A mathematical model for the kinetics of the alkali–silica chemical reaction

Starting from the chain of three chemical reactions which characterize the alkali–silica reaction (ASR), this paper attempts to develop a mathematical framework through which the reaction kinetics can be better understood. A petrographic support is given to better understand the physical implication...

Full description

Saved in:
Bibliographic Details
Published inCement and concrete research Vol. 68; pp. 184 - 195
Main Authors Saouma, Victor E., Martin, Ruth A., Hariri-Ardebili, Mohammad A., Katayama, Tetsuya
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2015
Subjects
Online AccessGet full text
ISSN0008-8846
1873-3948
DOI10.1016/j.cemconres.2014.10.021

Cover

Abstract Starting from the chain of three chemical reactions which characterize the alkali–silica reaction (ASR), this paper attempts to develop a mathematical framework through which the reaction kinetics can be better understood. A petrographic support is given to better understand the physical implications of these equations, and to provide a reasonable support for the choice of the reaction rates. First an analytical solution is sought. Though one was not found, three new conservation laws were derived. Then a numerical solution is applied, and important observations are made. First, and foremost, the role of water is confirmed, and then the outcome of the reaction when different concentrations of alkali and silica are used is derived. Finally, the temporal evolution of the expansive gel formation is contrasted with both macro-kinetics model, and diffusion based meta-model for the concrete expansions are compared.
AbstractList Starting from the chain of three chemical reactions which characterize the alkali-silica reaction (ASR), this paper attempts to develop a mathematical framework through which the reaction kinetics can be better understood. A petrographic support is given to better understand the physical implications of these equations, and to provide a reasonable support for the choice of the reaction rates. First an analytical solution is sought. Though one was not found, three new conservation laws were derived. Then a numerical solution is applied, and important observations are made. First, and foremost, the role of water is confirmed, and then the outcome of the reaction when different concentrations of alkali and silica are used is derived. Finally, the temporal evolution of the expansive gel formation is contrasted with both macro-kinetics model, and diffusion based meta-model for the concrete expansions are compared.
Starting from the chain of three chemical reactions which characterize the alkali–silica reaction (ASR), this paper attempts to develop a mathematical framework through which the reaction kinetics can be better understood. A petrographic support is given to better understand the physical implications of these equations, and to provide a reasonable support for the choice of the reaction rates. First an analytical solution is sought. Though one was not found, three new conservation laws were derived. Then a numerical solution is applied, and important observations are made. First, and foremost, the role of water is confirmed, and then the outcome of the reaction when different concentrations of alkali and silica are used is derived. Finally, the temporal evolution of the expansive gel formation is contrasted with both macro-kinetics model, and diffusion based meta-model for the concrete expansions are compared.
Author Martin, Ruth A.
Saouma, Victor E.
Katayama, Tetsuya
Hariri-Ardebili, Mohammad A.
Author_xml – sequence: 1
  givenname: Victor E.
  surname: Saouma
  fullname: Saouma, Victor E.
  email: saouma@colorado.edu
  organization: Department of Civil Engineering, University of Colorado, Boulder, United States
– sequence: 2
  givenname: Ruth A.
  surname: Martin
  fullname: Martin, Ruth A.
  organization: Department of Applied Mathematics, University of Colorado, Boulder, United States
– sequence: 3
  givenname: Mohammad A.
  surname: Hariri-Ardebili
  fullname: Hariri-Ardebili, Mohammad A.
  organization: Department of Civil Engineering, University of Colorado, Boulder, United States
– sequence: 4
  givenname: Tetsuya
  surname: Katayama
  fullname: Katayama, Tetsuya
  organization: Department of Instrumental Analysis, Taiheiyo Consultant Co. Ltd, Sakura, Japan
BookMark eNqNkL1OwzAUhS0EEm3hGcjIkmDn1xkYqoo_qYIFZuvGvhFunbjYKRIb78Ab8iQ4LWJggcXWPfd8R7pnSg572yMhZ4wmjLLyYpVI7KTtHfokpSwPakJTdkAmjFdZnNU5PyQTSimPOc_LYzL1fhXGMs34hNzPow6GZwyPlmCizio0UWtdFMRorXsMuo9su5vBrMHoz_cPr02wRzKAO8whyEHb_oQctWA8nn7_M_J0ffW4uI2XDzd3i_kylnnBhpgBYyXNoaR1UbCKFzXLqGqAY9ukLa8ZVVlIrGhTpGVBOQAUSoXrGiVphm02I-f73I2zL1v0g-i0l2gM9Gi3XrCyqmrK06oO1mpvlc5677AVG6c7cG-CUTE2KFbip0ExNjguQoOBvPxFSj3AeObgQJt_8PM9j6GJV41OeKmxl6i0QzkIZfWfGV_4WJXd
CitedBy_id crossref_primary_10_1016_j_cemconcomp_2020_103623
crossref_primary_10_1007_s40999_016_0127_x
crossref_primary_10_1016_j_engstruct_2019_05_087
crossref_primary_10_1016_j_jngse_2016_01_013
crossref_primary_10_1016_j_cemconres_2021_106640
crossref_primary_10_1063_5_0139967
crossref_primary_10_3151_jact_14_444
crossref_primary_10_1016_j_conbuildmat_2019_03_025
crossref_primary_10_1016_j_engstruct_2019_03_036
crossref_primary_10_1016_j_cemconres_2025_107791
crossref_primary_10_3151_jact_16_46
crossref_primary_10_1016_j_cemconcomp_2021_104237
crossref_primary_10_14359_51701106
crossref_primary_10_3151_jact_15_346
crossref_primary_10_1016_j_soildyn_2017_07_009
crossref_primary_10_1016_j_ress_2020_107104
crossref_primary_10_1016_j_ijsolstr_2021_111220
crossref_primary_10_1016_j_conbuildmat_2024_138165
crossref_primary_10_1016_j_ijsolstr_2020_09_019
crossref_primary_10_1016_j_conbuildmat_2021_123913
crossref_primary_10_3390_infrastructures8080120
crossref_primary_10_1016_j_cemconres_2021_106355
crossref_primary_10_1016_j_cemconres_2021_106575
crossref_primary_10_3151_jact_18_192
crossref_primary_10_1680_jcoma_15_00059
crossref_primary_10_1007_s12043_022_02359_2
crossref_primary_10_1016_j_conbuildmat_2019_117719
crossref_primary_10_1016_j_cemconres_2017_11_006
crossref_primary_10_1016_j_conbuildmat_2019_07_230
crossref_primary_10_1016_j_jobe_2021_102298
crossref_primary_10_1108_EC_11_2017_0431
crossref_primary_10_3151_jact_19_181
crossref_primary_10_1016_j_engstruct_2018_05_115
crossref_primary_10_1016_j_engstruct_2021_112056
crossref_primary_10_1007_s10853_015_9364_7
crossref_primary_10_1177_1687814018802531
crossref_primary_10_1617_s11527_020_01559_9
crossref_primary_10_2166_wrd_2021_042
crossref_primary_10_1016_j_cemconcomp_2020_103660
crossref_primary_10_1016_j_solmat_2024_113188
crossref_primary_10_1016_j_cemconres_2024_107727
crossref_primary_10_1177_1056789517750213
crossref_primary_10_1002_suco_201700164
crossref_primary_10_1016_j_apgeochem_2019_104503
crossref_primary_10_1016_j_cemconres_2015_12_007
Cites_doi 10.1016/j.cemconres.2012.01.004
10.1016/j.cemconcomp.2005.03.005
10.1016/j.cemconres.2005.11.012
10.1016/0008-8846(92)90118-F
10.1016/S0008-8846(02)00766-4
10.1016/S0008-8846(02)01001-3
10.1016/S0008-8846(99)00270-7
10.1016/j.cemconres.2009.07.024
10.1016/j.ijsolstr.2012.07.015
10.1016/S0008-8846(97)00261-5
10.1016/j.cemconres.2007.06.008
10.1016/0008-8846(81)90003-X
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
7QQ
7SR
7U5
8BQ
8FD
FR3
JG9
KR7
L7M
DOI 10.1016/j.cemconres.2014.10.021
DatabaseName CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Ceramic Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3948
EndPage 195
ExternalDocumentID 10_1016_j_cemconres_2014_10_021
S000888461400218X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABTAH
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
K-O
KOM
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SMS
SPC
SPCBC
SSM
SST
SSZ
T5K
VH1
WUQ
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7QQ
7SR
7U5
8BQ
8FD
FR3
JG9
KR7
L7M
ID FETCH-LOGICAL-c451t-1a11604a6095517859130dba8efb2f8910d3eac70b526508aaa5dd201bdc03ef3
IEDL.DBID .~1
ISSN 0008-8846
IngestDate Thu Sep 04 17:06:11 EDT 2025
Thu Sep 18 00:37:59 EDT 2025
Thu Apr 24 22:57:15 EDT 2025
Fri Feb 23 02:21:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Long-Term Performance
Reaction rate
Petrography
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-1a11604a6095517859130dba8efb2f8910d3eac70b526508aaa5dd201bdc03ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1677908279
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_1677908279
crossref_primary_10_1016_j_cemconres_2014_10_021
crossref_citationtrail_10_1016_j_cemconres_2014_10_021
elsevier_sciencedirect_doi_10_1016_j_cemconres_2014_10_021
PublicationCentury 2000
PublicationDate 2015-02-01
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Cement and concrete research
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bérubé, Duchesnea, Doriona, Rivestb (bb0010) 2002; 32
Multon, Toutlemonde (bb0120) 2006; 36
Lemarchand, Dormieux, Ulm (bb0110) 2001
Furusawa, Ohga, Uomoto (bb0055) 1994
Katayama (bb0085) 2008
Suwito, Jin, Xi, Meyer (bb0140) 2002; 4
Haha (bb0070) 2006
Katayama (bb0095) 2012
Katayama (bb0100) 2012
MATLAB (bb0115) 2013
Katayama (bb0090) 2010
Espenson (bb0050) 2002
Dunant, Scrivener (bb0045) 2010; 40
Hairer, Nørsett, Wanner (bb0075) 1993
Powers, Steinour (bb0125) 1955; 20
Dron, Brivot (bb0040) 1992; 22
Bažant, Steffens (bb0005) 2000; 30
Puatatsananon, Saouma (bb0130) 2013; 110
Charpin, Ehrlacher (bb0020) 2012; 42
Glasser, Kataoka (bb0065) 1981; 11
Saouma, Perotti (bb0135) 2006; 103
Chatterji (bb0025) 2005
Capra, Bournazel (bb0015) 1998; 28
Larive (bb0105) 1998
Constantiner, Diamond (bb0035) 2003; 33
Ichikawa, Miura (bb0080) 2007; 37
Comi, Kirchmayr, Pignatelli (bb0030) 2012
Giorla (bb0060) 2013
Katayama (10.1016/j.cemconres.2014.10.021_bb0090) 2010
Suwito (10.1016/j.cemconres.2014.10.021_bb0140) 2002; 4
Bérubé (10.1016/j.cemconres.2014.10.021_bb0010) 2002; 32
Dron (10.1016/j.cemconres.2014.10.021_bb0040) 1992; 22
Charpin (10.1016/j.cemconres.2014.10.021_bb0020) 2012; 42
Katayama (10.1016/j.cemconres.2014.10.021_bb0100) 2012
Glasser (10.1016/j.cemconres.2014.10.021_bb0065) 1981; 11
Giorla (10.1016/j.cemconres.2014.10.021_bb0060) 2013
Comi (10.1016/j.cemconres.2014.10.021_bb0030) 2012
Constantiner (10.1016/j.cemconres.2014.10.021_bb0035) 2003; 33
Katayama (10.1016/j.cemconres.2014.10.021_bb0095) 2012
Espenson (10.1016/j.cemconres.2014.10.021_bb0050) 2002
MATLAB (10.1016/j.cemconres.2014.10.021_bb0115) 2013
Saouma (10.1016/j.cemconres.2014.10.021_bb0135) 2006; 103
Multon (10.1016/j.cemconres.2014.10.021_bb0120) 2006; 36
Bažant (10.1016/j.cemconres.2014.10.021_bb0005) 2000; 30
Puatatsananon (10.1016/j.cemconres.2014.10.021_bb0130) 2013; 110
Larive (10.1016/j.cemconres.2014.10.021_bb0105) 1998
Lemarchand (10.1016/j.cemconres.2014.10.021_bb0110) 2001
Haha (10.1016/j.cemconres.2014.10.021_bb0070) 2006
Hairer (10.1016/j.cemconres.2014.10.021_bb0075) 1993
Furusawa (10.1016/j.cemconres.2014.10.021_bb0055) 1994
Katayama (10.1016/j.cemconres.2014.10.021_bb0085) 2008
Dunant (10.1016/j.cemconres.2014.10.021_bb0045) 2010; 40
Capra (10.1016/j.cemconres.2014.10.021_bb0015) 1998; 28
Powers (10.1016/j.cemconres.2014.10.021_bb0125) 1955; 20
Ichikawa (10.1016/j.cemconres.2014.10.021_bb0080) 2007; 37
Chatterji (10.1016/j.cemconres.2014.10.021_bb0025) 2005
References_xml – volume: 20
  start-page: 497
  year: 1955
  end-page: 516
  ident: bb0125
  article-title: An interpretation of some published researches on the alkali–aggregate reaction. Part 1 — the chemical reactions and mechanism of expansion
  publication-title: J. Am. Concr. Inst.
– year: 2002
  ident: bb0050
  article-title: Chemical Kinetics and Reaction Mechanisms
– volume: 22
  start-page: 941
  year: 1992
  end-page: 948
  ident: bb0040
  article-title: Thermodynamic and kineic approach to the alkali–silica reaction. Part I: concepts
  publication-title: Cem. Concr. Res.
– year: 2012
  ident: bb0100
  article-title: ASR gels and their crystalline phases in concrete-universal products in alkali–silica, alkali–silicate and alkali–carbonate reactions
  publication-title: Proc. 14th International Conference on Alkali–Aggregate Reaction (ICAAR), Austin, Texas, USA
– year: 1998
  ident: bb0105
  article-title: Apports Combinés de l'Experimentation et de la Modélisation à la Comprehension del'Alcali-Réaction et de ses Effets Mécaniques
– start-page: 3367
  year: 2012
  end-page: 3380
  ident: bb0030
  article-title: Two-phase damage modeling of concrete affected by alkali–silica reaction under variable temperature and humidity conditions
  publication-title: Int. J. Solids Struct.
– volume: 33
  start-page: 549
  year: 2003
  end-page: 554
  ident: bb0035
  article-title: Alkali release from feldspars into pore solutions
  publication-title: Cem. Concr. Res.
– year: 2013
  ident: bb0115
  article-title: Version 8.2 (R2013b)
– start-page: 788
  year: 2005
  end-page: 795
  ident: bb0025
  article-title: Chemistry of alkali–silica reaction and testing of aggregates
  publication-title: Cem. Concr. Compos.
– volume: 11
  start-page: 1
  year: 1981
  end-page: 9
  ident: bb0065
  article-title: The chemistry of alkali–aggregate reaction
  publication-title: Cem. Concr. Res.
– volume: 4
  start-page: 23
  year: 2002
  end-page: 34
  ident: bb0140
  article-title: A mathematical model for the pessimum effect of ASR in concrete
  publication-title: Concr. Sci. Eng.
– volume: 103
  start-page: 194
  year: 2006
  end-page: 202
  ident: bb0135
  article-title: Constitutive model for alkali aggregate reactions
  publication-title: ACI Mater. J.
– volume: 42
  start-page: 613
  year: 2012
  end-page: 625
  ident: bb0020
  article-title: A computational linear elastic fracture mechanics-based model for alkali–silica reaction
  publication-title: Cem. Concr. Res.
– year: 2013
  ident: bb0060
  article-title: Modelling of Alkali–Silica Reaction Under Multi-Axial Load
– year: 2001
  ident: bb0110
  article-title: A micromechanical approach to the modeling of swelling due to alkali–silica reaction
  publication-title: International Conference on Creep, Shrinkage and Durability Mechanics of Concrete and Other Quasi-Brittle Materials; Creep, Shrinkage and Durability Mechanics of Concrete and Other Quasinbrittle Materials, Austin (Texas), USA
– volume: 28
  start-page: 251
  year: 1998
  end-page: 260
  ident: bb0015
  article-title: Modeling of induced mechanical effects of alkali–aggregate reactions
  publication-title: Cem. Concr. Res.
– start-page: 757
  year: 1994
  end-page: 780
  ident: bb0055
  article-title: An analytical study concerning prediction of concrete expansion due to alkali–silica reaction
  publication-title: Proc. of 3rd Int. Conf. on Durability of Concrete
– start-page: 19
  year: 2010
  end-page: 34
  ident: bb0090
  article-title: Diagnosis of alkali–aggregate reaction—polarizing microscopy and SEM-EDS analysis
  publication-title: Proceedings, 6th International Conference on Concrete under Severe Conditions, Environment and Loading (CONSEC'10)
– volume: 110
  start-page: 67
  year: 2013
  end-page: 78
  ident: bb0130
  article-title: Chemo-mechanical micro model for alkali–silica reaction
  publication-title: ACI Mater. J.
– volume: 30
  start-page: 419
  year: 2000
  end-page: 428
  ident: bb0005
  article-title: Mathematical model for kinetics of alkali–silica reaction in concrete
  publication-title: Cem. Concr. Res.
– year: 2012
  ident: bb0095
  article-title: Late-expansive ASR in a 30-year old PC structure in eastern Japan
  publication-title: Proc. 14th International Conference on Alkali–Aggregate Reaction (ICAAR), Austin, Texas, USA
– volume: 37
  start-page: 1291
  year: 2007
  end-page: 1297
  ident: bb0080
  article-title: Modified model of alkali–silica reaction
  publication-title: Cem. Concr. Res.
– volume: 40
  start-page: 517
  year: 2010
  end-page: 525
  ident: bb0045
  article-title: Micro-mechanical modelling of alkali–silica-reaction-induced degradation using the {AMIE} framework
  publication-title: Cem. Concr. Res.
– year: 1993
  ident: bb0075
  article-title: Solving Ordinary Differential Equations I: Nonstiff Problems
– start-page: 174
  year: 2008
  end-page: 183
  ident: bb0085
  article-title: ASR gel in concrete subject to freeze–thaw cycles—comparison between laboratory and field concretes from Newfoundland, Canada
  publication-title: Proceedings of the 13th International Conference on Alkali–Aggregate Reaction (ICAAR)
– year: 2006
  ident: bb0070
  article-title: Mechanical Effects of Alkali Silica Reaction in Concrete Studied by SEM-Image Analysis
– volume: 32
  start-page: 1215
  year: 2002
  end-page: 1227
  ident: bb0010
  article-title: Laboratory assessment of alkali contribution by aggregates to concrete and application to concrete structures affected by alkali–silica reactivity
  publication-title: Cem. Concr. Res.
– volume: 36
  start-page: 912
  year: 2006
  end-page: 920
  ident: bb0120
  article-title: Effect of applied stresses on alkali–silica reaction induced expansions
  publication-title: Cem. Concr. Res.
– start-page: 757
  year: 1994
  ident: 10.1016/j.cemconres.2014.10.021_bb0055
  article-title: An analytical study concerning prediction of concrete expansion due to alkali–silica reaction
– volume: 42
  start-page: 613
  issue: 4
  year: 2012
  ident: 10.1016/j.cemconres.2014.10.021_bb0020
  article-title: A computational linear elastic fracture mechanics-based model for alkali–silica reaction
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2012.01.004
– start-page: 788
  year: 2005
  ident: 10.1016/j.cemconres.2014.10.021_bb0025
  article-title: Chemistry of alkali–silica reaction and testing of aggregates
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2005.03.005
– volume: 36
  start-page: 912
  issue: 5
  year: 2006
  ident: 10.1016/j.cemconres.2014.10.021_bb0120
  article-title: Effect of applied stresses on alkali–silica reaction induced expansions
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2005.11.012
– volume: 20
  start-page: 497
  year: 1955
  ident: 10.1016/j.cemconres.2014.10.021_bb0125
  article-title: An interpretation of some published researches on the alkali–aggregate reaction. Part 1 — the chemical reactions and mechanism of expansion
  publication-title: J. Am. Concr. Inst.
– volume: 22
  start-page: 941
  year: 1992
  ident: 10.1016/j.cemconres.2014.10.021_bb0040
  article-title: Thermodynamic and kineic approach to the alkali–silica reaction. Part I: concepts
  publication-title: Cem. Concr. Res.
  doi: 10.1016/0008-8846(92)90118-F
– volume: 32
  start-page: 1215
  year: 2002
  ident: 10.1016/j.cemconres.2014.10.021_bb0010
  article-title: Laboratory assessment of alkali contribution by aggregates to concrete and application to concrete structures affected by alkali–silica reactivity
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(02)00766-4
– year: 2012
  ident: 10.1016/j.cemconres.2014.10.021_bb0095
  article-title: Late-expansive ASR in a 30-year old PC structure in eastern Japan
– start-page: 19
  year: 2010
  ident: 10.1016/j.cemconres.2014.10.021_bb0090
  article-title: Diagnosis of alkali–aggregate reaction—polarizing microscopy and SEM-EDS analysis
– year: 2012
  ident: 10.1016/j.cemconres.2014.10.021_bb0100
  article-title: ASR gels and their crystalline phases in concrete-universal products in alkali–silica, alkali–silicate and alkali–carbonate reactions
– year: 1993
  ident: 10.1016/j.cemconres.2014.10.021_bb0075
– year: 2013
  ident: 10.1016/j.cemconres.2014.10.021_bb0115
– volume: 33
  start-page: 549
  year: 2003
  ident: 10.1016/j.cemconres.2014.10.021_bb0035
  article-title: Alkali release from feldspars into pore solutions
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(02)01001-3
– volume: 30
  start-page: 419
  year: 2000
  ident: 10.1016/j.cemconres.2014.10.021_bb0005
  article-title: Mathematical model for kinetics of alkali–silica reaction in concrete
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(99)00270-7
– year: 1998
  ident: 10.1016/j.cemconres.2014.10.021_bb0105
– volume: 103
  start-page: 194
  issue: 3
  year: 2006
  ident: 10.1016/j.cemconres.2014.10.021_bb0135
  article-title: Constitutive model for alkali aggregate reactions
  publication-title: ACI Mater. J.
– volume: 40
  start-page: 517
  issue: 4
  year: 2010
  ident: 10.1016/j.cemconres.2014.10.021_bb0045
  article-title: Micro-mechanical modelling of alkali–silica-reaction-induced degradation using the {AMIE} framework
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2009.07.024
– volume: 110
  start-page: 67
  year: 2013
  ident: 10.1016/j.cemconres.2014.10.021_bb0130
  article-title: Chemo-mechanical micro model for alkali–silica reaction
  publication-title: ACI Mater. J.
– year: 2002
  ident: 10.1016/j.cemconres.2014.10.021_bb0050
– start-page: 3367
  year: 2012
  ident: 10.1016/j.cemconres.2014.10.021_bb0030
  article-title: Two-phase damage modeling of concrete affected by alkali–silica reaction under variable temperature and humidity conditions
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2012.07.015
– year: 2006
  ident: 10.1016/j.cemconres.2014.10.021_bb0070
– start-page: 174
  year: 2008
  ident: 10.1016/j.cemconres.2014.10.021_bb0085
  article-title: ASR gel in concrete subject to freeze–thaw cycles—comparison between laboratory and field concretes from Newfoundland, Canada
– volume: 28
  start-page: 251
  issue: 2
  year: 1998
  ident: 10.1016/j.cemconres.2014.10.021_bb0015
  article-title: Modeling of induced mechanical effects of alkali–aggregate reactions
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(97)00261-5
– year: 2013
  ident: 10.1016/j.cemconres.2014.10.021_bb0060
– volume: 37
  start-page: 1291
  year: 2007
  ident: 10.1016/j.cemconres.2014.10.021_bb0080
  article-title: Modified model of alkali–silica reaction
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2007.06.008
– volume: 11
  start-page: 1
  issue: 1
  year: 1981
  ident: 10.1016/j.cemconres.2014.10.021_bb0065
  article-title: The chemistry of alkali–aggregate reaction
  publication-title: Cem. Concr. Res.
  doi: 10.1016/0008-8846(81)90003-X
– volume: 4
  start-page: 23
  year: 2002
  ident: 10.1016/j.cemconres.2014.10.021_bb0140
  article-title: A mathematical model for the pessimum effect of ASR in concrete
  publication-title: Concr. Sci. Eng.
– year: 2001
  ident: 10.1016/j.cemconres.2014.10.021_bb0110
  article-title: A micromechanical approach to the modeling of swelling due to alkali–silica reaction
SSID ssj0006238
Score 2.3720856
Snippet Starting from the chain of three chemical reactions which characterize the alkali–silica reaction (ASR), this paper attempts to develop a mathematical...
Starting from the chain of three chemical reactions which characterize the alkali-silica reaction (ASR), this paper attempts to develop a mathematical...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 184
SubjectTerms Cements
Chemical reactions
Concretes
Diffusion
Evolution
Long-Term Performance
Mathematical analysis
Mathematical models
Petrography
Reaction kinetics
Reaction rate
Temporal logic
Title A mathematical model for the kinetics of the alkali–silica chemical reaction
URI https://dx.doi.org/10.1016/j.cemconres.2014.10.021
https://www.proquest.com/docview/1677908279
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIpnZSRWt3HiOAlbVVEVkDpRqVtkO45U2qYVbVfEf-Af8ku4y6NQJNSB0RfbSc723Tn57jMht1xGVhpjWSS4YcLXhkEcp5hvEikjT_qBygGyfdkbiMehP6yRTpULg7DK0vYXNj231qWkVWqzNR-NMMcXVgi4T9gioKMaYga7CHCuN9--YR7g3gtr7IQMa29gvIydwq4T9rWI8RJNhHm5_C8P9ctW5w6oe0D2y8iRtouHOyQ1mx2RvR98gsek36bTNQ0r1M2PuaEQllIQ0jFURFJmOkvzspqMIQj_fP9YjPDLHTUldwCFODLPdjghg-79c6fHygMTmBE-XzKuOJeOUEgi5_MAqek8J9EqtKl20xAig8SDHgJHIym-Eyql_CSBV9eJcTybeqekns0ye0aoBhGSvUF7JaCjyIBl5AYkbuolXJ8TWSkpNiWbOB5qMYkr2NhLvNZujNrFC6Ddc-KsG84LQo3tTe6qUYg35kYMZn9745tq3GJYOfg7RGV2tlrEXCLXYugG0cV_bnBJdqHkF0juK1Jfvq7sNQQqS93IZ2KD7LQfnnr9Lykt6ao
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVKOQAHxCrKaiSuaeMsTsKtqqgKlJ5aqTfLdhypdBVtr4h_4A_5EmayFIqEOHDM2OMkY3tmnDw_E3LDeGS41saKPKYtz1fagjxOWr6OOY9c7gcyBch2eKvnPfT9fok0ir0wCKvMfX_m01NvnUtquTVrs8EA9_jCDIHwCUsEDFT9DbLp4TEHMKirr184D4jvmTu2Qwurr4G8tBnDshMWtgjy8qqI83LYbyHqh7NOI1Bzj-zmqSOtZ0-3T0pmckB2vhEKHpJOnY5XPKxQNz3nhkJeSkFIh1ARWZnpNEmv5WgIWfjH2_t8gJ_uqM7JAygkkul2hyPSa951Gy0rPzHB0p7PFhaTjHHbk8gi57MAuelcO1YyNIlykhBSg9iFFgJbISu-HUop_TiGV1extl2TuMekPJlOzAmhCkTI9gb60oOGIg2ukWmQOIkbM1UhvDCS0DmdOJ5qMRIFbuxZrKwr0LpYANatEHulOMsYNf5WuS16QawNDgF-_2_l66LfBEwd_B8iJ2a6nAvGkWwxdILo9D83uCJbre5TW7TvO49nZBtK_AzWfU7Ki5eluYCsZaEu01H5CX9B6zM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+mathematical+model+for+the+kinetics+of+the+alkali%E2%80%93silica+chemical+reaction&rft.jtitle=Cement+and+concrete+research&rft.au=Saouma%2C+Victor+E.&rft.au=Martin%2C+Ruth+A.&rft.au=Hariri-Ardebili%2C+Mohammad+A.&rft.au=Katayama%2C+Tetsuya&rft.date=2015-02-01&rft.pub=Elsevier+Ltd&rft.issn=0008-8846&rft.eissn=1873-3948&rft.volume=68&rft.spage=184&rft.epage=195&rft_id=info:doi/10.1016%2Fj.cemconres.2014.10.021&rft.externalDocID=S000888461400218X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-8846&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-8846&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-8846&client=summon