 51 start-page: 561 year: 2004 end-page: 569 ident: bib0365 article-title: Prediction of paroxysmal atrial fibrillation by analysis of atrial premature complexes publication-title: IEEE Trans Biomed Eng – volume: 134 start-page: 187 year: 2016 end-page: 196 ident: bib0380 article-title: Paroxysmal atrial fibrillation prediction method with shorter HRV sequences publication-title: Comput Methods Programs Biomed – volume: 384 start-page: 316 year: 2021 end-page: 324 ident: bib0235 article-title: Cryoballoon ablation as initial therapy for atrial fibrillation publication-title: N Engl J Med – volume: 42 start-page: 644 year: 2019 end-page: 652 ident: bib0280 article-title: The cardiac autonomic nervous system: a target for modulation of atrial fibrillation publication-title: Clin Cardiol – volume: 23 start-page: 1370 year: 1994 end-page: 1377 ident: bib0320 article-title: Effect of beta-blockade on heart rate variability in patients with coronary artery disease publication-title: J Am Coll Cardiol – volume: 153 start-page: 171 year: 2018 end-page: 184 ident: bib0375 article-title: Paroxysmal atrial fibrillation prediction based on HRV analysis and non-dominated sorting genetic algorithm III publication-title: Comput Methods Programs Biomed – volume: 101 start-page: E215 year: 2000 end-page: E220 ident: bib0360 article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals publication-title: Circulation – volume: 6 start-page: e005155 year: 2017 ident: bib0215 article-title: Temporal trends in incidence, prevalence, and mortality of atrial fibrillation in primary care publication-title: J Am Heart Assoc – start-page: 1 year: 2020 end-page: 7 ident: bib0270 article-title: Forecast of paroxysmal atrial fibrillation using a deep neural network publication-title: Proc Int Jt Conf Neural Networks – volume: 25 start-page: 1242 year: 2004 end-page: 1248 ident: bib0340 article-title: Autonomic nervous system and paroxysmal atrial fibrillation: a study based on the analysis of RR interval changes before, during and after paroxysmal atrial fibrillation publication-title: Eur Heart J – year: 2015 ident: bib0265 article-title: TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems – volume: 28 start-page: 125 year: 2001 end-page: 128 ident: bib0370 article-title: A methodology for predicting paroxysmal atrial fibrillation based on ECG arrhythmia feature analysis publication-title: Comput Cardiol – volume: 88 start-page: 853 year: 2001 end-page: 857 ident: bib0335 article-title: Modes of initiation of paroxysmal atrial fibrillation from analysis of spontaneously occurring episodes using a 12-lead Holter monitoring system publication-title: Am J Cardiol – volume: 105 start-page: 2753 year: 2002 end-page: 2759 ident: bib0310 article-title: Autonomic tone variations before the onset of paroxysmal atrial fibrillation publication-title: Circulation – volume: 63 start-page: 215 year: 2014 end-page: 224 ident: bib0290 article-title: Atrial autonomic innervation: a target for interventional antiarrhythmic therapy? publication-title: J Am Coll Cardiol – volume: 287 start-page: 181 year: 2019 end-page: 188 ident: bib0285 article-title: Role of autonomic nervous system in atrial fibrillation publication-title: Int J Cardiol – volume: 105 start-page: 40 year: 2012 end-page: 49 ident: bib0390 article-title: Prediction of paroxysmal atrial fibrillation based on non-linear analysis and spectrum and bispectrum features of the heart rate variability signal publication-title: Comput Methods Programs Biomed – volume: 35 start-page: 560 year: 2010 end-page: 576 ident: bib0245 article-title: Personalized medicine: part 1: evolution and development into theranostics publication-title: Pharmacol Ther – volume: 135 start-page: 1010 year: 1998 end-page: 1019 ident: bib0355 article-title: Analysis of the cardiac rhythm preceding episodes of paroxysmal atrial fibrillation publication-title: Am Heart J – volume: 165 start-page: 53 year: 2018 end-page: 67 ident: bib0385 article-title: Prediction of paroxysmal Atrial Fibrillation: A machine learning based approach using combined feature vector and mixture of expert classification on HRV signal publication-title: Comput Methods Programs Biomed – volume: 509 start-page: 56 year: 2018 end-page: 65 ident: bib0395 article-title: Early prediction of paroxysmal atrial fibrillation based on short-term heart rate variability publication-title: Phys A Stat Mech Its Appl – volume: 12 start-page: 1717 year: 2015 end-page: 1725 ident: bib0410 article-title: New-generation atrial antitachycardia pacing (Reactive ATP) is associated with reduced risk of persistent or permanent atrial fibrillation in patients with bradycardia: Results from the MINERVA randomized multicenter international trial publication-title: Heart Rhythm – volume: 100 start-page: 2079 year: 1999 end-page: 2084 ident: bib0350 article-title: Altered complexity and correlation properties of R-R interval dynamics before the spontaneous onset of paroxysmal atrial fibrillation publication-title: Circulation – volume: 4 start-page: S61 year: 2007 end-page: S64 ident: bib0275 article-title: Autonomic nerve activity and atrial fibrillation publication-title: Heart Rhythm – volume: 19 start-page: 1589 year: 2017 end-page: 1623 ident: bib0225 article-title: Screening for atrial fibrillation: a European Heart Rhythm Association (EHRA) consensus document endorsed by the Heart Rhythm Society (HRS), Asia Pacific Heart Rhythm Society (APHRS), and Sociedad Latinoamericana de Estimulacion Cardiaca y Electrofisiologia (SOLAECE) publication-title: Europace – volume: 366 start-page: 120 year: 2012 end-page: 129 ident: bib0260 article-title: Subclinical atrial fibrillation and the risk of stroke publication-title: N Engl J Med – volume: 33 start-page: 17 year: 2020 end-page: 23 ident: bib0400 article-title: Atrial fibrillation and stroke: how much atrial fibrillation is enough to cause a stroke? publication-title: Curr Opin Neurol – volume: 42 start-page: 373 year: 2021 end-page: 498 ident: bib0220 article-title: 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC). Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC publication-title: Eur Heart J – volume: 5 start-page: 158 year: 2000 end-page: 165 ident: bib0315 article-title: Different action of beta-blockers on daytime and nighttime heart rate variability publication-title: Ann Noninvasive Electrocardiol – volume: 394 start-page: 861 year: 2019 end-page: 867 ident: bib0250 article-title: An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction publication-title: Lancet – volume: 22 start-page: 743 year: 1999 end-page: 749 ident: bib0330 article-title: Analysis of heart rate variability five minutes before the onset of paroxysmal atrial fibrillation publication-title: Pacing Clin Electrophysiol – volume: 70 start-page: 94 year: 2006 end-page: 99 ident: bib0345 article-title: Prediction of paroxysmal atrial fibrillation using nonlinear analysis of the R-R interval dynamics before the spontaneous onset of atrial fibrillation publication-title: Circ J – volume: 213 start-page: 220 year: 1981 ident: 10.1016/j.acvd.2022.04.006_bib0325 article-title: Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control publication-title: Science doi: 10.1126/science.6166045 – volume: 63 start-page: 215 year: 2014 ident: 10.1016/j.acvd.2022.04.006_bib0290 article-title: Atrial autonomic innervation: a target for interventional antiarrhythmic therapy? publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2013.09.020 – volume: 70 start-page: 94 year: 2006 ident: 10.1016/j.acvd.2022.04.006_bib0345 article-title: Prediction of paroxysmal atrial fibrillation using nonlinear analysis of the R-R interval dynamics before the spontaneous onset of atrial fibrillation publication-title: Circ J doi: 10.1253/circj.70.94 – year: 2015 ident: 10.1016/j.acvd.2022.04.006_bib0265 – volume: 42 start-page: 644 year: 2019 ident: 10.1016/j.acvd.2022.04.006_bib0280 article-title: The cardiac autonomic nervous system: a target for modulation of atrial fibrillation publication-title: Clin Cardiol doi: 10.1002/clc.23190 – volume: 5 start-page: 158 year: 2000 ident: 10.1016/j.acvd.2022.04.006_bib0315 article-title: Different action of beta-blockers on daytime and nighttime heart rate variability publication-title: Ann Noninvasive Electrocardiol doi: 10.1111/j.1542-474X.2000.tb00381.x – volume: 100 start-page: 2079 year: 1999 ident: 10.1016/j.acvd.2022.04.006_bib0350 article-title: Altered complexity and correlation properties of R-R interval dynamics before the spontaneous onset of paroxysmal atrial fibrillation publication-title: Circulation doi: 10.1161/01.CIR.100.20.2079 – volume: 19 start-page: 1589 year: 2017 ident: 10.1016/j.acvd.2022.04.006_bib0225 publication-title: Europace doi: 10.1093/europace/eux177 – volume: 4 start-page: S61 year: 2007 ident: 10.1016/j.acvd.2022.04.006_bib0275 article-title: Autonomic nerve activity and atrial fibrillation publication-title: Heart Rhythm doi: 10.1016/j.hrthm.2006.12.006 – volume: 287 start-page: 181 year: 2019 ident: 10.1016/j.acvd.2022.04.006_bib0285 article-title: Role of autonomic nervous system in atrial fibrillation publication-title: Int J Cardiol doi: 10.1016/j.ijcard.2018.11.091 – volume: 19 start-page: 1556 year: 2017 ident: 10.1016/j.acvd.2022.04.006_bib0255 publication-title: Europace doi: 10.1093/europace/eux163 – volume: 17 start-page: 354 year: 1996 ident: 10.1016/j.acvd.2022.04.006_bib0300 article-title: Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology publication-title: Eur Heart J – volume: 22 start-page: 743 year: 1999 ident: 10.1016/j.acvd.2022.04.006_bib0330 article-title: Analysis of heart rate variability five minutes before the onset of paroxysmal atrial fibrillation publication-title: Pacing Clin Electrophysiol doi: 10.1111/j.1540-8159.1999.tb00538.x – volume: 394 start-page: 861 year: 2019 ident: 10.1016/j.acvd.2022.04.006_bib0250 article-title: An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction publication-title: Lancet doi: 10.1016/S0140-6736(19)31721-0 – volume: 135 start-page: 1010 year: 1998 ident: 10.1016/j.acvd.2022.04.006_bib0355 article-title: Analysis of the cardiac rhythm preceding episodes of paroxysmal atrial fibrillation publication-title: Am Heart J doi: 10.1016/S0002-8703(98)70066-3 – volume: 384 start-page: 316 year: 2021 ident: 10.1016/j.acvd.2022.04.006_bib0235 article-title: Cryoballoon ablation as initial therapy for atrial fibrillation publication-title: N Engl J Med doi: 10.1056/NEJMoa2029554 – volume: 84 start-page: 482 year: 1991 ident: 10.1016/j.acvd.2022.04.006_bib0295 article-title: Cardiovascular neural regulation explored in the frequency domain publication-title: Circulation doi: 10.1161/01.CIR.84.2.482 – volume: 178 start-page: 45 year: 2016 ident: 10.1016/j.acvd.2022.04.006_bib0240 article-title: A comparison of the CHARGE-AF and the CHA2DS2-VASc risk scores for prediction of atrial fibrillation in the Framingham Heart Study publication-title: Am Heart J doi: 10.1016/j.ahj.2016.05.004 – volume: 6 start-page: e005155 year: 2017 ident: 10.1016/j.acvd.2022.04.006_bib0215 article-title: Temporal trends in incidence, prevalence, and mortality of atrial fibrillation in primary care publication-title: J Am Heart Assoc doi: 10.1161/JAHA.116.005155 – volume: 366 start-page: 120 year: 2012 ident: 10.1016/j.acvd.2022.04.006_bib0260 article-title: Subclinical atrial fibrillation and the risk of stroke publication-title: N Engl J Med doi: 10.1056/NEJMoa1105575 – volume: 509 start-page: 56 year: 2018 ident: 10.1016/j.acvd.2022.04.006_bib0395 article-title: Early prediction of paroxysmal atrial fibrillation based on short-term heart rate variability publication-title: Phys A Stat Mech Its Appl doi: 10.1016/j.physa.2018.06.022 – volume: 51 start-page: 561 year: 2004 ident: 10.1016/j.acvd.2022.04.006_bib0365 article-title: Prediction of paroxysmal atrial fibrillation by analysis of atrial premature complexes publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2003.821030 – volume: 105 start-page: 2753 year: 2002 ident: 10.1016/j.acvd.2022.04.006_bib0310 article-title: Autonomic tone variations before the onset of paroxysmal atrial fibrillation publication-title: Circulation doi: 10.1161/01.CIR.0000018443.44005.D8 – volume: 105 start-page: 40 year: 2012 ident: 10.1016/j.acvd.2022.04.006_bib0390 article-title: Prediction of paroxysmal atrial fibrillation based on non-linear analysis and spectrum and bispectrum features of the heart rate variability signal publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2010.07.011 – volume: 134 start-page: 187 year: 2016 ident: 10.1016/j.acvd.2022.04.006_bib0380 article-title: Paroxysmal atrial fibrillation prediction method with shorter HRV sequences publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2016.07.016 – volume: 33 start-page: 17 year: 2020 ident: 10.1016/j.acvd.2022.04.006_bib0400 article-title: Atrial fibrillation and stroke: how much atrial fibrillation is enough to cause a stroke? publication-title: Curr Opin Neurol doi: 10.1097/WCO.0000000000000780 – volume: 4 start-page: 26 year: 2013 ident: 10.1016/j.acvd.2022.04.006_bib0305 article-title: The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance publication-title: Front Physiol doi: 10.3389/fphys.2013.00026 – volume: 28 start-page: 125 year: 2001 ident: 10.1016/j.acvd.2022.04.006_bib0370 article-title: A methodology for predicting paroxysmal atrial fibrillation based on ECG arrhythmia feature analysis publication-title: Comput Cardiol – volume: 165 start-page: 53 year: 2018 ident: 10.1016/j.acvd.2022.04.006_bib0385 article-title: Prediction of paroxysmal Atrial Fibrillation: A machine learning based approach using combined feature vector and mixture of expert classification on HRV signal publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2018.07.014 – volume: 12 start-page: 1717 year: 2015 ident: 10.1016/j.acvd.2022.04.006_bib0410 article-title: New-generation atrial antitachycardia pacing (Reactive ATP) is associated with reduced risk of persistent or permanent atrial fibrillation in patients with bradycardia: Results from the MINERVA randomized multicenter international trial publication-title: Heart Rhythm doi: 10.1016/j.hrthm.2015.04.015 – volume: 22 start-page: O42 issue: Suppl O year: 2020 ident: 10.1016/j.acvd.2022.04.006_bib0405 article-title: What do we do about atrial high rate episodes? publication-title: Eur Heart J Suppl doi: 10.1093/eurheartj/suaa179 – volume: 384 start-page: 305 year: 2021 ident: 10.1016/j.acvd.2022.04.006_bib0230 article-title: Cryoablation or drug therapy for initial treatment of atrial fibrillation publication-title: N Engl J Med doi: 10.1056/NEJMoa2029980 – volume: 101 start-page: E215 year: 2000 ident: 10.1016/j.acvd.2022.04.006_bib0360 article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – volume: 25 start-page: 1242 year: 2004 ident: 10.1016/j.acvd.2022.04.006_bib0340 article-title: Autonomic nervous system and paroxysmal atrial fibrillation: a study based on the analysis of RR interval changes before, during and after paroxysmal atrial fibrillation publication-title: Eur Heart J doi: 10.1016/j.ehj.2004.05.016 – volume: 42 start-page: 373 year: 2021 ident: 10.1016/j.acvd.2022.04.006_bib0220 publication-title: Eur Heart J doi: 10.1093/eurheartj/ehaa612 – volume: 129 start-page: 837 year: 2014 ident: 10.1016/j.acvd.2022.04.006_bib0210 article-title: Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.113.005119 – volume: 23 start-page: 1370 year: 1994 ident: 10.1016/j.acvd.2022.04.006_bib0320 article-title: Effect of beta-blockade on heart rate variability in patients with coronary artery disease publication-title: J Am Coll Cardiol doi: 10.1016/0735-1097(94)90379-4 – volume: 35 start-page: 560 year: 2010 ident: 10.1016/j.acvd.2022.04.006_bib0245 article-title: Personalized medicine: part 1: evolution and development into theranostics publication-title: Pharmacol Ther – volume: 153 start-page: 171 year: 2018 ident: 10.1016/j.acvd.2022.04.006_bib0375 article-title: Paroxysmal atrial fibrillation prediction based on HRV analysis and non-dominated sorting genetic algorithm III publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2017.10.012 – start-page: 1 year: 2020 ident: 10.1016/j.acvd.2022.04.006_bib0270 article-title: Forecast of paroxysmal atrial fibrillation using a deep neural network publication-title: Proc Int Jt Conf Neural Networks – volume: 88 start-page: 853 year: 2001 ident: 10.1016/j.acvd.2022.04.006_bib0335 article-title: Modes of initiation of paroxysmal atrial fibrillation from analysis of spontaneously occurring episodes using a 12-lead Holter monitoring system publication-title: Am J Cardiol doi: 10.1016/S0002-9149(01)01891-4 |
SSID | ssj0062776 |
Score | 2.3244011 |
Snippet | Machine learning and deep learning techniques are now used extensively for atrial fibrillation (AF) screening, but their use for AF crisis forecasting has yet... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 377 |
SubjectTerms | Apprentissage machine Atrial fibrillation Fibrillation auriculaire Forecasting Autonomic nervous system Heart rate variability Machine learning Prediction Système nerveux autonome Variabilité du rythme sinusal |
Title | Role of the autonomic nervous system and premature atrial contractions in short-term paroxysmal atrial fibrillation forecasting: Insights from machine learning models |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1875213622001048 https://dx.doi.org/10.1016/j.acvd.2022.04.006 https://www.ncbi.nlm.nih.gov/pubmed/35672220 https://www.proquest.com/docview/2674347561 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWWRUJcEN-Uj8pI3FBo7Dhxw21ZseqCdg_ASr1Zjj1Zirpp1bQc-Tn8TmZspxISLBI3JxorVsYeP8vvzTD2Cvfw3AKozAoJmWqwhagIMtl6ARp8ZYOO--y8ml2oD_NyfsCOBy0M0SpT7I8xPUTr9GaS_uZkvVhMPguE2lJgAJYhyQwJfklVSiK--bshGldShwJzZJyRdRLORI6Xdd8pW6iUId0pVT368-b0N_AZNqGTu-xOQo_8KA7wHjuA7j67dZbuxx-wn59WS-CrliOs43a3jaJj3mFAwBM-j2mbue08X28oWetug2ahcAcPnPWocuj5ouP9VwTmGQVuvrbEdemv0CoZtyQUWEYaHUfYC872xJ9-y0-7no77PSfdCr8KVE3gqTbFJQ-Fd_qH7OLk_ZfjWZYqMWROlWKblYVvBNTetwIKCXiqbRy6saGGLHxtp661bV2ULke_Q6OnXjloEHw5X8NUF4_YYbfq4AnjymmQ0qum1k4VTWmrSluvlPS5FX7qRkwMLjAupSmnahlLM_DRvhlymyG3mVwZdNuIvd73WcckHddaF4NnzSA_xYBpcA-5tle57_XbBP1nv5fD5DG4cuk6xnaAPjeS9B9KI4AdscdxVu1HX5SVRuSWP_3Prz5jt-kpctqes8PtZgcvED1tmzG78eaHGLObR6cfZ-fjsFh-AaXgH6s |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKkYALKt8LBYzEDYVNHCdOeqsqqi10e4BW6s1y7ElZtM2uNrsc-Tn8TmZsZyUkKBI3KxkrVsYeP8vvzTD2Fvfw1ADIxGQCEtlgC1ERJKJ1GShwpfE67ulZObmQHy-Lyx12NGhhiFYZY3-I6T5axyfj-DfHy9ls_CVDqC0yDMDCJ5mpbrHbssgVJdB__2PL8yiF8hXmyDoh86icCSQvY79TulAhfL5TKnv0593pb-jT70LHe-x-hI_8MIzwAduB7iG7M40X5I_Yz8-LOfBFyxHXcbNZB9Ux7zAi4BGfh7zN3HSOL1eUrXWzQjNfuYN70nqQOfR81vH-KyLzhCI3Xxoiu_TXaBWNW1IKzAOPjiPuBWt6IlAf8JOup_N-z0m4wq89VxN4LE5xxX3lnf4xuzj-cH40SWIphsTKIlsnRe6aDGrn2gxyAXisbSz6saGGyF1tKtuats4Lm6LjoVGVkxYaRF_W1VCp_Anb7RYdPGNcWgVCONnUysq8KUxZKuOkFC41mavsiGWDC7SNecqpXMZcD4S0b5rcpsltOpUa3TZi77Z9liFLx43W-eBZPehPMWJq3ERu7FVse_02Q__Z780weTQuXbqPMR2gz7UgAYhUiGBH7GmYVdvR50WpELqlz__zq6_Z3cn59FSfnpx9esHu0ZtAcNtnu-vVBl4ilFo3r_xS-QU_5yA1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+the+autonomic+nervous+system+and+premature+atrial+contractions+in+short-term+paroxysmal+atrial+fibrillation+forecasting%3A+Insights+from+machine+learning+models&rft.jtitle=Archives+of+cardiovascular+diseases&rft.au=Gr%C3%A9goire%2C+Jean-Marie&rft.au=Gilon%2C+C%C3%A9dric&rft.au=Carlier%2C+St%C3%A9phane&rft.au=Bersini%2C+Hugues&rft.date=2022-06-01&rft.eissn=1875-2128&rft_id=info:doi/10.1016%2Fj.acvd.2022.04.006&rft_id=info%3Apmid%2F35672220&rft.externalDocID=35672220 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-2136&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-2136&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-2136&client=summon |