Multiagent visual area coverage using a new genetic algorithm selection scheme
Using genetic algorithms (GA) for solving NP-hard problems is becoming more and more frequent. This paper presents a use of GA with a new selection approach called the queen GA. The main idea is not to select both parents from the entire population, but to create a subgroup of better solutions (the...
Saved in:
| Published in | European journal of operational research Vol. 175; no. 3; pp. 1890 - 1907 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Amsterdam
Elsevier B.V
16.12.2006
Elsevier Elsevier Sequoia S.A |
| Series | European Journal of Operational Research |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0377-2217 1872-6860 |
| DOI | 10.1016/j.ejor.2005.02.078 |
Cover
| Abstract | Using genetic algorithms (GA) for solving NP-hard problems is becoming more and more frequent. This paper presents a use of GA with a new selection approach called the queen GA. The main idea is not to select both parents from the entire population, but to create a subgroup of better solutions (the queen cohort), and to use at least one of its members in each performed crossover. We demonstrate the use of the queen GA for the problem of repositioning observers across a polygonal area with obstacles in order to maximize the visual area coverage for a given time horizon. The queen GA gives superior results over a GA with different selection methods (i.e. proportion, ranking and tournament) at the 0.01 significance level. These comparative results were duplicated when elitism was included. |
|---|---|
| AbstractList | Using genetic algorithms (GA) for solving NP-hard problems is becoming more and more frequent. This paper presents a use of GA with a new selection approach called the queen GA. The main idea is not to select both parents from the entire population, but to create a subgroup of better solutions (the queen cohort), and to use at least one of its members in each performed crossover. We demonstrate the use of the queen GA for the problem of repositioning observers across a polygonal area with obstacles in order to maximize the visual area coverage for a given time horizon. The queen GA gives superior results over a GA with different selection methods (i.e. proportion, ranking and tournament) at the 0.01 significance level. These comparative results were duplicated when elitism was included. Using genetic algorithms (GA) for solving NP-hard problems is becoming more and more frequent. This paper presents a use of GA with a new selection approach called the queen GA. The main idea is not to select both parents from the entire population, but to create a subgroup of better solutions (the queen cohort), and to use at least one of its members in each performed crossover. We demonstrate the use of the queen GA for the problem of repositioning observers across a polygonal area with obstacles in order to maximize the visual area coverage for a given time horizon. The queen GA gives superior results over a GA with different selection methods (i.e. proportion, ranking and tournament) at the 0.01 significance level. These comparative results were duplicated when elitism was included. [PUBLICATION ABSTRACT] |
| Author | Chassidim, Yoash Stern, Helman Zofi, Moshe |
| Author_xml | – sequence: 1 givenname: Helman surname: Stern fullname: Stern, Helman email: helman@bgu.ac.il – sequence: 2 givenname: Yoash surname: Chassidim fullname: Chassidim, Yoash email: yoash@bgu.ac.il – sequence: 3 givenname: Moshe surname: Zofi fullname: Zofi, Moshe email: zofi@bgu.ac.il |
| BackLink | http://econpapers.repec.org/article/eeeejores/v_3a175_3ay_3a2006_3ai_3a3_3ap_3a1890-1907.htm$$DView record in RePEc |
| BookMark | eNp9UU1v3CAQRVUqdfPxB3JCvdsdsDFG6qWK2rRSkl7aM2LZ8S6W12wBb5V_n1lte8khSI-R4L038OaSXcxxRsZuBdQCRPdprHGMqZYAqgZZg-7fsZXotay6voMLtoJG60pKoT-wy5xHABBKqBV7elymEtwW58KPIS9u4i6h4z4eMdExX3KYt9zxGf9yYmEJnrtpG1Mouz3POKEvIc48-x3u8Zq9H9yU8eZfvWK_v339dfe9evh5_-Puy0PlWyVK1Tjj0SizbkVrzFqJQW6UBBxab4aNFtgLLfr12hsYPDa-Q2VMY4ZOqm5oOt9csY9n30OKfxbMxY5xSTO1tBJaqTWojkiPZ1LCA3p7SGHv0rNFWhQWZnu0jRNa0f5MoPA6KoHQEA6ny96AFQa03ZU9-fVnP59izgkH60Nxp9-X5MJkBXFpGHa0J397GoYFaWkYJJWvpP9f86bo81mElOQxYLLZB5w9bkKi1O0mhrfkL4tfpRI |
| CODEN | EJORDT |
| CitedBy_id | crossref_primary_10_1155_2013_297383 crossref_primary_10_1007_s00500_016_2028_y crossref_primary_10_1016_j_amc_2011_02_070 crossref_primary_10_1016_j_accinf_2017_06_004 crossref_primary_10_1007_s00500_015_1595_7 crossref_primary_10_1016_j_accinf_2018_11_004 crossref_primary_10_4236_ajor_2011_13014 crossref_primary_10_2139_ssrn_2511629 crossref_primary_10_1016_j_cie_2017_06_009 crossref_primary_10_1016_j_cie_2012_02_007 crossref_primary_10_1109_ACCESS_2021_3109298 crossref_primary_10_1007_s00500_020_05391_9 crossref_primary_10_1109_ACCESS_2019_2927277 crossref_primary_10_1016_j_cie_2018_03_023 |
| Cites_doi | 10.1162/106365600568202 10.1142/S0218195993000063 10.1023/A:1006504901164 10.1016/B978-0-08-050684-5.50016-1 |
| ContentType | Journal Article |
| Copyright | 2005 Elsevier B.V. Copyright Elsevier Sequoia S.A. Dec 16, 2006 |
| Copyright_xml | – notice: 2005 Elsevier B.V. – notice: Copyright Elsevier Sequoia S.A. Dec 16, 2006 |
| DBID | AAYXX CITATION DKI X2L 7SC 7TB 8FD FR3 JQ2 L7M L~C L~D |
| DOI | 10.1016/j.ejor.2005.02.078 |
| DatabaseName | CrossRef RePEc IDEAS RePEc Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: DKI name: RePEc IDEAS url: http://ideas.repec.org/ sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Business |
| EISSN | 1872-6860 |
| EndPage | 1907 |
| ExternalDocumentID | 1155388181 eeeejores_v_3a175_3ay_3a2006_3ai_3a3_3ap_3a1890_1907_htm 10_1016_j_ejor_2005_02_078 S0377221705004820 |
| Genre | Feature |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29G 4.4 41~ 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN AAYOK ABAOU ABBOA ABFNM ABFRF ABJNI ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIWK ACNCT ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADIYS ADJOM ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HVGLF HZ~ IHE J1W KOM LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SCC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSV SSW SSZ T5K TAE TN5 U5U VH1 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 02 08R 0R 1 41 6XO 8P AAPBV ABFLS ADALY DKI G- HZ IPNFZ K M MS PQEST STF X X2L 7SC 7TB 8FD AFXIZ AGCQF AGRNS FR3 JQ2 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c451t-3a9ce959b41499b51f2d520ef4c9fd71e81718bbc90fce3c6e59939f6256f36c3 |
| IEDL.DBID | AIKHN |
| ISSN | 0377-2217 |
| IngestDate | Fri Jul 25 07:37:54 EDT 2025 Wed Aug 18 03:50:57 EDT 2021 Thu Apr 24 23:03:09 EDT 2025 Wed Oct 01 00:55:29 EDT 2025 Fri Feb 23 02:32:19 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Covering problems Scheduling Visual search Genetic algorithm Visual area Multiagent |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c451t-3a9ce959b41499b51f2d520ef4c9fd71e81718bbc90fce3c6e59939f6256f36c3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| PQID | 204277056 |
| PQPubID | 45678 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_204277056 repec_primary_eeeejores_v_3a175_3ay_3a2006_3ai_3a3_3ap_3a1890_1907_htm crossref_citationtrail_10_1016_j_ejor_2005_02_078 crossref_primary_10_1016_j_ejor_2005_02_078 elsevier_sciencedirect_doi_10_1016_j_ejor_2005_02_078 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2006-12-16 |
| PublicationDateYYYYMMDD | 2006-12-16 |
| PublicationDate_xml | – month: 12 year: 2006 text: 2006-12-16 day: 16 |
| PublicationDecade | 2000 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationSeriesTitle | European Journal of Operational Research |
| PublicationTitle | European journal of operational research |
| PublicationYear | 2006 |
| Publisher | Elsevier B.V Elsevier Elsevier Sequoia S.A |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier – name: Elsevier Sequoia S.A |
| References | Nilsson, Wood (bib20) 1993; 3 James (bib15) 1985 J.D. Schaffer, A. Morishima, An adaptive crossover distribution mechanism for genetic algorithms, in: J.J. Grefenstette (Ed.), Genetic Algorithms and their Applications: Proceedings of the Second International Conference on Genetic Algorithms, 1987, pp. 36–40. J.J. Grefenstette, J. John, A Users Guide to GENESIS, Navy Center for Applied Research in Artificial Intelligence, Naval Research Laboratory, Washington, DC, 1987. G. Syswerda, Uniform crossover in genetic algorithms, in: Proceedings of the Third International Conference on Genetic Algorithms, 1989, pp. 2–9. K.A. De Jong, An analysis of the behaviour of a class of genetic adaptive systems. Ph.D. thesis, University of Michigan, Diss. Abstr. Int., 5140B, University Microfilms No. 76-9381 36 (10) (1975). Eshelman, Caruna, Schaffer (bib6) 1989 R. Franklin, C.K. Ray, S. Mehta, Geometric algorithms for sitting of air defense missile batteries, 1994. Grefenstette (bib10) 1986; 16 Zitzler, Deb, Thiele (bib26) 2000; 8 Herrera, Lozano, Verdegay (bib13) 1998; 12 L.A. Albert, D.E. Goldberg, Efficient evaluation genetic algorithm under integrated fitness functions, IlliGAL (Report no. 2001024), 2001. Holland (bib14) 1975 Wright (bib25) 1991 Montgomery (bib19) 2001 Back (bib2) 1996 Garey, Johnson (bib8) 1979 Miller, Goldberg (bib18) 1995 Laumanns, Zitzler, Thiele (bib16) 2000; vol. 1 J.D. Schaffer, R.A. Caruana, L. Eshelman, R. Das, A study of control parameters affecting online performance of genetic algorithms for function optimization, in: J.D. Schaffer (Ed.), Proceedings of the Third International Conference on Genetic Algorithms, 1989, pp. 51–60. Michalewicz (bib17) 1992 Goldberg (bib9) 1989 Deb, Agrawal (bib4) 1998; vol. 5 K. Sastry, D.E. Goldberg, How well does a single-point crossover mix building blocks with tight linkage? in: Proceedings of the International Symposium on Computer and Information Science, Also IlliGAL Report no. 2002013, 2002. Grefenstette, Baker (bib12) 1989 Deb, Agrawal, Pratap, Meyarivan (bib5) 2000 10.1016/j.ejor.2005.02.078_bib1 Montgomery (10.1016/j.ejor.2005.02.078_bib19) 2001 10.1016/j.ejor.2005.02.078_bib3 Nilsson (10.1016/j.ejor.2005.02.078_bib20) 1993; 3 Holland (10.1016/j.ejor.2005.02.078_bib14) 1975 Back (10.1016/j.ejor.2005.02.078_bib2) 1996 10.1016/j.ejor.2005.02.078_bib7 10.1016/j.ejor.2005.02.078_bib11 Michalewicz (10.1016/j.ejor.2005.02.078_bib17) 1992 Garey (10.1016/j.ejor.2005.02.078_bib8) 1979 Grefenstette (10.1016/j.ejor.2005.02.078_bib10) 1986; 16 Herrera (10.1016/j.ejor.2005.02.078_bib13) 1998; 12 Wright (10.1016/j.ejor.2005.02.078_bib25) 1991 Grefenstette (10.1016/j.ejor.2005.02.078_bib12) 1989 Deb (10.1016/j.ejor.2005.02.078_bib5) 2000 Eshelman (10.1016/j.ejor.2005.02.078_bib6) 1989 Deb (10.1016/j.ejor.2005.02.078_bib4) 1998; vol. 5 Laumanns (10.1016/j.ejor.2005.02.078_bib16) 2000; vol. 1 Goldberg (10.1016/j.ejor.2005.02.078_bib9) 1989 Miller (10.1016/j.ejor.2005.02.078_bib18) 1995 10.1016/j.ejor.2005.02.078_bib24 James (10.1016/j.ejor.2005.02.078_bib15) 1985 Zitzler (10.1016/j.ejor.2005.02.078_bib26) 2000; 8 10.1016/j.ejor.2005.02.078_bib21 10.1016/j.ejor.2005.02.078_bib23 10.1016/j.ejor.2005.02.078_bib22 |
| References_xml | – year: 1989 ident: bib6 article-title: Biases in the crossover landscape publication-title: Proceedings of the Third International Conference on Genetic Algorithms – year: 1985 ident: bib15 article-title: Adaptive selection methods for genetic algorithms publication-title: Proceedings of the First International Conference on Genetic Algorithms and their Applications – volume: vol. 1 start-page: 46 year: 2000 end-page: 53 ident: bib16 article-title: A unified model for multi-objective evolutionary algorithms with elitism publication-title: Congress on Evolutionary Computation – volume: 3 start-page: 85 year: 1993 end-page: 105 ident: bib20 article-title: Optimum guard covers and publication-title: International Journal of Computational Geometry and Applications – reference: J.D. Schaffer, R.A. Caruana, L. Eshelman, R. Das, A study of control parameters affecting online performance of genetic algorithms for function optimization, in: J.D. Schaffer (Ed.), Proceedings of the Third International Conference on Genetic Algorithms, 1989, pp. 51–60. – start-page: 193 year: 1995 end-page: 212 ident: bib18 article-title: Genetic algorithms, tournament selection and the effects of noise publication-title: Complex Systems – reference: R. Franklin, C.K. Ray, S. Mehta, Geometric algorithms for sitting of air defense missile batteries, 1994. – reference: J.J. Grefenstette, J. John, A Users Guide to GENESIS, Navy Center for Applied Research in Artificial Intelligence, Naval Research Laboratory, Washington, DC, 1987. – year: 1979 ident: bib8 article-title: Computers and Intractability: A Guide to the Theory of NP-Completeness – year: 2001 ident: bib19 article-title: Design and Analysis of Experiments – reference: K.A. De Jong, An analysis of the behaviour of a class of genetic adaptive systems. Ph.D. thesis, University of Michigan, Diss. Abstr. Int., 5140B, University Microfilms No. 76-9381 36 (10) (1975). – volume: 16 start-page: 122 year: 1986 end-page: 128 ident: bib10 article-title: Optimisation of control parameters for genetic algorithms publication-title: IEEE Transactions of SMC – year: 1975 ident: bib14 article-title: Adaptation in Natural and Artificial Systems – reference: G. Syswerda, Uniform crossover in genetic algorithms, in: Proceedings of the Third International Conference on Genetic Algorithms, 1989, pp. 2–9. – year: 1996 ident: bib2 article-title: Evolutionary Algorithms in Theory and Practice – year: 1989 ident: bib12 article-title: How genetic algorithms work a critical look at implicit parallelism publication-title: Proceedings of the Third International Conference of Genetic Algorithms – start-page: 849 year: 2000 end-page: 858 ident: bib5 article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA II publication-title: Parallel Problem Solving from Nature—PPSN VI – year: 1991 ident: bib25 article-title: Genetic algorithms for real parameter optimization publication-title: Foundations of Genetic Algorithms – reference: K. Sastry, D.E. Goldberg, How well does a single-point crossover mix building blocks with tight linkage? in: Proceedings of the International Symposium on Computer and Information Science, Also IlliGAL Report no. 2002013, 2002. – reference: J.D. Schaffer, A. Morishima, An adaptive crossover distribution mechanism for genetic algorithms, in: J.J. Grefenstette (Ed.), Genetic Algorithms and their Applications: Proceedings of the Second International Conference on Genetic Algorithms, 1987, pp. 36–40. – year: 1989 ident: bib9 article-title: Genetic Algorithms in Search, Optimization and Machine Learning – reference: L.A. Albert, D.E. Goldberg, Efficient evaluation genetic algorithm under integrated fitness functions, IlliGAL (Report no. 2001024), 2001. – volume: vol. 5 start-page: 265 year: 1998 end-page: 286 ident: bib4 article-title: Understanding interactions among genetic algorithm parameters publication-title: Foundations of Genetic Algorithms – volume: 8 start-page: 173 year: 2000 end-page: 195 ident: bib26 article-title: Comparison of multiobjective evolutionary algorithms: Empirical results publication-title: Evolutionary Computation – volume: 12 start-page: 265 year: 1998 end-page: 319 ident: bib13 article-title: Tackling real-coded genetic algorithms: Operators and tools for behavioral analysis publication-title: Artificial Intelligence Review – year: 1992 ident: bib17 article-title: Genetic Algorithms – volume: vol. 5 start-page: 265 year: 1998 ident: 10.1016/j.ejor.2005.02.078_bib4 article-title: Understanding interactions among genetic algorithm parameters – start-page: 193 year: 1995 ident: 10.1016/j.ejor.2005.02.078_bib18 article-title: Genetic algorithms, tournament selection and the effects of noise publication-title: Complex Systems – ident: 10.1016/j.ejor.2005.02.078_bib23 – year: 1975 ident: 10.1016/j.ejor.2005.02.078_bib14 – year: 1989 ident: 10.1016/j.ejor.2005.02.078_bib12 article-title: How genetic algorithms work a critical look at implicit parallelism – year: 1979 ident: 10.1016/j.ejor.2005.02.078_bib8 – ident: 10.1016/j.ejor.2005.02.078_bib21 – volume: 8 start-page: 173 issue: 2 year: 2000 ident: 10.1016/j.ejor.2005.02.078_bib26 article-title: Comparison of multiobjective evolutionary algorithms: Empirical results publication-title: Evolutionary Computation doi: 10.1162/106365600568202 – volume: 3 start-page: 85 issue: 1 year: 1993 ident: 10.1016/j.ejor.2005.02.078_bib20 article-title: Optimum guard covers and m-Watchmen Routs for restricted polygons publication-title: International Journal of Computational Geometry and Applications doi: 10.1142/S0218195993000063 – start-page: 849 year: 2000 ident: 10.1016/j.ejor.2005.02.078_bib5 article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA II – volume: 12 start-page: 265 issue: 4 year: 1998 ident: 10.1016/j.ejor.2005.02.078_bib13 article-title: Tackling real-coded genetic algorithms: Operators and tools for behavioral analysis publication-title: Artificial Intelligence Review doi: 10.1023/A:1006504901164 – ident: 10.1016/j.ejor.2005.02.078_bib22 – year: 1991 ident: 10.1016/j.ejor.2005.02.078_bib25 article-title: Genetic algorithms for real parameter optimization doi: 10.1016/B978-0-08-050684-5.50016-1 – volume: vol. 1 start-page: 46 year: 2000 ident: 10.1016/j.ejor.2005.02.078_bib16 article-title: A unified model for multi-objective evolutionary algorithms with elitism – ident: 10.1016/j.ejor.2005.02.078_bib24 – year: 1996 ident: 10.1016/j.ejor.2005.02.078_bib2 – volume: 16 start-page: 122 issue: 1 year: 1986 ident: 10.1016/j.ejor.2005.02.078_bib10 article-title: Optimisation of control parameters for genetic algorithms publication-title: IEEE Transactions of SMC – year: 1992 ident: 10.1016/j.ejor.2005.02.078_bib17 – ident: 10.1016/j.ejor.2005.02.078_bib7 – year: 1989 ident: 10.1016/j.ejor.2005.02.078_bib9 – ident: 10.1016/j.ejor.2005.02.078_bib11 – year: 2001 ident: 10.1016/j.ejor.2005.02.078_bib19 – ident: 10.1016/j.ejor.2005.02.078_bib1 – ident: 10.1016/j.ejor.2005.02.078_bib3 – year: 1985 ident: 10.1016/j.ejor.2005.02.078_bib15 article-title: Adaptive selection methods for genetic algorithms – year: 1989 ident: 10.1016/j.ejor.2005.02.078_bib6 article-title: Biases in the crossover landscape |
| SSID | ssj0001515 |
| Score | 1.9502382 |
| Snippet | Using genetic algorithms (GA) for solving NP-hard problems is becoming more and more frequent. This paper presents a use of GA with a new selection approach... |
| SourceID | proquest repec crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1890 |
| SubjectTerms | Covering problems Genetic algorithm Genetic algorithms Multiagent Scheduling Scheduling algorithms Selection Studies Visual area Visual search |
| Title | Multiagent visual area coverage using a new genetic algorithm selection scheme |
| URI | https://dx.doi.org/10.1016/j.ejor.2005.02.078 http://econpapers.repec.org/article/eeeejores/v_3a175_3ay_3a2006_3ai_3a3_3ap_3a1890-1907.htm https://www.proquest.com/docview/204277056 |
| Volume | 175 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-6860 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001515 issn: 0377-2217 databaseCode: ACRLP dateStart: 19950105 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-6860 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001515 issn: 0377-2217 databaseCode: AIKHN dateStart: 19950105 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-6860 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001515 issn: 0377-2217 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-6860 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001515 issn: 0377-2217 databaseCode: AKRWK dateStart: 19770101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1da9sw8OgSGNvDumUry7oWPextuLElf0iPpVtIV5aXrdA3Ycmn1qX5IHELe9lv38mRQwalDzXIxvqy0J3uTvJ9AHwhHChSW7pI2kpFaWUwUjK3UUn8AqU0Lq78OeTPaT65TH9cZVd7cNbZwni1ykD7NzS9pdYhZxRmc7Ss69GvWJBkyL07GI-GnPbtfeI_Uvagf3p-MZluCbLn2e3PhKKIfINgO7NR88LbxSocrfCT2Edbe5w_7cif_RUu0e6wofFbeBPkR3a6GeI72MP5AF526usD2O_CNLCwagfwesfn4HuYtia3pbeoYg_1-p46K0lwZNbrclI2811ds5KRvM2oljdyZOXd9WJVNzcztm7j5hAwGW2LcYYf4HL8_ffZJApBFSKbZkkTiVJZVJkyKe2NlMkSx6uMx-hSq1xVJCgTYlfGWBU7i8LmmJEIoxztk3IncisOoDdfzPEjMC6NVATOisDsfczQzbocHTdEQFGIISTdVGobPI77wBd3ulMtu9V--n0ozEzHXNP0D-Hrts1y42_jydpZByH9H9ZoYghPtjvswKnDml1TecoLwqZ8COMWwtsBIF3UA671gxYlCVx0_0PJH8fQo6YkKC19oVT0VRUX-qaZfXrm8A7hFQ_xkZL8M_Sa1T0ekezTmGN4cfI3OQ4YTm_fLs7_Abc1A4I |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CAn0c-ti2dJs-dOitOGtLlm0dS-iybZO9NIHchC2PEofsg10n0Et-e2a8crqFkkMNssGWZKEZa76R5wHwmXggT13po8LVJkrrCiNTZC4qSV5gUVQ-rnkf8niaTU7TH2f6bAcOe18YNqsMa_9mTe9W63BnFGZztGya0a9YETKUHA6G2VCS3r6XapmzBnZw-8fOgyV29yshzyOuHjxnNkZeeLlYhY0VeRBzrrV_S6ct9Lm3wiW6LSE0fgHPAnoUXzcDfAk7OB_Ao954fQDP-yQNInyzA3i6FXHwFUw7h9uS_anETbO-ps5Kgo3CsSUn3Rbc1bkoBaFtQbXYxVGUV-eLVdNezMS6y5pDpBSkFOMMX8Pp-NvJ4SQKKRUil-qkjVRpHBptqpQ0I1PpxMtayxh96oyv8wSLhIRVVTkTe4fKZagJwBhPWlLmVebUG9idL-b4FoQsqsIQMWsiMkeYoZPzGXpZ0fKJSg0h6afSuhBvnNNeXNnesOzS8vRzIkxtY2lp-ofw5b7NchNt48HauqeQ_YtnLImDB9vt9-S04Ytd0_OUeIfg4BDGHYXvB4B0UA-4tjdWlQS36PybCm_G0KWhoqgs-WFh6K0mzu1FO3v3n8P7BI8nJ8dH9uj79Oc-PJEhU1KSvYfddnWNHwgFtdXHjsvvAMv0A1E |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiagent+visual+area+coverage+using+a+new+genetic+algorithm+selection+scheme&rft.jtitle=European+journal+of+operational+research&rft.au=Stern%2C+Helman&rft.au=Chassidim%2C+Yoash&rft.au=Zofi%2C+Moshe&rft.date=2006-12-16&rft.pub=Elsevier+B.V&rft.issn=0377-2217&rft.eissn=1872-6860&rft.volume=175&rft.issue=3&rft.spage=1890&rft.epage=1907&rft_id=info:doi/10.1016%2Fj.ejor.2005.02.078&rft.externalDocID=S0377221705004820 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon |