An assessment of random forest technique using simulation study: illustration with infant mortality in Bangladesh

We aimed to assess different machine learning techniques for predicting infant mortality (<1 year) in Bangladesh. The decision tree (DT), random forest (RF), support vector machine (SVM) and logistic regression (LR) approaches were evaluated through accuracy, sensitivity, specificity, precision,...

Full description

Saved in:
Bibliographic Details
Published inHealth information science and systems Vol. 10; no. 1; p. 12
Main Authors Rahman, Atikur, Hossain, Zakir, Kabir, Enamul, Rois, Rumana
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 21.06.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2047-2501
2047-2501
DOI10.1007/s13755-022-00180-0

Cover

Abstract We aimed to assess different machine learning techniques for predicting infant mortality (<1 year) in Bangladesh. The decision tree (DT), random forest (RF), support vector machine (SVM) and logistic regression (LR) approaches were evaluated through accuracy, sensitivity, specificity, precision, F1-score, receiver operating characteristics curve and k -fold cross-validation via simulations. The Boruta algorithm and chi-square ( χ 2 ) test were used for features selection of infant mortality. Overall, the RF technique (Boruta: accuracy = 0.8890, sensitivity = 0.0480, specificity = 0.9789, precision = 0.1960, F1-score = 0.0771, AUC = 0.6590; χ 2 : accuracy = 0.8856, sensitivity = 0.0536, specificity = 0.9745, precision = 0.1837, F1-score = 0.0828, AUC = 0.6480) showed higher predictive performance for infant mortality compared to other approaches. Age at first marriage and birth, body mass index (BMI), birth interval, place of residence, religion, administrative division, parents education, occupation of mother, media-exposure, wealth index, gender of child, birth order, children ever born, toilet facility and cooking fuel were potential determinants of infant mortality in Bangladesh. Study findings may help women, stakeholders and policy-makers to take necessary steps for reducing infant mortality by creating awareness, expanding educational programs at community levels and public health interventions.
AbstractList We aimed to assess different machine learning techniques for predicting infant mortality (<1 year) in Bangladesh. The decision tree (DT), random forest (RF), support vector machine (SVM) and logistic regression (LR) approaches were evaluated through accuracy, sensitivity, specificity, precision, F1-score, receiver operating characteristics curve and k-fold cross-validation via simulations. The Boruta algorithm and chi-square ( $$\chi ^2$$ χ2) test were used for features selection of infant mortality. Overall, the RF technique (Boruta: accuracy = 0.8890, sensitivity = 0.0480, specificity = 0.9789, precision = 0.1960, F1-score = 0.0771, AUC = 0.6590; $$\chi ^2$$ χ2: accuracy = 0.8856, sensitivity = 0.0536, specificity = 0.9745, precision = 0.1837, F1-score = 0.0828, AUC = 0.6480) showed higher predictive performance for infant mortality compared to other approaches. Age at first marriage and birth, body mass index (BMI), birth interval, place of residence, religion, administrative division, parents education, occupation of mother, media-exposure, wealth index, gender of child, birth order, children ever born, toilet facility and cooking fuel were potential determinants of infant mortality in Bangladesh. Study findings may help women, stakeholders and policy-makers to take necessary steps for reducing infant mortality by creating awareness, expanding educational programs at community levels and public health interventions.
We aimed to assess different machine learning techniques for predicting infant mortality (<1 year) in Bangladesh. The decision tree (DT), random forest (RF), support vector machine (SVM) and logistic regression (LR) approaches were evaluated through accuracy, sensitivity, specificity, precision, F1-score, receiver operating characteristics curve and k-fold cross-validation via simulations. The Boruta algorithm and chi-square ( χ 2 ) test were used for features selection of infant mortality. Overall, the RF technique (Boruta: accuracy = 0.8890, sensitivity = 0.0480, specificity = 0.9789, precision = 0.1960, F1-score = 0.0771, AUC = 0.6590; χ 2 : accuracy = 0.8856, sensitivity = 0.0536, specificity = 0.9745, precision = 0.1837, F1-score = 0.0828, AUC = 0.6480) showed higher predictive performance for infant mortality compared to other approaches. Age at first marriage and birth, body mass index (BMI), birth interval, place of residence, religion, administrative division, parents education, occupation of mother, media-exposure, wealth index, gender of child, birth order, children ever born, toilet facility and cooking fuel were potential determinants of infant mortality in Bangladesh. Study findings may help women, stakeholders and policy-makers to take necessary steps for reducing infant mortality by creating awareness, expanding educational programs at community levels and public health interventions.We aimed to assess different machine learning techniques for predicting infant mortality (<1 year) in Bangladesh. The decision tree (DT), random forest (RF), support vector machine (SVM) and logistic regression (LR) approaches were evaluated through accuracy, sensitivity, specificity, precision, F1-score, receiver operating characteristics curve and k-fold cross-validation via simulations. The Boruta algorithm and chi-square ( χ 2 ) test were used for features selection of infant mortality. Overall, the RF technique (Boruta: accuracy = 0.8890, sensitivity = 0.0480, specificity = 0.9789, precision = 0.1960, F1-score = 0.0771, AUC = 0.6590; χ 2 : accuracy = 0.8856, sensitivity = 0.0536, specificity = 0.9745, precision = 0.1837, F1-score = 0.0828, AUC = 0.6480) showed higher predictive performance for infant mortality compared to other approaches. Age at first marriage and birth, body mass index (BMI), birth interval, place of residence, religion, administrative division, parents education, occupation of mother, media-exposure, wealth index, gender of child, birth order, children ever born, toilet facility and cooking fuel were potential determinants of infant mortality in Bangladesh. Study findings may help women, stakeholders and policy-makers to take necessary steps for reducing infant mortality by creating awareness, expanding educational programs at community levels and public health interventions.
We aimed to assess different machine learning techniques for predicting infant mortality (<1 year) in Bangladesh. The decision tree (DT), random forest (RF), support vector machine (SVM) and logistic regression (LR) approaches were evaluated through accuracy, sensitivity, specificity, precision, F1-score, receiver operating characteristics curve and k -fold cross-validation via simulations. The Boruta algorithm and chi-square ( χ 2 ) test were used for features selection of infant mortality. Overall, the RF technique (Boruta: accuracy = 0.8890, sensitivity = 0.0480, specificity = 0.9789, precision = 0.1960, F1-score = 0.0771, AUC = 0.6590; χ 2 : accuracy = 0.8856, sensitivity = 0.0536, specificity = 0.9745, precision = 0.1837, F1-score = 0.0828, AUC = 0.6480) showed higher predictive performance for infant mortality compared to other approaches. Age at first marriage and birth, body mass index (BMI), birth interval, place of residence, religion, administrative division, parents education, occupation of mother, media-exposure, wealth index, gender of child, birth order, children ever born, toilet facility and cooking fuel were potential determinants of infant mortality in Bangladesh. Study findings may help women, stakeholders and policy-makers to take necessary steps for reducing infant mortality by creating awareness, expanding educational programs at community levels and public health interventions.
We aimed to assess different machine learning techniques for predicting infant mortality (<1 year) in Bangladesh. The decision tree (DT), random forest (RF), support vector machine (SVM) and logistic regression (LR) approaches were evaluated through accuracy, sensitivity, specificity, precision, F1-score, receiver operating characteristics curve and k-fold cross-validation via simulations. The Boruta algorithm and chi-square (χ2) test were used for features selection of infant mortality. Overall, the RF technique (Boruta: accuracy = 0.8890, sensitivity = 0.0480, specificity = 0.9789, precision = 0.1960, F1-score = 0.0771, AUC = 0.6590; χ2: accuracy = 0.8856, sensitivity = 0.0536, specificity = 0.9745, precision = 0.1837, F1-score = 0.0828, AUC = 0.6480) showed higher predictive performance for infant mortality compared to other approaches. Age at first marriage and birth, body mass index (BMI), birth interval, place of residence, religion, administrative division, parents education, occupation of mother, media-exposure, wealth index, gender of child, birth order, children ever born, toilet facility and cooking fuel were potential determinants of infant mortality in Bangladesh. Study findings may help women, stakeholders and policy-makers to take necessary steps for reducing infant mortality by creating awareness, expanding educational programs at community levels and public health interventions.
ArticleNumber 12
Author Kabir, Enamul
Hossain, Zakir
Rahman, Atikur
Rois, Rumana
Author_xml – sequence: 1
  givenname: Atikur
  orcidid: 0000-0003-3291-7836
  surname: Rahman
  fullname: Rahman, Atikur
  email: arahman@juniv.edu
  organization: Department of Statistics, Jahangirnagar University
– sequence: 2
  givenname: Zakir
  surname: Hossain
  fullname: Hossain, Zakir
  organization: Department of Statistics, University of Dhaka
– sequence: 3
  givenname: Enamul
  surname: Kabir
  fullname: Kabir, Enamul
  organization: School of Sciences, University of Southern Queensland
– sequence: 4
  givenname: Rumana
  surname: Rois
  fullname: Rois, Rumana
  organization: Department of Statistics, Jahangirnagar University
BookMark eNqNkU1v1DAQhi1URMvSP8DJEhcuKf6I44QDUqkoIFXiAmfL9jq7rhx763Go9t_jbVYq9FDhi62Zed-ZefwancQUHUJvKbmghMgPQLkUoiGMNYTQnjTkBTpjpJUNE4Se_PU-RecAt6SegTIu6Ct0yoVspezkGbq7jFgDOIDJxYLTiLOO6zThMWUHBRdnt9HfzQ7P4OMGg5_moItPEUOZ1_uP2IcwQ8lL7N6XLfZx1NVrSrno4Mu-BvBnHTdBrx1s36CXow7gzo_3Cv26_vLz6ltz8-Pr96vLm8a2gpaGMsMHKrSzpBWtMKMw3aB5q4mQVpqhH42Wa173Y6bjdhwY7YwxjNNRUNtbvkJ88Z3jTu_vdQhql_2k815Rog4M1cJQVYbqgaEiVfVpUe1mM7m1rVCyflQm7dW_mei3apN-q4GRoat8V-j90SCnig2KmjxYF4KOLs2gWNdT0nLaHXq9e1J6m-YcK5RaJXvRE94fDNlSZXMCyG78vzX6JyLry8MX1aF9eF565Aa1T9y4_DjVM6o_qJzI5A
CitedBy_id crossref_primary_10_1371_journal_pone_0304389
crossref_primary_10_1186_s41043_024_00646_9
crossref_primary_10_1016_j_clwas_2025_100218
Cites_doi 10.1371/journal.pone.0026856
10.1371/journal.pone.0262927
10.1023/A:1010933404324
10.5812/compreped.108575
10.1109/72.914517
10.1136/bmjopen-2020-045506
10.1023/A:1009715923555
10.1371/journal.pone.0145401
10.1007/978-3-319-50017-1
10.1007/s13755-019-0084-2
10.1007/978-3-030-90885-0_19
10.18637/jss.v036.i11
10.1186/s12884-019-2190-1
10.1136/bmjopen-2011-000226
10.1371/journal.pone.0179805
10.1007/978-1-4302-5990-9-1
10.1007/s41019-021-00167-z
10.1186/s12887-015-0468-7
10.1055/s-0036-1584686
10.1186/1471-2458-13-401
10.1007/s13755-020-00129-1
10.3329/bjms.v13i4.20590
10.1038/s42256-020-00239-1
10.1002/hec.1379
10.1016/j.socscimed.2013.11.019
10.1186/s12963-019-0195-7
10.1007/978-1-4757-2440-0
10.1016/j.cegh.2019.07.003
10.1007/s11280-019-00776-9
10.1016/j.patrec.2005.10.010
10.1371/journal.pone.0220076
10.1007/s13755-020-00125-5
10.1186/s12884-020-03002-x
10.1186/s12887-019-1421-y
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022
The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022
– notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022.
DBID AAYXX
CITATION
3V.
7X7
7XB
8AL
8FE
8FG
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
M0N
M0S
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1007/s13755-022-00180-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Computing Database
ProQuest Health & Medical Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Computer Science Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
Public Health
EISSN 2047-2501
ExternalDocumentID oai:pubmedcentral.nih.gov:9209612
PMC9209612
10_1007_s13755_022_00180_0
GeographicLocations Bangladesh
GeographicLocations_xml – name: Bangladesh
GroupedDBID -A0
-EM
0R~
406
5VS
7X7
8FE
8FG
8FI
8FJ
AACDK
AAHNG
AAJBT
AANZL
AASML
AATNV
AATVU
AAUYE
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABSXP
ABTEG
ABTKH
ABTMW
ABUWG
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADBBV
ADHHG
ADINQ
ADKNI
ADRAZ
ADURQ
ADYFF
ADZKW
AEFQL
AEJRE
AEMSY
AESKC
AEVLU
AEXYK
AFBBN
AFKRA
AFQWF
AGDGC
AGJBK
AGMZJ
AGQEE
AGRTI
AHBYD
AHYZX
AIAKS
AIGIU
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
AOIJS
ARAPS
ASPBG
AXYYD
AZQEC
BAWUL
BENPR
BFQNJ
BGLVJ
BGNMA
BPHCQ
BVXVI
C24
CCPQU
DIK
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
FERAY
FIGPU
FNLPD
FYUFA
GGCAI
GJIRD
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
IAO
IHR
IKXTQ
INH
INR
ITC
IWAJR
J-C
JZLTJ
K6V
K7-
KOV
KQ8
LLZTM
M48
M4Y
M~E
NPVJJ
NQJWS
NU0
O9J
OK1
P62
PQQKQ
PT4
RBZ
ROL
RPM
RSV
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UKHRP
UOJIU
UTJUX
UZXMN
VFIZW
XH6
Z83
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PUEGO
3V.
7XB
8AL
8FK
JQ2
K9.
M0N
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
AHSBF
EJD
FINBP
FSGXE
H13
PROAC
UNPAY
ID FETCH-LOGICAL-c451t-12b3915aec04545bf5b69a34a057c7b98fba7d35012b63cf9216bbb231f51c8c3
IEDL.DBID M48
ISSN 2047-2501
IngestDate Sun Oct 26 04:11:41 EDT 2025
Tue Sep 30 17:17:54 EDT 2025
Thu Sep 04 18:41:35 EDT 2025
Tue Oct 07 06:36:54 EDT 2025
Thu Apr 24 23:12:50 EDT 2025
Wed Oct 01 00:18:17 EDT 2025
Fri Feb 21 02:44:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Random forest
Infant mortality
Chi-square
Boruta algorithm
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-12b3915aec04545bf5b69a34a057c7b98fba7d35012b63cf9216bbb231f51c8c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3291-7836
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/9209612
PMID 35747767
PQID 2678580382
PQPubID 2040228
ParticipantIDs unpaywall_primary_10_1007_s13755_022_00180_0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9209612
proquest_miscellaneous_2681043160
proquest_journals_2678580382
crossref_primary_10_1007_s13755_022_00180_0
crossref_citationtrail_10_1007_s13755_022_00180_0
springer_journals_10_1007_s13755_022_00180_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-21
PublicationDateYYYYMMDD 2022-06-21
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-21
  day: 21
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: London
PublicationTitle Health information science and systems
PublicationTitleAbbrev Health Inf Sci Syst
PublicationYear 2022
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References PalczewskaAPalczewskiJRobinsonRMInterpreting random forest classification models using a feature contribution method In Integration of reusable systems2014ChamSpringer193218
BreimanLRandom forestsMach Learn200145153210.1023/A:10109334043241007.68152
DancerDRammohanASmithMDInfant mortality and child nutrition in BangladeshHealth Econ20081791015103510.1002/hec.1379
IgualLSeguíSIntroduction to data science2017ChamSpringer10.1007/978-3-319-50017-11365.62003
SarkiRAhmedKWangHImage preprocessing in classification and identification of diabetic eye diseasesData Sci Eng2021645547110.1007/s41019-021-00167-z
SupriyaSSiulySWangHAutomated epilepsy detection techniques from electroencephalogram signals: a review studyHealth Inf Sci Syst20208111510.1007/s13755-020-00129-1
World Health Organization (WHO). 2018. Millennium development goals (MDGs). http://www.who.int/topics/millennium-development-goals/about/en/ accessed 14 July 2021.
BurgesCJA tutorial on support vector machines for pattern recognitionData Min Knowl Disc19982212116710.1023/A:1009715923555
VapnikVNThe nature of statistical learning theory1995New YorkSpringer10.1007/978-1-4757-2440-00833.62008
SinghAPathakPKChauhanRKInfant and child mortality in India in the last two decades: a geospatial analysisPLoS ONE20116112011e2685610.1371/journal.pone.0026856
SantosSLSantosLBCampeloVFactors associated with infant mortality in a northeastern Brazilian capitalRev Bras Ginecol Obstet2016381048249110.1055/s-0036-1584686
RahmanMMAraTMahmudSRevisit the correlates of infant mortality in Bangladesh: findings from two nationwide cross-sectional studiesBMJ Open202110.1136/bmjopen-2020-045506
MateenBALileyJDennistonAKImproving the quality of machine learning in health applications and clinical researchNat Mach Intell202021055455610.1038/s42256-020-00239-1
KhadkaKBLiebermanLSGiedraitisVThe socio-economic determinants of infant mortality in Nepal: analysis of Nepal demographic health survey, 2011BMC Pediatr20151515210.1186/s12887-015-0468-7
VilanovaCSHirakataVNBuriolVCCThe relationship between the different low birth weight strata of newborns with infant mortality and the influence of the main health determinants in the extreme south of BrazilPopul Health Metrics201910.1186/s12963-019-0195-7
MohamoudYAKirbyRSEhrenthalDBPoverty, urban–rural classification and term infant mortality: a population-based multilevel analysisBMC Pregnancy Childbirth2019194010.1186/s12884-019-2190-1
MüllerKRMikaSRätschGAn introduction to kernel-based learning algorithmsIEEE Trans Neural Netw200112218120110.1109/72.914517
de BitencourtFHSchwartzIVDViannaFSLInfant mortality in Brazil attributable to inborn errors of metabolism associated with sudden death: a time-series study (2002–2014)BMC Pediatr2019195210.1186/s12887-019-1421-y
National institute of population research and training (NIPROT). Bangladesh demographic and health survey 2017–2018. National institute of population research and training (NIPROT), Mitra and Associates, Dhaka, Bangladesh and ICF International, Calverton, Maryland, USA, 2019.
Nilsson NL. Introduction to machine learning; 1997.
KarmakerSCLahirySRoyDCDeterminants of infant and child mortality in Bangladesh: time trends and comparisons across South AsiaBangladesh J Med Sci201410.3329/bjms.v13i4.20590
VijayJPatelKKRisk factors of infant mortality in BangladeshClin Epidemiol Glob Health2020821121410.1016/j.cegh.2019.07.003
R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. http://www.R-project.org/; 2013.
BarakiAGAkaluTYWoldeHFFactors affecting infant mortality in the general population: evidence from the 2016 Ethiopian demographic and health survey (EDHS); a multilevel analysisBMC Pregnancy Childbirth20202029910.1186/s12884-020-03002-x
World Health Organization (WHO). 2015. Success factor for women’s and child’s health: Bangladesh. www.who.int.
FawcettTAn Introduction to ROC AnalysisPattern Recogn Lett20062786187410.1016/j.patrec.2005.10.010
HajizadehMNandiAHeymannJSocial inequality in infant mortality: what explains variation across low and middle income countries?Soc Sci Med2014101364610.1016/j.socscimed.2013.11.019
KirossGTChojentaCBarkerDThe effect of maternal education on infant mortality in Ethiopia: a systematic review and meta-analysisPLoS ONE201914710.1371/journal.pone.0220076
SarkiRAhmedKWangHAutomated detection of mild and multi-class diabetic eye diseases using deep learningHealth Inf Sci Syst2020811910.1007/s13755-020-00125-5
HeJRongJSunLA framework for cardiac arrhythmia detection from IoT-based ECGsWorld Wide Web20202352835285010.1007/s11280-019-00776-9
AwadMEfficient Khanna, R machines learning2015BerkeleyA press10.1007/978-1-4302-5990-9-1
CDC, Infant Mortality. Centers for Disease Control and Prevention; 2018. https://www.cdc.gov/reproductivehealth/MaternalInfantHealth/InfantMortality.htm/ accessed 14 July 2021.
World Health Organization (WHO). 2018. The global helath observatory. https://www.who.int/data/gho/data/themes/topics/indicator-groups/indicator-group-details/GHO/infant-mortality/ accessed 14 July 2021.
QuansahEOheneLANormanLSocial factors influencing child health in GhanaPLoS ONE201610.1371/journal.pone.0145401
DuJMichalskaSSubramaniSNeural attention with character embeddings for hay fever detection from TwitterHealth Inf Sci Syst201910.1007/s13755-019-0084-2
AlghamdiMAl-MallahMKeteyianSPredicting diabetes mellitus using SMOTE and ensemble machine learning approach: the Henry Ford Exercise Testing (FIT) projectPLoS ONE20171210.1371/journal.pone.0179805
FinlayJEÖzaltinECanningDThe association of maternal age with infant mortality, child anthropometric failure, diarrhoea and anaemia for first births: evidence from 55 low- and middle-income countriesBMJ Open201110.1136/bmjopen-2011-000226
DubeLTahaMAsefaHDeterminants of infant mortality in community of Gilgel gibe field research center, Southwest Ethiopia: a matched case control studyBMC Public Health20131340110.1186/1471-2458-13-401
HossainMMAbdullaFBanikRChild marriage and its association with morbidity and mortality of under-5 years old children in BangladeshPLoS ONE202217210.1371/journal.pone.0262927
KursaMBRudnickiWRFeature selection with the Boruta packageJ Stat Softw2010361111310.18637/jss.v036.i11
Rahman A, Hossain Z, Kabir E, et al. Machine learning algorithm for analysing infant mortality in Bangladesh. International Conference on Health Information Science 2021;205–219.
HajipourMTaherpourNFatehHPredictive factors of infant mortality using data mining in IranJ Compr Ped202112110.5812/compreped.108575
FH de Bitencourt (180_CR37) 2019; 19
GT Kiross (180_CR8) 2019; 14
YA Mohamoud (180_CR12) 2019; 19
KR Müller (180_CR29) 2001; 12
R Sarki (180_CR20) 2021; 6
M Hajipour (180_CR36) 2021; 12
JE Finlay (180_CR39) 2011
CS Vilanova (180_CR14) 2019
L Breiman (180_CR26) 2001; 45
M Awad (180_CR27) 2015
S Supriya (180_CR21) 2020; 8
CJ Burges (180_CR28) 1998; 2
T Fawcett (180_CR31) 2006; 27
180_CR33
180_CR32
A Singh (180_CR42) 2011; 6
D Dancer (180_CR15) 2008; 17
180_CR6
L Dube (180_CR13) 2013; 13
KB Khadka (180_CR9) 2015; 15
J He (180_CR22) 2020; 23
L Igual (180_CR24) 2017
MM Rahman (180_CR40) 2021
E Quansah (180_CR7) 2016
J Vijay (180_CR4) 2020; 8
J Du (180_CR19) 2019
BA Mateen (180_CR17) 2020; 2
A Palczewska (180_CR35) 2014
180_CR25
VN Vapnik (180_CR30) 1995
SC Karmaker (180_CR41) 2014
AG Baraki (180_CR11) 2020; 20
R Sarki (180_CR18) 2020; 8
SL Santos (180_CR10) 2016; 38
MB Kursa (180_CR34) 2010; 36
180_CR2
180_CR1
M Alghamdi (180_CR16) 2017; 12
MM Hossain (180_CR38) 2022; 17
M Hajizadeh (180_CR5) 2014; 101
180_CR3
180_CR23
References_xml – reference: QuansahEOheneLANormanLSocial factors influencing child health in GhanaPLoS ONE201610.1371/journal.pone.0145401
– reference: BarakiAGAkaluTYWoldeHFFactors affecting infant mortality in the general population: evidence from the 2016 Ethiopian demographic and health survey (EDHS); a multilevel analysisBMC Pregnancy Childbirth20202029910.1186/s12884-020-03002-x
– reference: IgualLSeguíSIntroduction to data science2017ChamSpringer10.1007/978-3-319-50017-11365.62003
– reference: BurgesCJA tutorial on support vector machines for pattern recognitionData Min Knowl Disc19982212116710.1023/A:1009715923555
– reference: CDC, Infant Mortality. Centers for Disease Control and Prevention; 2018. https://www.cdc.gov/reproductivehealth/MaternalInfantHealth/InfantMortality.htm/ accessed 14 July 2021.
– reference: SantosSLSantosLBCampeloVFactors associated with infant mortality in a northeastern Brazilian capitalRev Bras Ginecol Obstet2016381048249110.1055/s-0036-1584686
– reference: DuJMichalskaSSubramaniSNeural attention with character embeddings for hay fever detection from TwitterHealth Inf Sci Syst201910.1007/s13755-019-0084-2
– reference: World Health Organization (WHO). 2018. Millennium development goals (MDGs). http://www.who.int/topics/millennium-development-goals/about/en/ accessed 14 July 2021.
– reference: VilanovaCSHirakataVNBuriolVCCThe relationship between the different low birth weight strata of newborns with infant mortality and the influence of the main health determinants in the extreme south of BrazilPopul Health Metrics201910.1186/s12963-019-0195-7
– reference: FinlayJEÖzaltinECanningDThe association of maternal age with infant mortality, child anthropometric failure, diarrhoea and anaemia for first births: evidence from 55 low- and middle-income countriesBMJ Open201110.1136/bmjopen-2011-000226
– reference: KhadkaKBLiebermanLSGiedraitisVThe socio-economic determinants of infant mortality in Nepal: analysis of Nepal demographic health survey, 2011BMC Pediatr20151515210.1186/s12887-015-0468-7
– reference: HajizadehMNandiAHeymannJSocial inequality in infant mortality: what explains variation across low and middle income countries?Soc Sci Med2014101364610.1016/j.socscimed.2013.11.019
– reference: World Health Organization (WHO). 2015. Success factor for women’s and child’s health: Bangladesh. www.who.int.
– reference: HossainMMAbdullaFBanikRChild marriage and its association with morbidity and mortality of under-5 years old children in BangladeshPLoS ONE202217210.1371/journal.pone.0262927
– reference: DubeLTahaMAsefaHDeterminants of infant mortality in community of Gilgel gibe field research center, Southwest Ethiopia: a matched case control studyBMC Public Health20131340110.1186/1471-2458-13-401
– reference: SupriyaSSiulySWangHAutomated epilepsy detection techniques from electroencephalogram signals: a review studyHealth Inf Sci Syst20208111510.1007/s13755-020-00129-1
– reference: SarkiRAhmedKWangHImage preprocessing in classification and identification of diabetic eye diseasesData Sci Eng2021645547110.1007/s41019-021-00167-z
– reference: PalczewskaAPalczewskiJRobinsonRMInterpreting random forest classification models using a feature contribution method In Integration of reusable systems2014ChamSpringer193218
– reference: National institute of population research and training (NIPROT). Bangladesh demographic and health survey 2017–2018. National institute of population research and training (NIPROT), Mitra and Associates, Dhaka, Bangladesh and ICF International, Calverton, Maryland, USA, 2019.
– reference: de BitencourtFHSchwartzIVDViannaFSLInfant mortality in Brazil attributable to inborn errors of metabolism associated with sudden death: a time-series study (2002–2014)BMC Pediatr2019195210.1186/s12887-019-1421-y
– reference: VapnikVNThe nature of statistical learning theory1995New YorkSpringer10.1007/978-1-4757-2440-00833.62008
– reference: SarkiRAhmedKWangHAutomated detection of mild and multi-class diabetic eye diseases using deep learningHealth Inf Sci Syst2020811910.1007/s13755-020-00125-5
– reference: HeJRongJSunLA framework for cardiac arrhythmia detection from IoT-based ECGsWorld Wide Web20202352835285010.1007/s11280-019-00776-9
– reference: KursaMBRudnickiWRFeature selection with the Boruta packageJ Stat Softw2010361111310.18637/jss.v036.i11
– reference: AlghamdiMAl-MallahMKeteyianSPredicting diabetes mellitus using SMOTE and ensemble machine learning approach: the Henry Ford Exercise Testing (FIT) projectPLoS ONE20171210.1371/journal.pone.0179805
– reference: Nilsson NL. Introduction to machine learning; 1997.
– reference: RahmanMMAraTMahmudSRevisit the correlates of infant mortality in Bangladesh: findings from two nationwide cross-sectional studiesBMJ Open202110.1136/bmjopen-2020-045506
– reference: BreimanLRandom forestsMach Learn200145153210.1023/A:10109334043241007.68152
– reference: KarmakerSCLahirySRoyDCDeterminants of infant and child mortality in Bangladesh: time trends and comparisons across South AsiaBangladesh J Med Sci201410.3329/bjms.v13i4.20590
– reference: SinghAPathakPKChauhanRKInfant and child mortality in India in the last two decades: a geospatial analysisPLoS ONE20116112011e2685610.1371/journal.pone.0026856
– reference: AwadMEfficient Khanna, R machines learning2015BerkeleyA press10.1007/978-1-4302-5990-9-1
– reference: MüllerKRMikaSRätschGAn introduction to kernel-based learning algorithmsIEEE Trans Neural Netw200112218120110.1109/72.914517
– reference: Rahman A, Hossain Z, Kabir E, et al. Machine learning algorithm for analysing infant mortality in Bangladesh. International Conference on Health Information Science 2021;205–219.
– reference: R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. http://www.R-project.org/; 2013.
– reference: FawcettTAn Introduction to ROC AnalysisPattern Recogn Lett20062786187410.1016/j.patrec.2005.10.010
– reference: MohamoudYAKirbyRSEhrenthalDBPoverty, urban–rural classification and term infant mortality: a population-based multilevel analysisBMC Pregnancy Childbirth2019194010.1186/s12884-019-2190-1
– reference: KirossGTChojentaCBarkerDThe effect of maternal education on infant mortality in Ethiopia: a systematic review and meta-analysisPLoS ONE201914710.1371/journal.pone.0220076
– reference: MateenBALileyJDennistonAKImproving the quality of machine learning in health applications and clinical researchNat Mach Intell202021055455610.1038/s42256-020-00239-1
– reference: World Health Organization (WHO). 2018. The global helath observatory. https://www.who.int/data/gho/data/themes/topics/indicator-groups/indicator-group-details/GHO/infant-mortality/ accessed 14 July 2021.
– reference: VijayJPatelKKRisk factors of infant mortality in BangladeshClin Epidemiol Glob Health2020821121410.1016/j.cegh.2019.07.003
– reference: DancerDRammohanASmithMDInfant mortality and child nutrition in BangladeshHealth Econ20081791015103510.1002/hec.1379
– reference: HajipourMTaherpourNFatehHPredictive factors of infant mortality using data mining in IranJ Compr Ped202112110.5812/compreped.108575
– ident: 180_CR6
– volume: 6
  start-page: 2011e26856
  issue: 11
  year: 2011
  ident: 180_CR42
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0026856
– volume: 17
  start-page: 2
  year: 2022
  ident: 180_CR38
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0262927
– ident: 180_CR2
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 180_CR26
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 12
  start-page: 1
  year: 2021
  ident: 180_CR36
  publication-title: J Compr Ped
  doi: 10.5812/compreped.108575
– volume: 12
  start-page: 181
  issue: 2
  year: 2001
  ident: 180_CR29
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.914517
– year: 2021
  ident: 180_CR40
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2020-045506
– volume: 2
  start-page: 121
  issue: 2
  year: 1998
  ident: 180_CR28
  publication-title: Data Min Knowl Disc
  doi: 10.1023/A:1009715923555
– year: 2016
  ident: 180_CR7
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0145401
– volume-title: Introduction to data science
  year: 2017
  ident: 180_CR24
  doi: 10.1007/978-3-319-50017-1
– year: 2019
  ident: 180_CR19
  publication-title: Health Inf Sci Syst
  doi: 10.1007/s13755-019-0084-2
– ident: 180_CR32
  doi: 10.1007/978-3-030-90885-0_19
– volume: 36
  start-page: 1
  issue: 11
  year: 2010
  ident: 180_CR34
  publication-title: J Stat Softw
  doi: 10.18637/jss.v036.i11
– ident: 180_CR3
– start-page: 193
  volume-title: Interpreting random forest classification models using a feature contribution method In Integration of reusable systems
  year: 2014
  ident: 180_CR35
– volume: 19
  start-page: 40
  year: 2019
  ident: 180_CR12
  publication-title: BMC Pregnancy Childbirth
  doi: 10.1186/s12884-019-2190-1
– year: 2011
  ident: 180_CR39
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2011-000226
– volume: 12
  year: 2017
  ident: 180_CR16
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0179805
– ident: 180_CR1
– ident: 180_CR23
– ident: 180_CR25
– volume-title: Efficient Khanna, R machines learning
  year: 2015
  ident: 180_CR27
  doi: 10.1007/978-1-4302-5990-9-1
– volume: 6
  start-page: 455
  year: 2021
  ident: 180_CR20
  publication-title: Data Sci Eng
  doi: 10.1007/s41019-021-00167-z
– volume: 15
  start-page: 152
  year: 2015
  ident: 180_CR9
  publication-title: BMC Pediatr
  doi: 10.1186/s12887-015-0468-7
– volume: 38
  start-page: 482
  issue: 10
  year: 2016
  ident: 180_CR10
  publication-title: Rev Bras Ginecol Obstet
  doi: 10.1055/s-0036-1584686
– volume: 13
  start-page: 401
  year: 2013
  ident: 180_CR13
  publication-title: BMC Public Health
  doi: 10.1186/1471-2458-13-401
– volume: 8
  start-page: 1
  issue: 1
  year: 2020
  ident: 180_CR21
  publication-title: Health Inf Sci Syst
  doi: 10.1007/s13755-020-00129-1
– year: 2014
  ident: 180_CR41
  publication-title: Bangladesh J Med Sci
  doi: 10.3329/bjms.v13i4.20590
– volume: 2
  start-page: 554
  issue: 10
  year: 2020
  ident: 180_CR17
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-020-00239-1
– ident: 180_CR33
– volume: 17
  start-page: 1015
  issue: 9
  year: 2008
  ident: 180_CR15
  publication-title: Health Econ
  doi: 10.1002/hec.1379
– volume: 101
  start-page: 36
  year: 2014
  ident: 180_CR5
  publication-title: Soc Sci Med
  doi: 10.1016/j.socscimed.2013.11.019
– year: 2019
  ident: 180_CR14
  publication-title: Popul Health Metrics
  doi: 10.1186/s12963-019-0195-7
– volume-title: The nature of statistical learning theory
  year: 1995
  ident: 180_CR30
  doi: 10.1007/978-1-4757-2440-0
– volume: 8
  start-page: 211
  year: 2020
  ident: 180_CR4
  publication-title: Clin Epidemiol Glob Health
  doi: 10.1016/j.cegh.2019.07.003
– volume: 23
  start-page: 2835
  issue: 5
  year: 2020
  ident: 180_CR22
  publication-title: World Wide Web
  doi: 10.1007/s11280-019-00776-9
– volume: 27
  start-page: 861
  year: 2006
  ident: 180_CR31
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2005.10.010
– volume: 14
  start-page: 7
  year: 2019
  ident: 180_CR8
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0220076
– volume: 8
  start-page: 1
  issue: 1
  year: 2020
  ident: 180_CR18
  publication-title: Health Inf Sci Syst
  doi: 10.1007/s13755-020-00125-5
– volume: 20
  start-page: 299
  year: 2020
  ident: 180_CR11
  publication-title: BMC Pregnancy Childbirth
  doi: 10.1186/s12884-020-03002-x
– volume: 19
  start-page: 52
  year: 2019
  ident: 180_CR37
  publication-title: BMC Pediatr
  doi: 10.1186/s12887-019-1421-y
SSID ssj0000912351
Score 2.2032676
Snippet We aimed to assess different machine learning techniques for predicting infant mortality (<1 year) in Bangladesh. The decision tree (DT), random forest (RF),...
SourceID unpaywall
pubmedcentral
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12
SubjectTerms Accuracy
Algorithms
Bioinformatics
Body size
Chi-square test
Children
Computational Biology/Bioinformatics
Computer Science
Cooking
Decision trees
Health Informatics
Infant mortality
Information Systems and Communication Service
Machine learning
Performance prediction
Public health
Sensitivity analysis
Statistical tests
Support vector machines
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED-6FPZBGVu3sazd0GBvq5glW5Y9GKMdLWXQMMYKfTOSLLUBx06XhLH_fjpbdpY-hL5asj58J-l8p_v9AD44a3MtFadORpImTDqK7A6UCZvLkgmVRZjgfDFJzy-T71fiagcmfS4MXqvs98R2oy4bgz7yT9zvqiKL4ox_nd9SZI3C6GpPoaECtUL5pYUYewC7HJGxRrB7cjr58XPwuvjTkceCheyZLoculgKTlDlFgrqIRpsn1NrsvHtpcoicPoFHq3qu_v5RVfXf4XT2DJ4Gq5Icd2rwHHZsvQ8PL0LcfB_2Ou8c6ZKOXsDtcU3UgMlJGkf8kVU2M-JNWD8KMiC7ErwXf00W01mg-SItHu1nMq2qVQ-5S9CZS7yqeimRWWvPe9vePyAnCjlCSru4eQmXZ6e_vp3TQL5ATSLYkjKuETteWYMgfUI7odNcxYnyBp6ROs-cVrLEsCTXaWxczlmqtfbmohPMZCZ-BaO6qe1rIBohnF3GE-fyxCSpzv0-UcYaf4RFXNoxsP6DFyYgkyNBRlWsMZVRSIUXUtEKqYjG8HF4Z97hcmytfdjLsQhrdFGsNWoM74div7owZKJq26ywTsYQfij1TcgN-Q-9Ij73Zkk9vWlxunOOfDq-9aNeU9adbxvr0aBN95jam-1TO4DHvNXtlHJ2CKPl75V9682opX4X1sY_bWkblQ
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VW4nHgfIUCwUZiRv1NnbiOOG2RVQVUiuEWKmcItux2xVJdmE3QvTX15PXsj1U9Bo7cayZ8XzJzHwD8N5Zm2qpOHUykDRi0lHs7kCZsKnMmVBJgAXOp2fxySz6ci7Od4D1tTBN0r7R80lVlJNqftnkVi5Lc9jniR2mHLuU-FN3NxYefo9gd3b2dfoDm8i1rAMB64pj2hK5UAqsQeYU-88FNNh2QBtUeTMncgiMPoT7dbVUf_-oovjH9xzvwbf-rduUk5-Teq0n5uoGoeOdtvUYHnVIlEzboSewY6uncO-0i7U_g1_TiqiBt5MsHPFuLV-UxMNcvxUysL8SzJ2_IKt52bUCIw1n7UcyL4q6p-Ul-MOXeHX2kiRlg_k9_vcXyJHCPiK5XV0-h9nx5--fTmjXoIGaSLA1ZVwjv7yyBon8hHZCx6kKI-VBoJE6TZxWMsfQJddxaFzKWay19pDSCWYSE76AUbWo7EsgGmmeXcIj59LIRLFO_VmShxo_lkWY2zGwXmqZ6djLsYlGkW14l1HSmZd01kg6C8bwYbhn2XJ33Dp7v1eGrLPjVca9LxdJECZ8DO-GYW-BGFZRlV3UOCdhSFEU-0fILSUaVkUO7-0RrwMNl3cn9jEc9Oq2Wfy2dz0YVPI_tvbqbtNfwwPeGExMOduH0fp3bd946LXWbztjuwakMyx4
  priority: 102
  providerName: Unpaywall
Title An assessment of random forest technique using simulation study: illustration with infant mortality in Bangladesh
URI https://link.springer.com/article/10.1007/s13755-022-00180-0
https://www.proquest.com/docview/2678580382
https://www.proquest.com/docview/2681043160
https://pubmed.ncbi.nlm.nih.gov/PMC9209612
https://www.ncbi.nlm.nih.gov/pmc/articles/9209612
UnpaywallVersion submittedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 2047-2501
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000912351
  issn: 2047-2501
  databaseCode: RBZ
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2047-2501
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000912351
  issn: 2047-2501
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2047-2501
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000912351
  issn: 2047-2501
  databaseCode: DIK
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2047-2501
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000912351
  issn: 2047-2501
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2047-2501
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000912351
  issn: 2047-2501
  databaseCode: AFBBN
  dateStart: 20130110
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2047-2501
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0000912351
  issn: 2047-2501
  databaseCode: RPM
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2047-2501
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0000912351
  issn: 2047-2501
  databaseCode: 7X7
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2047-2501
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0000912351
  issn: 2047-2501
  databaseCode: BENPR
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2047-2501
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0000912351
  issn: 2047-2501
  databaseCode: 8FG
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2047-2501
  dateEnd: 20250531
  omitProxy: true
  ssIdentifier: ssj0000912351
  issn: 2047-2501
  databaseCode: M48
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBf9gH08jH2VZeuCBmMvq4YlW5Y1GCMdzcogoYwFsicj2dIacJykSdj63-_OsZ1llNIXgy1bknUn38mn-_0Ieeud01YZwbwKFIu48gzZHRiXTqucS5MEmOA8GMbno-jbWI73SLPdth7A5Y1LO-STGl0VH_4srj_DhP-0TYMLlcQ8Y8GQYy5gwbv5giGxFAZga5aNfXIIxksju8OgXgFUH2uNyaK4LBMbzIKA16k1N9e8a762Pun_OyrbsOpDcn9dzs31b1MU_1iu_mPyqHY5aW-jI0_IniufknuDOqj-jCx6JTUtQCedeQr2K59NKfiz0CptYV4pbpL_RZeTac35RStw2o90UhTrBn-X4p9dCiMJIqPTalzB0YcL9NQgYUjulpfPyah_9uPLOauZGFgWSb5iXFgEkjcuQ8Q-ab20sTZhZMDby5TVibdG5RijFDYOM68Fj6214Dt6ybMkC4_IQTkr3QtCLeI5-0RE3usoi2Kr4aORhxZXxTLMXYfwZoDTrIYpR7aMIt0CLKNQUhBKWgklDTrkffvMfAPScevdx43c0kbfUgFGWyZBmIgOedMWw1TD-Ikp3WyN9yQcsYhiqELtyLttFcG6d0vKyWUF2q0FkutA7SeNZmwbv62vJ6323OHVXt6h76_IA1EpdMwEPyYHq6u1ew2O1cp2yb4aKzgm_a9dcnh6Nrz43q2mC5yNhhe9n38BzScjkg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJjEQQjBAFAYYCZ6YRezE-UCa0AabOrZWCG3S3jI7sVmlNOloq2n_HH8bd4mTUh4qXvaaD9vJnc93Pt_vR8g7a0yiIyWYjbyIBTyyDNkdGJcmiXIuVexhgfNgGPbPgm_n8nyN_G5rYfBYZWsTa0OdVxnukX8UYFVl7Pmx-Dy5YsgahdnVlkJDOWqFfLeGGHOFHcfm5hpCuOnu0VeQ93shDg9Ov_SZYxlgWSD5jHGhESRdmQzR6KS2UoeJ8gMFnkwW6SS2WkU55t-EDv3MJoKHWmvwi6zkWZz50O4dshH4QQLB38b-wfD7j26XB1Zj4UvuqnWamj0_klgULRgS4nnMW14RF27uv4c0u0ztfbI5Lyfq5loVxV-L4eEj8tB5sXSvUbvHZM2UW-TuwOXpt8iDZjeQNkVOT8jVXklVhwFKK0thicyrMQWXGUZBOyRZiufwf9LpaOxoxWiNf_uJjopi3kL8Utw8pjA1QCvouI4fIJaAC3RfISdJbqaXT8nZrYjhGVkvq9I8J1QjZLSNRWBtEmRBqBOwS7mvMfCWfm56hLc_PM0cEjoSchTpAsMZhZSCkNJaSKnXIx-6dyYNDsjKp7dbOabOJkzThQb3yNvuNsxmTNGo0lRzfCbmCHcUQhPRkvy7XhEPfPlOObqsccETgfw90PpOqymLzleNdafTpv_4tBerP-0N2eyfDk7Sk6Ph8UtyT9R6HjLBt8n67NfcvAIXbqZfu3lCycVtT80_vyNYHw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkQoIISggFgoYCU7UamzHcYKEUKGsWkorDlTaW7ATm66UTbbsrqr-NX4dM3kty2HFpdc8nMc8PPbMfB8hr71zidVGMK8DzUKuPUN2B8aVS3TOlYkDbHA-OY0Oz8IvIzXaIL-7Xhgsq-x8Yu2o8yrDPfI9AV5VxYGMxZ5vyyK-HQw_TC8YMkhhprWj02hU5NhdXcLybfb-6ABk_UaI4efvnw5ZyzDAslDxOePCIkC6cRki0SnrlY0SI0MDUUymbRJ7a3SOuTdhI5n5RPDIWgsxkVc8izMJ494gN7WUCZYT6pHu93dgHhZS8bZPp-nWk1phO7RgSIUXsGB1LlwGuP-WZ_Y52jvk1qKcmqtLUxR_TYPD--ReG7_S_UbhHpANV26TrZM2Q79N7jb7gLRpb3pILvZLanr0T1p5CpNjXk0oBMvwFrTHkKVYgf-TzsaTllCM1si37-i4KBYduC_FbWMKRgH6QCf1ygFWEXCAfjTIRpK72fkjcnYtQnhMNsuqdE8ItQgW7WMRep-EWRjZBDxSLi0uuZXM3YDw7oenWYuBjlQcRbpEb0YhpSCktBZSGgzI2_6eaYMAsvbqnU6OaesNZulSdwfkVX8a7BiTM6Z01QKviTkCHUUwhF6Rf_9URAJfPVOOz2tE8EQgcw-MvttpyvLh6951t9em__i0p-s_7SXZAoNMvx6dHj8jt0Wt5hETfIdszn8t3HOI3eb2RW0klPy4bqv8A0_-Vbk
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VW4nHgfIUCwUZiRv1NnbiOOG2RVQVUiuEWKmcItux2xVJdmE3QvTX15PXsj1U9Bo7cayZ8XzJzHwD8N5Zm2qpOHUykDRi0lHs7kCZsKnMmVBJgAXOp2fxySz6ci7Od4D1tTBN0r7R80lVlJNqftnkVi5Lc9jniR2mHLuU-FN3NxYefo9gd3b2dfoDm8i1rAMB64pj2hK5UAqsQeYU-88FNNh2QBtUeTMncgiMPoT7dbVUf_-oovjH9xzvwbf-rduUk5-Teq0n5uoGoeOdtvUYHnVIlEzboSewY6uncO-0i7U_g1_TiqiBt5MsHPFuLV-UxMNcvxUysL8SzJ2_IKt52bUCIw1n7UcyL4q6p-Ul-MOXeHX2kiRlg_k9_vcXyJHCPiK5XV0-h9nx5--fTmjXoIGaSLA1ZVwjv7yyBon8hHZCx6kKI-VBoJE6TZxWMsfQJddxaFzKWay19pDSCWYSE76AUbWo7EsgGmmeXcIj59LIRLFO_VmShxo_lkWY2zGwXmqZ6djLsYlGkW14l1HSmZd01kg6C8bwYbhn2XJ33Dp7v1eGrLPjVca9LxdJECZ8DO-GYW-BGFZRlV3UOCdhSFEU-0fILSUaVkUO7-0RrwMNl3cn9jEc9Oq2Wfy2dz0YVPI_tvbqbtNfwwPeGExMOduH0fp3bd946LXWbztjuwakMyx4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+assessment+of+random+forest+technique+using+simulation+study%3A+illustration+with+infant+mortality+in+Bangladesh&rft.jtitle=Health+information+science+and+systems&rft.au=Rahman%2C+Atikur&rft.au=Hossain%2C+Zakir&rft.au=Kabir%2C+Enamul&rft.au=Rois%2C+Rumana&rft.date=2022-06-21&rft.issn=2047-2501&rft.eissn=2047-2501&rft.volume=10&rft.issue=1&rft.spage=12&rft_id=info:doi/10.1007%2Fs13755-022-00180-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-2501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-2501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-2501&client=summon