Linguistic summarization of in-home sensor data

[Display omitted] •Linguistically summarize sensor data obtained from homes of elderly.•Identify important health relevant features and develop algorithms to compute them.•Validate algorithms using multiple expert based surveys.•Multiple Case studies show correlation between summaries and changes in...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical informatics Vol. 96; p. 103240
Main Authors Jain, Akshay, Popescu, Mihail, Keller, James, Rantz, Marilyn, Markway, Brianna
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.08.2019
Subjects
Online AccessGet full text
ISSN1532-0464
1532-0480
1532-0480
DOI10.1016/j.jbi.2019.103240

Cover

Abstract [Display omitted] •Linguistically summarize sensor data obtained from homes of elderly.•Identify important health relevant features and develop algorithms to compute them.•Validate algorithms using multiple expert based surveys.•Multiple Case studies show correlation between summaries and changes in health.•System is running in 110 apartments as part of a Randomized Controlled Trial. With the increase in the population of older adults around the world, a significant amount of work has been done on in-home sensor technology to aid the elderly age independently. However, due to the large amounts of data generated by the sensors, it takes a lot of effort and time for the clinicians to makes sense of this data. In this work, we develop a system to help make this data more useful by presenting it in the form of natural language. We start by identifying important attributes in the sensor data that are relevant to the health of the elderly. We then develop algorithms to extract these important health related features from the sensor parameters and summarize them in natural language. We focus on making the natural language summaries to be informative, accurate and concise. We designed multiple surveys using real and synthetic data to validate the summaries produced by our algorithms. We show that the algorithms produce meaningful results comparable to human subjects. We also implemented our linguistic summarization system to produce summaries of data leading to health alerts derived from the sensor data. The system is running live in 110 apartments currently. By the means of retrospective case studies, we illustrate that the linguistic summaries are able to make the connection between changes in the sensor data and the health of the elderly. We present a system that extracts important clinically relevant features from in-home sensor data generated in the apartments of the elderly and summarize those features in natural language. The preliminary testing of our summarization system shows that it has the potential to help the clinicians utilize this data effectively.
AbstractList [Display omitted] •Linguistically summarize sensor data obtained from homes of elderly.•Identify important health relevant features and develop algorithms to compute them.•Validate algorithms using multiple expert based surveys.•Multiple Case studies show correlation between summaries and changes in health.•System is running in 110 apartments as part of a Randomized Controlled Trial. With the increase in the population of older adults around the world, a significant amount of work has been done on in-home sensor technology to aid the elderly age independently. However, due to the large amounts of data generated by the sensors, it takes a lot of effort and time for the clinicians to makes sense of this data. In this work, we develop a system to help make this data more useful by presenting it in the form of natural language. We start by identifying important attributes in the sensor data that are relevant to the health of the elderly. We then develop algorithms to extract these important health related features from the sensor parameters and summarize them in natural language. We focus on making the natural language summaries to be informative, accurate and concise. We designed multiple surveys using real and synthetic data to validate the summaries produced by our algorithms. We show that the algorithms produce meaningful results comparable to human subjects. We also implemented our linguistic summarization system to produce summaries of data leading to health alerts derived from the sensor data. The system is running live in 110 apartments currently. By the means of retrospective case studies, we illustrate that the linguistic summaries are able to make the connection between changes in the sensor data and the health of the elderly. We present a system that extracts important clinically relevant features from in-home sensor data generated in the apartments of the elderly and summarize those features in natural language. The preliminary testing of our summarization system shows that it has the potential to help the clinicians utilize this data effectively.
With the increase in the population of older adults around the world, a significant amount of work has been done on in-home sensor technology to aid the elderly age independently. However, due to the large amounts of data generated by the sensors, it takes a lot of effort and time for the clinicians to makes sense of this data. In this work, we develop a system to help make this data more useful by presenting it in the form of natural language.INTRODUCTIONWith the increase in the population of older adults around the world, a significant amount of work has been done on in-home sensor technology to aid the elderly age independently. However, due to the large amounts of data generated by the sensors, it takes a lot of effort and time for the clinicians to makes sense of this data. In this work, we develop a system to help make this data more useful by presenting it in the form of natural language.We start by identifying important attributes in the sensor data that are relevant to the health of the elderly. We then develop algorithms to extract these important health related features from the sensor parameters and summarize them in natural language. We focus on making the natural language summaries to be informative, accurate and concise.METHODSWe start by identifying important attributes in the sensor data that are relevant to the health of the elderly. We then develop algorithms to extract these important health related features from the sensor parameters and summarize them in natural language. We focus on making the natural language summaries to be informative, accurate and concise.We designed multiple surveys using real and synthetic data to validate the summaries produced by our algorithms. We show that the algorithms produce meaningful results comparable to human subjects. We also implemented our linguistic summarization system to produce summaries of data leading to health alerts derived from the sensor data. The system is running live in 110 apartments currently. By the means of retrospective case studies, we illustrate that the linguistic summaries are able to make the connection between changes in the sensor data and the health of the elderly.RESULTSWe designed multiple surveys using real and synthetic data to validate the summaries produced by our algorithms. We show that the algorithms produce meaningful results comparable to human subjects. We also implemented our linguistic summarization system to produce summaries of data leading to health alerts derived from the sensor data. The system is running live in 110 apartments currently. By the means of retrospective case studies, we illustrate that the linguistic summaries are able to make the connection between changes in the sensor data and the health of the elderly.We present a system that extracts important clinically relevant features from in-home sensor data generated in the apartments of the elderly and summarize those features in natural language. The preliminary testing of our summarization system shows that it has the potential to help the clinicians utilize this data effectively.CONCLUSIONSWe present a system that extracts important clinically relevant features from in-home sensor data generated in the apartments of the elderly and summarize those features in natural language. The preliminary testing of our summarization system shows that it has the potential to help the clinicians utilize this data effectively.
With the increase in the population of older adults around the world, a significant amount of work has been done on in-home sensor technology to aid the elderly age independently. However, due to the large amounts of data generated by the sensors, it takes a lot of effort and time for the clinicians to makes sense of this data. In this work, we develop a system to help make this data more useful by presenting it in the form of natural language. We start by identifying important attributes in the sensor data that are relevant to the health of the elderly. We then develop algorithms to extract these important health related features from the sensor parameters and summarize them in natural language. We focus on making the natural language summaries to be informative, accurate and concise. We designed multiple surveys using real and synthetic data to validate the summaries produced by our algorithms. We show that the algorithms produce meaningful results comparable to human subjects. We also implemented our linguistic summarization system to produce summaries of data leading to health alerts derived from the sensor data. The system is running live in 110 apartments currently. By the means of retrospective case studies, we illustrate that the linguistic summaries are able to make the connection between changes in the sensor data and the health of the elderly. We present a system that extracts important clinically relevant features from in-home sensor data generated in the apartments of the elderly and summarize those features in natural language. The preliminary testing of our summarization system shows that it has the potential to help the clinicians utilize this data effectively.
ArticleNumber 103240
Author Rantz, Marilyn
Popescu, Mihail
Keller, James
Markway, Brianna
Jain, Akshay
AuthorAffiliation a Electrical Engineering and Computer Science, University of Missouri
c Sinclair School of Nursing, University of Missouri
b Health Management and Informatics, University of Missouri
AuthorAffiliation_xml – name: a Electrical Engineering and Computer Science, University of Missouri
– name: b Health Management and Informatics, University of Missouri
– name: c Sinclair School of Nursing, University of Missouri
Author_xml – sequence: 1
  givenname: Akshay
  orcidid: 0000-0003-4217-9320
  surname: Jain
  fullname: Jain, Akshay
  email: aj4g2@mail.missouri.edu
  organization: Electrical Engineering and Computer Science, University of Missouri, USA
– sequence: 2
  givenname: Mihail
  surname: Popescu
  fullname: Popescu, Mihail
  email: popescum@health.missouri.edu
  organization: Health Management and Informatics, University of Missouri, USA
– sequence: 3
  givenname: James
  surname: Keller
  fullname: Keller, James
  email: kellerj@missouri.edu
  organization: Electrical Engineering and Computer Science, University of Missouri, USA
– sequence: 4
  givenname: Marilyn
  surname: Rantz
  fullname: Rantz, Marilyn
  email: rantzm@health.missouri.edu
  organization: Sinclair School of Nursing, University of Missouri, USA
– sequence: 5
  givenname: Brianna
  surname: Markway
  fullname: Markway, Brianna
  email: markwayb@missouri.edu
  organization: Electrical Engineering and Computer Science, University of Missouri, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31260752$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtP3DAUha0KVB7tD-imyrKbDL5-JBlVQkKoBaSR2LRry2Nfg0eJPbUTEPz6ehoKbReoK9vyOef6Oz4ieyEGJOQD0AVQaE42i83aLxiFZTlzJugbcgiSs5qKju497xtxQI5y3lAKIGXzlhxwYA1tJTskJysfbiafR2-qPA2DTv5Rjz6GKrrKh_o2DlhlDDmmyupRvyP7TvcZ3z-tx-T71y_fzi_r1fXF1fnZqjZCwliLVhjn1sZwC8JS5G7J0UKDUnMwlqMWDnEpoZWOSdOZpVjbDjg0bed4C_yYsDl3Clv9cK_7Xm2TL897UEDVjl5tVKFXO3o10xfT6WzaTusBrcEwJv1ijNqrv2-Cv1U38U41HROs3QV8egpI8ceEeVSDzwb7XgeMU1aMSYDSHYgi_fjnrOchv6stgnYWmBRzTuiU8eOvasto37-KAf84_wf98-zB8il3HpPKxmMwaH1CMyob_Svun5jYstM
CitedBy_id crossref_primary_10_1007_s10462_020_09945_z
crossref_primary_10_1016_j_micpro_2020_103641
crossref_primary_10_1016_j_mayocp_2023_02_003
crossref_primary_10_1109_TFUZZ_2021_3052107
crossref_primary_10_1016_j_outlook_2020_05_004
crossref_primary_10_3233_AIS_200553
crossref_primary_10_1016_j_jbi_2023_104530
crossref_primary_10_1007_s00521_023_09002_0
crossref_primary_10_1109_JIOT_2024_3419260
crossref_primary_10_1007_s44196_024_00693_4
crossref_primary_10_1145_3508020
crossref_primary_10_3390_s23156879
crossref_primary_10_3928_00989134_20240912_03
Cites_doi 10.1186/1472-6947-12-43
10.18653/v1/P16-2043
10.20982/tqmp.08.1.p023
10.4017/gt.2013.11.3.004.00
10.1136/jamia.2002.0090001
10.2307/749671
10.3928/00989134-20120307-01
10.1177/0272989X10373805
10.1109/TITB.2012.2196439
10.2196/mhealth.5773
10.1177/0193945916662027
10.4338/ACI-2013-07-RA-0050
10.1097/NXN.0b013e318296298f
10.1109/MCI.2017.2708998
10.1016/j.jamda.2017.05.012
10.1016/j.jbi.2016.03.022
10.3233/AIC-2009-0453
10.1613/jair.5477
10.1016/j.pmcj.2015.09.007
10.1016/j.ijmedinf.2016.04.007
10.1260/2040-2295.2.3.337
10.3928/00989134-20091204-02
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1016/j.jbi.2019.103240
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Public Health
EISSN 1532-0480
EndPage 103240
ExternalDocumentID oai:pubmedcentral.nih.gov:6824270
PMC6824270
31260752
10_1016_j_jbi_2019_103240
S1532046419301595
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NLM NIH HHS
  grantid: R01 LM012221
– fundername: NIDDK NIH HHS
  grantid: P30 DK092950
GroupedDBID ---
--K
--M
-~X
.DC
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAWTL
AAXUO
AAYFN
ABBOA
ABBQC
ABFRF
ABJNI
ABLVK
ABMAC
ABMZM
ABVKL
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BAWUL
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DIK
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HVGLF
HZ~
IHE
IXB
J1W
KOM
LCYCR
LG5
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UAP
UHS
UNMZH
XPP
ZGI
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c451t-474cffbcc3d14d0e3f93ed16e5a31cd3ea4fee95175f25c8c94bd8131678f3713
IEDL.DBID .~1
ISSN 1532-0464
1532-0480
IngestDate Sun Oct 26 02:47:13 EDT 2025
Tue Sep 30 16:05:06 EDT 2025
Thu Oct 02 07:02:35 EDT 2025
Mon Jul 21 05:55:04 EDT 2025
Thu Apr 24 22:59:54 EDT 2025
Wed Oct 01 04:48:29 EDT 2025
Fri Feb 23 02:34:24 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords In-home sensor monitoring
Data to text
Aging in place
Sensor summarization
Linguistic protoform summary
Natural Language Generation
Early illness detection
Language English
License Copyright © 2019 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-474cffbcc3d14d0e3f93ed16e5a31cd3ea4fee95175f25c8c94bd8131678f3713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
ORCID 0000-0003-4217-9320
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/6824270
PMID 31260752
PQID 2251112614
PQPubID 23479
PageCount 1
ParticipantIDs unpaywall_primary_10_1016_j_jbi_2019_103240
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6824270
proquest_miscellaneous_2251112614
pubmed_primary_31260752
crossref_citationtrail_10_1016_j_jbi_2019_103240
crossref_primary_10_1016_j_jbi_2019_103240
elsevier_sciencedirect_doi_10_1016_j_jbi_2019_103240
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of biomedical informatics
PublicationTitleAlternate J Biomed Inform
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References American Heart Association. (2016). Bradycardia: Slow heart rate. [Available from
(b0190) 2014
Liu, Stroulia, Nikolaidis, Miguel-Cruz, Rincon (b0010) 2016; 91
D. Gkatzia, O. Lemon, V. Rieser, Natural Language Generation enhances human decision-making with uncertain information, arXiv preprint arXiv:160603254, 2016.
Dawadi, Cook, Schmitter-Edgecombe (b0040) 2016; 28
(b0070) 2016
Galambos, Skubic, Wang, Rantz (b0025) 2013; 11
(b0140) 2014
(b0020) 2008
(b0120) 2015
(b0055) 2015
(b0155) 2015
Ghods, Caffrey, Lin, Fraga, Fritz, Schmitter-Edgecombe, Hundhausen, Cook (b0075) 2018
(b0130) 2015
Gatt, Portet, Reiter, Hunter, Mahamood, Moncur, Sripada (b0100) 2009; 22
(b0150) 2017
(b0105) 2013
Hripcsak, Wilcox (b0165) 2002; 9
American Lung Association. (2019). Pneumonia symptoms and diagnosis. [Available from
Rantz, Skubic, Alexander, Popescu, Aud, Wakefield, Koopman, Miller (b0050) 2010; 36
M. Yefimova, Using in-Home Monitoring Technology to Identify Deviations in Daily Routines Preceding Changes in Health Trajectory of Older Adults, UCLA, 2016.
van Kasteren, Bradford, Zhang, Karunanithi, Ding (b0060) 2017; 5
J.M. Ortman, V.A. Velkoff, H. Hogan, An aging nation: the older population in the United States, 2014.
Rantz, Phillips, Galambos, Lane, Alexander, Despins, Koopman, Skubic, Hicks, Miller (b0045) 2017; 18
Rantz, Skubic, Koopman, Alexander, Phillips, Musterman, Back, Aud, Galambos, Guevara (b0145) 2012; 38
Phillips, DeRoche, Rantz, Alexander, Skubic, Despins, Abbott, Harris, Galambos, Koopman (b0030) 2017; 39
Wang, Skubic, Zhu (b0065) 2012; 16
Galesic, Garcia-Retamero (b0085) 2011; 31
Keller, Liu, Fogel (b0160) 2016
Rantz, Scott, Miller, Skubic, Phillips, Alexander, Koopman, Musterman, Back (b0135) 2013; 31
.
Gkatzia, Lemon, Rieser (b0185) 2017; 12
Alexander, Rantz, Skubic, Koopman, Phillips, Guevara, Miller (b0125) 2011; 2
Goldstein, Shahar (b0110) 2016; 61
Hallgren (b0170) 2012; 8
Alexander, Wilbik, Keller, Musterman (b0115) 2014; 5
Friel, Curcio, Bright (b0080) 2001
Marschollek (b0015) 2012; 12
Gatt, Krahmer (b0095) 2018; 61
Marschollek (10.1016/j.jbi.2019.103240_b0015) 2012; 12
Galesic (10.1016/j.jbi.2019.103240_b0085) 2011; 31
Alexander (10.1016/j.jbi.2019.103240_b0115) 2014; 5
Hallgren (10.1016/j.jbi.2019.103240_b0170) 2012; 8
Alexander (10.1016/j.jbi.2019.103240_b0125) 2011; 2
10.1016/j.jbi.2019.103240_b0090
Rantz (10.1016/j.jbi.2019.103240_b0045) 2017; 18
Wang (10.1016/j.jbi.2019.103240_b0065) 2012; 16
Galambos (10.1016/j.jbi.2019.103240_b0025) 2013; 11
Dawadi (10.1016/j.jbi.2019.103240_b0040) 2016; 28
Phillips (10.1016/j.jbi.2019.103240_b0030) 2017; 39
10.1016/j.jbi.2019.103240_b0005
Goldstein (10.1016/j.jbi.2019.103240_b0110) 2016; 61
(10.1016/j.jbi.2019.103240_b0020) 2008
10.1016/j.jbi.2019.103240_b0180
Friel (10.1016/j.jbi.2019.103240_b0080) 2001
(10.1016/j.jbi.2019.103240_b0070) 2016
Ghods (10.1016/j.jbi.2019.103240_b0075) 2018
van Kasteren (10.1016/j.jbi.2019.103240_b0060) 2017; 5
Gatt (10.1016/j.jbi.2019.103240_b0100) 2009; 22
(10.1016/j.jbi.2019.103240_b0150) 2017
(10.1016/j.jbi.2019.103240_b0130) 2015
(10.1016/j.jbi.2019.103240_b0140) 2014
Keller (10.1016/j.jbi.2019.103240_b0160) 2016
Liu (10.1016/j.jbi.2019.103240_b0010) 2016; 91
(10.1016/j.jbi.2019.103240_b0120) 2015
(10.1016/j.jbi.2019.103240_b0155) 2015
(10.1016/j.jbi.2019.103240_b0190) 2014
Hripcsak (10.1016/j.jbi.2019.103240_b0165) 2002; 9
(10.1016/j.jbi.2019.103240_b0105) 2013
10.1016/j.jbi.2019.103240_b0035
Rantz (10.1016/j.jbi.2019.103240_b0050) 2010; 36
Gkatzia (10.1016/j.jbi.2019.103240_b0185) 2017; 12
(10.1016/j.jbi.2019.103240_b0055) 2015
Rantz (10.1016/j.jbi.2019.103240_b0135) 2013; 31
Rantz (10.1016/j.jbi.2019.103240_b0145) 2012; 38
Gatt (10.1016/j.jbi.2019.103240_b0095) 2018; 61
10.1016/j.jbi.2019.103240_b0175
References_xml – reference: American Heart Association. (2016). Bradycardia: Slow heart rate. [Available from:
– volume: 61
  start-page: 65
  year: 2018
  end-page: 170
  ident: b0095
  article-title: Survey of the state of the art in natural language generation: core tasks, applications and evaluation
  publication-title: J. Artific. Intell. Res.
– volume: 5
  year: 2017
  ident: b0060
  article-title: Understanding smart home sensor data for ageing in place through everyday household routines: a mixed method case study
  publication-title: JMIR mHealth and uHealth
– year: 2013
  ident: b0105
  publication-title: A framework for automatic text generation of trends in physiological time series data. Systems, Man, and Cybernetics (SMC), 2013 IEEE International Conference on
– volume: 28
  start-page: 51
  year: 2016
  end-page: 68
  ident: b0040
  article-title: Modeling patterns of activities using activity curves
  publication-title: Pervasive Mob. Comput.
– volume: 36
  start-page: 13
  year: 2010
  end-page: 17
  ident: b0050
  article-title: Developing a comprehensive electronic health record to enhance nursing care coordination, use of technology, and research
  publication-title: J. GerontoloGical Nurs.
– volume: 5
  start-page: 73
  year: 2014
  end-page: 84
  ident: b0115
  article-title: Generating sensor data summaries to communicate change in elder’s health status
  publication-title: Appl. Clin. Inform.
– reference: J.M. Ortman, V.A. Velkoff, H. Hogan, An aging nation: the older population in the United States, 2014.
– start-page: 124
  year: 2001
  end-page: 158
  ident: b0080
  article-title: Making sense of graphs: critical factors influencing comprehension and instructional implications
  publication-title: J. Res. Math. Educat.
– year: 2015
  ident: b0130
  publication-title: Early illness detection in elderly using sensor networks: a review of the TigerPlace experience. E-Health and Bioengineering Conference (EHB), 2015
– volume: 91
  start-page: 44
  year: 2016
  end-page: 59
  ident: b0010
  article-title: Smart homes and home health monitoring technologies for older adults: a systematic review
  publication-title: Int. J. Med. Inf.
– year: 2016
  ident: b0070
  publication-title: HCI Challenges for Consumer-Based Aging in Place Technologies. International Conference on Human Aspects of IT for the Aged Population
– reference: American Lung Association. (2019). Pneumonia symptoms and diagnosis. [Available from:
– volume: 61
  start-page: 159
  year: 2016
  end-page: 175
  ident: b0110
  article-title: An automated knowledge-based textual summarization system for longitudinal, multivariate clinical data
  publication-title: J. Biomed. Inform.
– volume: 12
  start-page: 10
  year: 2017
  end-page: 17
  ident: b0185
  article-title: Data-to-text generation improves decision-making under uncertainty
  publication-title: IEEE Comput. Intell. Mag.
– year: 2014
  ident: b0190
  publication-title: Generating annotated graphs using the nlg pipeline architecture. Proceedings of the 8th International Natural Language Generation Conference (INLG)
– volume: 31
  start-page: 444
  year: 2011
  end-page: 457
  ident: b0085
  article-title: Graph literacy: a cross-cultural comparison
  publication-title: Med. Decis. Making
– volume: 2
  start-page: 337
  year: 2011
  end-page: 363
  ident: b0125
  article-title: Evolution of an early illness warning system to monitor frail elders in independent living
  publication-title: J. Healthcare Eng.
– volume: 11
  start-page: 457
  year: 2013
  ident: b0025
  article-title: Management of dementia and depression utilizing in-home passive sensor data
  publication-title: Gerontechnol.: Int. J. Fundam. Aspects Technol. Serve Ageing Soc.
– year: 2017
  ident: b0150
  publication-title: Linking Resident Behavior to Health Conditions in an Eldercare Monitoring System. AMIA Fall Symposium; 2017 Nov 4-8, Washington DC
– year: 2014
  ident: b0140
  publication-title: Automated health alerts from kinect-based in-home gait measurements. Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE, Citeseer
– year: 2016
  ident: b0160
  article-title: Fundamentals of Computational Intelligence: Neural Networks, Fuzzy Systems, and Evolutionary Computation
– year: 2015
  ident: b0055
  publication-title: Unsupervised daily routine and activity discovery in smart homes. Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE
– volume: 18
  start-page: 860
  year: 2017
  end-page: 870
  ident: b0045
  article-title: Randomized trial of intelligent sensor system for early illness alerts in senior housing
  publication-title: J. Am. Med. Direct. Associat..
– volume: 16
  start-page: 607
  year: 2012
  end-page: 614
  ident: b0065
  article-title: Activity density map visualization and dissimilarity comparison for eldercare monitoring
  publication-title: Informat. Technol. Biomed. IEEE Trans.
– volume: 8
  start-page: 23
  year: 2012
  ident: b0170
  article-title: Computing inter-rater reliability for observational data: an overview and tutorial
  publication-title: Tutor. Quantitat. Methods Psychol.
– reference: D. Gkatzia, O. Lemon, V. Rieser, Natural Language Generation enhances human decision-making with uncertain information, arXiv preprint arXiv:160603254, 2016.
– volume: 22
  start-page: 153
  year: 2009
  end-page: 186
  ident: b0100
  article-title: From data to text in the neonatal intensive care unit: Using NLG technology for decision support and information management
  publication-title: AI Commun.
– year: 2015
  ident: b0120
  publication-title: Textual summarization of events leading to health alerts. Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE; 2015 25–29 Aug
– year: 2015
  ident: b0155
  publication-title: On the computation of semantically ordered truth values of linguistic protoform summaries. Fuzzy Systems (FUZZ-IEEE), 2015 IEEE International Conference on, 2-5 Aug. 2015
– reference: .
– volume: 9
  start-page: 1
  year: 2002
  end-page: 15
  ident: b0165
  article-title: Reference standards, judges, and comparison subjects: roles for experts in evaluating system performance
  publication-title: J. Am. Med. Inform. Assoc.
– year: 2018
  ident: b0075
  article-title: Iterative design of visual analytics for a clinician-in-the-loop smart Home
  publication-title: IEEE J. Biomed. Health. Inf.
– volume: 31
  start-page: 274
  year: 2013
  ident: b0135
  article-title: Evaluation of health alerts from an early illness warning system in independent living
  publication-title: Comput. Inform. Nurs.: CIN.
– volume: 12
  start-page: 43
  year: 2012
  ident: b0015
  article-title: Decision support at home (DS@HOME) – system architectures and requirements
  publication-title: BMC Med. Inf. Decis. Making
– volume: 39
  start-page: 78
  year: 2017
  end-page: 94
  ident: b0030
  article-title: Using embedded sensors in independent living to predict gait changes and falls
  publication-title: West. J. Nurs. Res.
– volume: 38
  start-page: 18
  year: 2012
  end-page: 23
  ident: b0145
  article-title: Automated technology to speed recognition of signs of illness in older adults
  publication-title: J. Gerontol. Nurs.
– year: 2008
  ident: b0020
  publication-title: Using technology to enhance aging in place. International Conference on Smart Homes and Health Telematics
– reference: M. Yefimova, Using in-Home Monitoring Technology to Identify Deviations in Daily Routines Preceding Changes in Health Trajectory of Older Adults, UCLA, 2016.
– volume: 12
  start-page: 43
  issue: 1
  year: 2012
  ident: 10.1016/j.jbi.2019.103240_b0015
  article-title: Decision support at home (DS@HOME) – system architectures and requirements
  publication-title: BMC Med. Inf. Decis. Making
  doi: 10.1186/1472-6947-12-43
– year: 2016
  ident: 10.1016/j.jbi.2019.103240_b0160
– ident: 10.1016/j.jbi.2019.103240_b0090
  doi: 10.18653/v1/P16-2043
– year: 2008
  ident: 10.1016/j.jbi.2019.103240_b0020
– volume: 8
  start-page: 23
  issue: 1
  year: 2012
  ident: 10.1016/j.jbi.2019.103240_b0170
  article-title: Computing inter-rater reliability for observational data: an overview and tutorial
  publication-title: Tutor. Quantitat. Methods Psychol.
  doi: 10.20982/tqmp.08.1.p023
– year: 2018
  ident: 10.1016/j.jbi.2019.103240_b0075
  article-title: Iterative design of visual analytics for a clinician-in-the-loop smart Home
  publication-title: IEEE J. Biomed. Health. Inf.
– volume: 11
  start-page: 457
  issue: 3
  year: 2013
  ident: 10.1016/j.jbi.2019.103240_b0025
  article-title: Management of dementia and depression utilizing in-home passive sensor data
  publication-title: Gerontechnol.: Int. J. Fundam. Aspects Technol. Serve Ageing Soc.
  doi: 10.4017/gt.2013.11.3.004.00
– volume: 9
  start-page: 1
  issue: 1
  year: 2002
  ident: 10.1016/j.jbi.2019.103240_b0165
  article-title: Reference standards, judges, and comparison subjects: roles for experts in evaluating system performance
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1136/jamia.2002.0090001
– start-page: 124
  year: 2001
  ident: 10.1016/j.jbi.2019.103240_b0080
  article-title: Making sense of graphs: critical factors influencing comprehension and instructional implications
  publication-title: J. Res. Math. Educat.
  doi: 10.2307/749671
– year: 2014
  ident: 10.1016/j.jbi.2019.103240_b0140
– volume: 38
  start-page: 18
  issue: 4
  year: 2012
  ident: 10.1016/j.jbi.2019.103240_b0145
  article-title: Automated technology to speed recognition of signs of illness in older adults
  publication-title: J. Gerontol. Nurs.
  doi: 10.3928/00989134-20120307-01
– volume: 31
  start-page: 444
  issue: 3
  year: 2011
  ident: 10.1016/j.jbi.2019.103240_b0085
  article-title: Graph literacy: a cross-cultural comparison
  publication-title: Med. Decis. Making
  doi: 10.1177/0272989X10373805
– volume: 16
  start-page: 607
  issue: 4
  year: 2012
  ident: 10.1016/j.jbi.2019.103240_b0065
  article-title: Activity density map visualization and dissimilarity comparison for eldercare monitoring
  publication-title: Informat. Technol. Biomed. IEEE Trans.
  doi: 10.1109/TITB.2012.2196439
– year: 2013
  ident: 10.1016/j.jbi.2019.103240_b0105
– volume: 5
  issue: 6
  year: 2017
  ident: 10.1016/j.jbi.2019.103240_b0060
  article-title: Understanding smart home sensor data for ageing in place through everyday household routines: a mixed method case study
  publication-title: JMIR mHealth and uHealth
  doi: 10.2196/mhealth.5773
– year: 2015
  ident: 10.1016/j.jbi.2019.103240_b0130
– ident: 10.1016/j.jbi.2019.103240_b0180
– ident: 10.1016/j.jbi.2019.103240_b0035
– volume: 39
  start-page: 78
  issue: 1
  year: 2017
  ident: 10.1016/j.jbi.2019.103240_b0030
  article-title: Using embedded sensors in independent living to predict gait changes and falls
  publication-title: West. J. Nurs. Res.
  doi: 10.1177/0193945916662027
– year: 2015
  ident: 10.1016/j.jbi.2019.103240_b0120
– ident: 10.1016/j.jbi.2019.103240_b0005
– volume: 5
  start-page: 73
  issue: 01
  year: 2014
  ident: 10.1016/j.jbi.2019.103240_b0115
  article-title: Generating sensor data summaries to communicate change in elder’s health status
  publication-title: Appl. Clin. Inform.
  doi: 10.4338/ACI-2013-07-RA-0050
– year: 2014
  ident: 10.1016/j.jbi.2019.103240_b0190
– volume: 31
  start-page: 274
  issue: 6
  year: 2013
  ident: 10.1016/j.jbi.2019.103240_b0135
  article-title: Evaluation of health alerts from an early illness warning system in independent living
  publication-title: Comput. Inform. Nurs.: CIN.
  doi: 10.1097/NXN.0b013e318296298f
– year: 2017
  ident: 10.1016/j.jbi.2019.103240_b0150
– volume: 12
  start-page: 10
  issue: 3
  year: 2017
  ident: 10.1016/j.jbi.2019.103240_b0185
  article-title: Data-to-text generation improves decision-making under uncertainty
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2017.2708998
– year: 2015
  ident: 10.1016/j.jbi.2019.103240_b0155
– ident: 10.1016/j.jbi.2019.103240_b0175
– volume: 18
  start-page: 860
  issue: 10
  year: 2017
  ident: 10.1016/j.jbi.2019.103240_b0045
  article-title: Randomized trial of intelligent sensor system for early illness alerts in senior housing
  publication-title: J. Am. Med. Direct. Associat..
  doi: 10.1016/j.jamda.2017.05.012
– volume: 61
  start-page: 159
  year: 2016
  ident: 10.1016/j.jbi.2019.103240_b0110
  article-title: An automated knowledge-based textual summarization system for longitudinal, multivariate clinical data
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2016.03.022
– volume: 22
  start-page: 153
  issue: 3
  year: 2009
  ident: 10.1016/j.jbi.2019.103240_b0100
  article-title: From data to text in the neonatal intensive care unit: Using NLG technology for decision support and information management
  publication-title: AI Commun.
  doi: 10.3233/AIC-2009-0453
– volume: 61
  start-page: 65
  year: 2018
  ident: 10.1016/j.jbi.2019.103240_b0095
  article-title: Survey of the state of the art in natural language generation: core tasks, applications and evaluation
  publication-title: J. Artific. Intell. Res.
  doi: 10.1613/jair.5477
– volume: 28
  start-page: 51
  year: 2016
  ident: 10.1016/j.jbi.2019.103240_b0040
  article-title: Modeling patterns of activities using activity curves
  publication-title: Pervasive Mob. Comput.
  doi: 10.1016/j.pmcj.2015.09.007
– volume: 91
  start-page: 44
  year: 2016
  ident: 10.1016/j.jbi.2019.103240_b0010
  article-title: Smart homes and home health monitoring technologies for older adults: a systematic review
  publication-title: Int. J. Med. Inf.
  doi: 10.1016/j.ijmedinf.2016.04.007
– volume: 2
  start-page: 337
  issue: 3
  year: 2011
  ident: 10.1016/j.jbi.2019.103240_b0125
  article-title: Evolution of an early illness warning system to monitor frail elders in independent living
  publication-title: J. Healthcare Eng.
  doi: 10.1260/2040-2295.2.3.337
– year: 2015
  ident: 10.1016/j.jbi.2019.103240_b0055
– year: 2016
  ident: 10.1016/j.jbi.2019.103240_b0070
– volume: 36
  start-page: 13
  issue: 1
  year: 2010
  ident: 10.1016/j.jbi.2019.103240_b0050
  article-title: Developing a comprehensive electronic health record to enhance nursing care coordination, use of technology, and research
  publication-title: J. GerontoloGical Nurs.
  doi: 10.3928/00989134-20091204-02
SSID ssj0011556
Score 2.3900044
Snippet [Display omitted] •Linguistically summarize sensor data obtained from homes of elderly.•Identify important health relevant features and develop algorithms to...
With the increase in the population of older adults around the world, a significant amount of work has been done on in-home sensor technology to aid the...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 103240
SubjectTerms Aging in place
Data to text
Early illness detection
In-home sensor monitoring
Linguistic protoform summary
Natural Language Generation
Sensor summarization
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB_kBFsRtddWY21JoU8tuctmN1-PUipSUKT0wD4tm_2oZ--SQy-I_es7m01SrUXxLcl-kGVmmd_s_GYW4IMxGg25zoMwK0TASKiCTCUyKEQoYymjLGwipscnydGEfT2Lz1aAdLkwDWlfFtNROZuPyul5w61czOW444mNkwytSope-moSI_wewOrk5PTgh6uLGlmqIvv7nPWRzIbTdYETo8XLbap5ZM87_m-L7mPN-5TJZ3W5EDfXYja7ZY8Ot-BbtxJHQ_k1qpfFSP7-p8jjk5a6DZstOvUPXNMLWNHlENZv1SwcwtpxG40fwoY78_NdKtNLGKNj-7NuKj_7LimuTfL0K-NPy-C8mmv_Cv3m6tK3zNRXMDn88v3zUdBeyBBIFpNlwFImjSmkpIowFWpqcqoVSXQsKJGKasGM1ojZ0thEscxkzgqVEZtsnxmK7vBrGJRVqXfB15TEShEEIMqGZpXIZZHitIpR7MqEB2EnGi7bauX20owZ72hpFxylya00uZOmBx_7IQtXquOhzqyTN2-xhsMQHE3JQ8Ped7rBcR_a4IoodVVf8cj6agT9UebBjtOV_i8ofkdoFnmQ3tGivoOt8X23BfWhqfXdqoAHn3p9e3xxe0_q_Qae2zfHatyHwfKy1m8RaS2Ld-3e-gOw-yV6
  priority: 102
  providerName: Unpaywall
Title Linguistic summarization of in-home sensor data
URI https://dx.doi.org/10.1016/j.jbi.2019.103240
https://www.ncbi.nlm.nih.gov/pubmed/31260752
https://www.proquest.com/docview/2251112614
https://pubmed.ncbi.nlm.nih.gov/PMC6824270
https://www.ncbi.nlm.nih.gov/pmc/articles/6824270
UnpaywallVersion submittedVersion
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1532-0480
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011556
  issn: 1532-0480
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1532-0480
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0011556
  issn: 1532-0480
  databaseCode: ACRLP
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1532-0480
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0011556
  issn: 1532-0480
  databaseCode: AIKHN
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1532-0480
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011556
  issn: 1532-0480
  databaseCode: .~1
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Free and Delayed Access Titles
  customDbUrl:
  eissn: 1532-0480
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0011556
  issn: 1532-0480
  databaseCode: IXB
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1532-0480
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0011556
  issn: 1532-0480
  databaseCode: DIK
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1532-0480
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011556
  issn: 1532-0480
  databaseCode: AKRWK
  dateStart: 20010201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEB5VReJQhSBQGo7KSDyBTLze9fUYIqoUaFQBkcLTar0HdRXsqE2EeOG3M-NLjYqKxJO16_U1a-984_lmBuCVcxYVuc38IM2VL1hg_NTE2s9VoCOtwzSoPaYns3g6Fx8W0WIHJl0sDNEq27W_WdPr1brtGbXSHK2KYvSFUU0DEQuEIKjTMgo0FyKhKgZvf_c0DwQ8dQVXGkw0RtF5NmuO13leELsro9DzkP5__F03Xcee1ymUdzblSv36qZbLK_rp6AHcb4GlN27u_SHs2HIA966kGxzA7ZPWkT6AveZ3nddEIT2CEdqk3zd10maviWdr4zO9ynlF6Z9VP6x3iSZvdeERqfQxzI_ef51M_baWgq9FxNa-SIR2LteaGyZMYLnLuDUstpHiTBtulXDWItxKIhdGOtWZyE3KKE4-dRwt2X3YLavSHoBnOYuMYYgdDHlVjcp0nuBpjeA4VKghBJ0UpW4TjVO9i6XsGGXnEgUvSfCyEfwQXveHrJosGzcNFt3UyK1XRaIWuOmwl900SvyEyC-iSlttLmVIZhZDU1IM4Ukzrf1dcOxHVBUOIdma8H4Apefe3lMWZ3Wa7jhF-JPgdd_0r8a_H-7p_z3cM7hLrYaZ-Bx21xcb-wLR0jo_rD-HQ7g1nnz-dErb44_TGfYeL95haz47HX_7A1pUFiI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RKhUqVNEtj20pTaWeWqUbx3YeR4RA25blUpC4WY4fJWhJVrCrigu_veM4iVhRUalX20mcmdjzTeabMcAnaw0acpOHUVbIkJFIh5lOVFjISHGl4ixqIqaT02R8zr5f8IsVOOxyYRytst37_Z7e7NZty6iV5mhWlqOfxJ1pwBKGEARtWs6fwXPG49R5YF_ve54HIp7mCFc32vEYWRfabEheV0Xp6F25yz2P3Q-Qvxunx-DzMYdybVHN5N1vOZ0-MFDHm_CqRZbBgZ_8a1gx1QBePqg3OIAXkzaSPoAN_78u8GlIb2CETumvRVO1OfAJbW2CZlDboKzCy_raBLfo89Y3gWOVbsH58dHZ4ThsD1MIFeNkHrKUKWsLpagmTEeG2pwaTRLDJSVKUyOZNQbxVsptzFWmclbojLhE-cxSdGW3YbWqK7MLgaGEa00QPGgXVtUyV0WKt9WM4lAmhxB1UhSqrTTuDryYio5SdiVQ8MIJXnjBD-Fzf8nMl9l4ajDrVCOWvhWBZuCpyz52ahS4hlxgRFamXtyK2PlZBH1JNoQdr9Z-FhTbEVbFQ0iXFN4PcPW5l3uq8rKp051kiH9SfO6X_tP498u9_b-X-wBr47PJiTj5dvrjHay7Hk9T3IPV-c3CvEfoNC_2m6XxB9kME24
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB_kBFsRtddWY21JoU8tuctmN1-PUipSUKT0wD4tm_2oZ--SQy-I_es7m01SrUXxLcl-kGVmmd_s_GYW4IMxGg25zoMwK0TASKiCTCUyKEQoYymjLGwipscnydGEfT2Lz1aAdLkwDWlfFtNROZuPyul5w61czOW444mNkwytSope-moSI_wewOrk5PTgh6uLGlmqIvv7nPWRzIbTdYETo8XLbap5ZM87_m-L7mPN-5TJZ3W5EDfXYja7ZY8Ot-BbtxJHQ_k1qpfFSP7-p8jjk5a6DZstOvUPXNMLWNHlENZv1SwcwtpxG40fwoY78_NdKtNLGKNj-7NuKj_7LimuTfL0K-NPy-C8mmv_Cv3m6tK3zNRXMDn88v3zUdBeyBBIFpNlwFImjSmkpIowFWpqcqoVSXQsKJGKasGM1ojZ0thEscxkzgqVEZtsnxmK7vBrGJRVqXfB15TEShEEIMqGZpXIZZHitIpR7MqEB2EnGi7bauX20owZ72hpFxylya00uZOmBx_7IQtXquOhzqyTN2-xhsMQHE3JQ8Ped7rBcR_a4IoodVVf8cj6agT9UebBjtOV_i8ofkdoFnmQ3tGivoOt8X23BfWhqfXdqoAHn3p9e3xxe0_q_Qae2zfHatyHwfKy1m8RaS2Ld-3e-gOw-yV6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linguistic+summarization+of+in-home+sensor+data&rft.jtitle=Journal+of+biomedical+informatics&rft.au=Jain%2C+Akshay&rft.au=Popescu%2C+Mihail&rft.au=Keller%2C+James&rft.au=Rantz%2C+Marilyn&rft.date=2019-08-01&rft.issn=1532-0480&rft.eissn=1532-0480&rft.volume=96&rft.spage=103240&rft_id=info:doi/10.1016%2Fj.jbi.2019.103240&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0464&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0464&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0464&client=summon