Optimization of Parameters Related to Grain Growth of Spring Wheat in Dryland Based on the Next-Generation APSIM

To improve the applicability of crop models, this study compared two algorithms for optimizing the single objective parameters of the spring wheat in the dryland grain growth sub-model to identify the more efficient algorithm for application in future model parameter optimization. Based on field exp...

Full description

Saved in:
Bibliographic Details
Published inAgronomy (Basel) Vol. 13; no. 7; p. 1915
Main Authors Cui, Weinan, Nie, Zhigang, Li, Guang, Yuan, Jianyu
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2023
Subjects
Online AccessGet full text
ISSN2073-4395
2073-4395
DOI10.3390/agronomy13071915

Cover

Abstract To improve the applicability of crop models, this study compared two algorithms for optimizing the single objective parameters of the spring wheat in the dryland grain growth sub-model to identify the more efficient algorithm for application in future model parameter optimization. Based on field experiments from 2015 to 2021 in Gansu Province, this study combined weather data and yearbook yield data from 1984 to 2021 to optimize parameters related to grain growth of spring wheat in dryland based on the next-generation APSIM using two algorithms: the Nelder–Mead simplex algorithm and the DREAM-zs algorithm. The results were as follows: the optimization results of both algorithms were the same, but the DREAM-zs algorithm converged faster; the optimized parameters for the grain growth stage of Dingxi35 spring wheat were: a grain number per gram stem of 25 grains, an initial grain proportion of 0.05, and a maximum grain size of 0.049 g; after optimization, the root mean square error (RMSE) of observed and simulated yield values decreased from 186.84 kg/hm2 to 115.71 kg/hm2, and the normalized root mean square error (NRMSE) decreased from 10.33% to 6.40%. The optimized results were consistent with the growth and development process of wheat and had high applicability.
AbstractList To improve the applicability of crop models, this study compared two algorithms for optimizing the single objective parameters of the spring wheat in the dryland grain growth sub-model to identify the more efficient algorithm for application in future model parameter optimization. Based on field experiments from 2015 to 2021 in Gansu Province, this study combined weather data and yearbook yield data from 1984 to 2021 to optimize parameters related to grain growth of spring wheat in dryland based on the next-generation APSIM using two algorithms: the Nelder–Mead simplex algorithm and the DREAM-zs algorithm. The results were as follows: the optimization results of both algorithms were the same, but the DREAM-zs algorithm converged faster; the optimized parameters for the grain growth stage of Dingxi35 spring wheat were: a grain number per gram stem of 25 grains, an initial grain proportion of 0.05, and a maximum grain size of 0.049 g; after optimization, the root mean square error (RMSE) of observed and simulated yield values decreased from 186.84 kg/hm² to 115.71 kg/hm², and the normalized root mean square error (NRMSE) decreased from 10.33% to 6.40%. The optimized results were consistent with the growth and development process of wheat and had high applicability.
To improve the applicability of crop models, this study compared two algorithms for optimizing the single objective parameters of the spring wheat in the dryland grain growth sub-model to identify the more efficient algorithm for application in future model parameter optimization. Based on field experiments from 2015 to 2021 in Gansu Province, this study combined weather data and yearbook yield data from 1984 to 2021 to optimize parameters related to grain growth of spring wheat in dryland based on the next-generation APSIM using two algorithms: the Nelder–Mead simplex algorithm and the DREAM-zs algorithm. The results were as follows: the optimization results of both algorithms were the same, but the DREAM-zs algorithm converged faster; the optimized parameters for the grain growth stage of Dingxi35 spring wheat were: a grain number per gram stem of 25 grains, an initial grain proportion of 0.05, and a maximum grain size of 0.049 g; after optimization, the root mean square error (RMSE) of observed and simulated yield values decreased from 186.84 kg/hm2 to 115.71 kg/hm2, and the normalized root mean square error (NRMSE) decreased from 10.33% to 6.40%. The optimized results were consistent with the growth and development process of wheat and had high applicability.
To improve the applicability of crop models, this study compared two algorithms for optimizing the single objective parameters of the spring wheat in the dryland grain growth sub-model to identify the more efficient algorithm for application in future model parameter optimization. Based on field experiments from 2015 to 2021 in Gansu Province, this study combined weather data and yearbook yield data from 1984 to 2021 to optimize parameters related to grain growth of spring wheat in dryland based on the next-generation APSIM using two algorithms: the Nelder–Mead simplex algorithm and the DREAM-zs algorithm. The results were as follows: the optimization results of both algorithms were the same, but the DREAM-zs algorithm converged faster; the optimized parameters for the grain growth stage of Dingxi35 spring wheat were: a grain number per gram stem of 25 grains, an initial grain proportion of 0.05, and a maximum grain size of 0.049 g; after optimization, the root mean square error (RMSE) of observed and simulated yield values decreased from 186.84 kg/hm[sup.2] to 115.71 kg/hm[sup.2], and the normalized root mean square error (NRMSE) decreased from 10.33% to 6.40%. The optimized results were consistent with the growth and development process of wheat and had high applicability.
Audience Academic
Author Nie, Zhigang
Li, Guang
Cui, Weinan
Yuan, Jianyu
Author_xml – sequence: 1
  givenname: Weinan
  orcidid: 0009-0000-2820-5313
  surname: Cui
  fullname: Cui, Weinan
– sequence: 2
  givenname: Zhigang
  surname: Nie
  fullname: Nie, Zhigang
– sequence: 3
  givenname: Guang
  surname: Li
  fullname: Li, Guang
– sequence: 4
  givenname: Jianyu
  surname: Yuan
  fullname: Yuan, Jianyu
BookMark eNqNUtFu0zAUjdCQGGXvPEbihZcOu7bj5LGMUSoNNjEQj9GNc926SuzguBrl67ldEEKVkLAl27o-5_joHj_PznzwmGUvObsUomJvYBODD_2BC6Z5xdWT7HzBtJhLUamzv87Psotx3DEaFRcl0-fZcDsk17ufkFzwebD5HUToMWEc88_YQcI2TyFfRXCe1vCQtkfU_RCd3-Tftggpp5t38dCBb_O3MBKBlNIW80_4I81X6DFO6su7-_XHF9lTC92IF7_3Wfb1_fWXqw_zm9vV-mp5MzdS8TTnrBCgW1GAMoo3DTBumGmbStpFY5W2IFvdlEULgBxYKTSKSoJsOLMLqJSYZetJtw2wq8luD_FQB3D1YyHETQ0xOdNhrZVFkJp0jJYgsGHSNAVToiBFS5VZxietvR_g8ABd90eQs_qYQH2aAHFeT5whhu97HFPdu9FgR23CsB_rRVnqgitVVAR9dQLdhX301B1CyUXFdFlIQl1OqA2QZ-dtSBEMzRZ7Z-g_WEf1pVZlSfGWRwdsIpgYxjGi_R_TxQnFuPQYHr3lun8TfwHRvcpI
CitedBy_id crossref_primary_10_1088_1402_4896_ad7cd7
crossref_primary_10_3390_agronomy14102279
crossref_primary_10_1016_j_eja_2024_127181
Cites_doi 10.1007/978-3-319-50920-4_19
10.1111/rssa5.12138
10.1016/j.asoc.2014.06.023
10.1016/j.fcr.2008.12.004
10.1007/s13580-022-00510-x
10.1016/j.agrformet.2008.08.015
10.1016/j.ecolmodel.2014.02.003
10.1051/agro:2004033
10.1029/2011WR010608
10.1016/j.agsy.2017.08.005
10.1016/j.agrformet.2021.108686
10.3390/rs15082021
10.12700/APH.18.5.2021.5.7
10.1016/j.envsoft.2015.08.013
10.1109/JAS.2021.1004129
10.1038/s41467-023-36129-4
10.1101/2022.06.08.495355
10.1016/j.envsoft.2018.02.002
10.1214/ss/1177011136
10.54386/jam.v19i2.683
10.1016/j.envsoft.2014.09.005
10.1016/j.pce.2020.102941
10.20546/ijcmas.2017.604.128
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SN
7SS
7ST
7T7
7TM
7X2
8FD
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
M0K
P64
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PYCSY
SOI
7S9
L.6
ADTOC
UNPAY
DOA
DOI 10.3390/agronomy13071915
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
Agricultural Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest Central
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Agricultural Science Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2073-4395
ExternalDocumentID oai_doaj_org_article_75fea47e1ac74a3eb04cb6053694af4a
10.3390/agronomy13071915
A758800985
10_3390_agronomy13071915
GeographicLocations China
Gansu China
GeographicLocations_xml – name: China
– name: Gansu China
GroupedDBID 2XV
5VS
7X2
7XC
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
ECGQY
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
M0K
MODMG
M~E
OK1
OZF
PATMY
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
3V.
7SN
7SS
7ST
7T7
7TM
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
SOI
7S9
L.6
PUEGO
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c451t-1063a7d36a5c51bba01c0cdb94f2bf57fa4d7b86daae1a0837e394a4b10f2a953
IEDL.DBID BENPR
ISSN 2073-4395
IngestDate Fri Oct 03 12:34:10 EDT 2025
Sun Oct 26 04:08:05 EDT 2025
Fri Sep 05 11:52:15 EDT 2025
Mon Jun 30 11:25:33 EDT 2025
Mon Oct 20 17:17:04 EDT 2025
Thu Apr 24 22:56:32 EDT 2025
Thu Oct 16 04:25:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-1063a7d36a5c51bba01c0cdb94f2bf57fa4d7b86daae1a0837e394a4b10f2a953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0000-2820-5313
OpenAccessLink https://www.proquest.com/docview/2842907864?pq-origsite=%requestingapplication%&accountid=15518
PQID 2842907864
PQPubID 2032440
ParticipantIDs doaj_primary_oai_doaj_org_article_75fea47e1ac74a3eb04cb6053694af4a
unpaywall_primary_10_3390_agronomy13071915
proquest_miscellaneous_2887615569
proquest_journals_2842907864
gale_infotracacademiconefile_A758800985
crossref_primary_10_3390_agronomy13071915
crossref_citationtrail_10_3390_agronomy13071915
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Agronomy (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Kumar (ref_7) 2017; 6
ref_12
ref_34
ref_11
(ref_10) 2014; 23
ref_31
Kanda (ref_32) 2021; 124
ref_19
ref_18
Tremblay (ref_4) 2004; 24
Zhao (ref_30) 2014; 279
Galantai (ref_24) 2021; 18
Gao (ref_22) 2021; 311
Liu (ref_6) 2023; 14
Ma (ref_3) 2023; 31
Laloy (ref_27) 2012; 48
Tang (ref_33) 2021; 8
Lagarias (ref_23) 2006; 9
Iizumi (ref_13) 2009; 149
Gillard (ref_21) 2015; 178
Brown (ref_15) 2014; 62
Zhang (ref_17) 2023; 31
Patel (ref_8) 2017; 19
Zhang (ref_26) 2022; 43
ref_2
Gelman (ref_29) 1992; 7
Vrugt (ref_25) 2016; 75
ref_28
Wang (ref_1) 2009; 111
ref_9
Holzworth (ref_14) 2018; 103
Khaembah (ref_16) 2017; 158
(ref_20) 2017; 1182
ref_5
References_xml – ident: ref_11
  doi: 10.1007/978-3-319-50920-4_19
– volume: 178
  start-page: 1100
  year: 2015
  ident: ref_21
  article-title: Bayesian and Frequentist Regression Methods
  publication-title: J. R. Stat. Soc. Ser. A-Stat. Soc.
  doi: 10.1111/rssa5.12138
– ident: ref_28
– ident: ref_9
– ident: ref_34
– volume: 23
  start-page: 474
  year: 2014
  ident: ref_10
  article-title: Parameter estimation for crop growth model using evolutionary and bio-inspired algorithms
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.06.023
– volume: 111
  start-page: 181
  year: 2009
  ident: ref_1
  article-title: Wheat cropping systems and technologies in China
  publication-title: Field Crop. Res.
  doi: 10.1016/j.fcr.2008.12.004
– ident: ref_12
  doi: 10.1007/s13580-022-00510-x
– volume: 149
  start-page: 333
  year: 2009
  ident: ref_13
  article-title: Parameter estimation and uncertainty analysis of a large-scale crop model for paddy rice: Application of a Bayesian approach
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2008.08.015
– volume: 279
  start-page: 1
  year: 2014
  ident: ref_30
  article-title: Sensitivity and uncertainty analysis of the APSIM-wheat model: Interactions between cultivar, environmental, and management parameters
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2014.02.003
– volume: 24
  start-page: 351
  year: 2004
  ident: ref_4
  article-title: Comparison of parameter estimation methods for crop models
  publication-title: Agronomie
  doi: 10.1051/agro:2004033
– volume: 48
  start-page: W01526
  year: 2012
  ident: ref_27
  article-title: High-dimensional posterior exploration of hydrologic models using multiple-try DREAM(ZS) and high-performance computing
  publication-title: Water Resour. Res.
  doi: 10.1029/2011WR010608
– ident: ref_18
– volume: 9
  start-page: 112
  year: 2006
  ident: ref_23
  article-title: Convergence Properties of the Nelder--Mead Simplex Method in Low Dimensions
  publication-title: Siam J. Optim. A Publ. Soc. Ind. Appl. Math.
– volume: 158
  start-page: 23
  year: 2017
  ident: ref_16
  article-title: Development of a fodder beet potential yield model in the next generation APSIM
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2017.08.005
– volume: 311
  start-page: 108686
  year: 2021
  ident: ref_22
  article-title: Evaluation of crop model prediction and uncertainty using Bayesian parameter estimation and Bayesian model averaging
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2021.108686
– volume: 31
  start-page: 608
  year: 2023
  ident: ref_3
  article-title: Spatiotemporal variation of dry-wet climate during wheat growing seasons from 1961 to 2020 in China
  publication-title: Chin. J. Eco-Agric.
– ident: ref_2
  doi: 10.3390/rs15082021
– volume: 18
  start-page: 93
  year: 2021
  ident: ref_24
  article-title: A convergence analysis of the Nelder-Mead simplex method
  publication-title: Acta Polytech. Hung.
  doi: 10.12700/APH.18.5.2021.5.7
– volume: 75
  start-page: 273
  year: 2016
  ident: ref_25
  article-title: Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and MATLAB implementation
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2015.08.013
– volume: 8
  start-page: 1627
  year: 2021
  ident: ref_33
  article-title: A Review on Representative Swarm Intelligence Algorithms for Solving Optimization Problems: Applications and Trends
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2021.1004129
– ident: ref_31
– volume: 43
  start-page: 1112
  year: 2022
  ident: ref_26
  article-title: Probabilistic back analysis of soil parameters and displacement prediction of unsaturated slopes using Bayesian updating
  publication-title: Rock Soil Mech.
– volume: 14
  start-page: 765
  year: 2023
  ident: ref_6
  article-title: Silver lining to a climate crisis in multiple prospects for alleviating crop waterlogging under future climates
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-36129-4
– ident: ref_5
  doi: 10.1101/2022.06.08.495355
– volume: 103
  start-page: 43
  year: 2018
  ident: ref_14
  article-title: APSIM Next Generation: Overcoming challenges in modernising a farming systems model
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2018.02.002
– volume: 7
  start-page: 457
  year: 1992
  ident: ref_29
  article-title: Inference from Iterative Simulation Using Multiple Sequences
  publication-title: Stat. Sci.
  doi: 10.1214/ss/1177011136
– volume: 19
  start-page: 120
  year: 2017
  ident: ref_8
  article-title: Evaluation of DSSAT-CERES model for irrigation scheduling of wheat crop in Varanasi region of Uttar Pradesh
  publication-title: J. Agrometeorol.
  doi: 10.54386/jam.v19i2.683
– volume: 1182
  start-page: 241
  year: 2017
  ident: ref_20
  article-title: A comparison of Bayesian and classical methods for parameter estimation in greenhouse crop models
  publication-title: Acta Hortic.
– volume: 62
  start-page: 385
  year: 2014
  ident: ref_15
  article-title: Plant Modelling Framework: Software for building and running crop models on the APSIM platform
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2014.09.005
– ident: ref_19
– volume: 124
  start-page: 102941
  year: 2021
  ident: ref_32
  article-title: Calibration and validation of the AquaCrop model for full and deficit irrigated cowpea (Vigna unguiculata (L.) Walp)
  publication-title: Phys. Chem. Earth
  doi: 10.1016/j.pce.2020.102941
– volume: 6
  start-page: 1031
  year: 2017
  ident: ref_7
  article-title: Genetic Coefficient and Validation of DSSAT Model for Cotton under Different Growing Environments
  publication-title: Int. J. Curr. Microbiol. Appl. Sci.
  doi: 10.20546/ijcmas.2017.604.128
– volume: 31
  start-page: 102
  year: 2023
  ident: ref_17
  article-title: Sensitivity analysis and calibration of the APSIM next-generation model under different irrigation and sowing density in wheat
  publication-title: Chin. J. Eco-Agric.
SSID ssj0000913807
Score 2.2857568
Snippet To improve the applicability of crop models, this study compared two algorithms for optimizing the single objective parameters of the spring wheat in the...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1915
SubjectTerms Agricultural production
agronomy
Algorithms
arid lands
Arid zones
China
developmental stages
DREAM-zs algorithm
Field tests
Grain growth
Grain size
Growth models
Growth stage
Intelligence
Mathematical models
Meteorological data
Methods
Nelder–Mead simplex algorithm
Optimization
Parameter estimation
Parameter identification
parameter optimization
Phenology
Precipitation
Root-mean-square errors
Simulation
Spring wheat
spring wheat in dryland
the next-generation APSIM
Wheat
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLZQL9ADKptIF2QkJARSNFlsZ3ycAqUgtVSCSr1Zz1s5DMlomlHVf9_3nHQ0gEQvXHKIHcfLW76XPH9m7I1TqvKF8LkAJXKUEJfbqHReQNAVhg8YANGngZNTdXwuvl7Ii42jvignbKAHHiZu0sgYQDShBNcIqIMthLOIwWulBUSRoFEx1RvBVLLBuiQm9eG_ZI1x_QQul2mXANrsBmMU-ZsfSnT9fxvlbfZw1S7g5hrm8w2vc7TDHo9wkc-Gbj5hD0L7lG3PLpcjZUZ4xhbfUOt_jdspeRf5GVDCFbFm8pTqFjzvO_6ZzoLAa3fd_6Rawxc9nowxx5KPyxtKcuSH6NY8x5YQGfJTiosHZurU-uzs-5eT5-z86NOPD8f5eI5C7oQse7S0qobG1wqkk6W1UJSucN5qESsbZRNB-MZOlQfAaUZM1oQaJ1fYsogVaFm_YFtt14aXjKtQVs5PraxcIQDdvY7o5BupLFGheZ-xyd2sGjeSjNNZF3ODwQatg_lzHTL2bv3EYiDY-EfdQ1qodT2ixk43UGDMKDDmPoHJ2FtaZkMKjF1zMO5DwAESFZaZYQQ1JZpVfN3-nSSYUbOvDLrzSiOuUiJjr9fFqJP0owXa0K2oDvoYBGpKZ-z9WoLuHd7u_xjeHntUIQ4bMor32Va_XIUDxE29fZVU5BYTWBcR
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BeoAeeCMCBS0SEgLJ9Wt3HZ-QC5SC1BAJIpWTmX04VA1x5DpU5dczY28iKBIIccnBHm882tmZb9az3zD2xCiV2EjYQIASAVqICXSl8iAClyeYPmACRFsDh2N1MBXvjuSR73N66ssqMRU_7px0gvYXYMSUYZyGWYiphQyXtnrxzW8lxWqUjwTF8MtsS0kE4wO2NR1Pik_UUm79cP9xMsXkPoRZ0x0VQMed0Wi_BKOOs_93z7zNrqwWSzg_g_n8p9Czf519Xr90X3Fysrtq9a75foHP8T-0usGueVjKi96ObrJLbnGLbRezxlNzuNts-R69y1d_bJPXFZ8AFXYROyfvSuqc5W3N31DPCfytz9ovJNXvHPLO6XO886o5p2JKvofh03IcCREoH1P-3TNgd6MXkw9vD--w6f7rjy8PAt-vITBCxi16dJVCZlMF0shYa4hiExmrc1ElupJZBcJmeqQsgIsBsV_m0lyA0HFUJZDL9C4bLOqFu8e4cnFi7EjLxEQCEFbkFYKJTCpNlGvWDlm4nrjSeDJz6qkxLzGpoakuL071kD3bPLHsiTz-ILtHtrCRIwru7kLdzEq_ostMVg5EhpqYTEDqdCSMxuQwVahTJWDInpIlleQo8NUM-PMOqCBRbpUFZmojonPFv9tZG1vpPchpibAhyRG_KTFkjze3ce3TBx1YuHpFMhjLEBCqfMieb4z0r-rd_xfhB-xqgriur1DeYYO2WbmHiMNa_civtR8A6i4R
  priority: 102
  providerName: Unpaywall
Title Optimization of Parameters Related to Grain Growth of Spring Wheat in Dryland Based on the Next-Generation APSIM
URI https://www.proquest.com/docview/2842907864
https://www.proquest.com/docview/2887615569
https://www.mdpi.com/2073-4395/13/7/1915/pdf?version=1689845056
https://doaj.org/article/75fea47e1ac74a3eb04cb6053694af4a
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2073-4395
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913807
  issn: 2073-4395
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ
  customDbUrl:
  eissn: 2073-4395
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913807
  issn: 2073-4395
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate - TFS
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2073-4395
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913807
  issn: 2073-4395
  databaseCode: ABDBF
  dateStart: 20171201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-4395
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913807
  issn: 2073-4395
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2073-4395
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913807
  issn: 2073-4395
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEF6V9AA9IJ7CUKpFQkIgWfFjvbYPCDnQUpBqIiBSOVmzD4dDsINxVPXfM-MXL6lcIiXe2NnM7Mx8s7PfMPZUSxkYTxhXgBQuaoh2VSlT1wObBggfEABRauAsl6cr8f48Ot9j-XgWhsoqR5vYGWpTa8qRz9GMBgjkEilebb-71DWKdlfHFhowtFYwLzuKsWtsPyBmrBnbXxzny49T1oVYMBMv7vcrQ8T7c1g33ekBtOUxYpfoD__U0fj_a6wP2PVdtYXLC9hsfvNGJ7fYzSGM5Fkv99tsz1Z32EG2bgYqDXuXbT-gNfg2HLPkdcmXQIVYxKbJuxI4a3hb87fUIwJf64v2K43qM328M9Icr7xpLqn4kS_Q3RmOd8KIkeeEl3vG6u7u2fLTu7N7bHVy_Pn1qTv0V3C1iPwWLbAMITahhEhHvlLg-drTRqWiDFQZxSUIE6tEGgDrA8ZqsQ1TAUL5XhlAGoX32ayqK_uAcWn9QJtERYH2BGAYkJbo_ONIKqJIM8Zh8_FfLfRAPk49MDYFghCSQ_G3HBz2fPrGtifeuGLsggQ1jSPK7O6DulkXwwos4qi0IGKciY4FhFZ5QisEc6HEOZUCHPaMxFzQwsafpmE4n4ATJIqsIkNklRD9Kj7ucNSEYljxP4pf-umwJ9NlXKu0AQOVrXc0Bn0PKqhMHfZi0qD_Tu_h1c97xG4EGHn1NcSHbNY2O_sYI6VWHQ3qf9RlGvDdKl9mX34CBeIXAQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V7aH0gHiKQIFFAiGQrPixXseHCiW0JaFNiKCVenNnHw6HEAc3UZQ_x29jxt6Yl1ROveQQb-ysZ-fx7c58w9hLLWVofGE8AVJ4uEK0p3KZej7YNET4gACItgaGI9k_Fx8v4ost9mNTC0NplRubWBlqU2jaI2-jGQ0RyHWkeDf_7lHXKDpd3bTQANdawRxUFGOusOPErlcI4a4OBoco71dheHx09r7vuS4DnhZxsEA7JCNITCQh1nGgFPiB9rVRqchDlcdJDsIkqiMNgA0AI5bERqkAoQI_DyGlrhHoAnZEJFIEfzu9o9H4c7PLQ6ybHT-pz0ejKPXbMCmragX0HQlipfgPf1i1DfjXOeyx3eVsDusVTKe_eb_jO-y2C1t5t15nd9mWnd1je91J6ag77H02_4TW55sr6-RFzsdAiV_E3smrlDtr-KLgH6gnBX4Wq8VXGlXvLPLKKXC8cliuKdmS99C9Go53wgiVjwif1wzZ1d274y-D4QN2fiNv-iHbnhUz-4hxaYNQm46KQ-0LwLAjzTHYSGKpiJLNmBZrb95qph3ZOfXcmGYIekgO2d9yaLE3zS_mNdHHNWN7JKhmHFF0V18U5SRzGp8lcW5BJDgTnQiIrPKFVggeI4lzygW02GsSc0aGBP-aBlcPgRMkSq6si0iuQ3Sv-Lj9zUrInIW5yn7pQ4u9aC6jbaADH5jZYklj0NehQsi0xd42K-i_03t8_fOes93-2fA0Ox2MTp6wWyFGfXX-8j7bXpRL-xSjtIV65lSBs8ub1r6f9HdSUA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VrQT0gHiKlAKLBEIgWfFjvY4PFUpIQ0NpiIBKvbmzD4dDaoc0UZS_yK9ixl6Hl1ROveQQb-ysZ-ebmd2Zbxh7oaUMjS-MJ0AKD1eI9lQuU88Hm4YYPmAARFsDJyN5dCo-nMVnW-xHUwtDaZUNJlZAbUpNe-RthNEQA7mOFO3cpUWM-4O3s-8edZCik9amnQa4NgvmoKIbc0Uex3a9wnDu8mDYR9m_DMPB4dd3R57rOOBpEQcLxCQZQWIiCbGOA6XAD7SvjUpFHqo8TnIQJlEdaQBsAOi9JDZKBQgV-HkIKXWQQHOwQ4dfCBI7vcPR-PNmx4cYODt-Up-VRlHqt2EyryoX0I4kGDfFf9jGqoXAv4Zil91cFjNYr2A6_c0SDu6w286F5d16zd1lW7a4x3a7k7mj8bD32ewTItGFK_HkZc7HQElgxOTJq_Q7a_ii5O-pPwV-lqvFNxpV7zLyykBwvNKfrynxkvfQ1BqOd0JvlY8oVq_Zsqu7d8dfhicP2Om1vOmHbLsoC_uIcWmDUJuOikPtC0AXJM3R8UhiqYiezZgWazdvNdOO-Jz6b0wzDIBIDtnfcmix15tfzGrSjyvG9khQm3FE1119Uc4nmdP-LIlzCyLBmehEQGSVL7TCQDKSOKdcQIu9IjFnBCr41zS42gicINFzZV2M6jpE_YqP229WQubQ5jL7pRst9nxzGXGCDn-gsOWSxqDdQ4WQaYu92ayg_05v7-rnPWM3UAuzj8PR8WN2K0QHsE5l3mfbi_nSPkGHbaGeOk3g7Py6le8ncwBWfw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BeoAeeCMCBS0SEgLJ9Wt3HZ-QC5SC1BAJIpWTmX04VA1x5DpU5dczY28iKBIIccnBHm882tmZb9az3zD2xCiV2EjYQIASAVqICXSl8iAClyeYPmACRFsDh2N1MBXvjuSR73N66ssqMRU_7px0gvYXYMSUYZyGWYiphQyXtnrxzW8lxWqUjwTF8MtsS0kE4wO2NR1Pik_UUm79cP9xMsXkPoRZ0x0VQMed0Wi_BKOOs_93z7zNrqwWSzg_g_n8p9Czf519Xr90X3Fysrtq9a75foHP8T-0usGueVjKi96ObrJLbnGLbRezxlNzuNts-R69y1d_bJPXFZ8AFXYROyfvSuqc5W3N31DPCfytz9ovJNXvHPLO6XO886o5p2JKvofh03IcCREoH1P-3TNgd6MXkw9vD--w6f7rjy8PAt-vITBCxi16dJVCZlMF0shYa4hiExmrc1ElupJZBcJmeqQsgIsBsV_m0lyA0HFUJZDL9C4bLOqFu8e4cnFi7EjLxEQCEFbkFYKJTCpNlGvWDlm4nrjSeDJz6qkxLzGpoakuL071kD3bPLHsiTz-ILtHtrCRIwru7kLdzEq_ostMVg5EhpqYTEDqdCSMxuQwVahTJWDInpIlleQo8NUM-PMOqCBRbpUFZmojonPFv9tZG1vpPchpibAhyRG_KTFkjze3ce3TBx1YuHpFMhjLEBCqfMieb4z0r-rd_xfhB-xqgriur1DeYYO2WbmHiMNa_civtR8A6i4R
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+Parameters+Related+to+Grain+Growth+of+Spring+Wheat+in+Dryland+Based+on+the+Next-Generation+APSIM&rft.jtitle=Agronomy+%28Basel%29&rft.au=Cui%2C+Weinan&rft.au=Nie%2C+Zhigang&rft.au=Li%2C+Guang&rft.au=Yuan%2C+Jianyu&rft.date=2023-07-01&rft.issn=2073-4395&rft.eissn=2073-4395&rft.volume=13&rft.issue=7&rft_id=info:doi/10.3390%2Fagronomy13071915&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4395&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4395&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4395&client=summon