Multiagent visual area coverage using a new genetic algorithm selection scheme

Using genetic algorithms (GA) for solving NP-hard problems is becoming more and more frequent. This paper presents a use of GA with a new selection approach called the queen GA. The main idea is not to select both parents from the entire population, but to create a subgroup of better solutions (the...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of operational research Vol. 175; no. 3; pp. 1890 - 1907
Main Authors Stern, Helman, Chassidim, Yoash, Zofi, Moshe
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 16.12.2006
Elsevier
Elsevier Sequoia S.A
SeriesEuropean Journal of Operational Research
Subjects
Online AccessGet full text
ISSN0377-2217
1872-6860
DOI10.1016/j.ejor.2005.02.078

Cover

Abstract Using genetic algorithms (GA) for solving NP-hard problems is becoming more and more frequent. This paper presents a use of GA with a new selection approach called the queen GA. The main idea is not to select both parents from the entire population, but to create a subgroup of better solutions (the queen cohort), and to use at least one of its members in each performed crossover. We demonstrate the use of the queen GA for the problem of repositioning observers across a polygonal area with obstacles in order to maximize the visual area coverage for a given time horizon. The queen GA gives superior results over a GA with different selection methods (i.e. proportion, ranking and tournament) at the 0.01 significance level. These comparative results were duplicated when elitism was included.
AbstractList Using genetic algorithms (GA) for solving NP-hard problems is becoming more and more frequent. This paper presents a use of GA with a new selection approach called the queen GA. The main idea is not to select both parents from the entire population, but to create a subgroup of better solutions (the queen cohort), and to use at least one of its members in each performed crossover. We demonstrate the use of the queen GA for the problem of repositioning observers across a polygonal area with obstacles in order to maximize the visual area coverage for a given time horizon. The queen GA gives superior results over a GA with different selection methods (i.e. proportion, ranking and tournament) at the 0.01 significance level. These comparative results were duplicated when elitism was included.
Using genetic algorithms (GA) for solving NP-hard problems is becoming more and more frequent. This paper presents a use of GA with a new selection approach called the queen GA. The main idea is not to select both parents from the entire population, but to create a subgroup of better solutions (the queen cohort), and to use at least one of its members in each performed crossover. We demonstrate the use of the queen GA for the problem of repositioning observers across a polygonal area with obstacles in order to maximize the visual area coverage for a given time horizon. The queen GA gives superior results over a GA with different selection methods (i.e. proportion, ranking and tournament) at the 0.01 significance level. These comparative results were duplicated when elitism was included. [PUBLICATION ABSTRACT]
Author Chassidim, Yoash
Stern, Helman
Zofi, Moshe
Author_xml – sequence: 1
  givenname: Helman
  surname: Stern
  fullname: Stern, Helman
  email: helman@bgu.ac.il
– sequence: 2
  givenname: Yoash
  surname: Chassidim
  fullname: Chassidim, Yoash
  email: yoash@bgu.ac.il
– sequence: 3
  givenname: Moshe
  surname: Zofi
  fullname: Zofi, Moshe
  email: zofi@bgu.ac.il
BackLink http://econpapers.repec.org/article/eeeejores/v_3a175_3ay_3a2006_3ai_3a3_3ap_3a1890-1907.htm$$DView record in RePEc
BookMark eNp9UU1v3CAQRVUqdfPxB3JCvdsdsDFG6qWK2rRSkl7aM2LZ8S6W12wBb5V_n1lte8khSI-R4L038OaSXcxxRsZuBdQCRPdprHGMqZYAqgZZg-7fsZXotay6voMLtoJG60pKoT-wy5xHABBKqBV7elymEtwW58KPIS9u4i6h4z4eMdExX3KYt9zxGf9yYmEJnrtpG1Mouz3POKEvIc48-x3u8Zq9H9yU8eZfvWK_v339dfe9evh5_-Puy0PlWyVK1Tjj0SizbkVrzFqJQW6UBBxab4aNFtgLLfr12hsYPDa-Q2VMY4ZOqm5oOt9csY9n30OKfxbMxY5xSTO1tBJaqTWojkiPZ1LCA3p7SGHv0rNFWhQWZnu0jRNa0f5MoPA6KoHQEA6ny96AFQa03ZU9-fVnP59izgkH60Nxp9-X5MJkBXFpGHa0J397GoYFaWkYJJWvpP9f86bo81mElOQxYLLZB5w9bkKi1O0mhrfkL4tfpRI
CODEN EJORDT
CitedBy_id crossref_primary_10_1155_2013_297383
crossref_primary_10_1007_s00500_016_2028_y
crossref_primary_10_1016_j_amc_2011_02_070
crossref_primary_10_1016_j_accinf_2017_06_004
crossref_primary_10_1007_s00500_015_1595_7
crossref_primary_10_1016_j_accinf_2018_11_004
crossref_primary_10_4236_ajor_2011_13014
crossref_primary_10_2139_ssrn_2511629
crossref_primary_10_1016_j_cie_2017_06_009
crossref_primary_10_1016_j_cie_2012_02_007
crossref_primary_10_1109_ACCESS_2021_3109298
crossref_primary_10_1007_s00500_020_05391_9
crossref_primary_10_1109_ACCESS_2019_2927277
crossref_primary_10_1016_j_cie_2018_03_023
Cites_doi 10.1162/106365600568202
10.1142/S0218195993000063
10.1023/A:1006504901164
10.1016/B978-0-08-050684-5.50016-1
ContentType Journal Article
Copyright 2005 Elsevier B.V.
Copyright Elsevier Sequoia S.A. Dec 16, 2006
Copyright_xml – notice: 2005 Elsevier B.V.
– notice: Copyright Elsevier Sequoia S.A. Dec 16, 2006
DBID AAYXX
CITATION
DKI
X2L
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ejor.2005.02.078
DatabaseName CrossRef
RePEc IDEAS
RePEc
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: DKI
  name: RePEc IDEAS
  url: http://ideas.repec.org/
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1872-6860
EndPage 1907
ExternalDocumentID 1155388181
eeeejores_v_3a175_3ay_3a2006_3ai_3a3_3ap_3a1890_1907_htm
10_1016_j_ejor_2005_02_078
S0377221705004820
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29G
4.4
41~
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADIYS
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
VH1
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
02
08R
0R
1
41
6XO
8P
AAPBV
ABFLS
ADALY
DKI
G-
HZ
IPNFZ
K
M
MS
PQEST
STF
X
X2L
7SC
7TB
8FD
AFXIZ
AGCQF
AGRNS
FR3
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c451t-3a9ce959b41499b51f2d520ef4c9fd71e81718bbc90fce3c6e59939f6256f36c3
IEDL.DBID AIKHN
ISSN 0377-2217
IngestDate Fri Jul 25 07:37:54 EDT 2025
Wed Aug 18 03:50:57 EDT 2021
Thu Apr 24 23:03:09 EDT 2025
Wed Oct 01 00:55:29 EDT 2025
Fri Feb 23 02:32:19 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Covering problems
Scheduling
Visual search
Genetic algorithm
Visual area
Multiagent
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-3a9ce959b41499b51f2d520ef4c9fd71e81718bbc90fce3c6e59939f6256f36c3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 204277056
PQPubID 45678
PageCount 18
ParticipantIDs proquest_journals_204277056
repec_primary_eeeejores_v_3a175_3ay_3a2006_3ai_3a3_3ap_3a1890_1907_htm
crossref_citationtrail_10_1016_j_ejor_2005_02_078
crossref_primary_10_1016_j_ejor_2005_02_078
elsevier_sciencedirect_doi_10_1016_j_ejor_2005_02_078
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-12-16
PublicationDateYYYYMMDD 2006-12-16
PublicationDate_xml – month: 12
  year: 2006
  text: 2006-12-16
  day: 16
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationSeriesTitle European Journal of Operational Research
PublicationTitle European journal of operational research
PublicationYear 2006
Publisher Elsevier B.V
Elsevier
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier B.V
– name: Elsevier
– name: Elsevier Sequoia S.A
References Nilsson, Wood (bib20) 1993; 3
James (bib15) 1985
J.D. Schaffer, A. Morishima, An adaptive crossover distribution mechanism for genetic algorithms, in: J.J. Grefenstette (Ed.), Genetic Algorithms and their Applications: Proceedings of the Second International Conference on Genetic Algorithms, 1987, pp. 36–40.
J.J. Grefenstette, J. John, A Users Guide to GENESIS, Navy Center for Applied Research in Artificial Intelligence, Naval Research Laboratory, Washington, DC, 1987.
G. Syswerda, Uniform crossover in genetic algorithms, in: Proceedings of the Third International Conference on Genetic Algorithms, 1989, pp. 2–9.
K.A. De Jong, An analysis of the behaviour of a class of genetic adaptive systems. Ph.D. thesis, University of Michigan, Diss. Abstr. Int., 5140B, University Microfilms No. 76-9381 36 (10) (1975).
Eshelman, Caruna, Schaffer (bib6) 1989
R. Franklin, C.K. Ray, S. Mehta, Geometric algorithms for sitting of air defense missile batteries, 1994.
Grefenstette (bib10) 1986; 16
Zitzler, Deb, Thiele (bib26) 2000; 8
Herrera, Lozano, Verdegay (bib13) 1998; 12
L.A. Albert, D.E. Goldberg, Efficient evaluation genetic algorithm under integrated fitness functions, IlliGAL (Report no. 2001024), 2001.
Holland (bib14) 1975
Wright (bib25) 1991
Montgomery (bib19) 2001
Back (bib2) 1996
Garey, Johnson (bib8) 1979
Miller, Goldberg (bib18) 1995
Laumanns, Zitzler, Thiele (bib16) 2000; vol. 1
J.D. Schaffer, R.A. Caruana, L. Eshelman, R. Das, A study of control parameters affecting online performance of genetic algorithms for function optimization, in: J.D. Schaffer (Ed.), Proceedings of the Third International Conference on Genetic Algorithms, 1989, pp. 51–60.
Michalewicz (bib17) 1992
Goldberg (bib9) 1989
Deb, Agrawal (bib4) 1998; vol. 5
K. Sastry, D.E. Goldberg, How well does a single-point crossover mix building blocks with tight linkage? in: Proceedings of the International Symposium on Computer and Information Science, Also IlliGAL Report no. 2002013, 2002.
Grefenstette, Baker (bib12) 1989
Deb, Agrawal, Pratap, Meyarivan (bib5) 2000
10.1016/j.ejor.2005.02.078_bib1
Montgomery (10.1016/j.ejor.2005.02.078_bib19) 2001
10.1016/j.ejor.2005.02.078_bib3
Nilsson (10.1016/j.ejor.2005.02.078_bib20) 1993; 3
Holland (10.1016/j.ejor.2005.02.078_bib14) 1975
Back (10.1016/j.ejor.2005.02.078_bib2) 1996
10.1016/j.ejor.2005.02.078_bib7
10.1016/j.ejor.2005.02.078_bib11
Michalewicz (10.1016/j.ejor.2005.02.078_bib17) 1992
Garey (10.1016/j.ejor.2005.02.078_bib8) 1979
Grefenstette (10.1016/j.ejor.2005.02.078_bib10) 1986; 16
Herrera (10.1016/j.ejor.2005.02.078_bib13) 1998; 12
Wright (10.1016/j.ejor.2005.02.078_bib25) 1991
Grefenstette (10.1016/j.ejor.2005.02.078_bib12) 1989
Deb (10.1016/j.ejor.2005.02.078_bib5) 2000
Eshelman (10.1016/j.ejor.2005.02.078_bib6) 1989
Deb (10.1016/j.ejor.2005.02.078_bib4) 1998; vol. 5
Laumanns (10.1016/j.ejor.2005.02.078_bib16) 2000; vol. 1
Goldberg (10.1016/j.ejor.2005.02.078_bib9) 1989
Miller (10.1016/j.ejor.2005.02.078_bib18) 1995
10.1016/j.ejor.2005.02.078_bib24
James (10.1016/j.ejor.2005.02.078_bib15) 1985
Zitzler (10.1016/j.ejor.2005.02.078_bib26) 2000; 8
10.1016/j.ejor.2005.02.078_bib21
10.1016/j.ejor.2005.02.078_bib23
10.1016/j.ejor.2005.02.078_bib22
References_xml – year: 1989
  ident: bib6
  article-title: Biases in the crossover landscape
  publication-title: Proceedings of the Third International Conference on Genetic Algorithms
– year: 1985
  ident: bib15
  article-title: Adaptive selection methods for genetic algorithms
  publication-title: Proceedings of the First International Conference on Genetic Algorithms and their Applications
– volume: vol. 1
  start-page: 46
  year: 2000
  end-page: 53
  ident: bib16
  article-title: A unified model for multi-objective evolutionary algorithms with elitism
  publication-title: Congress on Evolutionary Computation
– volume: 3
  start-page: 85
  year: 1993
  end-page: 105
  ident: bib20
  article-title: Optimum guard covers and
  publication-title: International Journal of Computational Geometry and Applications
– reference: J.D. Schaffer, R.A. Caruana, L. Eshelman, R. Das, A study of control parameters affecting online performance of genetic algorithms for function optimization, in: J.D. Schaffer (Ed.), Proceedings of the Third International Conference on Genetic Algorithms, 1989, pp. 51–60.
– start-page: 193
  year: 1995
  end-page: 212
  ident: bib18
  article-title: Genetic algorithms, tournament selection and the effects of noise
  publication-title: Complex Systems
– reference: R. Franklin, C.K. Ray, S. Mehta, Geometric algorithms for sitting of air defense missile batteries, 1994.
– reference: J.J. Grefenstette, J. John, A Users Guide to GENESIS, Navy Center for Applied Research in Artificial Intelligence, Naval Research Laboratory, Washington, DC, 1987.
– year: 1979
  ident: bib8
  article-title: Computers and Intractability: A Guide to the Theory of NP-Completeness
– year: 2001
  ident: bib19
  article-title: Design and Analysis of Experiments
– reference: K.A. De Jong, An analysis of the behaviour of a class of genetic adaptive systems. Ph.D. thesis, University of Michigan, Diss. Abstr. Int., 5140B, University Microfilms No. 76-9381 36 (10) (1975).
– volume: 16
  start-page: 122
  year: 1986
  end-page: 128
  ident: bib10
  article-title: Optimisation of control parameters for genetic algorithms
  publication-title: IEEE Transactions of SMC
– year: 1975
  ident: bib14
  article-title: Adaptation in Natural and Artificial Systems
– reference: G. Syswerda, Uniform crossover in genetic algorithms, in: Proceedings of the Third International Conference on Genetic Algorithms, 1989, pp. 2–9.
– year: 1996
  ident: bib2
  article-title: Evolutionary Algorithms in Theory and Practice
– year: 1989
  ident: bib12
  article-title: How genetic algorithms work a critical look at implicit parallelism
  publication-title: Proceedings of the Third International Conference of Genetic Algorithms
– start-page: 849
  year: 2000
  end-page: 858
  ident: bib5
  article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA II
  publication-title: Parallel Problem Solving from Nature—PPSN VI
– year: 1991
  ident: bib25
  article-title: Genetic algorithms for real parameter optimization
  publication-title: Foundations of Genetic Algorithms
– reference: K. Sastry, D.E. Goldberg, How well does a single-point crossover mix building blocks with tight linkage? in: Proceedings of the International Symposium on Computer and Information Science, Also IlliGAL Report no. 2002013, 2002.
– reference: J.D. Schaffer, A. Morishima, An adaptive crossover distribution mechanism for genetic algorithms, in: J.J. Grefenstette (Ed.), Genetic Algorithms and their Applications: Proceedings of the Second International Conference on Genetic Algorithms, 1987, pp. 36–40.
– year: 1989
  ident: bib9
  article-title: Genetic Algorithms in Search, Optimization and Machine Learning
– reference: L.A. Albert, D.E. Goldberg, Efficient evaluation genetic algorithm under integrated fitness functions, IlliGAL (Report no. 2001024), 2001.
– volume: vol. 5
  start-page: 265
  year: 1998
  end-page: 286
  ident: bib4
  article-title: Understanding interactions among genetic algorithm parameters
  publication-title: Foundations of Genetic Algorithms
– volume: 8
  start-page: 173
  year: 2000
  end-page: 195
  ident: bib26
  article-title: Comparison of multiobjective evolutionary algorithms: Empirical results
  publication-title: Evolutionary Computation
– volume: 12
  start-page: 265
  year: 1998
  end-page: 319
  ident: bib13
  article-title: Tackling real-coded genetic algorithms: Operators and tools for behavioral analysis
  publication-title: Artificial Intelligence Review
– year: 1992
  ident: bib17
  article-title: Genetic Algorithms
– volume: vol. 5
  start-page: 265
  year: 1998
  ident: 10.1016/j.ejor.2005.02.078_bib4
  article-title: Understanding interactions among genetic algorithm parameters
– start-page: 193
  year: 1995
  ident: 10.1016/j.ejor.2005.02.078_bib18
  article-title: Genetic algorithms, tournament selection and the effects of noise
  publication-title: Complex Systems
– ident: 10.1016/j.ejor.2005.02.078_bib23
– year: 1975
  ident: 10.1016/j.ejor.2005.02.078_bib14
– year: 1989
  ident: 10.1016/j.ejor.2005.02.078_bib12
  article-title: How genetic algorithms work a critical look at implicit parallelism
– year: 1979
  ident: 10.1016/j.ejor.2005.02.078_bib8
– ident: 10.1016/j.ejor.2005.02.078_bib21
– volume: 8
  start-page: 173
  issue: 2
  year: 2000
  ident: 10.1016/j.ejor.2005.02.078_bib26
  article-title: Comparison of multiobjective evolutionary algorithms: Empirical results
  publication-title: Evolutionary Computation
  doi: 10.1162/106365600568202
– volume: 3
  start-page: 85
  issue: 1
  year: 1993
  ident: 10.1016/j.ejor.2005.02.078_bib20
  article-title: Optimum guard covers and m-Watchmen Routs for restricted polygons
  publication-title: International Journal of Computational Geometry and Applications
  doi: 10.1142/S0218195993000063
– start-page: 849
  year: 2000
  ident: 10.1016/j.ejor.2005.02.078_bib5
  article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA II
– volume: 12
  start-page: 265
  issue: 4
  year: 1998
  ident: 10.1016/j.ejor.2005.02.078_bib13
  article-title: Tackling real-coded genetic algorithms: Operators and tools for behavioral analysis
  publication-title: Artificial Intelligence Review
  doi: 10.1023/A:1006504901164
– ident: 10.1016/j.ejor.2005.02.078_bib22
– year: 1991
  ident: 10.1016/j.ejor.2005.02.078_bib25
  article-title: Genetic algorithms for real parameter optimization
  doi: 10.1016/B978-0-08-050684-5.50016-1
– volume: vol. 1
  start-page: 46
  year: 2000
  ident: 10.1016/j.ejor.2005.02.078_bib16
  article-title: A unified model for multi-objective evolutionary algorithms with elitism
– ident: 10.1016/j.ejor.2005.02.078_bib24
– year: 1996
  ident: 10.1016/j.ejor.2005.02.078_bib2
– volume: 16
  start-page: 122
  issue: 1
  year: 1986
  ident: 10.1016/j.ejor.2005.02.078_bib10
  article-title: Optimisation of control parameters for genetic algorithms
  publication-title: IEEE Transactions of SMC
– year: 1992
  ident: 10.1016/j.ejor.2005.02.078_bib17
– ident: 10.1016/j.ejor.2005.02.078_bib7
– year: 1989
  ident: 10.1016/j.ejor.2005.02.078_bib9
– ident: 10.1016/j.ejor.2005.02.078_bib11
– year: 2001
  ident: 10.1016/j.ejor.2005.02.078_bib19
– ident: 10.1016/j.ejor.2005.02.078_bib1
– ident: 10.1016/j.ejor.2005.02.078_bib3
– year: 1985
  ident: 10.1016/j.ejor.2005.02.078_bib15
  article-title: Adaptive selection methods for genetic algorithms
– year: 1989
  ident: 10.1016/j.ejor.2005.02.078_bib6
  article-title: Biases in the crossover landscape
SSID ssj0001515
Score 1.9502382
Snippet Using genetic algorithms (GA) for solving NP-hard problems is becoming more and more frequent. This paper presents a use of GA with a new selection approach...
SourceID proquest
repec
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1890
SubjectTerms Covering problems
Genetic algorithm
Genetic algorithms
Multiagent
Scheduling
Scheduling algorithms
Selection
Studies
Visual area
Visual search
Title Multiagent visual area coverage using a new genetic algorithm selection scheme
URI https://dx.doi.org/10.1016/j.ejor.2005.02.078
http://econpapers.repec.org/article/eeeejores/v_3a175_3ay_3a2006_3ai_3a3_3ap_3a1890-1907.htm
https://www.proquest.com/docview/204277056
Volume 175
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: ACRLP
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: AIKHN
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: AKRWK
  dateStart: 19770101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1da9sw8OgSGNvDumUry7oWPextuLElf0iPpVtIV5aXrdA3Ycmn1qX5IHELe9lv38mRQwalDzXIxvqy0J3uTvJ9AHwhHChSW7pI2kpFaWUwUjK3UUn8AqU0Lq78OeTPaT65TH9cZVd7cNbZwni1ykD7NzS9pdYhZxRmc7Ss69GvWJBkyL07GI-GnPbtfeI_Uvagf3p-MZluCbLn2e3PhKKIfINgO7NR88LbxSocrfCT2Edbe5w_7cif_RUu0e6wofFbeBPkR3a6GeI72MP5AF526usD2O_CNLCwagfwesfn4HuYtia3pbeoYg_1-p46K0lwZNbrclI2811ds5KRvM2oljdyZOXd9WJVNzcztm7j5hAwGW2LcYYf4HL8_ffZJApBFSKbZkkTiVJZVJkyKe2NlMkSx6uMx-hSq1xVJCgTYlfGWBU7i8LmmJEIoxztk3IncisOoDdfzPEjMC6NVATOisDsfczQzbocHTdEQFGIISTdVGobPI77wBd3ulMtu9V--n0ozEzHXNP0D-Hrts1y42_jydpZByH9H9ZoYghPtjvswKnDml1TecoLwqZ8COMWwtsBIF3UA671gxYlCVx0_0PJH8fQo6YkKC19oVT0VRUX-qaZfXrm8A7hFQ_xkZL8M_Sa1T0ekezTmGN4cfI3OQ4YTm_fLs7_Abc1A4I
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CAn0c-ti2dJs-dOitOGtLlm0dS-iybZO9NIHchC2PEofsg10n0Et-e2a8crqFkkMNssGWZKEZa76R5wHwmXggT13po8LVJkrrCiNTZC4qSV5gUVQ-rnkf8niaTU7TH2f6bAcOe18YNqsMa_9mTe9W63BnFGZztGya0a9YETKUHA6G2VCS3r6XapmzBnZw-8fOgyV29yshzyOuHjxnNkZeeLlYhY0VeRBzrrV_S6ct9Lm3wiW6LSE0fgHPAnoUXzcDfAk7OB_Ao954fQDP-yQNInyzA3i6FXHwFUw7h9uS_anETbO-ps5Kgo3CsSUn3Rbc1bkoBaFtQbXYxVGUV-eLVdNezMS6y5pDpBSkFOMMX8Pp-NvJ4SQKKRUil-qkjVRpHBptqpQ0I1PpxMtayxh96oyv8wSLhIRVVTkTe4fKZagJwBhPWlLmVebUG9idL-b4FoQsqsIQMWsiMkeYoZPzGXpZ0fKJSg0h6afSuhBvnNNeXNnesOzS8vRzIkxtY2lp-ofw5b7NchNt48HauqeQ_YtnLImDB9vt9-S04Ytd0_OUeIfg4BDGHYXvB4B0UA-4tjdWlQS36PybCm_G0KWhoqgs-WFh6K0mzu1FO3v3n8P7BI8nJ8dH9uj79Oc-PJEhU1KSvYfddnWNHwgFtdXHjsvvAMv0A1E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiagent+visual+area+coverage+using+a+new+genetic+algorithm+selection+scheme&rft.jtitle=European+journal+of+operational+research&rft.au=Stern%2C+Helman&rft.au=Chassidim%2C+Yoash&rft.au=Zofi%2C+Moshe&rft.date=2006-12-16&rft.pub=Elsevier+B.V&rft.issn=0377-2217&rft.eissn=1872-6860&rft.volume=175&rft.issue=3&rft.spage=1890&rft.epage=1907&rft_id=info:doi/10.1016%2Fj.ejor.2005.02.078&rft.externalDocID=S0377221705004820
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon