Optimization of Parameters Related to Grain Growth of Spring Wheat in Dryland Based on the Next-Generation APSIM
To improve the applicability of crop models, this study compared two algorithms for optimizing the single objective parameters of the spring wheat in the dryland grain growth sub-model to identify the more efficient algorithm for application in future model parameter optimization. Based on field exp...
Saved in:
| Published in | Agronomy (Basel) Vol. 13; no. 7; p. 1915 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.07.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2073-4395 2073-4395 |
| DOI | 10.3390/agronomy13071915 |
Cover
| Abstract | To improve the applicability of crop models, this study compared two algorithms for optimizing the single objective parameters of the spring wheat in the dryland grain growth sub-model to identify the more efficient algorithm for application in future model parameter optimization. Based on field experiments from 2015 to 2021 in Gansu Province, this study combined weather data and yearbook yield data from 1984 to 2021 to optimize parameters related to grain growth of spring wheat in dryland based on the next-generation APSIM using two algorithms: the Nelder–Mead simplex algorithm and the DREAM-zs algorithm. The results were as follows: the optimization results of both algorithms were the same, but the DREAM-zs algorithm converged faster; the optimized parameters for the grain growth stage of Dingxi35 spring wheat were: a grain number per gram stem of 25 grains, an initial grain proportion of 0.05, and a maximum grain size of 0.049 g; after optimization, the root mean square error (RMSE) of observed and simulated yield values decreased from 186.84 kg/hm2 to 115.71 kg/hm2, and the normalized root mean square error (NRMSE) decreased from 10.33% to 6.40%. The optimized results were consistent with the growth and development process of wheat and had high applicability. |
|---|---|
| AbstractList | To improve the applicability of crop models, this study compared two algorithms for optimizing the single objective parameters of the spring wheat in the dryland grain growth sub-model to identify the more efficient algorithm for application in future model parameter optimization. Based on field experiments from 2015 to 2021 in Gansu Province, this study combined weather data and yearbook yield data from 1984 to 2021 to optimize parameters related to grain growth of spring wheat in dryland based on the next-generation APSIM using two algorithms: the Nelder–Mead simplex algorithm and the DREAM-zs algorithm. The results were as follows: the optimization results of both algorithms were the same, but the DREAM-zs algorithm converged faster; the optimized parameters for the grain growth stage of Dingxi35 spring wheat were: a grain number per gram stem of 25 grains, an initial grain proportion of 0.05, and a maximum grain size of 0.049 g; after optimization, the root mean square error (RMSE) of observed and simulated yield values decreased from 186.84 kg/hm² to 115.71 kg/hm², and the normalized root mean square error (NRMSE) decreased from 10.33% to 6.40%. The optimized results were consistent with the growth and development process of wheat and had high applicability. To improve the applicability of crop models, this study compared two algorithms for optimizing the single objective parameters of the spring wheat in the dryland grain growth sub-model to identify the more efficient algorithm for application in future model parameter optimization. Based on field experiments from 2015 to 2021 in Gansu Province, this study combined weather data and yearbook yield data from 1984 to 2021 to optimize parameters related to grain growth of spring wheat in dryland based on the next-generation APSIM using two algorithms: the Nelder–Mead simplex algorithm and the DREAM-zs algorithm. The results were as follows: the optimization results of both algorithms were the same, but the DREAM-zs algorithm converged faster; the optimized parameters for the grain growth stage of Dingxi35 spring wheat were: a grain number per gram stem of 25 grains, an initial grain proportion of 0.05, and a maximum grain size of 0.049 g; after optimization, the root mean square error (RMSE) of observed and simulated yield values decreased from 186.84 kg/hm2 to 115.71 kg/hm2, and the normalized root mean square error (NRMSE) decreased from 10.33% to 6.40%. The optimized results were consistent with the growth and development process of wheat and had high applicability. To improve the applicability of crop models, this study compared two algorithms for optimizing the single objective parameters of the spring wheat in the dryland grain growth sub-model to identify the more efficient algorithm for application in future model parameter optimization. Based on field experiments from 2015 to 2021 in Gansu Province, this study combined weather data and yearbook yield data from 1984 to 2021 to optimize parameters related to grain growth of spring wheat in dryland based on the next-generation APSIM using two algorithms: the Nelder–Mead simplex algorithm and the DREAM-zs algorithm. The results were as follows: the optimization results of both algorithms were the same, but the DREAM-zs algorithm converged faster; the optimized parameters for the grain growth stage of Dingxi35 spring wheat were: a grain number per gram stem of 25 grains, an initial grain proportion of 0.05, and a maximum grain size of 0.049 g; after optimization, the root mean square error (RMSE) of observed and simulated yield values decreased from 186.84 kg/hm[sup.2] to 115.71 kg/hm[sup.2], and the normalized root mean square error (NRMSE) decreased from 10.33% to 6.40%. The optimized results were consistent with the growth and development process of wheat and had high applicability. |
| Audience | Academic |
| Author | Nie, Zhigang Li, Guang Cui, Weinan Yuan, Jianyu |
| Author_xml | – sequence: 1 givenname: Weinan orcidid: 0009-0000-2820-5313 surname: Cui fullname: Cui, Weinan – sequence: 2 givenname: Zhigang surname: Nie fullname: Nie, Zhigang – sequence: 3 givenname: Guang surname: Li fullname: Li, Guang – sequence: 4 givenname: Jianyu surname: Yuan fullname: Yuan, Jianyu |
| BookMark | eNqNUtFu0zAUjdCQGGXvPEbihZcOu7bj5LGMUSoNNjEQj9GNc926SuzguBrl67ldEEKVkLAl27o-5_joHj_PznzwmGUvObsUomJvYBODD_2BC6Z5xdWT7HzBtJhLUamzv87Psotx3DEaFRcl0-fZcDsk17ufkFzwebD5HUToMWEc88_YQcI2TyFfRXCe1vCQtkfU_RCd3-Tftggpp5t38dCBb_O3MBKBlNIW80_4I81X6DFO6su7-_XHF9lTC92IF7_3Wfb1_fWXqw_zm9vV-mp5MzdS8TTnrBCgW1GAMoo3DTBumGmbStpFY5W2IFvdlEULgBxYKTSKSoJsOLMLqJSYZetJtw2wq8luD_FQB3D1YyHETQ0xOdNhrZVFkJp0jJYgsGHSNAVToiBFS5VZxietvR_g8ABd90eQs_qYQH2aAHFeT5whhu97HFPdu9FgR23CsB_rRVnqgitVVAR9dQLdhX301B1CyUXFdFlIQl1OqA2QZ-dtSBEMzRZ7Z-g_WEf1pVZlSfGWRwdsIpgYxjGi_R_TxQnFuPQYHr3lun8TfwHRvcpI |
| CitedBy_id | crossref_primary_10_1088_1402_4896_ad7cd7 crossref_primary_10_3390_agronomy14102279 crossref_primary_10_1016_j_eja_2024_127181 |
| Cites_doi | 10.1007/978-3-319-50920-4_19 10.1111/rssa5.12138 10.1016/j.asoc.2014.06.023 10.1016/j.fcr.2008.12.004 10.1007/s13580-022-00510-x 10.1016/j.agrformet.2008.08.015 10.1016/j.ecolmodel.2014.02.003 10.1051/agro:2004033 10.1029/2011WR010608 10.1016/j.agsy.2017.08.005 10.1016/j.agrformet.2021.108686 10.3390/rs15082021 10.12700/APH.18.5.2021.5.7 10.1016/j.envsoft.2015.08.013 10.1109/JAS.2021.1004129 10.1038/s41467-023-36129-4 10.1101/2022.06.08.495355 10.1016/j.envsoft.2018.02.002 10.1214/ss/1177011136 10.54386/jam.v19i2.683 10.1016/j.envsoft.2014.09.005 10.1016/j.pce.2020.102941 10.20546/ijcmas.2017.604.128 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SN 7SS 7ST 7T7 7TM 7X2 8FD 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ M0K P64 PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PYCSY SOI 7S9 L.6 ADTOC UNPAY DOA |
| DOI | 10.3390/agronomy13071915 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection (via ProQuest) Agricultural Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection Environment Abstracts AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest Central Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Agricultural Science Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| EISSN | 2073-4395 |
| ExternalDocumentID | oai_doaj_org_article_75fea47e1ac74a3eb04cb6053694af4a 10.3390/agronomy13071915 A758800985 10_3390_agronomy13071915 |
| GeographicLocations | China Gansu China |
| GeographicLocations_xml | – name: China – name: Gansu China |
| GroupedDBID | 2XV 5VS 7X2 7XC 8FE 8FH AADQD AAFWJ AAHBH AAYXX ABDBF ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION ECGQY GROUPED_DOAJ HCIFZ IAO ITC KQ8 M0K MODMG M~E OK1 OZF PATMY PHGZM PHGZT PIMPY PROAC PYCSY 3V. 7SN 7SS 7ST 7T7 7TM 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI SOI 7S9 L.6 PUEGO ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c451t-1063a7d36a5c51bba01c0cdb94f2bf57fa4d7b86daae1a0837e394a4b10f2a953 |
| IEDL.DBID | BENPR |
| ISSN | 2073-4395 |
| IngestDate | Fri Oct 03 12:34:10 EDT 2025 Sun Oct 26 04:08:05 EDT 2025 Fri Sep 05 11:52:15 EDT 2025 Mon Jun 30 11:25:33 EDT 2025 Mon Oct 20 17:17:04 EDT 2025 Thu Apr 24 22:56:32 EDT 2025 Thu Oct 16 04:25:27 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c451t-1063a7d36a5c51bba01c0cdb94f2bf57fa4d7b86daae1a0837e394a4b10f2a953 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0009-0000-2820-5313 |
| OpenAccessLink | https://www.proquest.com/docview/2842907864?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2842907864 |
| PQPubID | 2032440 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_75fea47e1ac74a3eb04cb6053694af4a unpaywall_primary_10_3390_agronomy13071915 proquest_miscellaneous_2887615569 proquest_journals_2842907864 gale_infotracacademiconefile_A758800985 crossref_primary_10_3390_agronomy13071915 crossref_citationtrail_10_3390_agronomy13071915 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-01 |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Agronomy (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Kumar (ref_7) 2017; 6 ref_12 ref_34 ref_11 (ref_10) 2014; 23 ref_31 Kanda (ref_32) 2021; 124 ref_19 ref_18 Tremblay (ref_4) 2004; 24 Zhao (ref_30) 2014; 279 Galantai (ref_24) 2021; 18 Gao (ref_22) 2021; 311 Liu (ref_6) 2023; 14 Ma (ref_3) 2023; 31 Laloy (ref_27) 2012; 48 Tang (ref_33) 2021; 8 Lagarias (ref_23) 2006; 9 Iizumi (ref_13) 2009; 149 Gillard (ref_21) 2015; 178 Brown (ref_15) 2014; 62 Zhang (ref_17) 2023; 31 Patel (ref_8) 2017; 19 Zhang (ref_26) 2022; 43 ref_2 Gelman (ref_29) 1992; 7 Vrugt (ref_25) 2016; 75 ref_28 Wang (ref_1) 2009; 111 ref_9 Holzworth (ref_14) 2018; 103 Khaembah (ref_16) 2017; 158 (ref_20) 2017; 1182 ref_5 |
| References_xml | – ident: ref_11 doi: 10.1007/978-3-319-50920-4_19 – volume: 178 start-page: 1100 year: 2015 ident: ref_21 article-title: Bayesian and Frequentist Regression Methods publication-title: J. R. Stat. Soc. Ser. A-Stat. Soc. doi: 10.1111/rssa5.12138 – ident: ref_28 – ident: ref_9 – ident: ref_34 – volume: 23 start-page: 474 year: 2014 ident: ref_10 article-title: Parameter estimation for crop growth model using evolutionary and bio-inspired algorithms publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.06.023 – volume: 111 start-page: 181 year: 2009 ident: ref_1 article-title: Wheat cropping systems and technologies in China publication-title: Field Crop. Res. doi: 10.1016/j.fcr.2008.12.004 – ident: ref_12 doi: 10.1007/s13580-022-00510-x – volume: 149 start-page: 333 year: 2009 ident: ref_13 article-title: Parameter estimation and uncertainty analysis of a large-scale crop model for paddy rice: Application of a Bayesian approach publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2008.08.015 – volume: 279 start-page: 1 year: 2014 ident: ref_30 article-title: Sensitivity and uncertainty analysis of the APSIM-wheat model: Interactions between cultivar, environmental, and management parameters publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2014.02.003 – volume: 24 start-page: 351 year: 2004 ident: ref_4 article-title: Comparison of parameter estimation methods for crop models publication-title: Agronomie doi: 10.1051/agro:2004033 – volume: 48 start-page: W01526 year: 2012 ident: ref_27 article-title: High-dimensional posterior exploration of hydrologic models using multiple-try DREAM(ZS) and high-performance computing publication-title: Water Resour. Res. doi: 10.1029/2011WR010608 – ident: ref_18 – volume: 9 start-page: 112 year: 2006 ident: ref_23 article-title: Convergence Properties of the Nelder--Mead Simplex Method in Low Dimensions publication-title: Siam J. Optim. A Publ. Soc. Ind. Appl. Math. – volume: 158 start-page: 23 year: 2017 ident: ref_16 article-title: Development of a fodder beet potential yield model in the next generation APSIM publication-title: Agric. Syst. doi: 10.1016/j.agsy.2017.08.005 – volume: 311 start-page: 108686 year: 2021 ident: ref_22 article-title: Evaluation of crop model prediction and uncertainty using Bayesian parameter estimation and Bayesian model averaging publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2021.108686 – volume: 31 start-page: 608 year: 2023 ident: ref_3 article-title: Spatiotemporal variation of dry-wet climate during wheat growing seasons from 1961 to 2020 in China publication-title: Chin. J. Eco-Agric. – ident: ref_2 doi: 10.3390/rs15082021 – volume: 18 start-page: 93 year: 2021 ident: ref_24 article-title: A convergence analysis of the Nelder-Mead simplex method publication-title: Acta Polytech. Hung. doi: 10.12700/APH.18.5.2021.5.7 – volume: 75 start-page: 273 year: 2016 ident: ref_25 article-title: Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and MATLAB implementation publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2015.08.013 – volume: 8 start-page: 1627 year: 2021 ident: ref_33 article-title: A Review on Representative Swarm Intelligence Algorithms for Solving Optimization Problems: Applications and Trends publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2021.1004129 – ident: ref_31 – volume: 43 start-page: 1112 year: 2022 ident: ref_26 article-title: Probabilistic back analysis of soil parameters and displacement prediction of unsaturated slopes using Bayesian updating publication-title: Rock Soil Mech. – volume: 14 start-page: 765 year: 2023 ident: ref_6 article-title: Silver lining to a climate crisis in multiple prospects for alleviating crop waterlogging under future climates publication-title: Nat. Commun. doi: 10.1038/s41467-023-36129-4 – ident: ref_5 doi: 10.1101/2022.06.08.495355 – volume: 103 start-page: 43 year: 2018 ident: ref_14 article-title: APSIM Next Generation: Overcoming challenges in modernising a farming systems model publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2018.02.002 – volume: 7 start-page: 457 year: 1992 ident: ref_29 article-title: Inference from Iterative Simulation Using Multiple Sequences publication-title: Stat. Sci. doi: 10.1214/ss/1177011136 – volume: 19 start-page: 120 year: 2017 ident: ref_8 article-title: Evaluation of DSSAT-CERES model for irrigation scheduling of wheat crop in Varanasi region of Uttar Pradesh publication-title: J. Agrometeorol. doi: 10.54386/jam.v19i2.683 – volume: 1182 start-page: 241 year: 2017 ident: ref_20 article-title: A comparison of Bayesian and classical methods for parameter estimation in greenhouse crop models publication-title: Acta Hortic. – volume: 62 start-page: 385 year: 2014 ident: ref_15 article-title: Plant Modelling Framework: Software for building and running crop models on the APSIM platform publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2014.09.005 – ident: ref_19 – volume: 124 start-page: 102941 year: 2021 ident: ref_32 article-title: Calibration and validation of the AquaCrop model for full and deficit irrigated cowpea (Vigna unguiculata (L.) Walp) publication-title: Phys. Chem. Earth doi: 10.1016/j.pce.2020.102941 – volume: 6 start-page: 1031 year: 2017 ident: ref_7 article-title: Genetic Coefficient and Validation of DSSAT Model for Cotton under Different Growing Environments publication-title: Int. J. Curr. Microbiol. Appl. Sci. doi: 10.20546/ijcmas.2017.604.128 – volume: 31 start-page: 102 year: 2023 ident: ref_17 article-title: Sensitivity analysis and calibration of the APSIM next-generation model under different irrigation and sowing density in wheat publication-title: Chin. J. Eco-Agric. |
| SSID | ssj0000913807 |
| Score | 2.2857568 |
| Snippet | To improve the applicability of crop models, this study compared two algorithms for optimizing the single objective parameters of the spring wheat in the... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 1915 |
| SubjectTerms | Agricultural production agronomy Algorithms arid lands Arid zones China developmental stages DREAM-zs algorithm Field tests Grain growth Grain size Growth models Growth stage Intelligence Mathematical models Meteorological data Methods Nelder–Mead simplex algorithm Optimization Parameter estimation Parameter identification parameter optimization Phenology Precipitation Root-mean-square errors Simulation Spring wheat spring wheat in dryland the next-generation APSIM Wheat |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLZQL9ADKptIF2QkJARSNFlsZ3ycAqUgtVSCSr1Zz1s5DMlomlHVf9_3nHQ0gEQvXHKIHcfLW76XPH9m7I1TqvKF8LkAJXKUEJfbqHReQNAVhg8YANGngZNTdXwuvl7Ii42jvignbKAHHiZu0sgYQDShBNcIqIMthLOIwWulBUSRoFEx1RvBVLLBuiQm9eG_ZI1x_QQul2mXANrsBmMU-ZsfSnT9fxvlbfZw1S7g5hrm8w2vc7TDHo9wkc-Gbj5hD0L7lG3PLpcjZUZ4xhbfUOt_jdspeRf5GVDCFbFm8pTqFjzvO_6ZzoLAa3fd_6Rawxc9nowxx5KPyxtKcuSH6NY8x5YQGfJTiosHZurU-uzs-5eT5-z86NOPD8f5eI5C7oQse7S0qobG1wqkk6W1UJSucN5qESsbZRNB-MZOlQfAaUZM1oQaJ1fYsogVaFm_YFtt14aXjKtQVs5PraxcIQDdvY7o5BupLFGheZ-xyd2sGjeSjNNZF3ODwQatg_lzHTL2bv3EYiDY-EfdQ1qodT2ixk43UGDMKDDmPoHJ2FtaZkMKjF1zMO5DwAESFZaZYQQ1JZpVfN3-nSSYUbOvDLrzSiOuUiJjr9fFqJP0owXa0K2oDvoYBGpKZ-z9WoLuHd7u_xjeHntUIQ4bMor32Va_XIUDxE29fZVU5BYTWBcR priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BeoAeeCMCBS0SEgLJ9Wt3HZ-QC5SC1BAJIpWTmX04VA1x5DpU5dczY28iKBIIccnBHm882tmZb9az3zD2xCiV2EjYQIASAVqICXSl8iAClyeYPmACRFsDh2N1MBXvjuSR73N66ssqMRU_7px0gvYXYMSUYZyGWYiphQyXtnrxzW8lxWqUjwTF8MtsS0kE4wO2NR1Pik_UUm79cP9xMsXkPoRZ0x0VQMed0Wi_BKOOs_93z7zNrqwWSzg_g_n8p9Czf519Xr90X3Fysrtq9a75foHP8T-0usGueVjKi96ObrJLbnGLbRezxlNzuNts-R69y1d_bJPXFZ8AFXYROyfvSuqc5W3N31DPCfytz9ovJNXvHPLO6XO886o5p2JKvofh03IcCREoH1P-3TNgd6MXkw9vD--w6f7rjy8PAt-vITBCxi16dJVCZlMF0shYa4hiExmrc1ElupJZBcJmeqQsgIsBsV_m0lyA0HFUJZDL9C4bLOqFu8e4cnFi7EjLxEQCEFbkFYKJTCpNlGvWDlm4nrjSeDJz6qkxLzGpoakuL071kD3bPLHsiTz-ILtHtrCRIwru7kLdzEq_ostMVg5EhpqYTEDqdCSMxuQwVahTJWDInpIlleQo8NUM-PMOqCBRbpUFZmojonPFv9tZG1vpPchpibAhyRG_KTFkjze3ce3TBx1YuHpFMhjLEBCqfMieb4z0r-rd_xfhB-xqgriur1DeYYO2WbmHiMNa_civtR8A6i4R priority: 102 providerName: Unpaywall |
| Title | Optimization of Parameters Related to Grain Growth of Spring Wheat in Dryland Based on the Next-Generation APSIM |
| URI | https://www.proquest.com/docview/2842907864 https://www.proquest.com/docview/2887615569 https://www.mdpi.com/2073-4395/13/7/1915/pdf?version=1689845056 https://doaj.org/article/75fea47e1ac74a3eb04cb6053694af4a |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2073-4395 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913807 issn: 2073-4395 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ customDbUrl: eissn: 2073-4395 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913807 issn: 2073-4395 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate - TFS customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2073-4395 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913807 issn: 2073-4395 databaseCode: ABDBF dateStart: 20171201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-4395 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913807 issn: 2073-4395 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2073-4395 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913807 issn: 2073-4395 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEF6V9AA9IJ7CUKpFQkIgWfFjvbYPCDnQUpBqIiBSOVmzD4dDsINxVPXfM-MXL6lcIiXe2NnM7Mx8s7PfMPZUSxkYTxhXgBQuaoh2VSlT1wObBggfEABRauAsl6cr8f48Ot9j-XgWhsoqR5vYGWpTa8qRz9GMBgjkEilebb-71DWKdlfHFhowtFYwLzuKsWtsPyBmrBnbXxzny49T1oVYMBMv7vcrQ8T7c1g33ekBtOUxYpfoD__U0fj_a6wP2PVdtYXLC9hsfvNGJ7fYzSGM5Fkv99tsz1Z32EG2bgYqDXuXbT-gNfg2HLPkdcmXQIVYxKbJuxI4a3hb87fUIwJf64v2K43qM328M9Icr7xpLqn4kS_Q3RmOd8KIkeeEl3vG6u7u2fLTu7N7bHVy_Pn1qTv0V3C1iPwWLbAMITahhEhHvlLg-drTRqWiDFQZxSUIE6tEGgDrA8ZqsQ1TAUL5XhlAGoX32ayqK_uAcWn9QJtERYH2BGAYkJbo_ONIKqJIM8Zh8_FfLfRAPk49MDYFghCSQ_G3HBz2fPrGtifeuGLsggQ1jSPK7O6DulkXwwos4qi0IGKciY4FhFZ5QisEc6HEOZUCHPaMxFzQwsafpmE4n4ATJIqsIkNklRD9Kj7ucNSEYljxP4pf-umwJ9NlXKu0AQOVrXc0Bn0PKqhMHfZi0qD_Tu_h1c97xG4EGHn1NcSHbNY2O_sYI6VWHQ3qf9RlGvDdKl9mX34CBeIXAQ |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V7aH0gHiKQIFFAiGQrPixXseHCiW0JaFNiKCVenNnHw6HEAc3UZQ_x29jxt6Yl1ROveQQb-ysZ-fx7c58w9hLLWVofGE8AVJ4uEK0p3KZej7YNET4gACItgaGI9k_Fx8v4ost9mNTC0NplRubWBlqU2jaI2-jGQ0RyHWkeDf_7lHXKDpd3bTQANdawRxUFGOusOPErlcI4a4OBoco71dheHx09r7vuS4DnhZxsEA7JCNITCQh1nGgFPiB9rVRqchDlcdJDsIkqiMNgA0AI5bERqkAoQI_DyGlrhHoAnZEJFIEfzu9o9H4c7PLQ6ybHT-pz0ejKPXbMCmragX0HQlipfgPf1i1DfjXOeyx3eVsDusVTKe_eb_jO-y2C1t5t15nd9mWnd1je91J6ag77H02_4TW55sr6-RFzsdAiV_E3smrlDtr-KLgH6gnBX4Wq8VXGlXvLPLKKXC8cliuKdmS99C9Go53wgiVjwif1wzZ1d274y-D4QN2fiNv-iHbnhUz-4hxaYNQm46KQ-0LwLAjzTHYSGKpiJLNmBZrb95qph3ZOfXcmGYIekgO2d9yaLE3zS_mNdHHNWN7JKhmHFF0V18U5SRzGp8lcW5BJDgTnQiIrPKFVggeI4lzygW02GsSc0aGBP-aBlcPgRMkSq6si0iuQ3Sv-Lj9zUrInIW5yn7pQ4u9aC6jbaADH5jZYklj0NehQsi0xd42K-i_03t8_fOes93-2fA0Ox2MTp6wWyFGfXX-8j7bXpRL-xSjtIV65lSBs8ub1r6f9HdSUA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VrQT0gHiKlAKLBEIgWfFjvY4PFUpIQ0NpiIBKvbmzD4dDaoc0UZS_yK9ixl6Hl1ROveQQb-ysZ-ebmd2Zbxh7oaUMjS-MJ0AKD1eI9lQuU88Hm4YYPmAARFsDJyN5dCo-nMVnW-xHUwtDaZUNJlZAbUpNe-RthNEQA7mOFO3cpUWM-4O3s-8edZCik9amnQa4NgvmoKIbc0Uex3a9wnDu8mDYR9m_DMPB4dd3R57rOOBpEQcLxCQZQWIiCbGOA6XAD7SvjUpFHqo8TnIQJlEdaQBsAOi9JDZKBQgV-HkIKXWQQHOwQ4dfCBI7vcPR-PNmx4cYODt-Up-VRlHqt2EyryoX0I4kGDfFf9jGqoXAv4Zil91cFjNYr2A6_c0SDu6w286F5d16zd1lW7a4x3a7k7mj8bD32ewTItGFK_HkZc7HQElgxOTJq_Q7a_ii5O-pPwV-lqvFNxpV7zLyykBwvNKfrynxkvfQ1BqOd0JvlY8oVq_Zsqu7d8dfhicP2Om1vOmHbLsoC_uIcWmDUJuOikPtC0AXJM3R8UhiqYiezZgWazdvNdOO-Jz6b0wzDIBIDtnfcmix15tfzGrSjyvG9khQm3FE1119Uc4nmdP-LIlzCyLBmehEQGSVL7TCQDKSOKdcQIu9IjFnBCr41zS42gicINFzZV2M6jpE_YqP229WQubQ5jL7pRst9nxzGXGCDn-gsOWSxqDdQ4WQaYu92ayg_05v7-rnPWM3UAuzj8PR8WN2K0QHsE5l3mfbi_nSPkGHbaGeOk3g7Py6le8ncwBWfw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BeoAeeCMCBS0SEgLJ9Wt3HZ-QC5SC1BAJIpWTmX04VA1x5DpU5dczY28iKBIIccnBHm882tmZb9az3zD2xCiV2EjYQIASAVqICXSl8iAClyeYPmACRFsDh2N1MBXvjuSR73N66ssqMRU_7px0gvYXYMSUYZyGWYiphQyXtnrxzW8lxWqUjwTF8MtsS0kE4wO2NR1Pik_UUm79cP9xMsXkPoRZ0x0VQMed0Wi_BKOOs_93z7zNrqwWSzg_g_n8p9Czf519Xr90X3Fysrtq9a75foHP8T-0usGueVjKi96ObrJLbnGLbRezxlNzuNts-R69y1d_bJPXFZ8AFXYROyfvSuqc5W3N31DPCfytz9ovJNXvHPLO6XO886o5p2JKvofh03IcCREoH1P-3TNgd6MXkw9vD--w6f7rjy8PAt-vITBCxi16dJVCZlMF0shYa4hiExmrc1ElupJZBcJmeqQsgIsBsV_m0lyA0HFUJZDL9C4bLOqFu8e4cnFi7EjLxEQCEFbkFYKJTCpNlGvWDlm4nrjSeDJz6qkxLzGpoakuL071kD3bPLHsiTz-ILtHtrCRIwru7kLdzEq_ostMVg5EhpqYTEDqdCSMxuQwVahTJWDInpIlleQo8NUM-PMOqCBRbpUFZmojonPFv9tZG1vpPchpibAhyRG_KTFkjze3ce3TBx1YuHpFMhjLEBCqfMieb4z0r-rd_xfhB-xqgriur1DeYYO2WbmHiMNa_civtR8A6i4R |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+Parameters+Related+to+Grain+Growth+of+Spring+Wheat+in+Dryland+Based+on+the+Next-Generation+APSIM&rft.jtitle=Agronomy+%28Basel%29&rft.au=Cui%2C+Weinan&rft.au=Nie%2C+Zhigang&rft.au=Li%2C+Guang&rft.au=Yuan%2C+Jianyu&rft.date=2023-07-01&rft.issn=2073-4395&rft.eissn=2073-4395&rft.volume=13&rft.issue=7&rft_id=info:doi/10.3390%2Fagronomy13071915&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4395&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4395&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4395&client=summon |