Correlation-augmented Naïve Bayes (CAN) Algorithm: A Novel Bayesian Method Adjusted for Direct Marketing

Direct marketing identifies customers who buy, more probable, a specific product to reduce the cost and increase the response rate of a marketing campaign. The advancement of technology in the current era makes the data collection process easy. Hence, a large number of customer data can be stored in...

Full description

Saved in:
Bibliographic Details
Published inApplied artificial intelligence Vol. 35; no. 15; pp. 2013 - 2036
Main Authors Khalilpour Darzi, Mohammad Rasoul, Khedmati, Majid, Niaki, Seyed Taghi Akhavan
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 15.12.2021
Taylor & Francis Ltd
Taylor & Francis Group
Subjects
Online AccessGet full text
ISSN0883-9514
1087-6545
1087-6545
DOI10.1080/08839514.2021.1997226

Cover

Abstract Direct marketing identifies customers who buy, more probable, a specific product to reduce the cost and increase the response rate of a marketing campaign. The advancement of technology in the current era makes the data collection process easy. Hence, a large number of customer data can be stored in companies where they can be employed to solve the direct marketing problem. In this paper, a novel Bayesian method titled correlation-augment naïve Bayes (CAN) is proposed to improve the conventional naïve Bayes (NB) classifier. The performance of the proposed method in terms of the response rate is evaluated and compared to several well-known Bayesian networks and other well-known classifiers based on seven real-world datasets from different areas with different characteristics. The experimental results show that the proposed CAN method has a much better performance compared to the other investigated methods for direct marketing in almost all cases.
AbstractList Direct marketing identifies customers who buy, more probable, a specific product to reduce the cost and increase the response rate of a marketing campaign. The advancement of technology in the current era makes the data collection process easy. Hence, a large number of customer data can be stored in companies where they can be employed to solve the direct marketing problem. In this paper, a novel Bayesian method titled correlation-augment naïve Bayes (CAN) is proposed to improve the conventional naïve Bayes (NB) classifier. The performance of the proposed method in terms of the response rate is evaluated and compared to several well-known Bayesian networks and other well-known classifiers based on seven real-world datasets from different areas with different characteristics. The experimental results show that the proposed CAN method has a much better performance compared to the other investigated methods for direct marketing in almost all cases.
Author Khedmati, Majid
Khalilpour Darzi, Mohammad Rasoul
Niaki, Seyed Taghi Akhavan
Author_xml – sequence: 1
  givenname: Mohammad Rasoul
  surname: Khalilpour Darzi
  fullname: Khalilpour Darzi, Mohammad Rasoul
  organization: Sharif University of Technology
– sequence: 2
  givenname: Majid
  orcidid: 0000-0001-8803-0658
  surname: Khedmati
  fullname: Khedmati, Majid
  email: Khedmati@Sharif.edu
  organization: Sharif University of Technology
– sequence: 3
  givenname: Seyed Taghi Akhavan
  orcidid: 0000-0001-6281-055X
  surname: Niaki
  fullname: Niaki, Seyed Taghi Akhavan
  organization: Sharif University of Technology
BookMark eNqNkc1u1DAUhS1UJKaFR0CyxAYWGWzHSRzYMAx_ldphA2vrxj9TDx576jit5ql4CF6MpCksWACrK_me79zrc0_RSYjBIPSUkiUlgrwkQpRtRfmSEUaXtG0bxuoHaDE2m6KueHWCFpOmmESP0Gnf7wghtGnoArl1TMl4yC6GAobt3oRsNN7Aj-83Br-Fo-nx8_Vq8wKv_DYml6_2r_AKb-KN8XPbQcCXJl9FjVd6N_QTbmPC71wyKuNLSN9MdmH7GD204Hvz5L6eoa8f3n9ZfyouPn88X68uCsUrmgtuuRCkUx3Y2gBYJWjXcd5qbTvbEC0saQSnUDMDhpUghDZMEwBBdGdbWp6h89lXR9jJQ3J7SEcZwcm7h5i2ElJ2yhspuCDG8qarqOF1JUBxKKG1ZQldR0o1etWz1xAOcLwF738bUiKn8OWv8OUUvrwPfwSfzeAhxevB9Fnu4pDC-G_Jas6bRjDGRtXrWaVS7PtkrFQu350iJ3D-nzOqP-j_3e3NzLkw3mkPtzF5LTMcfUw2QVCul-XfLX4CHja83Q
CitedBy_id crossref_primary_10_3390_s22197169
Cites_doi 10.1016/j.ijar.2015.04.006
10.3233/IDA-150776
10.1002/dir.20069
10.32614/RJ-2018-073
10.1016/j.econlet.2007.10.015
10.1007/978-3-030-72065-0_7
10.5267/j.dsl.2017.4.005
10.1007/3-540-39205-X_83
10.1016/j.eswa.2009.02.068
10.1016/S0167-9236(02)00069-6
10.1007/s12626-017-0002-5
10.1016/j.neucom.2015.10.042
10.5120/14852-3218
10.1057/dbm.2012.17
10.1007/978-81-322-2217-0_8
10.1108/03090569810204625
10.1109/TIT.1968.1054142
10.1016/j.iref.2018.03.008
10.1109/WINCOM.2018.8629675
10.1016/j.ejor.2014.09.008
10.1007/s10994-005-4258-6
10.1007/s11628-016-0332-3
10.1509/jmkr.45.1.60
10.3233/IDA-140652
10.1016/j.eswa.2015.06.054
10.1109/CAIPT.2017.8320691
10.1016/j.jbi.2005.05.004
10.1126/science.22.558.309
10.1002/(SICI)1099-1255(1998090)13:5<543::AID-JAE507>3.0.CO;2-J
10.1016/S0377-2217(01)00129-1
10.1007/978-1-4612-2404-4_23
10.1016/j.neucom.2017.11.034
10.18637/jss.v054.i02
10.1016/j.dss.2014.03.001
10.1023/A:1007465528199
10.1016/j.eswa.2019.03.024
ContentType Journal Article
Copyright 2021 Taylor & Francis 2021
2021 Taylor & Francis
Copyright_xml – notice: 2021 Taylor & Francis 2021
– notice: 2021 Taylor & Francis
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1080/08839514.2021.1997226
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1087-6545
EndPage 2036
ExternalDocumentID oai_doaj_org_article_8480ef47b51e4658ac4a3a9f33abb03c
10.1080/08839514.2021.1997226
10_1080_08839514_2021_1997226
1997226
Genre Research Article
GroupedDBID .4S
.7F
.DC
.QJ
0YH
23M
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAFWJ
AAJMT
ABCCY
ABDBF
ABFIM
ABHAV
ABIVO
ABPEM
ABTAI
ACGEJ
ACGFS
ACGOD
ACNCT
ACTIO
ACUHS
ADCVX
ADMLS
ADXPE
AEISY
AEMOZ
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFPKN
AGMYJ
AHQJS
AIJEM
AIYEW
AJWEG
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EAP
EBR
EBS
EBU
ECS
EDO
EMK
EPL
EST
ESX
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~9
H~P
I-F
IPNFZ
J.P
K1G
KYCEM
LJTGL
M4Z
MK~
NA5
NX~
O9-
P2P
PQQKQ
QWB
RIG
S-T
SNACF
TDBHL
TFL
TFW
TH9
TNC
TTHFI
TUS
TWF
UT5
UU3
ZL0
~S~
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
07I
1TA
4B5
ABJNI
ADTOC
ADXEU
AEHZU
AEZBV
AFION
AGBLW
AGWUF
AGYFW
AKHJE
AKMBP
ALRRR
ALXIB
BGSSV
BWMZZ
C0-
C5H
CAG
COF
CYRSC
DAOYK
DEXXA
EJD
FETWF
GROUPED_DOAJ
IFELN
L8C
NUSFT
OPCYK
TAJZE
TAP
UB6
UNPAY
ID FETCH-LOGICAL-c451t-4f4880bcbaf6eaafc81bb449ddfbf70d8f07841a62eae23a88de2d0aa80dbf913
IEDL.DBID UNPAY
ISSN 0883-9514
1087-6545
IngestDate Fri Oct 03 12:40:27 EDT 2025
Tue Aug 19 18:56:07 EDT 2025
Sun Jun 29 16:59:32 EDT 2025
Thu Apr 24 23:10:38 EDT 2025
Wed Oct 01 02:45:51 EDT 2025
Mon Oct 20 23:47:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-4f4880bcbaf6eaafc81bb449ddfbf70d8f07841a62eae23a88de2d0aa80dbf913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6281-055X
0000-0001-8803-0658
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.tandfonline.com/doi/pdf/10.1080/08839514.2021.1997226?needAccess=true
PQID 2644778222
PQPubID 53050
PageCount 24
ParticipantIDs informaworld_taylorfrancis_310_1080_08839514_2021_1997226
doaj_primary_oai_doaj_org_article_8480ef47b51e4658ac4a3a9f33abb03c
crossref_citationtrail_10_1080_08839514_2021_1997226
proquest_journals_2644778222
crossref_primary_10_1080_08839514_2021_1997226
unpaywall_primary_10_1080_08839514_2021_1997226
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-15
PublicationDateYYYYMMDD 2021-12-15
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-15
  day: 15
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Applied artificial intelligence
PublicationYear 2021
Publisher Taylor & Francis
Taylor & Francis Ltd
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
– name: Taylor & Francis Group
References cit0033
cit0034
cit0031
cit0032
cit0030
Moro S. (cit0035) 2011
Ratanamahatana C. A. (cit0041) 2002
cit0037
cit0038
Elsalamony H. A. (cit0018) 2013; 2
cit0022
cit0023
cit0020
cit0028
cit0029
cit0024
cit0025
cit0011
cit0012
cit0053
cit0010
cit0054
cit0051
cit0052
cit0050
Parlar T. (cit0039) 2017; 7
Ripley B. (cit0043) 2016; 7
Nachev A. (cit0036) 2014
cit0019
cit0017
cit0016
cit0013
cit0014
cit0044
cit0001
cit0045
cit0042
cit0040
Han J. (cit0021) 2011
Ling C. X. (cit0027) 1998; 98
Dimitriadou E. (cit0015) 2008; 1
Liaw A. (cit0026) 2002; 2
cit0008
cit0009
cit0006
cit0007
cit0004
cit0048
cit0005
cit0049
cit0002
cit0046
cit0003
cit0047
References_xml – ident: cit0013
  doi: 10.1016/j.ijar.2015.04.006
– volume: 7
  start-page: 692
  issue: 2
  year: 2017
  ident: cit0039
  publication-title: International Journal of Economics and Financial Issues
– volume: 1
  start-page: 5
  year: 2008
  ident: cit0015
  publication-title: R Package
– ident: cit0044
  doi: 10.3233/IDA-150776
– ident: cit0045
  doi: 10.1002/dir.20069
– ident: cit0031
  doi: 10.32614/RJ-2018-073
– ident: cit0020
  doi: 10.1016/j.econlet.2007.10.015
– ident: cit0023
  doi: 10.1007/978-3-030-72065-0_7
– ident: cit0048
– ident: cit0004
  doi: 10.5267/j.dsl.2017.4.005
– ident: cit0038
  doi: 10.1007/3-540-39205-X_83
– ident: cit0014
– ident: cit0053
  doi: 10.1016/j.eswa.2009.02.068
– ident: cit0049
  doi: 10.1016/S0167-9236(02)00069-6
– volume: 2
  start-page: 392
  issue: 6
  year: 2013
  ident: cit0018
  publication-title: International Journal of Engineering and Advanced Technology (IJEAT)
– ident: cit0033
  doi: 10.1007/s12626-017-0002-5
– ident: cit0054
  doi: 10.1016/j.neucom.2015.10.042
– ident: cit0017
  doi: 10.5120/14852-3218
– ident: cit0008
  doi: 10.1057/dbm.2012.17
– ident: cit0016
  doi: 10.1007/978-81-322-2217-0_8
– ident: cit0050
  doi: 10.1108/03090569810204625
– volume: 98
  start-page: 73
  year: 1998
  ident: cit0027
  publication-title: KDD
– ident: cit0010
  doi: 10.1109/TIT.1968.1054142
– ident: cit0007
  doi: 10.1016/j.iref.2018.03.008
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  ident: cit0026
  publication-title: R News
– ident: cit0030
– ident: cit0028
– start-page: 475
  volume-title: Proceedings of the IEEE International Conference on Data Mining (ICDM 2002)
  year: 2002
  ident: cit0041
– ident: cit0024
– volume: 7
  start-page: 3
  year: 2016
  ident: cit0043
  publication-title: R Package Version
– ident: cit0022
  doi: 10.1109/WINCOM.2018.8629675
– ident: cit0009
  doi: 10.1016/j.ejor.2014.09.008
– ident: cit0051
  doi: 10.1007/s10994-005-4258-6
– ident: cit0029
  doi: 10.1007/s11628-016-0332-3
– ident: cit0002
  doi: 10.1509/jmkr.45.1.60
– start-page: 117
  volume-title: Proceedings of European Simulation and Modelling Conference-ESM’2011
  year: 2011
  ident: cit0035
– ident: cit0042
– ident: cit0006
  doi: 10.3233/IDA-140652
– ident: cit0011
  doi: 10.1016/j.eswa.2015.06.054
– ident: cit0025
  doi: 10.1109/CAIPT.2017.8320691
– volume-title: Proceedings on the International Conference on Artificial Intelligence (ICAI), The Steering Committee of The World Congress in Computer Science
  year: 2014
  ident: cit0036
– ident: cit0005
  doi: 10.1016/j.jbi.2005.05.004
– ident: cit0052
  doi: 10.1126/science.22.558.309
– ident: cit0037
  doi: 10.1002/(SICI)1099-1255(1998090)13:5<543::AID-JAE507>3.0.CO;2-J
– ident: cit0003
  doi: 10.1016/S0377-2217(01)00129-1
– ident: cit0040
  doi: 10.1007/978-1-4612-2404-4_23
– ident: cit0046
  doi: 10.1016/j.neucom.2017.11.034
– ident: cit0001
  doi: 10.18637/jss.v054.i02
– ident: cit0034
  doi: 10.1016/j.dss.2014.03.001
– ident: cit0019
  doi: 10.1023/A:1007465528199
– ident: cit0047
– ident: cit0032
– ident: cit0012
  doi: 10.1016/j.eswa.2019.03.024
– volume-title: Data mining: Concepts and techniques
  year: 2011
  ident: cit0021
SSID ssj0001771
Score 2.2894943
Snippet Direct marketing identifies customers who buy, more probable, a specific product to reduce the cost and increase the response rate of a marketing campaign. The...
SourceID doaj
unpaywall
proquest
crossref
informaworld
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2013
SubjectTerms Algorithms
Bayesian analysis
Classifiers
Customers
Data collection
Direct marketing
Marketing
Response rates
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQL3DhH7GlIB84wCE0jp3E4ZauqCqk7olKvVlje1yKwm7VZov6VDwEL4YncVYLl-XA1Ykj2_P32Rl_w9jbwmEMpIB0ct9kCoXLrMhdJlCIJlSevCVlWyyqkzP1-bw83yr1RTlhIz3wuHCHWukcg6ptKVDFcAlOgYQmSAnW5tKR9811M22mkg8W9bDViiYks4gh1HR3h1i1Yxs1xb1hIeiyXl0Qs8JWVBrI-_-iLv0DgN5fL6_g7gd03VYsOn7MHiYQydtx8E_YPVw-ZY-mAg082eszdjmn2htjtlsG64uBgNPzBfz6eYv8CO7whr-bt4v3vO0uVteX_dfvH3nLF6tb7MbHUXn46VBkmrf-25rORnkcLh89JT-d7kw_Z2fHn77MT7JUWyFzqhR9pgJZrnUWQoUAwUX4apVqvA821LnXIac_klAVCFhI0Npj4XMAnXsbGiFfsL3laokvGa9U7CBB1lZbFaN_EzdhsgwhoimoUZczpqa1NS4Rj1P9i86IiZ80icSQSEwSyYx92HS7Gpk3dnU4IsFtXibi7KEhqpNJ6mR2qdOMNdtiN_1wbhLGIidG7hjAwaQjJnmCG0OAsx5g2IwdbvTm32a0_z9m9Io9oG9SCo4oD9hef73G1xFI9fbNYDO_AbQxEhI
  priority: 102
  providerName: Directory of Open Access Journals
Title Correlation-augmented Naïve Bayes (CAN) Algorithm: A Novel Bayesian Method Adjusted for Direct Marketing
URI https://www.tandfonline.com/doi/abs/10.1080/08839514.2021.1997226
https://www.proquest.com/docview/2644778222
https://www.tandfonline.com/doi/pdf/10.1080/08839514.2021.1997226?needAccess=true
https://doaj.org/article/8480ef47b51e4658ac4a3a9f33abb03c
UnpaywallVersion publishedVersion
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1087-6545
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001771
  issn: 0883-9514
  databaseCode: ABDBF
  dateStart: 19960201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1087-6545
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001771
  issn: 0883-9514
  databaseCode: ADMLS
  dateStart: 19870101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1087-6545
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001771
  issn: 0883-9514
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELba7QEulKdYKCsfOMAh2zh2XkgIpSuqCqkRSKxUTpafSyFkV9ukqPwpfgR_DE-crNpKqCBxzGOieDIef57MfIPQ80gZt5AKA5H7PGCGqECSUAXEEJLbRIO3hGyLMjmas3cn8ckW-jDUwkBaJeyhrSeK6Hw1TO6VtkNG3L6bGNQBA4iIRATK7VKHId7UztsXXZPB1826NdtoJ4kdPB-hnXn5vvjk0SQNcs_37R6UBomDD0NVz5-ee2W96mj9r5GaXoGmt9p6JS6-i6q6tEod7qL1MD6fnPJ12jZyqn5co378rwq4i-70mBYX3gjvoS1T30e7Q78I3LuPB-h0Bq1AfPJdINpFxweqcSl-_Tw3-EBcmDP8YlaUL3FRLZbr0-bzt1e4wOXy3FT-srNlfNz1vMaF_tJCqBY7HWHvuPHxUML9EM0P336cHQV9q4dAsZg0AbPgSKSSwiZGCKscmpaM5VpbadNQZzaEH6QiiYwwERVZpk2kQyGyUEubE_oIjeplbR4jnDAnQAVNZSaZAyO52xPS2FoH7kRqsniM2PBBuep50KEdR8XJQJfaq5eDenmv3jGabsRWngjkJoEDsJbNzcDj3Z1Yrhe8dws8Y1loLEtlTAxzYFAoJqjILaVCypCqMcov2xpvujCO9T1XOL3hBfYGw-S9YzrjgH_TDhWO0f7GWP9uRE_-WeIpug2HkP5D4j00Art85kBcIydom4blpAuBTPop-hsSizlW
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHMqF8hQLBXzgAIds49h5cUtXVAt0c2ql3qzxaymE3WqbFJU_xY_gj-HJY7WthIrUa5yJ4sl4_Hky8w0hbyNt_UYKFiP3eSAs04FioQ6YZSx3iUFvidkWZTI9Fp9P4pONWhhMq8QztOuIIlpfjYsbg9FDStyeXxncIwMMiUQM6-1SDyLuknuxB_vYxYCH5dobs7Q9dKFIgDJDFc-_HnNlf2pp_K-RmF6BotvN4gwuf0JVbexKBztED_PpklG-j5tajfWva1SPt5vwQ_KgB6206KzsEbljF4_JztAQgvb-4Qk5nWCvjy67LoBm3hJ-GlrCn98Xlu7DpT2n7yZF-Z4W1Xy5Oq2__vhAC1ouL2zVDXtjpbO2qTUtzLcGY7HUK4V2npnOhhrtp-T44OPRZBr0vRwCLWJWB8Khp1BagUssgNMeLishcmOccmloMhfiH1BIIgs24pBlxkYmBMhCo1zO-DOytVgu7HNCE-EFOPBUZUp4tJH7Qx-PnfPoDVKbxSMihi8odU90jv02KskGPtRenRLVKXt1jsh4LXbWMX3cJLCP5rG-GYm62wvL1Vz2615mIgutE6mKmRUe7YEWwCF3nINSIdcjkm8al6zbOI3rmqpIfsML7A6WKHvPcy4R4KYt7BuRvbV1_t-MXtziZd6Q7enR7FAefiq_vCT3cQizfli8S7bqVWNfeexWq9ft4vwLiRAyDg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSMCF8qpYKOADBzhkG8fOi1u6sCqPRhyoxM0av5ZC2F3tJkXlT_Ej-GN48li1lVCReo0zke3MjD-Px98Q8iLS1i-kYDFynwfCMh0oFuqAWcZylxj0lphtUSYHR-L9l3jIJlz3aZW4h3YdUUTrq9G4l8YNGXF73jC4BwYYEYkYXrdLPYa4Tm4keCqGtzjCcuOMWdruuVAkQJnhEs-_PnNueWpZ_C9wmJ5Dorea-RJOf0JVnVmUpttEDcPpclG-j5tajfWvC0yPVxrvXXKnh6y06HTsHrlm5_fJ9lAOgvbe4QE5nmCljy63LoBm1tJ9GlrCn98nlu7DqV3Tl5OifEWLarZYHddff7ymBS0XJ7bqmr2q0sO2pDUtzLcGI7HUzwnt_DI9HG5oPyRH07efJwdBX8kh0CJmdSAc-gmlFbjEAjjtwbISIjfGKZeGJnMhnn9CElmwEYcsMzYyIUAWGuVyxnfI1nwxt48ITYQX4MBTlSnhsUbut3w8ds5jN0htFo-IGH6g1D3NOVbbqCQb2FD76ZQ4nbKfzhEZb8SWHc_HZQL7qB2bl5Gmu32wWM1kb_UyE1lonUhVzKzwWA-0AA654xyUCrkekfysbsm6jdK4rqSK5Jd0YHdQRNn7nbVEeJu2oG9E9jbK-X8jenyFzjwnNz-9mcqP78oPT8htbMGUHxbvkq161dinHrjV6llrmn8Bih0wsg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbK9gAXylMsFOQDBzhkG8fOCwmhdEVVIXUFEiuVkzV27KUQsqttUlT-FD-CP4YnTlZtJVSQOOYxUTwZjz9PZr4h5HmkjVtIwWDkPg-EYTpQLNQBM4zlNinRW2K2xSw5nIt3x_HxFvkw1MJgWiXuoa0niuh8NU7uVWmHjLg9NzG4AwYYEYkYltulDkO8qZ23L7omg6-bdWtukO0kdvB8RLbns_fFJ48meZB7vm_3oDRIHHwYqnr-9NxL61VH63-F1PQSNL3Z1is4_w5VdWGVOtgh62F8Pjnl66Rt1ET_uEL9-F8VcIfc7jEtLbwR3iVbpr5HdoZ-EbR3H_fJyRRbgfjkuwDaRccHWtIZ_Pp5Zug-nJtT-mJazF7Solos1yfN52-vaEFnyzNT-cvOlulR1_OaFuWXFkO11OmIesdNj4YS7gdkfvD24_Qw6Fs9BFrErAmERUeitAKbGACrHZpWQuRlaZVNwzKzIf4ghSQyYCIOWVaaqAwBsrBUNmf8IRnVy9o8IjQRToADT1WmhAMjudsT8thaB-4gNVk8JmL4oFL3POjYjqOSbKBL7dUrUb2yV--YTDZiK08Ecp3APlrL5mbk8e5OLNcL2bsFmYksNFakKmZGODAIWgCH3HIOSoVcj0l-0dZk04VxrO-5Ivk1L7A7GKbsHdOpRPybdqhwTPY2xvp3I3r8zxJPyC08xPQfFu-SEdrlUwfiGvWsn5a_AXRUN48
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Correlation-augmented+Na%C3%AFve+Bayes+%28CAN%29+Algorithm%3A+A+Novel+Bayesian+Method+Adjusted+for+Direct+Marketing&rft.jtitle=Applied+artificial+intelligence&rft.au=Mohammad+Rasoul+Khalilpour+Darzi&rft.au=Majid+Khedmati&rft.au=Seyed+Taghi+Akhavan+Niaki&rft.date=2021-12-15&rft.pub=Taylor+%26+Francis+Group&rft.issn=0883-9514&rft.eissn=1087-6545&rft.volume=35&rft.issue=15&rft.spage=2013&rft.epage=2036&rft_id=info:doi/10.1080%2F08839514.2021.1997226&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8480ef47b51e4658ac4a3a9f33abb03c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-9514&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-9514&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-9514&client=summon