Transforming differential equations of multi-loop Feynman integrals into canonical form
A bstract The method of differential equations has been proven to be a powerful tool for the computation of multi-loop Feynman integrals appearing in quantum field theory. It has been observed that in many instances a canonical basis can be chosen, which drastically simplifies the solution of the di...
        Saved in:
      
    
          | Published in | The journal of high energy physics Vol. 2017; no. 4; pp. 1 - 43 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer Berlin Heidelberg
    
        01.04.2017
     Springer Nature B.V SpringerOpen  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1029-8479 1126-6708 1127-2236 1029-8479  | 
| DOI | 10.1007/JHEP04(2017)006 | 
Cover
| Abstract | A
bstract
The method of differential equations has been proven to be a powerful tool for the computation of multi-loop Feynman integrals appearing in quantum field theory. It has been observed that in many instances a canonical basis can be chosen, which drastically simplifies the solution of the differential equation. In this paper, an algorithm is presented that computes the transformation to a canonical basis, starting from some basis that is, for instance, obtained by the usual integration-by-parts reduction techniques. The algorithm requires the existence of a rational transformation to a canonical basis, but is otherwise completely agnostic about the differential equation. In particular, it is applicable to problems involving multiple scales and allows for a rational dependence on the dimensional regulator. It is demonstrated that the algorithm is suitable for current multi-loop calculations by presenting its successful application to a number of non-trivial examples. | 
    
|---|---|
| AbstractList | The method of differential equations has been proven to be a powerful tool for the computation of multi-loop Feynman integrals appearing in quantum field theory. It has been observed that in many instances a canonical basis can be chosen, which drastically simplifies the solution of the differential equation. In this paper, an algorithm is presented that computes the transformation to a canonical basis, starting from some basis that is, for instance, obtained by the usual integration-by-parts reduction techniques. The algorithm requires the existence of a rational transformation to a canonical basis, but is otherwise completely agnostic about the differential equation. In particular, it is applicable to problems involving multiple scales and allows for a rational dependence on the dimensional regulator. It is demonstrated that the algorithm is suitable for current multi-loop calculations by presenting its successful application to a number of non-trivial examples. A bstract The method of differential equations has been proven to be a powerful tool for the computation of multi-loop Feynman integrals appearing in quantum field theory. It has been observed that in many instances a canonical basis can be chosen, which drastically simplifies the solution of the differential equation. In this paper, an algorithm is presented that computes the transformation to a canonical basis, starting from some basis that is, for instance, obtained by the usual integration-by-parts reduction techniques. The algorithm requires the existence of a rational transformation to a canonical basis, but is otherwise completely agnostic about the differential equation. In particular, it is applicable to problems involving multiple scales and allows for a rational dependence on the dimensional regulator. It is demonstrated that the algorithm is suitable for current multi-loop calculations by presenting its successful application to a number of non-trivial examples. Abstract The method of differential equations has been proven to be a powerful tool for the computation of multi-loop Feynman integrals appearing in quantum field theory. It has been observed that in many instances a canonical basis can be chosen, which drastically simplifies the solution of the differential equation. In this paper, an algorithm is presented that computes the transformation to a canonical basis, starting from some basis that is, for instance, obtained by the usual integration-by-parts reduction techniques. The algorithm requires the existence of a rational transformation to a canonical basis, but is otherwise completely agnostic about the differential equation. In particular, it is applicable to problems involving multiple scales and allows for a rational dependence on the dimensional regulator. It is demonstrated that the algorithm is suitable for current multi-loop calculations by presenting its successful application to a number of non-trivial examples.  | 
    
| ArticleNumber | 6 | 
    
| Author | Meyer, Christoph | 
    
| Author_xml | – sequence: 1 givenname: Christoph orcidid: 0000-0002-5211-9973 surname: Meyer fullname: Meyer, Christoph email: christoph.meyer@physik.hu-berlin.de organization: Institut für Physik, Humboldt-Universität zu Berlin  | 
    
| BookMark | eNp9kUtr3DAUhU1IIa-uuzV0ky6cXMuSZS9LSJqEQLNI6VLc0WOqQZYcySbMv68mDmVIaVe6SOc7Ojo6KQ598LooPtVwUQPwy_vb60eg5wRq_gWgPSiOayB91VHeH-7NR8VJShuAmtU9HBc_nyL6ZEIcrF-Xyhqjo_aTRVfq5xknG3wqgymH2U22ciGM5Y3e-gF9af2k1xFd2k2hlJgDWZnBndtZ8cHkI_3xbT0tftxcP13dVg_fv91dfX2oJGUwVYZThVSapoNOdbRhamVI26LRXErOpAKmoOcN5w1lVNPG0K5dkcYgI6BJ05wWd4uvCrgRY7QDxq0IaMXrRohrgXGy0mmhoaVKEWKw17Q3iD1d9T1IxVYdYVxlL1i8Zj_i9gWd-2NYg9iVLDa_9AhU7EoWueSMnC_IGMPzrNMkBpukdg69DnMSuWNKaEuAZennd9JNmKPP5Yi66xqWJW2dVZeLSsaQUtTmrwjLP-9HYO8IaafXj5siWvcf7u21Kd_g1zru5fkH8htC5LvY | 
    
| CitedBy_id | crossref_primary_10_1007_JHEP06_2017_127 crossref_primary_10_1007_JHEP07_2018_102 crossref_primary_10_1007_JHEP10_2022_165 crossref_primary_10_1103_PhysRevD_97_105014 crossref_primary_10_1103_PhysRevLett_121_142001 crossref_primary_10_1007_JHEP03_2025_009 crossref_primary_10_1007_JHEP06_2017_121 crossref_primary_10_1146_annurev_nucl_102819_100428 crossref_primary_10_1007_JHEP03_2018_008 crossref_primary_10_1007_JHEP04_2020_167 crossref_primary_10_1103_PhysRevD_98_071501 crossref_primary_10_1007_JHEP01_2019_023 crossref_primary_10_1007_JHEP03_2018_085 crossref_primary_10_1007_JHEP02_2023_073 crossref_primary_10_1103_PhysRevD_98_025008 crossref_primary_10_1007_JHEP04_2021_054 crossref_primary_10_1007_JHEP05_2024_155 crossref_primary_10_1007_JHEP08_2019_071 crossref_primary_10_1007_JHEP12_2022_140 crossref_primary_10_1007_JHEP05_2020_025 crossref_primary_10_1007_JHEP04_2023_041 crossref_primary_10_1016_j_cpc_2017_08_013 crossref_primary_10_1007_JHEP07_2021_227 crossref_primary_10_1007_JHEP08_2023_109 crossref_primary_10_1103_PhysRevD_105_056014 crossref_primary_10_1007_JHEP04_2017_083 crossref_primary_10_1007_JHEP03_2022_079 crossref_primary_10_1007_JHEP04_2017_129 crossref_primary_10_1103_PhysRevD_104_053005 crossref_primary_10_1103_PhysRevD_97_034004 crossref_primary_10_1007_JHEP01_2019_211 crossref_primary_10_1007_JHEP05_2019_084 crossref_primary_10_1007_JHEP07_2022_066 crossref_primary_10_1007_JHEP11_2024_169 crossref_primary_10_1007_JHEP03_2022_174 crossref_primary_10_1007_JHEP08_2017_051 crossref_primary_10_1088_1361_6471_aab812 crossref_primary_10_1007_JHEP01_2018_048 crossref_primary_10_1007_JHEP06_2019_037 crossref_primary_10_1103_PhysRevLett_124_092001 crossref_primary_10_1007_JHEP10_2018_206 crossref_primary_10_1007_JHEP01_2023_140 crossref_primary_10_1007_JHEP08_2018_184 crossref_primary_10_1007_JHEP10_2019_083 crossref_primary_10_1007_JHEP11_2020_107 crossref_primary_10_1007_JHEP12_2021_095 crossref_primary_10_1103_PhysRevD_110_056028 crossref_primary_10_1007_JHEP02_2019_172 crossref_primary_10_1007_JHEP06_2023_144 crossref_primary_10_1103_PhysRevLett_128_161104 crossref_primary_10_1007_JHEP08_2022_280 crossref_primary_10_1007_JHEP03_2018_064 crossref_primary_10_1016_j_cpc_2017_09_014 crossref_primary_10_1016_j_cpc_2017_05_004 crossref_primary_10_1007_JHEP01_2024_029 crossref_primary_10_1103_PhysRevD_96_014008 crossref_primary_10_1088_1751_8121_ac87de crossref_primary_10_1016_j_physrep_2021_03_006 crossref_primary_10_1007_JHEP11_2017_158 crossref_primary_10_1103_PhysRevD_101_016013 crossref_primary_10_1103_PhysRevLett_130_101401 crossref_primary_10_1007_JHEP03_2022_056 crossref_primary_10_1016_j_cpc_2018_09_005 crossref_primary_10_1007_JHEP07_2020_011  | 
    
| Cites_doi | 10.1016/S0550-3213(00)00079-1 10.1007/JHEP01(2012)077 10.1007/JHEP07(2015)140 10.22323/1.247.0150 10.1016/j.cpc.2014.01.017 10.1016/j.jnt.2014.09.032 10.1016/0010-4655(94)90034-5 10.1016/0370-2693(91)91715-8 10.1007/JHEP01(2016)140 10.1016/j.cpc.2009.02.020 10.1088/1126-6708/2004/04/021 10.1007/JHEP02(2016)017 10.1103/PhysRevLett.116.062001 10.1063/1.4926985 10.1103/PhysRevLett.114.212001 10.1016/j.nuclphysb.2017.01.020 10.1007/JHEP03(2014)082 10.1016/j.physletb.2014.06.056 10.1016/0370-2693(91)90413-K 10.1007/JHEP09(2015)038 10.1016/0370-2693(81)90288-4 10.1016/S0550-3213(97)00376-3 10.1016/j.cpc.2010.03.012 10.1007/JHEP09(2016)091 10.1090/S0002-9904-1977-14320-6 10.1112/S0010437X15007472 10.1016/j.physletb.2012.08.020 10.1016/j.physletb.2012.08.021 10.4310/MRL.1998.v5.n4.a7 10.1007/s11005-010-0450-0 10.1016/j.cpc.2014.11.024 10.1016/j.nuclphysb.2004.10.044 10.1007/JHEP12(2014)129 10.1007/JHEP09(2015)128 10.1007/JHEP07(2013)128 10.1007/JHEP09(2014)148 10.1016/j.physletb.2016.08.017 10.1103/PhysRevLett.113.212001 10.1103/PhysRevLett.114.062006 10.1007/BF01844169 10.1007/JHEP04(2015)140 10.1016/0550-3213(79)90234-7 10.22323/1.260.0030 10.1016/j.physletb.2014.06.075 10.1016/j.cpc.2013.06.016 10.1007/JHEP08(2013)070 10.1007/JHEP06(2014)032 10.1016/j.physletb.2015.03.029 10.1063/1.4896563 10.1007/JHEP09(2014)043 10.1016/j.nuclphysb.2016.04.013 10.1007/BF03185566 10.1016/S0550-3213(00)00223-6 10.1007/JHEP09(2014)116 10.1007/JHEP05(2016)066 10.1007/JHEP05(2014)090 10.1007/JHEP11(2013)041 10.1103/PhysRevLett.110.251601 10.1007/JHEP03(2014)088 10.1007/JHEP10(2016)115 10.1007/JHEP12(2016)096 10.1007/JHEP08(2015)108 10.1007/JHEP06(2014)114 10.1007/JHEP01(2015)072 10.1016/0550-3213(81)90199-1  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2017 The Author(s) 2017. This work is published under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: The Author(s) 2017 – notice: The Author(s) 2017. This work is published under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7U5 8FD H8D L7M ADTOC UNPAY DOA  | 
    
| DOI | 10.1007/JHEP04(2017)006 | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitleList | Aerospace Database Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Physics | 
    
| EISSN | 1029-8479 | 
    
| EndPage | 43 | 
    
| ExternalDocumentID | oai_doaj_org_article_e064dd22fa9e49faa94b990cd5b8257d 10.1007/jhep04(2017)006 4321411435 10_1007_JHEP04_2017_006  | 
    
| GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHSBF AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS EJD ER. FEDTE GQ6 GROUPED_DOAJ H13 HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT 02O 1JI 1WK 2VQ 5ZI AAGCD AAGCF AAIAL AAJIO AALHV AARHV AATNI AAYXX AAYZH ABFSG ACAFW ACARI ACBXY ACSTC ADKPE ADRFC AEFHF AEINN AEJGL AERVB AETNG AEZWR AFHIU AFLOW AGJBK AGQPQ AHSEE AHWEU AIXLP AIYBF AKPSB AMVHM ARNYC BAPOH BBWZM BGNMA CAG CITATION CJUJL COF CRLBU EDWGO EMSAF EPQRW EQZZN IJHAN IOP IZVLO JCGBZ KOT M45 M4Y NT- NT. NU0 O9- PHGZM PHGZT PJBAE PQGLB PUEGO Q02 R4D RIN RKQ RNS ROL RPA S1Z S3P SY9 T37 ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7U5 8FD H8D L7M ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c450t-f74da4cf3808d8435dbf266afe7cc75cd05d0973773454e43f486b23fa520e233 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1029-8479 1126-6708 1127-2236  | 
    
| IngestDate | Tue Oct 14 18:39:58 EDT 2025 Sun Oct 26 03:56:53 EDT 2025 Fri Sep 05 09:41:03 EDT 2025 Sat Oct 18 23:06:31 EDT 2025 Wed Oct 01 05:57:07 EDT 2025 Thu Apr 24 23:08:02 EDT 2025 Fri Feb 21 02:31:39 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | QCD Phenomenology | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c450t-f74da4cf3808d8435dbf266afe7cc75cd05d0973773454e43f486b23fa520e233 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-5211-9973 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007%2FJHEP04%282017%29006.pdf | 
    
| PQID | 1883505361 | 
    
| PQPubID | 2034718 | 
    
| PageCount | 43 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e064dd22fa9e49faa94b990cd5b8257d unpaywall_primary_10_1007_jhep04_2017_006 proquest_miscellaneous_1904246205 proquest_journals_1883505361 crossref_primary_10_1007_JHEP04_2017_006 crossref_citationtrail_10_1007_JHEP04_2017_006 springer_journals_10_1007_JHEP04_2017_006  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2017-04-01 | 
    
| PublicationDateYYYYMMDD | 2017-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Berlin/Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg  | 
    
| PublicationTitle | The journal of high energy physics | 
    
| PublicationTitleAbbrev | J. High Energ. Phys | 
    
| PublicationYear | 2017 | 
    
| Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen  | 
    
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen  | 
    
| References | CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett.B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE]. S. Bloch, M. Kerr and P. Vanhove, Local mirror symmetry and the sunset Feynman integral, arXiv:1601.08181 [INSPIRE]. LeeRNPomeranskyAACritical points and number of master integralsJHEP2013111652013JHEP...11..165L313217210.1007/JHEP11(2013)1651342.81139[arXiv:1308.6676] [INSPIRE] GituliarOMaster integrals for splitting functions from differential equations in QCDJHEP2016020172016JHEP...02..017G10.1007/JHEP02(2016)017[arXiv:1512.02045] [INSPIRE] HennJMSmirnovAVSmirnovVAEvaluating single-scale and/or non-planar diagrams by differential equationsJHEP2014030882014JHEP...03..088H10.1007/JHEP03(2014)088[arXiv:1312.2588] [INSPIRE] E.W.N. Glover, Two loop QCD helicity amplitudes for massless quark quark scattering, JHEP04 (2004) 021 [hep-ph/0401119] [INSPIRE]. L. Adams, C. Bogner, A. Schweitzer and S. Weinzierl, The kite integral to all orders in terms of elliptic polylogarithms, arXiv:1607.01571 [INSPIRE]. HennJMSmirnovVAAnalytic results for two-loop master integrals for Bhabha scattering IJHEP2013110412013JHEP...11..041H10.1007/JHEP11(2013)041[arXiv:1307.4083] [INSPIRE] SchabingerRMA new algorithm for the generation of unitarity-compatible integration by parts relationsJHEP2012010772012JHEP...01..077S294929910.1007/JHEP01(2012)0771306.81359[arXiv:1111.4220] [INSPIRE] GehrmannTW +W − production at hadron colliders in next to next to leading order QCDPhys. Rev. Lett.20141132120012014PhRvL.113u2001G10.1103/PhysRevLett.113.212001[arXiv:1408.5243] [INSPIRE] HöscheleMHoffJUedaTAdequate bases of phase space master integrals for gg → h at NNLO and beyondJHEP2014091162014JHEP...09..116H10.1007/JHEP09(2014)116[arXiv:1407.4049] [INSPIRE] AdamsLBognerCWeinzierlSThe two-loop sunrise integral around four space-time dimensions and generalisations of the Clausen and Glaisher functions towards the elliptic caseJ. Math. Phys.2015560723032015JMP....56g2303A340595610.1063/1.49269851320.81059[arXiv:1504.03255] [INSPIRE] GehrmannTvon ManteuffelATancrediLThe two-loop helicity amplitudes for qq¯′→V1V2→4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ q\ {\overline{q}}^{\prime}\to {V}_1{V}_2\to\ 4 $$\end{document} leptonsJHEP2015091282015JHEP...09..128G10.1007/JHEP09(2015)128[arXiv:1503.04812] [INSPIRE] AnzaiCExact N3LO results for qq′ → H + XJHEP2015071402015JHEP...07..140A10.1007/JHEP07(2015)140[arXiv:1506.02674] [INSPIRE] S. Laporta and E. Remiddi, Analytic treatment of the two loop equal mass sunrise graph, Nucl. Phys.B 704 (2005) 349 [hep-ph/0406160] [INSPIRE]. S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys.A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE]. BoncianiRDel DucaVFrellesvigHHennJMMorielloFSmirnovVANext-to-leading order QCD corrections to the decay width H → ZγJHEP2015081082015JHEP...08..108B10.1007/JHEP08(2015)108[arXiv:1505.00567] [INSPIRE] GrozinAHennJMKorchemskyGPMarquardPThree loop cusp anomalous dimension in QCDPhys. Rev. Lett.20151140620062015PhRvL.114f2006G10.1103/PhysRevLett.114.062006[arXiv:1409.0023] [INSPIRE] KantPFinding linear dependencies in integration-by-parts equations: a Monte Carlo approachComput. Phys. Commun.201418514732014CoPhC.185.1473K10.1016/j.cpc.2014.01.0171344.81020[arXiv:1309.7287] [INSPIRE] StuderusCReduze-Feynman integral reduction in C++Comput. Phys. Commun.201018112932010CoPhC.181.1293S264497110.1016/j.cpc.2010.03.0121219.81133[arXiv:0912.2546] [INSPIRE] RemiddiEDifferential equations for Feynman graph amplitudesNuovo Cim.1997A 11014351997NCimA.110.1435R[hep-th/9711188] [INSPIRE] LarsenKJZhangYIntegration-by-parts reductions from unitarity cuts and algebraic geometryPhys. Rev.2016D 930417012016PhRvD..93d1701L3499242[arXiv:1511.01071] [INSPIRE] BuchbergerBEin algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems (in German)Aequat. Math.1970437410.1007/BF018441690212.06401 SmirnovAVPetukhovAVThe number of master integrals is finiteLett. Math. Phys.201197372011LMaPh..97...37S280231510.1007/s11005-010-0450-01216.81076[arXiv:1004.4199] [INSPIRE] BrucherseiferMCaolaFMelnikovKOn the NNLO QCD corrections to single-top production at the LHCPhys. Lett.2014B 736582014PhLB..736...58B10.1016/j.physletb.2014.06.075[arXiv:1404.7116] [INSPIRE] TarasovOVConnection between Feynman integrals having different values of the space-time dimensionPhys. Rev.1996D 5464791996PhRvD..54.6479T14235860925.81121[hep-th/9606018] [INSPIRE] PassarinoGVeltmanMJGOne loop corrections for e+e− annihilation into μ+μ− in the Weinberg modelNucl. Phys.1979B 1601511979NuPhB.160..151P10.1016/0550-3213(79)90234-7[INSPIRE] BoncianiRDel DucaVFrellesvigHHennJMMorielloFSmirnovVATwo-loop planar master integrals for Higgs → 3 partons with full heavy-quark mass dependenceJHEP2016120962016JHEP...12..096B10.1007/JHEP12(2016)096[arXiv:1609.06685] [INSPIRE] BonettiMMelnikovKTancrediLTwo-loop electroweak corrections to Higgs-gluon couplings to higher orders in the dimensional regularization parameterNucl. Phys.2017B 9167092017NuPhB.916..709B10.1016/j.nuclphysb.2017.01.0201356.81224[arXiv:1610.05497] [INSPIRE] AssadsolimaniMKantPTauskBUwerPCalculation of two-loop QCD corrections for hadronic single top-quark production in the t channelPhys. Rev.2014D 901140242014PhRvD..90k4024A[arXiv:1409.3654] [INSPIRE] GehrmannTTancrediLWeihsETwo-loop master integrals for qq¯→VV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ q\overline{q}\to V\ V $$\end{document} : the planar topologiesJHEP2013080702013JHEP...08..070G10.1007/JHEP08(2013)070[arXiv:1306.6344] [INSPIRE] CaolaFHennJMMelnikovKSmirnovVANon-planar master integrals for the production of two off-shell vector bosons in collisions of massless partonsJHEP2014090432014JHEP...09..043C10.1007/JHEP09(2014)043[arXiv:1404.5590] [INSPIRE] BellGHuberTMaster integrals for the two-loop penguin contribution in non-leptonic B-decaysJHEP2014121292014JHEP...12..129B10.1007/JHEP12(2014)129[arXiv:1410.2804] [INSPIRE] LeeRNReducing differential equations for multiloop master integralsJHEP2015041082015JHEP...04..108L335126110.1007/JHEP04(2015)108[arXiv:1411.0911] [INSPIRE] AnastasiouCDuhrCDulatFHerzogFMistlbergerBHiggs boson gluon-fusion production in QCD at three loopsPhys. Rev. Lett.20151142120012015PhRvL.114u2001A10.1103/PhysRevLett.114.212001[arXiv:1503.06056] [INSPIRE] C. Meyer, Algorithmic transformation of multi-loop master integrals to a canonical basis with CANONICA, in preparation. TkachovFVA theorem on analytical calculability of four loop renormalization group functionsPhys. Lett.1981B 100651981PhLB..100...65T60764010.1016/0370-2693(81)90288-4[INSPIRE] GehrmannTvon ManteuffelATancrediLWeihsEThe two-loop master integrals for qq¯→VV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ q\overline{q}\to V\ V $$\end{document}JHEP2014060322014JHEP...06..032G10.1007/JHEP06(2014)032[arXiv:1404.4853] [INSPIRE] G. Ossola, Automated higher-order calculations: status and prospects, PoS (DIS2015) 150 [arXiv:1508.01894] [INSPIRE]. Di VitaSMastroliaPSchubertUYundinVThree-loop master integrals for ladder-box diagrams with one massive legJHEP2014091482014JHEP...09..148D10.1007/JHEP09(2014)148[arXiv:1408.3107] [INSPIRE] HennJMMelnikovKSmirnovVATwo-loop planar master integrals for the production of off-shell vector bosons in hadron collisionsJHEP2014050902014JHEP...05..090H10.1007/JHEP05(2014)090[arXiv:1402.7078] [INSPIRE] BoncianiRDi VitaSMastroliaPSchubertUTwo-loop master integrals for the mixed EW-QCD virtual corrections to Drell-Yan scatteringJHEP2016090912016JHEP...09..091B10.1007/JHEP09(2016)091[arXiv:1604.08581] [INSPIRE] AdamsLBognerCWeinzierlSThe two-loop sunrise graph in two space-time dimensions with arbitrary masses in terms of elliptic dilogarithmsJ. Math. Phys.2014551023012014JMP....55j2301A339045910.1063/1.48965631298.81204[arXiv:1405.5640] [INSPIRE] ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett.B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE]. O.V. Tarasov, Generalized recurrence relations for two loop propagator integrals with arbitrary masses, Nucl. Phys.B 502 (1997) 455 [hep-ph/9703319] [INSPIRE]. ArgeriMMagnus and Dyson series for master integralsJHEP2014030822014JHEP...03..082A319096410.1007/JHEP03(2014)0821333.81379[arXiv:1401.2979] [INSPIRE] T. Gehrmann, J.M. Henn and N.A. Lo Presti, Analytic form of the two-loop planar five-gluon all-plus-helicity amplitude in QCD, Phys. Rev. Lett.116 (2016) 062001 [Erratum ibid.116 (2016) 189903] [arXiv:1511.05409] [INSPIRE]. E.K. Leinartas, Factorization of rational functions of several variables into partial fractions, Izv. Vyssh. Uchebn. Zaved. Mat.22 (1978) 47 [Soviet Math. 22 (1978) 35]. LeeRNSmirnovVAEvaluating the last missing ingredient for the three-loop quark static potential by differential equationsJHEP2016100892016JHEP...10..089L[arXiv:1608.02605] [INSPIRE] Caron-HuotSHennJMIterative structure of finite loop integralsJHEP2014061142014JHEP...06..114C323431210.1007/JHEP06(2014)1141333.81217[arXiv:1404.2922] [INSPIRE] B. Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal (in German), Ph.D. thesis, University of Innsbruck, Innsbruck Austria, (1965). GrozinAHennJMKorchemskyGPMarquardPThe three-loop cusp anomalous dimension in QCD and its supersymmetric extensionsJHEP201601140201 T Gehrmann (5792_CR47) 2014; 113 5792_CR29 C Anzai (5792_CR27) 2015; 07 AV Smirnov (5792_CR68) 2013; 184 E Remiddi (5792_CR83) 2016; B 907 F Caola (5792_CR16) 2014; 09 A Grozin (5792_CR28) 2016; 01 S Caron-Huot (5792_CR14) 2014; 06 5792_CR65 AV Smirnov (5792_CR69) 2015; 189 5792_CR64 T Gehrmann (5792_CR15) 2014; 06 S Vita Di (5792_CR19) 2014; 09 5792_CR67 KG Chetyrkin (5792_CR56) 1981; B 192 S Bloch (5792_CR80) 2015; 151 C Anastasiou (5792_CR4) 2015; 114 JM Henn (5792_CR32) 2016; 05 AV Smirnov (5792_CR62) 2011; 97 JM Henn (5792_CR13) 2014; 05 A Grozin (5792_CR21) 2015; 114 CG Papadopoulos (5792_CR86) 2015; 01 5792_CR54 R Bonciani (5792_CR36) 2016; 12 5792_CR53 5792_CR52 M Argeri (5792_CR12) 2014; 03 OV Tarasov (5792_CR51) 1996; D 54 M Grazzini (5792_CR48) 2016; B 761 T Gehrmann (5792_CR85) 2013; 08 RN Lee (5792_CR63) 2013; 11 M Caffo (5792_CR76) 1998; A 111 Y Li (5792_CR17) 2014; D 90 M Höschele (5792_CR18) 2014; 09 A Manteuffel von (5792_CR60) 2015; B 744 RM Schabinger (5792_CR58) 2012; 01 C Studerus (5792_CR66) 2010; 181 R Bonciani (5792_CR33) 2016; 09 F Cascioli (5792_CR46) 2014; B 735 RN Lee (5792_CR38) 2015; 04 AB Goncharov (5792_CR72) 1998; 5 5792_CR88 O Gituliar (5792_CR30) 2016; 02 5792_CR43 5792_CR42 B Buchberger (5792_CR75) 1970; 4 5792_CR41 S Bloch (5792_CR78) 2015; 148 RN Lee (5792_CR35) 2016; 10 FV Tkachov (5792_CR55) 1981; B 100 T Gehrmann (5792_CR24) 2015; 09 M Bonetti (5792_CR37) 2017; B 916 P Kant (5792_CR59) 2014; 185 G Bell (5792_CR22) 2014; 12 JM Henn (5792_CR10) 2013; 11 5792_CR40 5792_CR84 G Passarino (5792_CR49) 1979; B 160 5792_CR82 5792_CR1 JM Henn (5792_CR9) 2013; 07 KJ Larsen (5792_CR61) 2016; D 93 D Binosi (5792_CR87) 2009; 180 5792_CR2 JM Henn (5792_CR39) 2015; A 48 B Eden (5792_CR34) 2016; 10 M Brucherseifer (5792_CR44) 2014; B 736 M Assadsolimani (5792_CR45) 2014; D 90 5792_CR7 J Gluza (5792_CR57) 2011; D 83 5792_CR3 5792_CR77 T Gehrmann (5792_CR25) 2015; 09 E Remiddi (5792_CR6) 1997; A 110 5792_CR74 K-T Chen (5792_CR71) 1977; 83 JM Henn (5792_CR8) 2013; 110 R Bonciani (5792_CR26) 2015; 08 5792_CR73 L Adams (5792_CR81) 2015; 56 AV Kotikov (5792_CR5) 1991; B 254 A Manteuffel von (5792_CR20) 2015; D 92 5792_CR70 L Adams (5792_CR79) 2014; 55 RN Lee (5792_CR31) 2016; B 757 JM Henn (5792_CR11) 2014; 03 T Huber (5792_CR23) 2015; 04 AI Davydychev (5792_CR50) 1991; B 263  | 
    
| References_xml | – reference: SmirnovAVSmirnovVAFIRE4, LiteRed and accompanying tools to solve integration by parts relationsComput. Phys. Commun.201318428202013CoPhC.184.2820S10.1016/j.cpc.2013.06.0161344.81031[arXiv:1302.5885] [INSPIRE] – reference: D.A. Cox, J. Little and D. O’Shea, Ideals, varieties, and algorithms: an introduction to computational algebraic geometry and commutative algebra, Undergrad. Texts Math., Springer-Verlag, Secaucus NJ U.S.A., (2007). – reference: ArgeriMMagnus and Dyson series for master integralsJHEP2014030822014JHEP...03..082A319096410.1007/JHEP03(2014)0821333.81379[arXiv:1401.2979] [INSPIRE] – reference: AdamsLBognerCWeinzierlSThe two-loop sunrise integral around four space-time dimensions and generalisations of the Clausen and Glaisher functions towards the elliptic caseJ. Math. Phys.2015560723032015JMP....56g2303A340595610.1063/1.49269851320.81059[arXiv:1504.03255] [INSPIRE] – reference: T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys.B 580 (2000) 485 [hep-ph/9912329] [INSPIRE]. – reference: BuchbergerBEin algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems (in German)Aequat. Math.1970437410.1007/BF018441690212.06401 – reference: S. Laporta and E. Remiddi, Analytic treatment of the two loop equal mass sunrise graph, Nucl. Phys.B 704 (2005) 349 [hep-ph/0406160] [INSPIRE]. – reference: TarasovOVConnection between Feynman integrals having different values of the space-time dimensionPhys. Rev.1996D 5464791996PhRvD..54.6479T14235860925.81121[hep-th/9606018] [INSPIRE] – reference: SmirnovAVPetukhovAVThe number of master integrals is finiteLett. Math. Phys.201197372011LMaPh..97...37S280231510.1007/s11005-010-0450-01216.81076[arXiv:1004.4199] [INSPIRE] – reference: HuberTKränklSTwo-loop master integrals for non-leptonic heavy-to-heavy decaysJHEP2015041402015JHEP...04..140H10.1007/JHEP04(2015)140[arXiv:1503.00735] [INSPIRE] – reference: BoncianiRDel DucaVFrellesvigHHennJMMorielloFSmirnovVATwo-loop planar master integrals for Higgs → 3 partons with full heavy-quark mass dependenceJHEP2016120962016JHEP...12..096B10.1007/JHEP12(2016)096[arXiv:1609.06685] [INSPIRE] – reference: LeeRNSmirnovVAEvaluating the last missing ingredient for the three-loop quark static potential by differential equationsJHEP2016100892016JHEP...10..089L[arXiv:1608.02605] [INSPIRE] – reference: GehrmannTGunsSKaraDThe rare decay H → Zγ in perturbative QCDJHEP20150903810.1007/JHEP09(2015)038[arXiv:1505.00561] [INSPIRE] – reference: GituliarOMaster integrals for splitting functions from differential equations in QCDJHEP2016020172016JHEP...02..017G10.1007/JHEP02(2016)017[arXiv:1512.02045] [INSPIRE] – reference: C. Anastasiou, E.W.N. Glover and C. Oleari, The two-loop scalar and tensor pentabox graph with light-like legs, Nucl. Phys.B 575 (2000) 416 [Erratum ibid.B 585 (2000) 763] [hep-ph/9912251] [INSPIRE]. – reference: RemiddiEDifferential equations for Feynman graph amplitudesNuovo Cim.1997A 11014351997NCimA.110.1435R[hep-th/9711188] [INSPIRE] – reference: A. von Manteuffel and C. Studerus, Reduze 2 — distributed Feynman integral reduction, arXiv:1201.4330 [INSPIRE]. – reference: GrazziniMKallweitSRathlevDWiesemannMW ±Z production at hadron colliders in NNLO QCDPhys. Lett.2016B 7611792016PhLB..761..179G10.1016/j.physletb.2016.08.017[arXiv:1604.08576] [INSPIRE] – reference: E.K. Leinartas, Factorization of rational functions of several variables into partial fractions, Izv. Vyssh. Uchebn. Zaved. Mat.22 (1978) 47 [Soviet Math. 22 (1978) 35]. – reference: GluzaJKajdaKKosowerDATowards a basis for planar two-loop integralsPhys. Rev.2011D 830450122011PhRvD..83d5012G[arXiv:1009.0472] [INSPIRE] – reference: G. Ossola, Automated higher-order calculations: status and prospects, PoS (DIS2015) 150 [arXiv:1508.01894] [INSPIRE]. – reference: L. Adams, C. Bogner, A. Schweitzer and S. Weinzierl, The kite integral to all orders in terms of elliptic polylogarithms, arXiv:1607.01571 [INSPIRE]. – reference: GehrmannTTancrediLWeihsETwo-loop master integrals for qq¯→VV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ q\overline{q}\to V\ V $$\end{document} : the planar topologiesJHEP2013080702013JHEP...08..070G10.1007/JHEP08(2013)070[arXiv:1306.6344] [INSPIRE] – reference: LeeRNMingulovKTTotal Born cross section of e+e−-pair production in relativistic ion collisions from differential equationsPhys. Lett.2016B 7572072016PhLB..757..207L10.1016/j.physletb.2016.03.083[arXiv:1602.02463] [INSPIRE] – reference: TkachovFVA theorem on analytical calculability of four loop renormalization group functionsPhys. Lett.1981B 100651981PhLB..100...65T60764010.1016/0370-2693(81)90288-4[INSPIRE] – reference: AssadsolimaniMKantPTauskBUwerPCalculation of two-loop QCD corrections for hadronic single top-quark production in the t channelPhys. Rev.2014D 901140242014PhRvD..90k4024A[arXiv:1409.3654] [INSPIRE] – reference: RemiddiETancrediLDifferential equations and dispersion relations for Feynman amplitudes. The two-loop massive sunrise and the kite integralNucl. Phys.2016B 9074002016NuPhB.907..400R349843710.1016/j.nuclphysb.2016.04.0131336.81038[arXiv:1602.01481] [INSPIRE] – reference: PapadopoulosCGTommasiniDWeverCTwo-loop master integrals with the simplified differential equations approachJHEP2015010722015JHEP...01..072P10.1007/JHEP01(2015)072[arXiv:1409.6114] [INSPIRE] – reference: PassarinoGVeltmanMJGOne loop corrections for e+e− annihilation into μ+μ− in the Weinberg modelNucl. Phys.1979B 1601511979NuPhB.160..151P10.1016/0550-3213(79)90234-7[INSPIRE] – reference: LarsenKJZhangYIntegration-by-parts reductions from unitarity cuts and algebraic geometryPhys. Rev.2016D 930417012016PhRvD..93d1701L3499242[arXiv:1511.01071] [INSPIRE] – reference: Di VitaSMastroliaPSchubertUYundinVThree-loop master integrals for ladder-box diagrams with one massive legJHEP2014091482014JHEP...09..148D10.1007/JHEP09(2014)148[arXiv:1408.3107] [INSPIRE] – reference: GehrmannTvon ManteuffelATancrediLWeihsEThe two-loop master integrals for qq¯→VV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ q\overline{q}\to V\ V $$\end{document}JHEP2014060322014JHEP...06..032G10.1007/JHEP06(2014)032[arXiv:1404.4853] [INSPIRE] – reference: B. Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal (in German), Ph.D. thesis, University of Innsbruck, Innsbruck Austria, (1965). – reference: E.W.N. Glover, Two loop QCD helicity amplitudes for massless quark quark scattering, JHEP04 (2004) 021 [hep-ph/0401119] [INSPIRE]. – reference: ChetyrkinKGTkachovFVIntegration by parts: the algorithm to calculate β-functions in 4 loopsNucl. Phys.1981B 1921591981NuPhB.192..159C10.1016/0550-3213(81)90199-1[INSPIRE] – reference: ChenK-TIterated path integralsBull. Amer. Math. Soc.19778383145496810.1090/S0002-9904-1977-14320-60389.58001[INSPIRE] – reference: von ManteuffelASchabingerRMZhuHXThe two-loop soft function for heavy quark pair production at future linear collidersPhys. Rev.2015D 920450342015PhRvD..92d5034V[arXiv:1408.5134] [INSPIRE] – reference: GrozinAHennJMKorchemskyGPMarquardPThree loop cusp anomalous dimension in QCDPhys. Rev. Lett.20151140620062015PhRvL.114f2006G10.1103/PhysRevLett.114.062006[arXiv:1409.0023] [INSPIRE] – reference: AnzaiCExact N3LO results for qq′ → H + XJHEP2015071402015JHEP...07..140A10.1007/JHEP07(2015)140[arXiv:1506.02674] [INSPIRE] – reference: StuderusCReduze-Feynman integral reduction in C++Comput. Phys. Commun.201018112932010CoPhC.181.1293S264497110.1016/j.cpc.2010.03.0121219.81133[arXiv:0912.2546] [INSPIRE] – reference: BoncianiRDel DucaVFrellesvigHHennJMMorielloFSmirnovVANext-to-leading order QCD corrections to the decay width H → ZγJHEP2015081082015JHEP...08..108B10.1007/JHEP08(2015)108[arXiv:1505.00567] [INSPIRE] – reference: EdenBSmirnovVAEvaluating four-loop conformal Feynman integrals by D-dimensional differential equationsJHEP2016101152016JHEP...10..115E357854010.1007/JHEP10(2016)115[arXiv:1607.06427] [INSPIRE] – reference: HöscheleMHoffJUedaTAdequate bases of phase space master integrals for gg → h at NNLO and beyondJHEP2014091162014JHEP...09..116H10.1007/JHEP09(2014)116[arXiv:1407.4049] [INSPIRE] – reference: KantPFinding linear dependencies in integration-by-parts equations: a Monte Carlo approachComput. Phys. Commun.201418514732014CoPhC.185.1473K10.1016/j.cpc.2014.01.0171344.81020[arXiv:1309.7287] [INSPIRE] – reference: LiYvon ManteuffelASchabingerRMZhuHXN3LO Higgs boson and Drell-Yan production at threshold: the one-loop two-emission contributionPhys. Rev.2014D 900530062014PhRvD..90e3006L[arXiv:1404.5839] [INSPIRE] – reference: SmirnovAVFIRE5: a C++ implementation of Feynman Integral REductionComput. Phys. Commun.20151891822015CoPhC.189..182S10.1016/j.cpc.2014.11.0241344.81030[arXiv:1408.2372] [INSPIRE] – reference: AnastasiouCDuhrCDulatFHerzogFMistlbergerBHiggs boson gluon-fusion production in QCD at three loopsPhys. Rev. Lett.20151142120012015PhRvL.114u2001A10.1103/PhysRevLett.114.212001[arXiv:1503.06056] [INSPIRE] – reference: KotikovAVDifferential equations method: new technique for massive Feynman diagrams calculationPhys. Lett.1991B 2541581991PhLB..254..158K109291110.1016/0370-2693(91)90413-K[INSPIRE] – reference: BrucherseiferMCaolaFMelnikovKOn the NNLO QCD corrections to single-top production at the LHCPhys. Lett.2014B 736582014PhLB..736...58B10.1016/j.physletb.2014.06.075[arXiv:1404.7116] [INSPIRE] – reference: HennJMMultiloop integrals in dimensional regularization made simplePhys. Rev. Lett.20131102516012013PhRvL.110y1601H10.1103/PhysRevLett.110.251601[arXiv:1304.1806] [INSPIRE] – reference: BonettiMMelnikovKTancrediLTwo-loop electroweak corrections to Higgs-gluon couplings to higher orders in the dimensional regularization parameterNucl. Phys.2017B 9167092017NuPhB.916..709B10.1016/j.nuclphysb.2017.01.0201356.81224[arXiv:1610.05497] [INSPIRE] – reference: LeeRNReducing differential equations for multiloop master integralsJHEP2015041082015JHEP...04..108L335126110.1007/JHEP04(2015)108[arXiv:1411.0911] [INSPIRE] – reference: DavydychevAIA simple formula for reducing Feynman diagrams to scalar integralsPhys. Lett.1991B 2631071991PhLB..263..107D111651910.1016/0370-2693(91)91715-8[INSPIRE] – reference: BlochSVanhovePThe elliptic dilogarithm for the sunset graphJ. Number Theor.2015148328328318310.1016/j.jnt.2014.09.0321319.81044[arXiv:1309.5865] [INSPIRE] – reference: Caron-HuotSHennJMIterative structure of finite loop integralsJHEP2014061142014JHEP...06..114C323431210.1007/JHEP06(2014)1141333.81217[arXiv:1404.2922] [INSPIRE] – reference: O.V. Tarasov, Generalized recurrence relations for two loop propagator integrals with arbitrary masses, Nucl. Phys.B 502 (1997) 455 [hep-ph/9703319] [INSPIRE]. – reference: R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE]. – reference: J.A.M. Vermaseren, Axodraw, Comput. Phys. Commun.83 (1994) 45 [INSPIRE]. – reference: CaolaFHennJMMelnikovKSmirnovVANon-planar master integrals for the production of two off-shell vector bosons in collisions of massless partonsJHEP2014090432014JHEP...09..043C10.1007/JHEP09(2014)043[arXiv:1404.5590] [INSPIRE] – reference: HennJMSmirnovAVSmirnovVASteinhauserMA planar four-loop form factor and cusp anomalous dimension in QCDJHEP2016050662016JHEP...05..066H352178510.1007/JHEP05(2016)066[arXiv:1604.03126] [INSPIRE] – reference: GrozinAHennJMKorchemskyGPMarquardPThe three-loop cusp anomalous dimension in QCD and its supersymmetric extensionsJHEP2016011402016JHEP...01..140G347144010.1007/JHEP01(2016)140[arXiv:1510.07803] [INSPIRE] – reference: O. Gituliar and V. Magerya, Fuchsia and master integrals for splitting functions from differential equations in QCD, PoS (LL2016) 030 [arXiv:1607.00759] [INSPIRE]. – reference: HennJMLectures on differential equations for Feynman integralsJ. Phys.2015A 481530012015JPhA...48o3001H33357061312.81078[arXiv:1412.2296] [INSPIRE] – reference: S. Bloch, M. Kerr and P. Vanhove, Local mirror symmetry and the sunset Feynman integral, arXiv:1601.08181 [INSPIRE]. – reference: ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett.B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE]. – reference: CaffoMCzyzHLaportaSRemiddiEThe master differential equations for the two loop sunrise selfmass amplitudesNuovo Cim.1998A 1113651998NCimA.111..365C[hep-th/9805118] [INSPIRE] – reference: S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys.A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE]. – reference: BlochSKerrMVanhovePA Feynman integral via higher normal functionsCompos. Math.20151512329343388910.1112/S0010437X150074721365.81090[arXiv:1406.2664] [INSPIRE] – reference: BoncianiRDi VitaSMastroliaPSchubertUTwo-loop master integrals for the mixed EW-QCD virtual corrections to Drell-Yan scatteringJHEP2016090912016JHEP...09..091B10.1007/JHEP09(2016)091[arXiv:1604.08581] [INSPIRE] – reference: LeeRNPomeranskyAACritical points and number of master integralsJHEP2013111652013JHEP...11..165L313217210.1007/JHEP11(2013)1651342.81139[arXiv:1308.6676] [INSPIRE] – reference: C. Meyer, Algorithmic transformation of multi-loop master integrals to a canonical basis with CANONICA, in preparation. – reference: AdamsLBognerCWeinzierlSThe two-loop sunrise graph in two space-time dimensions with arbitrary masses in terms of elliptic dilogarithmsJ. Math. Phys.2014551023012014JMP....55j2301A339045910.1063/1.48965631298.81204[arXiv:1405.5640] [INSPIRE] – reference: CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett.B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE]. – reference: HennJMSmirnovVAAnalytic results for two-loop master integrals for Bhabha scattering IJHEP2013110412013JHEP...11..041H10.1007/JHEP11(2013)041[arXiv:1307.4083] [INSPIRE] – reference: GehrmannTvon ManteuffelATancrediLThe two-loop helicity amplitudes for qq¯′→V1V2→4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ q\ {\overline{q}}^{\prime}\to {V}_1{V}_2\to\ 4 $$\end{document} leptonsJHEP2015091282015JHEP...09..128G10.1007/JHEP09(2015)128[arXiv:1503.04812] [INSPIRE] – reference: CascioliFZZ production at hadron colliders in NNLO QCDPhys. Lett.2014B 7353112014PhLB..735..311C10.1016/j.physletb.2014.06.056[arXiv:1405.2219] [INSPIRE] – reference: GoncharovABMultiple polylogarithms, cyclotomy and modular complexesMath. Res. Lett.19985497165332010.4310/MRL.1998.v5.n4.a70961.11040[arXiv:1105.2076] [INSPIRE] – reference: SchabingerRMA new algorithm for the generation of unitarity-compatible integration by parts relationsJHEP2012010772012JHEP...01..077S294929910.1007/JHEP01(2012)0771306.81359[arXiv:1111.4220] [INSPIRE] – reference: C. Anastasiou and A. Lazopoulos, Automatic integral reduction for higher order perturbative calculations, JHEP07 (2004) 046 [hep-ph/0404258] [INSPIRE]. – reference: T. Gehrmann, J.M. Henn and N.A. Lo Presti, Analytic form of the two-loop planar five-gluon all-plus-helicity amplitude in QCD, Phys. Rev. Lett.116 (2016) 062001 [Erratum ibid.116 (2016) 189903] [arXiv:1511.05409] [INSPIRE]. – reference: GehrmannTW +W − production at hadron colliders in next to next to leading order QCDPhys. Rev. Lett.20141132120012014PhRvL.113u2001G10.1103/PhysRevLett.113.212001[arXiv:1408.5243] [INSPIRE] – reference: BinosiDCollinsJKaufholdCTheusslLJaxoDraw: a graphical user interface for drawing Feynman diagrams. Version 2.0 release notesComput. Phys. Commun.200918017092009CoPhC.180.1709B10.1016/j.cpc.2009.02.020[arXiv:0811.4113] [INSPIRE] – reference: A. Raichev, Leinartas’s partial fraction decomposition, arXiv:1206.4740. – reference: von ManteuffelASchabingerRMA novel approach to integration by parts reductionPhys. Lett.2015B 7441012015PhLB..744..101V334186810.1016/j.physletb.2015.03.0291330.81151[arXiv:1406.4513] [INSPIRE] – reference: HennJMSmirnovAVSmirnovVAEvaluating single-scale and/or non-planar diagrams by differential equationsJHEP2014030882014JHEP...03..088H10.1007/JHEP03(2014)088[arXiv:1312.2588] [INSPIRE] – reference: HennJMMelnikovKSmirnovVATwo-loop planar master integrals for the production of off-shell vector bosons in hadron collisionsJHEP2014050902014JHEP...05..090H10.1007/JHEP05(2014)090[arXiv:1402.7078] [INSPIRE] – reference: BellGHuberTMaster integrals for the two-loop penguin contribution in non-leptonic B-decaysJHEP2014121292014JHEP...12..129B10.1007/JHEP12(2014)129[arXiv:1410.2804] [INSPIRE] – reference: HennJMSmirnovAVSmirnovVAAnalytic results for planar three-loop four-point integrals from a Knizhnik-Zamolodchikov equationJHEP2013071282013JHEP...07..128H310617110.1007/JHEP07(2013)1281342.81352[arXiv:1306.2799] [INSPIRE] – ident: 5792_CR53 doi: 10.1016/S0550-3213(00)00079-1 – volume: 01 start-page: 077 year: 2012 ident: 5792_CR58 publication-title: JHEP doi: 10.1007/JHEP01(2012)077 – volume: 07 start-page: 140 year: 2015 ident: 5792_CR27 publication-title: JHEP doi: 10.1007/JHEP07(2015)140 – ident: 5792_CR3 doi: 10.22323/1.247.0150 – ident: 5792_CR73 – volume: 185 start-page: 1473 year: 2014 ident: 5792_CR59 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2014.01.017 – volume: 148 start-page: 328 year: 2015 ident: 5792_CR78 publication-title: J. Number Theor. doi: 10.1016/j.jnt.2014.09.032 – volume: D 54 start-page: 6479 year: 1996 ident: 5792_CR51 publication-title: Phys. Rev. – ident: 5792_CR88 doi: 10.1016/0010-4655(94)90034-5 – volume: B 263 start-page: 107 year: 1991 ident: 5792_CR50 publication-title: Phys. Lett. doi: 10.1016/0370-2693(91)91715-8 – volume: 01 start-page: 140 year: 2016 ident: 5792_CR28 publication-title: JHEP doi: 10.1007/JHEP01(2016)140 – volume: 180 start-page: 1709 year: 2009 ident: 5792_CR87 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2009.02.020 – ident: 5792_CR54 doi: 10.1088/1126-6708/2004/04/021 – volume: 02 start-page: 017 year: 2016 ident: 5792_CR30 publication-title: JHEP doi: 10.1007/JHEP02(2016)017 – ident: 5792_CR64 – ident: 5792_CR29 doi: 10.1103/PhysRevLett.116.062001 – volume: 56 start-page: 072303 year: 2015 ident: 5792_CR81 publication-title: J. Math. Phys. doi: 10.1063/1.4926985 – volume: 114 start-page: 212001 year: 2015 ident: 5792_CR4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.212001 – volume: B 916 start-page: 709 year: 2017 ident: 5792_CR37 publication-title: Nucl. Phys. doi: 10.1016/j.nuclphysb.2017.01.020 – volume: 03 start-page: 082 year: 2014 ident: 5792_CR12 publication-title: JHEP doi: 10.1007/JHEP03(2014)082 – ident: 5792_CR41 – volume: A 48 start-page: 153001 year: 2015 ident: 5792_CR39 publication-title: J. Phys. – volume: B 735 start-page: 311 year: 2014 ident: 5792_CR46 publication-title: Phys. Lett. doi: 10.1016/j.physletb.2014.06.056 – volume: A 111 start-page: 365 year: 1998 ident: 5792_CR76 publication-title: Nuovo Cim. – volume: B 254 start-page: 158 year: 1991 ident: 5792_CR5 publication-title: Phys. Lett. doi: 10.1016/0370-2693(91)90413-K – volume: 09 start-page: 038 year: 2015 ident: 5792_CR25 publication-title: JHEP doi: 10.1007/JHEP09(2015)038 – volume: B 100 start-page: 65 year: 1981 ident: 5792_CR55 publication-title: Phys. Lett. doi: 10.1016/0370-2693(81)90288-4 – volume: D 83 start-page: 045012 year: 2011 ident: 5792_CR57 publication-title: Phys. Rev. – ident: 5792_CR52 doi: 10.1016/S0550-3213(97)00376-3 – volume: 181 start-page: 1293 year: 2010 ident: 5792_CR66 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2010.03.012 – volume: 09 start-page: 091 year: 2016 ident: 5792_CR33 publication-title: JHEP doi: 10.1007/JHEP09(2016)091 – volume: B 757 start-page: 207 year: 2016 ident: 5792_CR31 publication-title: Phys. Lett. – volume: 83 start-page: 831 year: 1977 ident: 5792_CR71 publication-title: Bull. Amer. Math. Soc. doi: 10.1090/S0002-9904-1977-14320-6 – volume: 151 start-page: 2329 year: 2015 ident: 5792_CR80 publication-title: Compos. Math. doi: 10.1112/S0010437X15007472 – ident: 5792_CR1 doi: 10.1016/j.physletb.2012.08.020 – ident: 5792_CR2 doi: 10.1016/j.physletb.2012.08.021 – volume: 5 start-page: 497 year: 1998 ident: 5792_CR72 publication-title: Math. Res. Lett. doi: 10.4310/MRL.1998.v5.n4.a7 – volume: 97 start-page: 37 year: 2011 ident: 5792_CR62 publication-title: Lett. Math. Phys. doi: 10.1007/s11005-010-0450-0 – volume: D 90 start-page: 114024 year: 2014 ident: 5792_CR45 publication-title: Phys. Rev. – ident: 5792_CR65 – volume: 189 start-page: 182 year: 2015 ident: 5792_CR69 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2014.11.024 – ident: 5792_CR77 doi: 10.1016/j.nuclphysb.2004.10.044 – volume: 12 start-page: 129 year: 2014 ident: 5792_CR22 publication-title: JHEP doi: 10.1007/JHEP12(2014)129 – volume: 04 start-page: 108 year: 2015 ident: 5792_CR38 publication-title: JHEP – ident: 5792_CR82 – volume: 09 start-page: 128 year: 2015 ident: 5792_CR24 publication-title: JHEP doi: 10.1007/JHEP09(2015)128 – volume: D 92 start-page: 045034 year: 2015 ident: 5792_CR20 publication-title: Phys. Rev. – volume: 07 start-page: 128 year: 2013 ident: 5792_CR9 publication-title: JHEP doi: 10.1007/JHEP07(2013)128 – volume: 09 start-page: 148 year: 2014 ident: 5792_CR19 publication-title: JHEP doi: 10.1007/JHEP09(2014)148 – volume: B 761 start-page: 179 year: 2016 ident: 5792_CR48 publication-title: Phys. Lett. doi: 10.1016/j.physletb.2016.08.017 – volume: 113 start-page: 212001 year: 2014 ident: 5792_CR47 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.212001 – volume: 114 start-page: 062006 year: 2015 ident: 5792_CR21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.062006 – volume: 4 start-page: 374 year: 1970 ident: 5792_CR75 publication-title: Aequat. Math. doi: 10.1007/BF01844169 – volume: 04 start-page: 140 year: 2015 ident: 5792_CR23 publication-title: JHEP doi: 10.1007/JHEP04(2015)140 – volume: B 160 start-page: 151 year: 1979 ident: 5792_CR49 publication-title: Nucl. Phys. doi: 10.1016/0550-3213(79)90234-7 – ident: 5792_CR40 doi: 10.22323/1.260.0030 – volume: B 736 start-page: 58 year: 2014 ident: 5792_CR44 publication-title: Phys. Lett. doi: 10.1016/j.physletb.2014.06.075 – volume: 184 start-page: 2820 year: 2013 ident: 5792_CR68 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2013.06.016 – volume: 08 start-page: 070 year: 2013 ident: 5792_CR85 publication-title: JHEP doi: 10.1007/JHEP08(2013)070 – volume: D 90 start-page: 053006 year: 2014 ident: 5792_CR17 publication-title: Phys. Rev. – ident: 5792_CR43 – volume: 06 start-page: 032 year: 2014 ident: 5792_CR15 publication-title: JHEP doi: 10.1007/JHEP06(2014)032 – volume: 11 start-page: 165 year: 2013 ident: 5792_CR63 publication-title: JHEP – volume: B 744 start-page: 101 year: 2015 ident: 5792_CR60 publication-title: Phys. Lett. doi: 10.1016/j.physletb.2015.03.029 – ident: 5792_CR74 – volume: 55 start-page: 102301 year: 2014 ident: 5792_CR79 publication-title: J. Math. Phys. doi: 10.1063/1.4896563 – volume: 09 start-page: 043 year: 2014 ident: 5792_CR16 publication-title: JHEP doi: 10.1007/JHEP09(2014)043 – volume: B 907 start-page: 400 year: 2016 ident: 5792_CR83 publication-title: Nucl. Phys. doi: 10.1016/j.nuclphysb.2016.04.013 – volume: A 110 start-page: 1435 year: 1997 ident: 5792_CR6 publication-title: Nuovo Cim. doi: 10.1007/BF03185566 – volume: D 93 start-page: 041701 year: 2016 ident: 5792_CR61 publication-title: Phys. Rev. – volume: 10 start-page: 089 year: 2016 ident: 5792_CR35 publication-title: JHEP – ident: 5792_CR7 doi: 10.1016/S0550-3213(00)00223-6 – volume: 09 start-page: 116 year: 2014 ident: 5792_CR18 publication-title: JHEP doi: 10.1007/JHEP09(2014)116 – ident: 5792_CR70 – volume: 05 start-page: 066 year: 2016 ident: 5792_CR32 publication-title: JHEP doi: 10.1007/JHEP05(2016)066 – volume: 05 start-page: 090 year: 2014 ident: 5792_CR13 publication-title: JHEP doi: 10.1007/JHEP05(2014)090 – volume: 11 start-page: 041 year: 2013 ident: 5792_CR10 publication-title: JHEP doi: 10.1007/JHEP11(2013)041 – volume: 110 start-page: 251601 year: 2013 ident: 5792_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.251601 – volume: 03 start-page: 088 year: 2014 ident: 5792_CR11 publication-title: JHEP doi: 10.1007/JHEP03(2014)088 – volume: 10 start-page: 115 year: 2016 ident: 5792_CR34 publication-title: JHEP doi: 10.1007/JHEP10(2016)115 – ident: 5792_CR84 – volume: 12 start-page: 096 year: 2016 ident: 5792_CR36 publication-title: JHEP doi: 10.1007/JHEP12(2016)096 – ident: 5792_CR67 – volume: 08 start-page: 108 year: 2015 ident: 5792_CR26 publication-title: JHEP doi: 10.1007/JHEP08(2015)108 – volume: 06 start-page: 114 year: 2014 ident: 5792_CR14 publication-title: JHEP doi: 10.1007/JHEP06(2014)114 – volume: 01 start-page: 072 year: 2015 ident: 5792_CR86 publication-title: JHEP doi: 10.1007/JHEP01(2015)072 – ident: 5792_CR42 – volume: B 192 start-page: 159 year: 1981 ident: 5792_CR56 publication-title: Nucl. Phys. doi: 10.1016/0550-3213(81)90199-1  | 
    
| SSID | ssj0015190 | 
    
| Score | 2.5605366 | 
    
| Snippet | A
bstract
The method of differential equations has been proven to be a powerful tool for the computation of multi-loop Feynman integrals appearing in quantum... The method of differential equations has been proven to be a powerful tool for the computation of multi-loop Feynman integrals appearing in quantum field... Abstract The method of differential equations has been proven to be a powerful tool for the computation of multi-loop Feynman integrals appearing in quantum...  | 
    
| SourceID | doaj unpaywall proquest crossref springer  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Algorithms Canonical forms Classical and Quantum Gravitation Differential equations Elementary Particles Field theory High energy physics Integrals Mathematical analysis Mathematical models Physics Physics and Astronomy QCD Phenomenology Quantum Field Theories Quantum Field Theory Quantum Physics Quantum theory Regular Article - Theoretical Physics Regulators Relativity Theory String Theory Transformations Transformations (mathematics)  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhENIeSpKm1G1SVOghe3Cj1cOSj23IsgQaekhobkaWRpTi2tvuLiX_viO_cCihl9yMLY-l0YzmExp_Q8gHxZnwIeg0Gkgq8zBPzVyLVDmOaNsKayD-O_zlOlveyqs7dTcp9RVzwjp64E5x54Ax03vOg80BRVmbyxJXUOdViZsb7ePqy0w-bKb68wPEJWwg8mH6_Gp5-ZXJMwx2esZicaNJDGqp-h_gy_FI9DnZ39Yre__HVtUk6iwOyIseLtJPXTcPyQ7UR2SvTdt065fk282AO1ESHYqdoNNWFH51JN5r2gTapg2mVdOs6ALu65-2pj1PRLWOVw1FDTftL5I0Sjsmt4vLm4tl2pdKSJ1UbJMGLb2VLgjDjDcIgXwZMPTaANo5rZxnykdiHq2FVBKkCNJkJRfB4mQBF-IV2cXPwGtCAYA7pXwejJUl-rfMMzCWC28RzTGRkI-D8grX84jHchZVMTAgd9ouorYL1HZCzsYXVh2FxuNNP8fZGJtF7uv2BlpE0VtE8T-LSMjJMJdF75DrYm4QauKCk80T8n58jK4Uz0dsDc0W2-TxHDjjTCVkNtjARMRjfZ6NRvLP-H58h9Wk7ZunGN9b8izK69KHTsju5vcWThEZbcp3rRP8BXcwCVM priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_qFVEfxE-MVongQ-8hdm8_ssmDiJU7joJHkRb7Fjb7UZGYpL07pP-9s0k2nkh9C8lks5md2fkls_sbgHeCEmack4k3kITnbpZkM8kSoSmibcVUZv3e4S-rdHnOTy7ExR6swl4Yv6wyzIndRG0a7f-RH80yxApoMensY3uV-KpRPrsaSmioobSC-dBRjN2BfeqZsSawfzxfnX4d8wqIV0gg-CHy6GQ5PyX8EIOgnBJf9GgnNnUU_n_hzjFV-gDubetW3fxSVbUTjRaP4OEAI-NP_bg_hj1bP4G73XJOvX4K384CHsWW4lAEBZ25iu1VT-69jhsXd8sJk6pp2nhhb-qfqo4H_ohq7Y-aGDXfdFsnY9_aMzhfzM8-L5OhhEKiuSCbxEluFNeOZSQzGUIjUzoMycpZqbUU2hBhPGGPlIwLbjlzPEtLypzCQbSUsecwwcfYFxBba6kWwuQuU7xEv-d5ajNFmVGI8giL4H1QXqEHfnFf5qIqAjNyr-3Ca7tAbUdwON7Q9tQat4se-9EYxTwndneiub4sBhcrLKIrYyh1KrdodErlvMRYq40o8TNYmggOwlgWg6Ouiz9mFcHb8TK6mM-bqNo2W5TJfX44pUREMA02sNPEbX2ejkbyz_v9-G7bHdmX_-_aK7jvJfsFQwcw2Vxv7WvEQpvyzWDgvwGeygZg priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6hIgQcUHmJQEFG4tA9BLJ-xM6xrbpaVQJxaEVvkWOPhVCaLOyuUP8947y0peqhtygZT5J5ZL5o7M8AnxTPhA9BpzFAUlmEeWrmWqTKcULbVliDce3w12_58kKeXarLgSQproX5r3__5Wx5-j2Th1Sm9Kyj1n5IFSrvurL5ydQuIBiSjbw9twfdKDkdM_8NODl1QJ_C422zstd_bV3vFJnFPjwb0CE76t35HB5g8wIedbM03fol_DgfYSZpYuPeJpSjNcPfPWf3mrWBdbME07ptV2yB182VbdhAC1Gv41HLyKBttyKSRW2v4GJxen6yTIedEVInVbZJg5beSheEyYw3hHh8FajS2oDaOa2cz5SPPDxaC6kkShGkySsugiXfIBfiNezRbfANMETkTilfBGNlReksixyN5cJbAm-ZSODzaLzSDbThcfeKuhwJj3trl9HaJVk7gcNpwKpnzLhb9Dh6YxKLVNfdCYqAcsicEgk0ec95sAVSLFlbyIpKqPOqor9b7RM4GH1ZDvm3LueGkCV9X_J5Ah-ny5Q5sR1iG2y3JFPEtm_OM5XAbIyBHRV3PfNsCpJb7_frJ652ZN_eQ-87eBIP-0lBB7C3-bPF94R3NtWHLtb_Aa7I91A priority: 102 providerName: Springer Nature  | 
    
| Title | Transforming differential equations of multi-loop Feynman integrals into canonical form | 
    
| URI | https://link.springer.com/article/10.1007/JHEP04(2017)006 https://www.proquest.com/docview/1883505361 https://www.proquest.com/docview/1904246205 https://link.springer.com/content/pdf/10.1007%2FJHEP04%282017%29006.pdf https://doaj.org/article/e064dd22fa9e49faa94b990cd5b8257d  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 2017 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: AMVHM dateStart: 20160301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: 8FG dateStart: 20121201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: C6C dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: C24 dateStart: 20100101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: U2A dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB61iRDlwBsRKJGRODQHp84-_Di2UdKoElGEGlFO1nofrcC1Q5MIlV_P7PqhAOoBictqE0_W3t3Z2c-Z2W8APnASUGVM5FsF8VliRn48iqjPJUG0LaiItT07_HEezpbs_JJf7sFZcxbGRbs3LsnqTINlaSo2xytldrz657PJImAIwojjCUqsUwEl9qEbcgTlHegu54uTL87XSRIfbXDi0qyQ0A8jl6cO65GPm2PYEP4E0fHXa70K2JFtcxDYJEg7e5Wj9P8Nh7au00fwcFusxN0Pkec7u9P0CVw3_aqCUr4Nt5tsKH_-Qfn4Hzr-FB7XCNY7qVTuGezp4jk8cJGkcv0CPl80UBjv4TX5V9CO5J7-XvGKr73SeC6S0c_LcuVN9V1xIwqvpq7I17ZWejjppTu16dnWXsJyOrkYz_w6e4MvGQ82vomYEkwaGgexihGVqcwgGhBGR1JGXKqAK8sVFEWUcaYZNSwOM0KNQP3RhNJX0MHb6Nfgaa2J5FwlJhYsQ5PDklDHglAlEGAGtAfDZp5SWVOb2wwbedqQMlejltoxS3HEenDU_mBVsXrcL3pqJ74Vs3Tc7ovy9iqtV3eqEdgpRYgRiUZ9FyJhGW7zUvEM38Aj1YPDRm3S2kas01GM6BdtYDjqwfv2Mq5u67IRhS63KJNY13RIAt6DQaMdO03c98yDVh__6l-l463sm3-QfQsHtloFLh1CZ3O71e8Qk22yPuzH07M-dE8n88Un_DQmzJbhuO_-5cBySbCsVuUv2OEwpw | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVqhwQDxFSgEjgdQ9hGYdO04OFaKwq-1rVaGt6C11_ABVIUmbXVX75_htjJM4LELl1luU2E48Hs98ztjfIPSOkSBUxnDfKohPEzP04yEPfSYJoG0Riljbs8Mn02hyRg_P2fka-uXOwthtlc4mNoZaldL-I98dxoAVQGOi4cfqyrdZo2x01aXQEF1qBbXXUIx1BzuO9PIGlnD13sEXGO_3hIxHs88Tv8sy4EvKgrlvOFWCShPGQaxiQA8qM-C1hNFcSs6kCpiynDach5RRTUND4ygjoRHQT03sD1FwARs0pAks_jb2R9PTr30cA_BR4AiFAr57OBmdBnQHnC4fBDbJ0oovbFIG_IVz-9DsA7S5KCqxvBF5vuL9xo_Qww624k-tnj1Ga7p4gu4120dl_RR9mzn8Cy1hl3QFjEeO9VVLJl7j0uBm-6Kfl2WFx3pZ_BQF7vgq8tpelRhGumyOamLb2jN0difCfI7W4TX6BcJaayIZU4mJBc3AztAk0rEgoRKAKoPQQx-c8FLZ8ZnbtBp56piYW2mnVtopSNtDO32FqqXyuL3ovh2Nvpjl4G5ulNff025KpxrQnFKEGJFoUHIhEpqBb5eKZbDs5spD224s084w1OkfNfbQ2_4xTGkbpxGFLhdQJrHx6IgEzEMDpwMrTdz2zYNeSf7p3-UPXa2U3fr_p71Bm5PZyXF6fDA9eonu21rtZqVttD6_XuhXgMPm2etO2TG6uOv59RsqSELQ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIl4HxFMEChgJpO4hXa9jr5MDQkAbti1UPbSit-D40QqFJG12Ve1f49cxTuKwCJVbb1HiOMl4PPM5M_4GoTeckkhbK0KnICFL7CSMJyIKuaKAtmUkY-P2Dn89mM6O2d4JP1lDv_xeGJdW6W1ia6h1pdw_8vEkBqwAGjOdjG2fFnG4nb6vz0NXQcpFWn05jU5F9s3yEpZvzbvdbRjrt5SmO0efZmFfYSBUjJN5aAXTkikbxSTWMSAHnVvwWNIaoZTgShOuHZ-NEBHjzLDIsnia08hK-EZD3c9QMP83hGNxd7vU089DBAOQEfFUQkSM92Y7h4RtgrsVI-LKK614wbZYwF8IdwjK3kW3F2Utl5eyKFb8Xnof3esBK_7QadgDtGbKh-hmmziqmkfo25FHvtAT9uVWwGwU2Jx3NOINrixuExfDoqpqnJpl-VOWuGeqKBp3VGEY46rdpIldb4_R8bWI8glah8eYpwgbY6jiXCc2liwHC8OSqYkljbQEPEmiAG154WWqZzJ3BTWKzHMwd9LOnLQzkHaANocb6o7E4-qmH91oDM0c-3Z7oro4zfrJnBnAcVpTamViQL2lTFgOXl1pnsOCW-gAbfixzHqT0GR_FDhAr4fLMJldhEaWplpAm8RFoqeU8ACNvA6sdHHVO48GJfnn-36cmXql7bP_v9ordAtmVfZl92D_ObrjbuqylDbQ-vxiYV4AAJvnL1tNx-j7dU-t31AhQGo | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VrRBw4I0IFBQkDt2Dt1k_4uRYUJdVJaoeuqKcIsePVhCS0M0KlV_POC8toB6QuFnJxInt8cwXzfgbgLeCRsw4J4lXEMJTNyfJXDIiNEW0rZhKrD87_PEkXq748bk434EPw1mYNtt9CEl2Zxo8S1PZHNTGbUX1j5dHpxFHEEZbnqDUBxVQ4hbsxgJB-QR2Vyenh5_bWCdNCdrgtC2zQmMSy7ZOHbYlQecYD4Q_kTz4cmnriO_7PqeRL4K05ataSv_fcOgYOr0HdzZlra5_qKLY8k6LB3A5jKtLSvk62zT5TP_8g_LxPwz8IdzvEWx42KncI9ix5WO43WaS6vUT-HQ2QGF8RzjUX0E7UoT2e8crvg4rF7aZjKSoqjpc2OvymyrDnrqiWPtWFeKiV-2pzdD39hRWi6Oz90vSV28gmouoIU5yo7h2LIkSkyAqM7lDNKCclVpLoU0kjOcKkpJxwS1njidxTplTqD-WMvYMJvga-xxCay3VQpjUJYrnaHJ4GttEUWYUAsyIBTAb1inTPbW5r7BRZAMpczdrmZ-zDGcsgP3xgbpj9bhZ9J1f-FHM03G3F6qri6zf3ZlFYGcMpU6lFvVdqZTn6Oa1ETn-gUsTwN6gNllvI9bZPEH0izYwngfwZryNu9uHbFRpqw3KpD40HdNIBDAdtGOri5u-eTrq41_j63R8lH3xD7Iv4a5vdolLezBprjb2FWKyJn_d77dfIkoqog | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transforming+differential+equations+of+multi-loop+Feynman+integrals+into+canonical+form&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Meyer%2C+Christoph&rft.date=2017-04-01&rft.eissn=1029-8479&rft.volume=2017&rft.issue=4&rft.spage=1&rft.epage=43&rft_id=info:doi/10.1007%2FJHEP04%282017%29006&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |