Analysis of the mechanism for enhanced pyrene biodegradation based on the interactions between iron-ions and Rhodococcus ruber strain L9
A slow degradation rate and low transformation efficiency are the main problems in the biodegradation of polycyclic aromatic hydrocarbons (PAHs). This study selected pyrene as the target PAH to investigate the effect of ferrous ion and ferric ion on pyrene degradation. The driving effect and mechani...
Saved in:
Published in | Ecotoxicology and environmental safety Vol. 225; p. 112789 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.12.2021
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0147-6513 1090-2414 1090-2414 |
DOI | 10.1016/j.ecoenv.2021.112789 |
Cover
Abstract | A slow degradation rate and low transformation efficiency are the main problems in the biodegradation of polycyclic aromatic hydrocarbons (PAHs). This study selected pyrene as the target PAH to investigate the effect of ferrous ion and ferric ion on pyrene degradation. The driving effect and mechanism, including the interaction between pyrene and iron ions and the bacterial physiological response during the biodegradation process by Rhodococcus ruber strain L9, were investigated. The results showed that iron ions did not enhance bacterial growth but improved bacteria’s pyrene removal capacity, contributing to the total efficiency of pyrene biodegradation. The process started with an initial formation of “cation-π” between Fe (III) and pyrene, which subsequently drove the pyrene removal process and accelerated the bacterial metabolic process. Moreover, a significant increase in the protein concentration, catechol dioxygenase (C12O and C23O) activities, and intracellular protein regulation in crude enzyme solution indicate a positive response of the bacteria during the iron ion-enhanced pyrene degradation process.
[Display omitted]
•The addition of iron ions can significantly promote the biodegradation of pyrene.•The protein concentration and enzyme mass-specific activities were remarkably improved by iron ion amendment.•The interaction of pyrene with iron ions accelerates bacterial protein response.•The mechanism of iron ion amendment in pyrene biodegradation was explored. |
---|---|
AbstractList | A slow degradation rate and low transformation efficiency are the main problems in the biodegradation of polycyclic aromatic hydrocarbons (PAHs). This study selected pyrene as the target PAH to investigate the effect of ferrous ion and ferric ion on pyrene degradation. The driving effect and mechanism, including the interaction between pyrene and iron ions and the bacterial physiological response during the biodegradation process by Rhodococcus ruber strain L9, were investigated. The results showed that iron ions did not enhance bacterial growth but improved bacteria's pyrene removal capacity, contributing to the total efficiency of pyrene biodegradation. The process started with an initial formation of "cation-π" between Fe (III) and pyrene, which subsequently drove the pyrene removal process and accelerated the bacterial metabolic process. Moreover, a significant increase in the protein concentration, catechol dioxygenase (C12O and C23O) activities, and intracellular protein regulation in crude enzyme solution indicate a positive response of the bacteria during the iron ion-enhanced pyrene degradation process.A slow degradation rate and low transformation efficiency are the main problems in the biodegradation of polycyclic aromatic hydrocarbons (PAHs). This study selected pyrene as the target PAH to investigate the effect of ferrous ion and ferric ion on pyrene degradation. The driving effect and mechanism, including the interaction between pyrene and iron ions and the bacterial physiological response during the biodegradation process by Rhodococcus ruber strain L9, were investigated. The results showed that iron ions did not enhance bacterial growth but improved bacteria's pyrene removal capacity, contributing to the total efficiency of pyrene biodegradation. The process started with an initial formation of "cation-π" between Fe (III) and pyrene, which subsequently drove the pyrene removal process and accelerated the bacterial metabolic process. Moreover, a significant increase in the protein concentration, catechol dioxygenase (C12O and C23O) activities, and intracellular protein regulation in crude enzyme solution indicate a positive response of the bacteria during the iron ion-enhanced pyrene degradation process. A slow degradation rate and low transformation efficiency are the main problems in the biodegradation of polycyclic aromatic hydrocarbons (PAHs). This study selected pyrene as the target PAH to investigate the effect of ferrous ion and ferric ion on pyrene degradation. The driving effect and mechanism, including the interaction between pyrene and iron ions and the bacterial physiological response during the biodegradation process by Rhodococcus ruber strain L9, were investigated. The results showed that iron ions did not enhance bacterial growth but improved bacteria’s pyrene removal capacity, contributing to the total efficiency of pyrene biodegradation. The process started with an initial formation of “cation-π” between Fe (III) and pyrene, which subsequently drove the pyrene removal process and accelerated the bacterial metabolic process. Moreover, a significant increase in the protein concentration, catechol dioxygenase (C12O and C23O) activities, and intracellular protein regulation in crude enzyme solution indicate a positive response of the bacteria during the iron ion-enhanced pyrene degradation process. A slow degradation rate and low transformation efficiency are the main problems in the biodegradation of polycyclic aromatic hydrocarbons (PAHs). This study selected pyrene as the target PAH to investigate the effect of ferrous ion and ferric ion on pyrene degradation. The driving effect and mechanism, including the interaction between pyrene and iron ions and the bacterial physiological response during the biodegradation process by Rhodococcus ruber strain L9, were investigated. The results showed that iron ions did not enhance bacterial growth but improved bacteria’s pyrene removal capacity, contributing to the total efficiency of pyrene biodegradation. The process started with an initial formation of “cation-π” between Fe (III) and pyrene, which subsequently drove the pyrene removal process and accelerated the bacterial metabolic process. Moreover, a significant increase in the protein concentration, catechol dioxygenase (C12O and C23O) activities, and intracellular protein regulation in crude enzyme solution indicate a positive response of the bacteria during the iron ion-enhanced pyrene degradation process. [Display omitted] •The addition of iron ions can significantly promote the biodegradation of pyrene.•The protein concentration and enzyme mass-specific activities were remarkably improved by iron ion amendment.•The interaction of pyrene with iron ions accelerates bacterial protein response.•The mechanism of iron ion amendment in pyrene biodegradation was explored. |
ArticleNumber | 112789 |
Author | Liu, Zhe Liu, Yong-Jun Liu, Yu Liu, Jing Zhang, Ai-Ning Wu, Xi-Jun |
Author_xml | – sequence: 1 givenname: Jing surname: Liu fullname: Liu, Jing organization: School of Civil Engineering, Yulin University, Yulin 719000, China – sequence: 2 givenname: Ai-Ning surname: Zhang fullname: Zhang, Ai-Ning organization: Key Lab of Northwest Water Resource, Ecology and Environment, Ministry of Education, Xi’an University of Architecture and Technology, No. 13 Yanta Road, Xi’an 710055, China – sequence: 3 givenname: Yong-Jun surname: Liu fullname: Liu, Yong-Jun email: liuyongjun@xauat.edu.cn organization: Key Lab of Northwest Water Resource, Ecology and Environment, Ministry of Education, Xi’an University of Architecture and Technology, No. 13 Yanta Road, Xi’an 710055, China – sequence: 4 givenname: Zhe surname: Liu fullname: Liu, Zhe organization: Key Lab of Northwest Water Resource, Ecology and Environment, Ministry of Education, Xi’an University of Architecture and Technology, No. 13 Yanta Road, Xi’an 710055, China – sequence: 5 givenname: Yu surname: Liu fullname: Liu, Yu organization: School of Petroleum and Environment Engineering, Yanan University, Yanan 716000, China – sequence: 6 givenname: Xi-Jun surname: Wu fullname: Wu, Xi-Jun organization: School of Civil Engineering, Yulin University, Yulin 719000, China |
BookMark | eNqFkc9uEzEQxi1UJNLCG3DwkcsG_1tvzAGpqihUioSE4GzN2rONo40dbKcob8Bjs5uFCwc42Z6Z76fx912Tq5giEvKaszVnXL_dr9EljE9rwQRfcy66jXlGVpwZ1gjF1RVZMa66RrdcviDXpewZY5K17Yr8vI0wnksoNA207pAe0O0ghnKgQ8oU4_Rw6OnxnDEi7UPy-JjBQw0p0h7K1JsuszLEihnc3Ci0x_oDMdKQU2wuFYieftkln1xy7lRoPvWYaakZQqRb85I8H2As-Or3eUO-3X_4evep2X7--HB3u22canltlFKgdac7NELI1qDstXJMDujVhoMEITq-MbI3m84MKLxknnlAo5QTrkV5Qx4Wrk-wt8ccDpDPNkGwl0LKjxZyDW5Ea4TspRkG7ZlTE8ig1lxsFPRdb7iDifVmYR1z-n7CUu0hFIfjCBHTqVjRdlq3ouV8Gn23jLqcSsk4WBfqxcTZgNFyZuco7d4uUdo5SrtEOYnVX-I_e_9H9n6R4eTnU8Bsiws4xxkyujp9OPwb8Avk5r3w |
CitedBy_id | crossref_primary_10_3390_plants13050613 crossref_primary_10_1016_j_jenvman_2022_116220 crossref_primary_10_1016_j_bej_2024_109460 crossref_primary_10_1016_j_jece_2025_115632 crossref_primary_10_1016_j_jwpe_2024_105020 crossref_primary_10_1016_j_jwpe_2024_106877 crossref_primary_10_1007_s11356_023_25932_7 crossref_primary_10_1016_j_biortech_2022_128210 crossref_primary_10_1007_s11356_023_28894_y crossref_primary_10_1039_D4RA03732D crossref_primary_10_1016_j_bej_2024_109433 crossref_primary_10_1021_acsanm_3c00168 crossref_primary_10_1007_s00203_024_04050_z crossref_primary_10_1016_j_ibiod_2023_105705 crossref_primary_10_1016_j_cej_2024_157388 crossref_primary_10_1038_s43705_023_00310_z crossref_primary_10_1080_09593330_2022_2157758 crossref_primary_10_1016_j_jhazmat_2023_132237 crossref_primary_10_1080_09593330_2023_2215456 crossref_primary_10_1016_j_arabjc_2023_105405 crossref_primary_10_1016_j_envpol_2023_121608 crossref_primary_10_1016_j_jhazmat_2024_134109 crossref_primary_10_3390_microorganisms13020468 crossref_primary_10_1007_s11356_023_31140_0 |
Cites_doi | 10.1016/j.jes.2014.09.028 10.1016/j.jhazmat.2020.124533 10.1016/j.jsb.2009.12.023 10.1016/j.chemosphere.2017.06.106 10.1016/j.jece.2020.103810 10.1007/s10653-018-0155-3 10.1016/j.snb.2016.11.048 10.1016/j.scitotenv.2020.142245 10.1016/j.envpol.2015.12.029 10.1007/s00253-021-11123-2 10.2134/jeq2004.1322 10.1007/s00284-008-9198-5 10.1039/C9NP00058E 10.1016/j.ibiod.2013.11.017 10.1016/j.biortech.2010.06.005 10.1021/es071613f 10.1016/j.biortech.2007.04.050 10.1016/j.cjche.2018.03.034 10.1016/j.bbrc.2004.08.017 10.1016/j.bej.2012.04.008 10.1016/j.apcatb.2014.02.022 10.1016/j.jhazmat.2015.01.040 10.1016/j.jes.2019.01.003 10.1016/j.jhazmat.2016.06.055 10.1016/j.jhazmat.2018.01.046 10.1016/j.biortech.2014.04.076 10.1016/j.biortech.2016.11.095 10.1016/j.chemosphere.2015.02.012 10.1007/s00203-020-01929-5 10.1099/13500872-140-2-321 10.1016/j.cis.2014.10.010 10.1016/j.jhazmat.2016.12.005 10.1016/j.ejbt.2014.02.001 10.1016/j.jhazmat.2009.03.137 10.1016/j.jes.2020.10.002 10.1016/j.jhazmat.2019.120896 10.1128/AEM.00537-08 10.1007/s10534-006-9079-y 10.1016/S1367-5931(00)00236-2 10.1016/j.jlumin.2016.08.051 10.1021/acs.est.8b00425 10.1016/j.ibiod.2014.03.005 10.1016/j.ibiod.2011.06.006 10.1039/C7RA09274A 10.1016/j.jes.2016.08.023 10.1016/j.jphotochem.2015.04.008 10.1023/A:1025620710581 10.1016/j.jhazmat.2011.10.087 |
ContentType | Journal Article |
Copyright | 2021 The Authors Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 The Authors – notice: Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION 7X8 DOA |
DOI | 10.1016/j.ecoenv.2021.112789 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Ecology |
EISSN | 1090-2414 |
ExternalDocumentID | oai_doaj_org_article_923b39ff6d0c4d309e661284ab7b91ca 10_1016_j_ecoenv_2021_112789 S0147651321009015 |
GroupedDBID | --- --K --M .~1 0R~ 0SF 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFPKN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DM4 DU5 EBS EFBJH EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ IHE J1W KCYFY KOM LG5 LY8 M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SPCBC SSJ SSZ T5K ZU3 ~G- 29G 53G AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ H~9 R2- RIG SEN SEW SSH VH1 WUQ XPP ZMT ZXP ~KM 7X8 EFKBS |
ID | FETCH-LOGICAL-c451t-444a66767e922359e3b64c03fed481a3a2271893b9879fe2d30d0dae944c2c5e3 |
IEDL.DBID | AIKHN |
ISSN | 0147-6513 1090-2414 |
IngestDate | Wed Aug 27 01:26:43 EDT 2025 Thu Sep 04 21:12:11 EDT 2025 Thu Apr 24 22:58:21 EDT 2025 Tue Jul 01 04:00:29 EDT 2025 Fri Feb 23 02:42:58 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Biodegradation Pyrene Iron ion - driven Mechanism Rhodococcus ruber strain L9 |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-444a66767e922359e3b64c03fed481a3a2271893b9879fe2d30d0dae944c2c5e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0147651321009015 |
PQID | 2576652511 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_923b39ff6d0c4d309e661284ab7b91ca proquest_miscellaneous_2576652511 crossref_citationtrail_10_1016_j_ecoenv_2021_112789 crossref_primary_10_1016_j_ecoenv_2021_112789 elsevier_sciencedirect_doi_10_1016_j_ecoenv_2021_112789 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 2021-12-00 20211201 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Ecotoxicology and environmental safety |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Jia, Zhao, Shi, Zhu, Wang, Sharma (bib19) 2018; 52 Zhao, Jia, Nulaji, Gao, Wang, Wang (bib55) 2017; 184 Gong, Wu, Ruan, Zhang, Lai, Yu, Li, Dang (bib12) 2018; 349 Muller, Ramos, Larose, Fernandes, Lazzarin, Vogel, Corseuil (bib33) 2017; 326 Zhang, Chen, Liu, Deng, Li, Dong (bib51) 2019; 80 Candidus, van Pee, Lingens (bib5) 1994; 140 Wojcieszyńska, Hupert-Kocurek, Jankowska, Guzik (bib46) 2012; 66 Santos, Jacques, Bento, Peralba, Selbach, Sá, Camargo (bib43) 2008; 99 Cui, Xu, Gao, Li, Yang, Yang, Zheng (bib8) 2014; 91 Husain (bib16) 2008; 57 Xu, qi, kang (bib47) 2018; 38 Wang, Zhou, Huang, Fang (bib44) 2015; 55 Retamal-Morales, Senges, Stapf, Olguin, Modak, Bandow, Tischler, Schlomann, Levican (bib39) 2021; 105 Matera, Ferraroni, Kolomytseva, Golovleva, Scozzafava, Briganti (bib31) 2010; 170 Zhao, Li, Ai, Deng, Liu, Jiang (bib54) 2016; 318 Chen, Zhang, Zhang, Shen, Zhang, Wu, Hu, Wang, Wang (bib7) 2021; 410 Avakyan, Nazarov, Odinokov, Koshkin, Alfimov (bib2) 2016; 180 Sakshi, Haritash (bib42) 2020; 202 Kumari, Singh, Deeba, Sharma (bib23) 2013; 4 Dorer, Vogt, Neu, Stryhanyuk, Richnow (bib11) 2016; 211 Zhang, Jia, Zhang, Shi, Wang, Feng, Yang (bib52) 2017; 45 Zhu, Herbert, Schlautman, Carraway, Hur (bib56) 2004; 33 Bugg (bib3) 2001; 5 Wojcieszyńska, Hupert-Kocurek, Greń, Guzik (bib45) 2011; 65 Nadaf, Ghosh (bib34) 2011; 3 Danko, Kasák, Hrdlovič (bib9) 2015; 307–308 Mishra, Singh, Pande (bib32) 2014; 164 Sahin, Alimli, Tonta, Kose, Yilmaz (bib41) 2017; 242 Xu, Y. , 2007. A preliminary study on the degradation of polycyclic aromatic hydrocarbons by a marine microorganism with floating characteristics. Shantou University. Yan, Zhang, Wu, Yang, Zhang, Hao, Jiang (bib50) 2017; 7 Piñeiro, Novo, Al-Soufi (bib35) 2015; 215 Liu, Liu, Liu, Zhang, Liu (bib28) 2018; 41 Zhang, Guo, Sun, Gong, Wang, Wang (bib53) 2021; 750 Jia, He, Huang, Jiang, Lu (bib20) 2019; 27 Dhungana, Michalczyk, Boukhalfa, Lack, Koppisch, Fairlee, Johnson, Ruggiero, John, Cox, Browder, Forsythe, Vanderberg, Neu, Hersman (bib10) 2008; 20 Liu, Zeng, Niu, Liu, Zhou, Jiang, Tan, Xu, Zhang, Cheng (bib30) 2017; 224 Ramsay, Li, Brown, Ramsay (bib37) 2003; 14 Rani, Rachna, Shanker (bib38) 2020; 8 Guzik, Hupert-Kocurek, Marchlewicz, Wojcieszyńska (bib13) 2014; 17 Jin, Yao, Zhang, Yu, Chen, Liu, Peng, Choi (bib21) 2015; 128 Li, Wong, Tam (bib25) 2010; 101 Yan, Song, Cai, Tay, Jiang (bib49) 2012; 199–200 Bunescu, Besse-Hoggan, Sancelme, Mailhot, Delort (bib4) 2008; 74 Jia, Zhao, Li, Li, Wang (bib17) 2014; 154–155 Liu, Zhai, Liang, Ji, Wang (bib27) 2019; 380 Qu, Liu, Zhu (bib36) 2008; 42 Liu, Li, Li, Wang, Xu, Zhang, Yang (bib29) 2021; 103 Cha (bib6) 2006; 16 Li, Wong, Wang, Tam (bib26) 2015; 30 Ruan, Liu, Liu, Liu (bib40) 2019 Hofmann, Retamal-Morales, Tischler (bib15) 2020; 37 Lehner, Horn, Flesher (bib24) 2004; 322 Jia, Li, Chen, Zhao, Li, Wang (bib18) 2015; 287 Haritash, Kaushik (bib14) 2009; 169 Kadri, Rouissi, Brar, Cledon, Sarma, Verma (bib22) 2016; 51 Ahmed, Ahmed (bib1) 2014; 88 Zhao (10.1016/j.ecoenv.2021.112789_bib54) 2016; 318 Liu (10.1016/j.ecoenv.2021.112789_bib30) 2017; 224 Gong (10.1016/j.ecoenv.2021.112789_bib12) 2018; 349 Liu (10.1016/j.ecoenv.2021.112789_bib29) 2021; 103 Santos (10.1016/j.ecoenv.2021.112789_bib43) 2008; 99 Zhang (10.1016/j.ecoenv.2021.112789_bib53) 2021; 750 Yan (10.1016/j.ecoenv.2021.112789_bib50) 2017; 7 Jia (10.1016/j.ecoenv.2021.112789_bib20) 2019; 27 Ahmed (10.1016/j.ecoenv.2021.112789_bib1) 2014; 88 Cha (10.1016/j.ecoenv.2021.112789_bib6) 2006; 16 Zhang (10.1016/j.ecoenv.2021.112789_bib52) 2017; 45 Zhao (10.1016/j.ecoenv.2021.112789_bib55) 2017; 184 Candidus (10.1016/j.ecoenv.2021.112789_bib5) 1994; 140 Rani (10.1016/j.ecoenv.2021.112789_bib38) 2020; 8 Dorer (10.1016/j.ecoenv.2021.112789_bib11) 2016; 211 Danko (10.1016/j.ecoenv.2021.112789_bib9) 2015; 307–308 Ramsay (10.1016/j.ecoenv.2021.112789_bib37) 2003; 14 Husain (10.1016/j.ecoenv.2021.112789_bib16) 2008; 57 Jia (10.1016/j.ecoenv.2021.112789_bib19) 2018; 52 Li (10.1016/j.ecoenv.2021.112789_bib26) 2015; 30 Bugg (10.1016/j.ecoenv.2021.112789_bib3) 2001; 5 Lehner (10.1016/j.ecoenv.2021.112789_bib24) 2004; 322 Jia (10.1016/j.ecoenv.2021.112789_bib18) 2015; 287 Yan (10.1016/j.ecoenv.2021.112789_bib49) 2012; 199–200 Wojcieszyńska (10.1016/j.ecoenv.2021.112789_bib46) 2012; 66 Haritash (10.1016/j.ecoenv.2021.112789_bib14) 2009; 169 Li (10.1016/j.ecoenv.2021.112789_bib25) 2010; 101 Muller (10.1016/j.ecoenv.2021.112789_bib33) 2017; 326 Nadaf (10.1016/j.ecoenv.2021.112789_bib34) 2011; 3 Ruan (10.1016/j.ecoenv.2021.112789_bib40) 2019 Piñeiro (10.1016/j.ecoenv.2021.112789_bib35) 2015; 215 Kadri (10.1016/j.ecoenv.2021.112789_bib22) 2016; 51 Matera (10.1016/j.ecoenv.2021.112789_bib31) 2010; 170 Avakyan (10.1016/j.ecoenv.2021.112789_bib2) 2016; 180 Retamal-Morales (10.1016/j.ecoenv.2021.112789_bib39) 2021; 105 Zhu (10.1016/j.ecoenv.2021.112789_bib56) 2004; 33 Wang (10.1016/j.ecoenv.2021.112789_bib44) 2015; 55 Sakshi (10.1016/j.ecoenv.2021.112789_bib42) 2020; 202 10.1016/j.ecoenv.2021.112789_bib48 Wojcieszyńska (10.1016/j.ecoenv.2021.112789_bib45) 2011; 65 Chen (10.1016/j.ecoenv.2021.112789_bib7) 2021; 410 Xu (10.1016/j.ecoenv.2021.112789_bib47) 2018; 38 Bunescu (10.1016/j.ecoenv.2021.112789_bib4) 2008; 74 Mishra (10.1016/j.ecoenv.2021.112789_bib32) 2014; 164 Liu (10.1016/j.ecoenv.2021.112789_bib28) 2018; 41 Guzik (10.1016/j.ecoenv.2021.112789_bib13) 2014; 17 Sahin (10.1016/j.ecoenv.2021.112789_bib41) 2017; 242 Jin (10.1016/j.ecoenv.2021.112789_bib21) 2015; 128 Qu (10.1016/j.ecoenv.2021.112789_bib36) 2008; 42 Hofmann (10.1016/j.ecoenv.2021.112789_bib15) 2020; 37 Liu (10.1016/j.ecoenv.2021.112789_bib27) 2019; 380 Zhang (10.1016/j.ecoenv.2021.112789_bib51) 2019; 80 Cui (10.1016/j.ecoenv.2021.112789_bib8) 2014; 91 Jia (10.1016/j.ecoenv.2021.112789_bib17) 2014; 154–155 Dhungana (10.1016/j.ecoenv.2021.112789_bib10) 2008; 20 Kumari (10.1016/j.ecoenv.2021.112789_bib23) 2013; 4 |
References_xml | – volume: 180 start-page: 328 year: 2016 end-page: 340 ident: bib2 article-title: Structure and aggregation of β-cyclodextrin–pyrene–analyte supramolecular sensor: absorption/emission spectra and simulations publication-title: J. Lumin. – volume: 66 start-page: 1 year: 2012 end-page: 7 ident: bib46 article-title: Properties of catechol 2,3-dioxygenase from crude extract of Stenotrophomonas maltophilia strain KB2 immobilized in calcium alginate hydrogels publication-title: Biochem. Eng. J. – volume: 37 start-page: 1262 year: 2020 end-page: 1283 ident: bib15 article-title: Metal binding ability of microbial natural metal chelators and potential applications publication-title: Nat. Prod. Rep. – start-page: 38 year: 2019 ident: bib40 article-title: Effect of metal ions on the degradation of pyrene by Rhodococcus ruber L9 and its mechanism of action publication-title: Environ. Chem. – volume: 8 year: 2020 ident: bib38 article-title: Metal oxide-chitosan based nanocomposites for efficient degradation of carcinogenic PAHs publication-title: J. Environ. Chem. Eng. – volume: 154–155 start-page: 238 year: 2014 end-page: 245 ident: bib17 article-title: Transformation of polycyclic aromatic hydrocarbons (PAHs) on Fe(III)-modified clay minerals: role of molecular chemistry and clay surface properties publication-title: Appl. Catal. B: Environ. – volume: 16 start-page: 778 year: 2006 end-page: 785 ident: bib6 article-title: Catechol 1,2-dioxygenase from rhodococcus rhodochrous N75 capable of metabolizing alkyl-substituted catechols publication-title: J. Microbiol. Biotechnol. – volume: 128 start-page: 307 year: 2015 end-page: 313 ident: bib21 article-title: An integrated approach of bioassay and molecular docking to study the dihydroxylation mechanism of pyrene by naphthalene dioxygenase in Rhodococcus sp. ustb-1 publication-title: Chemosphere – volume: 224 start-page: 25 year: 2017 end-page: 33 ident: bib30 article-title: Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: a mini review publication-title: Bioresour. Technol. – volume: 211 start-page: 271 year: 2016 end-page: 281 ident: bib11 article-title: Characterization of toluene and ethylbenzene biodegradation under nitrate-, iron(III)- and manganese(IV)-reducing conditions by compound-specific isotope analysis publication-title: Environ. Pollut. – volume: 169 start-page: 1 year: 2009 end-page: 15 ident: bib14 article-title: Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review publication-title: J. Hazard Mater. – volume: 410 year: 2021 ident: bib7 article-title: Removal of PAHs at high concentrations in a soil washing solution containing TX-100 via simultaneous sorption and biodegradation processes by immobilized degrading bacteria in PVA-SA hydrogel beads publication-title: J. Hazard. Mater. – volume: 41 start-page: 617 year: 2018 end-page: 632 ident: bib28 article-title: Source apportionment of soil PAHs and human health exposure risks quantification from sources: the Yulin National Energy and Chemical Industry Base, China as case study publication-title: Environ. Geochem. Health – volume: 55 start-page: 87 year: 2015 end-page: 92 ident: bib44 article-title: Isolation and degradation characteristics of a HMW-PAHs degrading halophilic strain Thalassospira sp publication-title: J. Tsinghua Univ. Sci. Technol. – volume: 202 start-page: 2033 year: 2020 end-page: 2058 ident: bib42 article-title: A comprehensive review of metabolic and genomic aspects of PAH-degradation publication-title: Arch. Microbiol. – volume: 199–200 start-page: 217 year: 2012 end-page: 225 ident: bib49 article-title: Enhanced degradation of phenanthrene and pyrene in freshwater sediments by combined employment of sediment microbial fuel cell and amorphous ferric hydroxide publication-title: J. Hazard. Mater. – volume: 42 start-page: 1109 year: 2008 end-page: 1116 ident: bib36 article-title: Enhanced sorption of polycyclic aromatic hydrocarbons to Tetra-Alkyl ammonium modified smectites via cation−π Interactions publication-title: Environ. Sci. Technol. – volume: 38 start-page: 284 year: 2018 end-page: 292 ident: bib47 article-title: A scalable approach for protein false discovery rate estimation in large proteomic data sets publication-title: China Environ. Sci. – volume: 65 start-page: 853 year: 2011 end-page: 858 ident: bib45 article-title: High activity catechol 2,3-dioxygenase from the cresols – degrading Stenotrophomonas maltophilia strain KB2 publication-title: Int. Biodeterior. Biodegrad. – volume: 45 start-page: 282 year: 2017 end-page: 285 ident: bib52 article-title: Screening, identification and degradation characteristics of 4-ring HMW-PAHs-degrading bacteria publication-title: Jiangsu Agric. Sci. – volume: 287 start-page: 16 year: 2015 end-page: 23 ident: bib18 article-title: Exchangeable cations-mediated photodegradation of polycyclic aromatic hydrocarbons (PAHs) on smectite surface under visible light publication-title: J. Hazard. Mater. – volume: 140 start-page: 321 year: 1994 end-page: 330 ident: bib5 article-title: The catechol 2,3-dioxygenase gene of Rhodococcus rhodochrous CTM: nucleotide sequence, comparison with isofunctional dioxygenases and evidence for an active-site histidine publication-title: Microbiology – volume: 20 start-page: 853 year: 2008 end-page: 867 ident: bib10 article-title: Purification and characterization of rhodobactin: a mixed ligand siderophore from Rhodococcus rhodochrous strain OFS publication-title: Biometals: Int. J. Role Met. Ions Biol. Biochem. Med. – volume: 4 start-page: 151 year: 2013 end-page: 160 ident: bib23 article-title: Elucidation of pyrene degradation pathway in bacteria publication-title: Adv. Biores. – volume: 170 start-page: 548 year: 2010 end-page: 564 ident: bib31 article-title: Catechol 1,2-dioxygenase from the Gram-positive Rhodococcus opacus 1CP: quantitative structure/activity relationship and the crystal structures of native enzyme and catechols adducts publication-title: J. Struct. Biol. – volume: 164 start-page: 299 year: 2014 end-page: 308 ident: bib32 article-title: Bacteria induced degradation of fluoranthene in minimal salt medium mediated by catabolic enzymes in vitro condition publication-title: Bioresour. Technol. – volume: 3 start-page: 608 year: 2011 end-page: 613 ident: bib34 article-title: Purification and characterization of catechol 1, 2-dioxygenase from Rhodococcus sp. NCIM 2891 publication-title: Res. J. Environ. Earth Sci. – reference: Xu, Y. , 2007. A preliminary study on the degradation of polycyclic aromatic hydrocarbons by a marine microorganism with floating characteristics. Shantou University. – volume: 80 start-page: 267 year: 2019 end-page: 276 ident: bib51 article-title: Influence of metal ions on sulfonamide antibiotics biochemical behavior in fiber coexisting system publication-title: J. Environ. Sci. – volume: 74 start-page: 6320 year: 2008 end-page: 6326 ident: bib4 article-title: Fate of the nitrilotriacetic acid-Fe(III) complex during photodegradation and biodegradation by Rhodococcus rhodochrous publication-title: Appl. Environ. Microbiol – volume: 57 start-page: 331 year: 2008 end-page: 334 ident: bib16 article-title: Effect of ferric iron on siderophore production and pyrene degradation by pseudomonas fluorescens 29L publication-title: Curr. Microbiol. – volume: 51 start-page: 52 year: 2016 end-page: 74 ident: bib22 article-title: Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: a review publication-title: J. Environ. Sci. – volume: 307–308 start-page: 79 year: 2015 end-page: 87 ident: bib9 article-title: The interactions of probes based on substituted pyrene derivatives in polymer matrices; spectral study publication-title: J. Photochem. Photobiol. A Chem. – volume: 750 year: 2021 ident: bib53 article-title: Exploration of the biotransformation processes in the biodegradation of phenanthrene by a facultative anaerobe, strain PheF2, with Fe(III) or O2 as an electron acceptor publication-title: Sci. Total Environ. – volume: 184 start-page: 1346 year: 2017 end-page: 1354 ident: bib55 article-title: Photolysis of polycyclic aromatic hydrocarbons (PAHs) on Fe(3+)-montmorillonite surface under visible light: degradation kinetics, mechanism, and toxicity assessments publication-title: Chemosphere – volume: 17 start-page: 83 year: 2014 end-page: 88 ident: bib13 article-title: Enhancement of biodegradation potential of catechol 1,2-dioxygenase through its immobilization in calcium alginate gel publication-title: Electron J. Biotechnol. – volume: 99 start-page: 2644 year: 2008 end-page: 2649 ident: bib43 article-title: Anthracene biodegradation and surface activity by an iron-stimulated Pseudomonas sp publication-title: Bioresour. Technol. – volume: 103 start-page: 108 year: 2021 end-page: 118 ident: bib29 article-title: Enhanced biodegradation of chlorobenzene via combined Fe3+ and Zn2+ based on rhamnolipid solubilisation publication-title: J. Environ. Sci. – volume: 30 start-page: 148 year: 2015 end-page: 156 ident: bib26 article-title: Anaerobic biodegradation of PAHs in mangrove sediment with amendment of NaHCO3 publication-title: J. Environ. Sci. – volume: 380 year: 2019 ident: bib27 article-title: Increased power production and removal efficiency of polycyclic aromatic hydrocarbons by plant pumps in sediment microbial electrochemical systems: a preliminary study publication-title: J. Hazard. Mater. – volume: 33 start-page: 1322 year: 2004 end-page: 1330 ident: bib56 article-title: Cation–π bonding publication-title: J. Environ. Qual. – volume: 91 start-page: 45 year: 2014 end-page: 51 ident: bib8 article-title: Isolation and characterization of Cycloclasticus strains from Yellow Sea sediments and biodegradation of pyrene and fluoranthene by their syntrophic association with Marinobacter strains publication-title: Int. Biodeterior. Biodegrad. – volume: 322 start-page: 1018 year: 2004 end-page: 1023 ident: bib24 article-title: Formation of radical cations in a model for the metabolism of aromatic hydrocarbons publication-title: Biochem. Biophys. Res. Commun. – volume: 27 start-page: 411 year: 2019 end-page: 417 ident: bib20 article-title: n-Hexadecane and pyrene biodegradation and metabolization by Rhodococcus sp. T1 isolated from oil contaminated soil publication-title: Chin. J. Chem. Eng. – volume: 242 start-page: 362 year: 2017 end-page: 368 ident: bib41 article-title: Highly sensitive and reusable mercury (II) sensor based on fluorescence quenching of pyrene moiety in polyacrylamide-based cryogel publication-title: Sens. Actuators B Chem. – volume: 105 start-page: 1731 year: 2021 end-page: 1744 ident: bib39 article-title: Isolation and characterization of arsenic-binding siderophores from Rhodococcus erythropolis S43: role of heterobactin B and other heterobactin variants publication-title: Appl. Microbiol Biotechnol. – volume: 52 start-page: 5725 year: 2018 end-page: 5733 ident: bib19 article-title: Transformation of polycyclic aromatic hydrocarbons and formation of environmentally persistent free radicals on modified montmorillonite: the role of surface metal ions and polycyclic aromatic hydrocarbon molecular properties publication-title: Environ. Sci. Technol. – volume: 88 start-page: 56 year: 2014 end-page: 61 ident: bib1 article-title: Effect of yeast extract on fluoranthene degradation and aromatic ring dioxygenase expressing bacterial community structure of a fluoranthene degrading bacterial consortium publication-title: Int. Biodeterior. Biodegrad. – volume: 7 start-page: 46690 year: 2017 end-page: 46698 ident: bib50 article-title: Isolation and characterization of a bacterial strain Hydrogenophaga sp. PYR1 for anaerobic pyrene and benzo[a]pyrene biodegradation publication-title: RSC Adv. – volume: 326 start-page: 229 year: 2017 end-page: 236 ident: bib33 article-title: Combined iron and sulfate reduction biostimulation as a novel approach to enhance BTEX and PAH source-zone biodegradation in biodiesel blend-contaminated groundwater publication-title: J. Hazard Mater. – volume: 5 start-page: 550 year: 2001 end-page: 555 ident: bib3 article-title: Oxygenases: mechanisms and structural motifs for O2 activation publication-title: Curr. Opin. Chem. Biol. – volume: 101 start-page: 8083 year: 2010 end-page: 8092 ident: bib25 article-title: Anaerobic biodegradation of polycyclic aromatic hydrocarbons with amendment of iron(III) in mangrove sediment slurry publication-title: Bioresour. Technol. – volume: 14 start-page: 321 year: 2003 end-page: 329 ident: bib37 article-title: Naphthalene and anthracene mineralization linked to oxygen, nitrate, Fe(III) and sulphate reduction in a Mixed Microbial Population publication-title: Biodegradation – volume: 318 start-page: 90 year: 2016 end-page: 98 ident: bib54 article-title: Reconstruction of metabolic networks in a fluoranthene-degrading enrichments from polycyclic aromatic hydrocarbon polluted soil publication-title: J. Hazard. Mater. – volume: 215 start-page: 1 year: 2015 end-page: 12 ident: bib35 article-title: Fluorescence emission of pyrene in surfactant solutions publication-title: Adv. Colloid Interface Sci. – volume: 349 start-page: 51 year: 2018 end-page: 59 ident: bib12 article-title: Differential regulation of phenanthrene biodegradation process by kaolinite and quartz and the underlying mechanism publication-title: J. Hazard. Mater. – volume: 30 start-page: 148 year: 2015 ident: 10.1016/j.ecoenv.2021.112789_bib26 article-title: Anaerobic biodegradation of PAHs in mangrove sediment with amendment of NaHCO3 publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2014.09.028 – volume: 410 year: 2021 ident: 10.1016/j.ecoenv.2021.112789_bib7 article-title: Removal of PAHs at high concentrations in a soil washing solution containing TX-100 via simultaneous sorption and biodegradation processes by immobilized degrading bacteria in PVA-SA hydrogel beads publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.124533 – volume: 170 start-page: 548 year: 2010 ident: 10.1016/j.ecoenv.2021.112789_bib31 article-title: Catechol 1,2-dioxygenase from the Gram-positive Rhodococcus opacus 1CP: quantitative structure/activity relationship and the crystal structures of native enzyme and catechols adducts publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2009.12.023 – volume: 184 start-page: 1346 year: 2017 ident: 10.1016/j.ecoenv.2021.112789_bib55 article-title: Photolysis of polycyclic aromatic hydrocarbons (PAHs) on Fe(3+)-montmorillonite surface under visible light: degradation kinetics, mechanism, and toxicity assessments publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.06.106 – volume: 8 year: 2020 ident: 10.1016/j.ecoenv.2021.112789_bib38 article-title: Metal oxide-chitosan based nanocomposites for efficient degradation of carcinogenic PAHs publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2020.103810 – volume: 41 start-page: 617 year: 2018 ident: 10.1016/j.ecoenv.2021.112789_bib28 article-title: Source apportionment of soil PAHs and human health exposure risks quantification from sources: the Yulin National Energy and Chemical Industry Base, China as case study publication-title: Environ. Geochem. Health doi: 10.1007/s10653-018-0155-3 – volume: 3 start-page: 608 year: 2011 ident: 10.1016/j.ecoenv.2021.112789_bib34 article-title: Purification and characterization of catechol 1, 2-dioxygenase from Rhodococcus sp. NCIM 2891 publication-title: Res. J. Environ. Earth Sci. – volume: 242 start-page: 362 year: 2017 ident: 10.1016/j.ecoenv.2021.112789_bib41 article-title: Highly sensitive and reusable mercury (II) sensor based on fluorescence quenching of pyrene moiety in polyacrylamide-based cryogel publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2016.11.048 – volume: 750 year: 2021 ident: 10.1016/j.ecoenv.2021.112789_bib53 article-title: Exploration of the biotransformation processes in the biodegradation of phenanthrene by a facultative anaerobe, strain PheF2, with Fe(III) or O2 as an electron acceptor publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.142245 – volume: 211 start-page: 271 year: 2016 ident: 10.1016/j.ecoenv.2021.112789_bib11 article-title: Characterization of toluene and ethylbenzene biodegradation under nitrate-, iron(III)- and manganese(IV)-reducing conditions by compound-specific isotope analysis publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2015.12.029 – volume: 105 start-page: 1731 year: 2021 ident: 10.1016/j.ecoenv.2021.112789_bib39 article-title: Isolation and characterization of arsenic-binding siderophores from Rhodococcus erythropolis S43: role of heterobactin B and other heterobactin variants publication-title: Appl. Microbiol Biotechnol. doi: 10.1007/s00253-021-11123-2 – volume: 33 start-page: 1322 year: 2004 ident: 10.1016/j.ecoenv.2021.112789_bib56 article-title: Cation–π bonding publication-title: J. Environ. Qual. doi: 10.2134/jeq2004.1322 – volume: 57 start-page: 331 year: 2008 ident: 10.1016/j.ecoenv.2021.112789_bib16 article-title: Effect of ferric iron on siderophore production and pyrene degradation by pseudomonas fluorescens 29L publication-title: Curr. Microbiol. doi: 10.1007/s00284-008-9198-5 – volume: 37 start-page: 1262 year: 2020 ident: 10.1016/j.ecoenv.2021.112789_bib15 article-title: Metal binding ability of microbial natural metal chelators and potential applications publication-title: Nat. Prod. Rep. doi: 10.1039/C9NP00058E – volume: 88 start-page: 56 year: 2014 ident: 10.1016/j.ecoenv.2021.112789_bib1 article-title: Effect of yeast extract on fluoranthene degradation and aromatic ring dioxygenase expressing bacterial community structure of a fluoranthene degrading bacterial consortium publication-title: Int. Biodeterior. Biodegrad. doi: 10.1016/j.ibiod.2013.11.017 – volume: 101 start-page: 8083 year: 2010 ident: 10.1016/j.ecoenv.2021.112789_bib25 article-title: Anaerobic biodegradation of polycyclic aromatic hydrocarbons with amendment of iron(III) in mangrove sediment slurry publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.06.005 – volume: 55 start-page: 87 year: 2015 ident: 10.1016/j.ecoenv.2021.112789_bib44 article-title: Isolation and degradation characteristics of a HMW-PAHs degrading halophilic strain Thalassospira sp publication-title: J. Tsinghua Univ. Sci. Technol. – volume: 16 start-page: 778 year: 2006 ident: 10.1016/j.ecoenv.2021.112789_bib6 article-title: Catechol 1,2-dioxygenase from rhodococcus rhodochrous N75 capable of metabolizing alkyl-substituted catechols publication-title: J. Microbiol. Biotechnol. – volume: 4 start-page: 151 year: 2013 ident: 10.1016/j.ecoenv.2021.112789_bib23 article-title: Elucidation of pyrene degradation pathway in bacteria publication-title: Adv. Biores. – volume: 42 start-page: 1109 year: 2008 ident: 10.1016/j.ecoenv.2021.112789_bib36 article-title: Enhanced sorption of polycyclic aromatic hydrocarbons to Tetra-Alkyl ammonium modified smectites via cation−π Interactions publication-title: Environ. Sci. Technol. doi: 10.1021/es071613f – volume: 99 start-page: 2644 year: 2008 ident: 10.1016/j.ecoenv.2021.112789_bib43 article-title: Anthracene biodegradation and surface activity by an iron-stimulated Pseudomonas sp publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2007.04.050 – volume: 27 start-page: 411 year: 2019 ident: 10.1016/j.ecoenv.2021.112789_bib20 article-title: n-Hexadecane and pyrene biodegradation and metabolization by Rhodococcus sp. T1 isolated from oil contaminated soil publication-title: Chin. J. Chem. Eng. doi: 10.1016/j.cjche.2018.03.034 – volume: 322 start-page: 1018 year: 2004 ident: 10.1016/j.ecoenv.2021.112789_bib24 article-title: Formation of radical cations in a model for the metabolism of aromatic hydrocarbons publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2004.08.017 – volume: 66 start-page: 1 year: 2012 ident: 10.1016/j.ecoenv.2021.112789_bib46 article-title: Properties of catechol 2,3-dioxygenase from crude extract of Stenotrophomonas maltophilia strain KB2 immobilized in calcium alginate hydrogels publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2012.04.008 – volume: 154–155 start-page: 238 year: 2014 ident: 10.1016/j.ecoenv.2021.112789_bib17 article-title: Transformation of polycyclic aromatic hydrocarbons (PAHs) on Fe(III)-modified clay minerals: role of molecular chemistry and clay surface properties publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2014.02.022 – volume: 287 start-page: 16 year: 2015 ident: 10.1016/j.ecoenv.2021.112789_bib18 article-title: Exchangeable cations-mediated photodegradation of polycyclic aromatic hydrocarbons (PAHs) on smectite surface under visible light publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.01.040 – volume: 80 start-page: 267 year: 2019 ident: 10.1016/j.ecoenv.2021.112789_bib51 article-title: Influence of metal ions on sulfonamide antibiotics biochemical behavior in fiber coexisting system publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2019.01.003 – volume: 38 start-page: 284 year: 2018 ident: 10.1016/j.ecoenv.2021.112789_bib47 article-title: A scalable approach for protein false discovery rate estimation in large proteomic data sets publication-title: China Environ. Sci. – volume: 45 start-page: 282 year: 2017 ident: 10.1016/j.ecoenv.2021.112789_bib52 article-title: Screening, identification and degradation characteristics of 4-ring HMW-PAHs-degrading bacteria publication-title: Jiangsu Agric. Sci. – volume: 318 start-page: 90 year: 2016 ident: 10.1016/j.ecoenv.2021.112789_bib54 article-title: Reconstruction of metabolic networks in a fluoranthene-degrading enrichments from polycyclic aromatic hydrocarbon polluted soil publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.06.055 – volume: 349 start-page: 51 year: 2018 ident: 10.1016/j.ecoenv.2021.112789_bib12 article-title: Differential regulation of phenanthrene biodegradation process by kaolinite and quartz and the underlying mechanism publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.01.046 – volume: 164 start-page: 299 year: 2014 ident: 10.1016/j.ecoenv.2021.112789_bib32 article-title: Bacteria induced degradation of fluoranthene in minimal salt medium mediated by catabolic enzymes in vitro condition publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.04.076 – volume: 224 start-page: 25 year: 2017 ident: 10.1016/j.ecoenv.2021.112789_bib30 article-title: Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: a mini review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.11.095 – volume: 128 start-page: 307 year: 2015 ident: 10.1016/j.ecoenv.2021.112789_bib21 article-title: An integrated approach of bioassay and molecular docking to study the dihydroxylation mechanism of pyrene by naphthalene dioxygenase in Rhodococcus sp. ustb-1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.02.012 – volume: 202 start-page: 2033 year: 2020 ident: 10.1016/j.ecoenv.2021.112789_bib42 article-title: A comprehensive review of metabolic and genomic aspects of PAH-degradation publication-title: Arch. Microbiol. doi: 10.1007/s00203-020-01929-5 – volume: 140 start-page: 321 issue: Pt 2 year: 1994 ident: 10.1016/j.ecoenv.2021.112789_bib5 article-title: The catechol 2,3-dioxygenase gene of Rhodococcus rhodochrous CTM: nucleotide sequence, comparison with isofunctional dioxygenases and evidence for an active-site histidine publication-title: Microbiology doi: 10.1099/13500872-140-2-321 – volume: 215 start-page: 1 year: 2015 ident: 10.1016/j.ecoenv.2021.112789_bib35 article-title: Fluorescence emission of pyrene in surfactant solutions publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2014.10.010 – start-page: 38 year: 2019 ident: 10.1016/j.ecoenv.2021.112789_bib40 article-title: Effect of metal ions on the degradation of pyrene by Rhodococcus ruber L9 and its mechanism of action publication-title: Environ. Chem. – volume: 326 start-page: 229 year: 2017 ident: 10.1016/j.ecoenv.2021.112789_bib33 article-title: Combined iron and sulfate reduction biostimulation as a novel approach to enhance BTEX and PAH source-zone biodegradation in biodiesel blend-contaminated groundwater publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2016.12.005 – volume: 17 start-page: 83 year: 2014 ident: 10.1016/j.ecoenv.2021.112789_bib13 article-title: Enhancement of biodegradation potential of catechol 1,2-dioxygenase through its immobilization in calcium alginate gel publication-title: Electron J. Biotechnol. doi: 10.1016/j.ejbt.2014.02.001 – volume: 169 start-page: 1 year: 2009 ident: 10.1016/j.ecoenv.2021.112789_bib14 article-title: Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2009.03.137 – volume: 103 start-page: 108 year: 2021 ident: 10.1016/j.ecoenv.2021.112789_bib29 article-title: Enhanced biodegradation of chlorobenzene via combined Fe3+ and Zn2+ based on rhamnolipid solubilisation publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2020.10.002 – volume: 380 year: 2019 ident: 10.1016/j.ecoenv.2021.112789_bib27 article-title: Increased power production and removal efficiency of polycyclic aromatic hydrocarbons by plant pumps in sediment microbial electrochemical systems: a preliminary study publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.120896 – ident: 10.1016/j.ecoenv.2021.112789_bib48 – volume: 74 start-page: 6320 year: 2008 ident: 10.1016/j.ecoenv.2021.112789_bib4 article-title: Fate of the nitrilotriacetic acid-Fe(III) complex during photodegradation and biodegradation by Rhodococcus rhodochrous publication-title: Appl. Environ. Microbiol doi: 10.1128/AEM.00537-08 – volume: 20 start-page: 853 year: 2008 ident: 10.1016/j.ecoenv.2021.112789_bib10 article-title: Purification and characterization of rhodobactin: a mixed ligand siderophore from Rhodococcus rhodochrous strain OFS publication-title: Biometals: Int. J. Role Met. Ions Biol. Biochem. Med. doi: 10.1007/s10534-006-9079-y – volume: 5 start-page: 550 year: 2001 ident: 10.1016/j.ecoenv.2021.112789_bib3 article-title: Oxygenases: mechanisms and structural motifs for O2 activation publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/S1367-5931(00)00236-2 – volume: 180 start-page: 328 year: 2016 ident: 10.1016/j.ecoenv.2021.112789_bib2 article-title: Structure and aggregation of β-cyclodextrin–pyrene–analyte supramolecular sensor: absorption/emission spectra and simulations publication-title: J. Lumin. doi: 10.1016/j.jlumin.2016.08.051 – volume: 52 start-page: 5725 year: 2018 ident: 10.1016/j.ecoenv.2021.112789_bib19 article-title: Transformation of polycyclic aromatic hydrocarbons and formation of environmentally persistent free radicals on modified montmorillonite: the role of surface metal ions and polycyclic aromatic hydrocarbon molecular properties publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b00425 – volume: 91 start-page: 45 year: 2014 ident: 10.1016/j.ecoenv.2021.112789_bib8 article-title: Isolation and characterization of Cycloclasticus strains from Yellow Sea sediments and biodegradation of pyrene and fluoranthene by their syntrophic association with Marinobacter strains publication-title: Int. Biodeterior. Biodegrad. doi: 10.1016/j.ibiod.2014.03.005 – volume: 65 start-page: 853 year: 2011 ident: 10.1016/j.ecoenv.2021.112789_bib45 article-title: High activity catechol 2,3-dioxygenase from the cresols – degrading Stenotrophomonas maltophilia strain KB2 publication-title: Int. Biodeterior. Biodegrad. doi: 10.1016/j.ibiod.2011.06.006 – volume: 7 start-page: 46690 year: 2017 ident: 10.1016/j.ecoenv.2021.112789_bib50 article-title: Isolation and characterization of a bacterial strain Hydrogenophaga sp. PYR1 for anaerobic pyrene and benzo[a]pyrene biodegradation publication-title: RSC Adv. doi: 10.1039/C7RA09274A – volume: 51 start-page: 52 year: 2016 ident: 10.1016/j.ecoenv.2021.112789_bib22 article-title: Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: a review publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2016.08.023 – volume: 307–308 start-page: 79 year: 2015 ident: 10.1016/j.ecoenv.2021.112789_bib9 article-title: The interactions of probes based on substituted pyrene derivatives in polymer matrices; spectral study publication-title: J. Photochem. Photobiol. A Chem. doi: 10.1016/j.jphotochem.2015.04.008 – volume: 14 start-page: 321 year: 2003 ident: 10.1016/j.ecoenv.2021.112789_bib37 article-title: Naphthalene and anthracene mineralization linked to oxygen, nitrate, Fe(III) and sulphate reduction in a Mixed Microbial Population publication-title: Biodegradation doi: 10.1023/A:1025620710581 – volume: 199–200 start-page: 217 year: 2012 ident: 10.1016/j.ecoenv.2021.112789_bib49 article-title: Enhanced degradation of phenanthrene and pyrene in freshwater sediments by combined employment of sediment microbial fuel cell and amorphous ferric hydroxide publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.10.087 |
SSID | ssj0003055 |
Score | 2.4657454 |
Snippet | A slow degradation rate and low transformation efficiency are the main problems in the biodegradation of polycyclic aromatic hydrocarbons (PAHs). This study... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 112789 |
SubjectTerms | Biodegradation Iron ion - driven Mechanism Pyrene Rhodococcus ruber strain L9 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlECiUkqYt3T6CCr2KWk9bx7QkhNL2UBrITVgvsqXxhvVuIf-gP7szkh2SXPbSmzGSJTTjmW_smW8I-aBU6jrjAxOtUEwFy5k3WjMJ4JVzn5MpVe_fvpuzc_XlQl_cafWFOWGVHrge3EcAIF7anE1sgoqysTAbbWrvW295KNCosc0cTE02GHmsavJiy4zmci6aK5ldENel4Q_EhoJjBU2LLd7vOKXC3X_PNz2w0sX1nB6QpxNmpMd1r8_IozQckv2Twjd9c0ie1E9vtFYUPSd_Z6IRusoU8B29SljeuxyvKCBUmobL8tefXt8gnSX1y1VExojaXImiW4sULnAmkkmsa-nDSKeULoqFcazc6YdIf1xCYAtWNWxHut76tKZjaTtBv9oX5Pz05OfnMzY1XGBBab5hSqkec17bZAE1aJukNyo0MqeoOt7LXghwZVZ627U2JwHiiE3sk1UqiKCTfEn2htWQXhFqGtFngBpdEh40oO01j5p7eEIKMue8IHI-cRcmNnLc3W83p539clVODuXkqpwWhN3Ouq5sHDvGf0Jh3o5FLu1yAzTMTRrmdmnYgrSzKrgJllS4AY9a7lj-_aw5Dt5a_BXTD2m1HR2GeUZjePf6f2zxDXmMy9Y0m7dkb7PepncAljb-qLwX_wC-wBEe priority: 102 providerName: Directory of Open Access Journals |
Title | Analysis of the mechanism for enhanced pyrene biodegradation based on the interactions between iron-ions and Rhodococcus ruber strain L9 |
URI | https://dx.doi.org/10.1016/j.ecoenv.2021.112789 https://www.proquest.com/docview/2576652511 https://doaj.org/article/923b39ff6d0c4d309e661284ab7b91ca |
Volume | 225 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9MwGLa2TkhICMEAUT4qI3E1jWM7iY9j2lS-dkBM2s2yHZtlYkmVtEi7cOZn49dOKsZlErfWit0075v3I3mexwi95dxVVWEsycucE24lJaYQgrBQvFJqvCsi6_3LWbE65x8vxMUeOp64MACrHGN_iukxWo8jy_FqLtdNswRYUlkICiSUDLLaPjrIQ7avZujg6MOn1dkuIIOoVUIylgQmTAy6CPMKTZ5rf4ZGMadApylhv_e_MlQU8r-VqP4J2TEPnT5CD8cCEh-lc3yM9lx7iO6dRPHpm0P0ID2Hw4le9AT9nlRHcOdxKPbwtQOubzNc41CuYtdeRggAXt-AtiU2TVeDfETaaQlDjqtx-AAzQVmiTzyIAY_4LgwsORJHdFvjr5ehyw0h1m4H3G-N6_EQ96DAn-VTdH568u14RcbdF4jlgm4I51wDALZ0MpQQQjpmCm4z5l3NK6qZzvOQ1yQzsiqld3nNsjqrtZOc29wKx56hWdu17jnCRZZrHyxUudwEdyi1oLWgJqzgLPPezxGbrriyozQ5nN0PNWHQrlSykwI7qWSnOSK7WeskzXHH8e_BmLtjQVg7DnT9dzV6lgr1rmHS-6LOLA9_SQZnhRSuTWkktXqOyskV1C0_DUs1d_z8m8lzVLiF4b2Mbl23HRT0fIWAXu_Ff6_-Et2Hbwlo8wrNNv3WvQ7l0sYs0P67X3Qx3hSL-NDhD31UFVI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbKVggkhKCAWJ5G4mptHNtJfCxVqy3d7gG1Um-W7dg0iCarzS5S_wE_G4-drCiXStwiJ3YeM5lHMt83CH3m3FVVYSzJy5wTbiUlphCCsBC8Umq8KyLq_XxZzC_51ytxtYeORiwMlFUOtj_Z9Gith5HZ8DRnq6aZQVlSWQgKIJQMvNoDtM-hqfUE7R-ens2XO4MMpFapkrEkMGFE0MUyr5DkufZXSBRzCnCaEvq9_-WhIpH_HUf1j8mOfujkGXo6BJD4MF3jc7Tn2gP08DiST98eoCfpOxxO8KIX6PfIOoI7j0Owh28cYH2b_gaHcBW79jqWAODVLXBbYtN0NdBHpE5LGHxcjcMGzARmiXXCQfR4qO_CgJIjcUS3Nf52HbLcYGLttsfrrXFr3MceFHghX6LLk-OLozkZui8QywXdEM65hgLY0skQQgjpmCm4zZh3Na-oZjrPg1-TzMiqlN7lNcvqrNZOcm5zKxx7hSZt17rXCBdZrn2QUOVyE9Sh1ILWgpqwgrPMez9FbHziyg7U5HB1P9VYg_ZDJTkpkJNKcpoispu1StQc9xz_BYS5OxaIteNAt_6uBs1SId41THpf1Jnl4ZZkUFZw4dqURlKrp6gcVUHd0dOwVHPP6T-NmqPCKwz_ZXTrum2vIOcrBOR6b_579Y_o0fzifKEWp8uzt-gx7ElFN-_QZLPeuvchdNqYD8Or8QeBOxZD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+the+mechanism+for+enhanced+pyrene+biodegradation+based+on+the+interactions+between+iron-ions+and+Rhodococcus+ruber+strain+L9&rft.jtitle=Ecotoxicology+and+environmental+safety&rft.au=Liu%2C+Jing&rft.au=Zhang%2C+Ai-Ning&rft.au=Liu%2C+Yong-Jun&rft.au=Liu%2C+Zhe&rft.date=2021-12-01&rft.issn=1090-2414&rft.eissn=1090-2414&rft.volume=225&rft.spage=112789&rft_id=info:doi/10.1016%2Fj.ecoenv.2021.112789&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0147-6513&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0147-6513&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0147-6513&client=summon |