Transforming differential equations of multi-loop Feynman integrals into canonical form

A bstract The method of differential equations has been proven to be a powerful tool for the computation of multi-loop Feynman integrals appearing in quantum field theory. It has been observed that in many instances a canonical basis can be chosen, which drastically simplifies the solution of the di...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2017; no. 4; pp. 1 - 43
Main Author Meyer, Christoph
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2017
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN1029-8479
1126-6708
1127-2236
1029-8479
DOI10.1007/JHEP04(2017)006

Cover

Abstract A bstract The method of differential equations has been proven to be a powerful tool for the computation of multi-loop Feynman integrals appearing in quantum field theory. It has been observed that in many instances a canonical basis can be chosen, which drastically simplifies the solution of the differential equation. In this paper, an algorithm is presented that computes the transformation to a canonical basis, starting from some basis that is, for instance, obtained by the usual integration-by-parts reduction techniques. The algorithm requires the existence of a rational transformation to a canonical basis, but is otherwise completely agnostic about the differential equation. In particular, it is applicable to problems involving multiple scales and allows for a rational dependence on the dimensional regulator. It is demonstrated that the algorithm is suitable for current multi-loop calculations by presenting its successful application to a number of non-trivial examples.
AbstractList The method of differential equations has been proven to be a powerful tool for the computation of multi-loop Feynman integrals appearing in quantum field theory. It has been observed that in many instances a canonical basis can be chosen, which drastically simplifies the solution of the differential equation. In this paper, an algorithm is presented that computes the transformation to a canonical basis, starting from some basis that is, for instance, obtained by the usual integration-by-parts reduction techniques. The algorithm requires the existence of a rational transformation to a canonical basis, but is otherwise completely agnostic about the differential equation. In particular, it is applicable to problems involving multiple scales and allows for a rational dependence on the dimensional regulator. It is demonstrated that the algorithm is suitable for current multi-loop calculations by presenting its successful application to a number of non-trivial examples.
A bstract The method of differential equations has been proven to be a powerful tool for the computation of multi-loop Feynman integrals appearing in quantum field theory. It has been observed that in many instances a canonical basis can be chosen, which drastically simplifies the solution of the differential equation. In this paper, an algorithm is presented that computes the transformation to a canonical basis, starting from some basis that is, for instance, obtained by the usual integration-by-parts reduction techniques. The algorithm requires the existence of a rational transformation to a canonical basis, but is otherwise completely agnostic about the differential equation. In particular, it is applicable to problems involving multiple scales and allows for a rational dependence on the dimensional regulator. It is demonstrated that the algorithm is suitable for current multi-loop calculations by presenting its successful application to a number of non-trivial examples.
Abstract The method of differential equations has been proven to be a powerful tool for the computation of multi-loop Feynman integrals appearing in quantum field theory. It has been observed that in many instances a canonical basis can be chosen, which drastically simplifies the solution of the differential equation. In this paper, an algorithm is presented that computes the transformation to a canonical basis, starting from some basis that is, for instance, obtained by the usual integration-by-parts reduction techniques. The algorithm requires the existence of a rational transformation to a canonical basis, but is otherwise completely agnostic about the differential equation. In particular, it is applicable to problems involving multiple scales and allows for a rational dependence on the dimensional regulator. It is demonstrated that the algorithm is suitable for current multi-loop calculations by presenting its successful application to a number of non-trivial examples.
ArticleNumber 6
Author Meyer, Christoph
Author_xml – sequence: 1
  givenname: Christoph
  orcidid: 0000-0002-5211-9973
  surname: Meyer
  fullname: Meyer, Christoph
  email: christoph.meyer@physik.hu-berlin.de
  organization: Institut für Physik, Humboldt-Universität zu Berlin
BookMark eNp9kUtr3DAUhU1IIa-uuzV0ky6cXMuSZS9LSJqEQLNI6VLc0WOqQZYcySbMv68mDmVIaVe6SOc7Ojo6KQ598LooPtVwUQPwy_vb60eg5wRq_gWgPSiOayB91VHeH-7NR8VJShuAmtU9HBc_nyL6ZEIcrF-Xyhqjo_aTRVfq5xknG3wqgymH2U22ciGM5Y3e-gF9af2k1xFd2k2hlJgDWZnBndtZ8cHkI_3xbT0tftxcP13dVg_fv91dfX2oJGUwVYZThVSapoNOdbRhamVI26LRXErOpAKmoOcN5w1lVNPG0K5dkcYgI6BJ05wWd4uvCrgRY7QDxq0IaMXrRohrgXGy0mmhoaVKEWKw17Q3iD1d9T1IxVYdYVxlL1i8Zj_i9gWd-2NYg9iVLDa_9AhU7EoWueSMnC_IGMPzrNMkBpukdg69DnMSuWNKaEuAZennd9JNmKPP5Yi66xqWJW2dVZeLSsaQUtTmrwjLP-9HYO8IaafXj5siWvcf7u21Kd_g1zru5fkH8htC5LvY
CitedBy_id crossref_primary_10_1007_JHEP06_2017_127
crossref_primary_10_1007_JHEP07_2018_102
crossref_primary_10_1007_JHEP10_2022_165
crossref_primary_10_1103_PhysRevD_97_105014
crossref_primary_10_1103_PhysRevLett_121_142001
crossref_primary_10_1007_JHEP03_2025_009
crossref_primary_10_1007_JHEP06_2017_121
crossref_primary_10_1146_annurev_nucl_102819_100428
crossref_primary_10_1007_JHEP03_2018_008
crossref_primary_10_1007_JHEP04_2020_167
crossref_primary_10_1103_PhysRevD_98_071501
crossref_primary_10_1007_JHEP01_2019_023
crossref_primary_10_1007_JHEP03_2018_085
crossref_primary_10_1007_JHEP02_2023_073
crossref_primary_10_1103_PhysRevD_98_025008
crossref_primary_10_1007_JHEP04_2021_054
crossref_primary_10_1007_JHEP05_2024_155
crossref_primary_10_1007_JHEP08_2019_071
crossref_primary_10_1007_JHEP12_2022_140
crossref_primary_10_1007_JHEP05_2020_025
crossref_primary_10_1007_JHEP04_2023_041
crossref_primary_10_1016_j_cpc_2017_08_013
crossref_primary_10_1007_JHEP07_2021_227
crossref_primary_10_1007_JHEP08_2023_109
crossref_primary_10_1103_PhysRevD_105_056014
crossref_primary_10_1007_JHEP04_2017_083
crossref_primary_10_1007_JHEP03_2022_079
crossref_primary_10_1007_JHEP04_2017_129
crossref_primary_10_1103_PhysRevD_104_053005
crossref_primary_10_1103_PhysRevD_97_034004
crossref_primary_10_1007_JHEP01_2019_211
crossref_primary_10_1007_JHEP05_2019_084
crossref_primary_10_1007_JHEP07_2022_066
crossref_primary_10_1007_JHEP11_2024_169
crossref_primary_10_1007_JHEP03_2022_174
crossref_primary_10_1007_JHEP08_2017_051
crossref_primary_10_1088_1361_6471_aab812
crossref_primary_10_1007_JHEP01_2018_048
crossref_primary_10_1007_JHEP06_2019_037
crossref_primary_10_1103_PhysRevLett_124_092001
crossref_primary_10_1007_JHEP10_2018_206
crossref_primary_10_1007_JHEP01_2023_140
crossref_primary_10_1007_JHEP08_2018_184
crossref_primary_10_1007_JHEP10_2019_083
crossref_primary_10_1007_JHEP11_2020_107
crossref_primary_10_1007_JHEP12_2021_095
crossref_primary_10_1103_PhysRevD_110_056028
crossref_primary_10_1007_JHEP02_2019_172
crossref_primary_10_1007_JHEP06_2023_144
crossref_primary_10_1103_PhysRevLett_128_161104
crossref_primary_10_1007_JHEP08_2022_280
crossref_primary_10_1007_JHEP03_2018_064
crossref_primary_10_1016_j_cpc_2017_09_014
crossref_primary_10_1016_j_cpc_2017_05_004
crossref_primary_10_1007_JHEP01_2024_029
crossref_primary_10_1103_PhysRevD_96_014008
crossref_primary_10_1088_1751_8121_ac87de
crossref_primary_10_1016_j_physrep_2021_03_006
crossref_primary_10_1007_JHEP11_2017_158
crossref_primary_10_1103_PhysRevD_101_016013
crossref_primary_10_1103_PhysRevLett_130_101401
crossref_primary_10_1007_JHEP03_2022_056
crossref_primary_10_1016_j_cpc_2018_09_005
crossref_primary_10_1007_JHEP07_2020_011
Cites_doi 10.1016/S0550-3213(00)00079-1
10.1007/JHEP01(2012)077
10.1007/JHEP07(2015)140
10.22323/1.247.0150
10.1016/j.cpc.2014.01.017
10.1016/j.jnt.2014.09.032
10.1016/0010-4655(94)90034-5
10.1016/0370-2693(91)91715-8
10.1007/JHEP01(2016)140
10.1016/j.cpc.2009.02.020
10.1088/1126-6708/2004/04/021
10.1007/JHEP02(2016)017
10.1103/PhysRevLett.116.062001
10.1063/1.4926985
10.1103/PhysRevLett.114.212001
10.1016/j.nuclphysb.2017.01.020
10.1007/JHEP03(2014)082
10.1016/j.physletb.2014.06.056
10.1016/0370-2693(91)90413-K
10.1007/JHEP09(2015)038
10.1016/0370-2693(81)90288-4
10.1016/S0550-3213(97)00376-3
10.1016/j.cpc.2010.03.012
10.1007/JHEP09(2016)091
10.1090/S0002-9904-1977-14320-6
10.1112/S0010437X15007472
10.1016/j.physletb.2012.08.020
10.1016/j.physletb.2012.08.021
10.4310/MRL.1998.v5.n4.a7
10.1007/s11005-010-0450-0
10.1016/j.cpc.2014.11.024
10.1016/j.nuclphysb.2004.10.044
10.1007/JHEP12(2014)129
10.1007/JHEP09(2015)128
10.1007/JHEP07(2013)128
10.1007/JHEP09(2014)148
10.1016/j.physletb.2016.08.017
10.1103/PhysRevLett.113.212001
10.1103/PhysRevLett.114.062006
10.1007/BF01844169
10.1007/JHEP04(2015)140
10.1016/0550-3213(79)90234-7
10.22323/1.260.0030
10.1016/j.physletb.2014.06.075
10.1016/j.cpc.2013.06.016
10.1007/JHEP08(2013)070
10.1007/JHEP06(2014)032
10.1016/j.physletb.2015.03.029
10.1063/1.4896563
10.1007/JHEP09(2014)043
10.1016/j.nuclphysb.2016.04.013
10.1007/BF03185566
10.1016/S0550-3213(00)00223-6
10.1007/JHEP09(2014)116
10.1007/JHEP05(2016)066
10.1007/JHEP05(2014)090
10.1007/JHEP11(2013)041
10.1103/PhysRevLett.110.251601
10.1007/JHEP03(2014)088
10.1007/JHEP10(2016)115
10.1007/JHEP12(2016)096
10.1007/JHEP08(2015)108
10.1007/JHEP06(2014)114
10.1007/JHEP01(2015)072
10.1016/0550-3213(81)90199-1
ContentType Journal Article
Copyright The Author(s) 2017
The Author(s) 2017. This work is published under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2017
– notice: The Author(s) 2017. This work is published under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7U5
8FD
H8D
L7M
ADTOC
UNPAY
DOA
DOI 10.1007/JHEP04(2017)006
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 43
ExternalDocumentID oai_doaj_org_article_e064dd22fa9e49faa94b990cd5b8257d
10.1007/jhep04(2017)006
4321411435
10_1007_JHEP04_2017_006
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHSBF
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
EJD
ER.
FEDTE
GQ6
GROUPED_DOAJ
H13
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
02O
1JI
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYXX
AAYZH
ABFSG
ACAFW
ACARI
ACBXY
ACSTC
ADKPE
ADRFC
AEFHF
AEINN
AEJGL
AERVB
AETNG
AEZWR
AFHIU
AFLOW
AGJBK
AGQPQ
AHSEE
AHWEU
AIXLP
AIYBF
AKPSB
AMVHM
ARNYC
BAPOH
BBWZM
BGNMA
CAG
CITATION
CJUJL
COF
CRLBU
EDWGO
EMSAF
EPQRW
EQZZN
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PHGZM
PHGZT
PJBAE
PQGLB
PUEGO
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7U5
8FD
H8D
L7M
ADTOC
UNPAY
ID FETCH-LOGICAL-c450t-f74da4cf3808d8435dbf266afe7cc75cd05d0973773454e43f486b23fa520e233
IEDL.DBID UNPAY
ISSN 1029-8479
1126-6708
1127-2236
IngestDate Tue Oct 14 18:39:58 EDT 2025
Sun Oct 26 03:56:53 EDT 2025
Fri Sep 05 09:41:03 EDT 2025
Sat Oct 18 23:06:31 EDT 2025
Wed Oct 01 05:57:07 EDT 2025
Thu Apr 24 23:08:02 EDT 2025
Fri Feb 21 02:31:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords QCD Phenomenology
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-f74da4cf3808d8435dbf266afe7cc75cd05d0973773454e43f486b23fa520e233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5211-9973
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007%2FJHEP04%282017%29006.pdf
PQID 1883505361
PQPubID 2034718
PageCount 43
ParticipantIDs doaj_primary_oai_doaj_org_article_e064dd22fa9e49faa94b990cd5b8257d
unpaywall_primary_10_1007_jhep04_2017_006
proquest_miscellaneous_1904246205
proquest_journals_1883505361
crossref_primary_10_1007_JHEP04_2017_006
crossref_citationtrail_10_1007_JHEP04_2017_006
springer_journals_10_1007_JHEP04_2017_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-01
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2017
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett.B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
S. Bloch, M. Kerr and P. Vanhove, Local mirror symmetry and the sunset Feynman integral, arXiv:1601.08181 [INSPIRE].
LeeRNPomeranskyAACritical points and number of master integralsJHEP2013111652013JHEP...11..165L313217210.1007/JHEP11(2013)1651342.81139[arXiv:1308.6676] [INSPIRE]
GituliarOMaster integrals for splitting functions from differential equations in QCDJHEP2016020172016JHEP...02..017G10.1007/JHEP02(2016)017[arXiv:1512.02045] [INSPIRE]
HennJMSmirnovAVSmirnovVAEvaluating single-scale and/or non-planar diagrams by differential equationsJHEP2014030882014JHEP...03..088H10.1007/JHEP03(2014)088[arXiv:1312.2588] [INSPIRE]
E.W.N. Glover, Two loop QCD helicity amplitudes for massless quark quark scattering, JHEP04 (2004) 021 [hep-ph/0401119] [INSPIRE].
L. Adams, C. Bogner, A. Schweitzer and S. Weinzierl, The kite integral to all orders in terms of elliptic polylogarithms, arXiv:1607.01571 [INSPIRE].
HennJMSmirnovVAAnalytic results for two-loop master integrals for Bhabha scattering IJHEP2013110412013JHEP...11..041H10.1007/JHEP11(2013)041[arXiv:1307.4083] [INSPIRE]
SchabingerRMA new algorithm for the generation of unitarity-compatible integration by parts relationsJHEP2012010772012JHEP...01..077S294929910.1007/JHEP01(2012)0771306.81359[arXiv:1111.4220] [INSPIRE]
GehrmannTW +W − production at hadron colliders in next to next to leading order QCDPhys. Rev. Lett.20141132120012014PhRvL.113u2001G10.1103/PhysRevLett.113.212001[arXiv:1408.5243] [INSPIRE]
HöscheleMHoffJUedaTAdequate bases of phase space master integrals for gg → h at NNLO and beyondJHEP2014091162014JHEP...09..116H10.1007/JHEP09(2014)116[arXiv:1407.4049] [INSPIRE]
AdamsLBognerCWeinzierlSThe two-loop sunrise integral around four space-time dimensions and generalisations of the Clausen and Glaisher functions towards the elliptic caseJ. Math. Phys.2015560723032015JMP....56g2303A340595610.1063/1.49269851320.81059[arXiv:1504.03255] [INSPIRE]
GehrmannTvon ManteuffelATancrediLThe two-loop helicity amplitudes for qq¯′→V1V2→4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ q\ {\overline{q}}^{\prime}\to {V}_1{V}_2\to\ 4 $$\end{document} leptonsJHEP2015091282015JHEP...09..128G10.1007/JHEP09(2015)128[arXiv:1503.04812] [INSPIRE]
AnzaiCExact N3LO results for qq′ → H + XJHEP2015071402015JHEP...07..140A10.1007/JHEP07(2015)140[arXiv:1506.02674] [INSPIRE]
S. Laporta and E. Remiddi, Analytic treatment of the two loop equal mass sunrise graph, Nucl. Phys.B 704 (2005) 349 [hep-ph/0406160] [INSPIRE].
S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys.A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].
BoncianiRDel DucaVFrellesvigHHennJMMorielloFSmirnovVANext-to-leading order QCD corrections to the decay width H → ZγJHEP2015081082015JHEP...08..108B10.1007/JHEP08(2015)108[arXiv:1505.00567] [INSPIRE]
GrozinAHennJMKorchemskyGPMarquardPThree loop cusp anomalous dimension in QCDPhys. Rev. Lett.20151140620062015PhRvL.114f2006G10.1103/PhysRevLett.114.062006[arXiv:1409.0023] [INSPIRE]
KantPFinding linear dependencies in integration-by-parts equations: a Monte Carlo approachComput. Phys. Commun.201418514732014CoPhC.185.1473K10.1016/j.cpc.2014.01.0171344.81020[arXiv:1309.7287] [INSPIRE]
StuderusCReduze-Feynman integral reduction in C++Comput. Phys. Commun.201018112932010CoPhC.181.1293S264497110.1016/j.cpc.2010.03.0121219.81133[arXiv:0912.2546] [INSPIRE]
RemiddiEDifferential equations for Feynman graph amplitudesNuovo Cim.1997A 11014351997NCimA.110.1435R[hep-th/9711188] [INSPIRE]
LarsenKJZhangYIntegration-by-parts reductions from unitarity cuts and algebraic geometryPhys. Rev.2016D 930417012016PhRvD..93d1701L3499242[arXiv:1511.01071] [INSPIRE]
BuchbergerBEin algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems (in German)Aequat. Math.1970437410.1007/BF018441690212.06401
SmirnovAVPetukhovAVThe number of master integrals is finiteLett. Math. Phys.201197372011LMaPh..97...37S280231510.1007/s11005-010-0450-01216.81076[arXiv:1004.4199] [INSPIRE]
BrucherseiferMCaolaFMelnikovKOn the NNLO QCD corrections to single-top production at the LHCPhys. Lett.2014B 736582014PhLB..736...58B10.1016/j.physletb.2014.06.075[arXiv:1404.7116] [INSPIRE]
TarasovOVConnection between Feynman integrals having different values of the space-time dimensionPhys. Rev.1996D 5464791996PhRvD..54.6479T14235860925.81121[hep-th/9606018] [INSPIRE]
PassarinoGVeltmanMJGOne loop corrections for e+e− annihilation into μ+μ− in the Weinberg modelNucl. Phys.1979B 1601511979NuPhB.160..151P10.1016/0550-3213(79)90234-7[INSPIRE]
BoncianiRDel DucaVFrellesvigHHennJMMorielloFSmirnovVATwo-loop planar master integrals for Higgs → 3 partons with full heavy-quark mass dependenceJHEP2016120962016JHEP...12..096B10.1007/JHEP12(2016)096[arXiv:1609.06685] [INSPIRE]
BonettiMMelnikovKTancrediLTwo-loop electroweak corrections to Higgs-gluon couplings to higher orders in the dimensional regularization parameterNucl. Phys.2017B 9167092017NuPhB.916..709B10.1016/j.nuclphysb.2017.01.0201356.81224[arXiv:1610.05497] [INSPIRE]
AssadsolimaniMKantPTauskBUwerPCalculation of two-loop QCD corrections for hadronic single top-quark production in the t channelPhys. Rev.2014D 901140242014PhRvD..90k4024A[arXiv:1409.3654] [INSPIRE]
GehrmannTTancrediLWeihsETwo-loop master integrals for qq¯→VV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ q\overline{q}\to V\ V $$\end{document} : the planar topologiesJHEP2013080702013JHEP...08..070G10.1007/JHEP08(2013)070[arXiv:1306.6344] [INSPIRE]
CaolaFHennJMMelnikovKSmirnovVANon-planar master integrals for the production of two off-shell vector bosons in collisions of massless partonsJHEP2014090432014JHEP...09..043C10.1007/JHEP09(2014)043[arXiv:1404.5590] [INSPIRE]
BellGHuberTMaster integrals for the two-loop penguin contribution in non-leptonic B-decaysJHEP2014121292014JHEP...12..129B10.1007/JHEP12(2014)129[arXiv:1410.2804] [INSPIRE]
LeeRNReducing differential equations for multiloop master integralsJHEP2015041082015JHEP...04..108L335126110.1007/JHEP04(2015)108[arXiv:1411.0911] [INSPIRE]
AnastasiouCDuhrCDulatFHerzogFMistlbergerBHiggs boson gluon-fusion production in QCD at three loopsPhys. Rev. Lett.20151142120012015PhRvL.114u2001A10.1103/PhysRevLett.114.212001[arXiv:1503.06056] [INSPIRE]
C. Meyer, Algorithmic transformation of multi-loop master integrals to a canonical basis with CANONICA, in preparation.
TkachovFVA theorem on analytical calculability of four loop renormalization group functionsPhys. Lett.1981B 100651981PhLB..100...65T60764010.1016/0370-2693(81)90288-4[INSPIRE]
GehrmannTvon ManteuffelATancrediLWeihsEThe two-loop master integrals for qq¯→VV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ q\overline{q}\to V\ V $$\end{document}JHEP2014060322014JHEP...06..032G10.1007/JHEP06(2014)032[arXiv:1404.4853] [INSPIRE]
G. Ossola, Automated higher-order calculations: status and prospects, PoS (DIS2015) 150 [arXiv:1508.01894] [INSPIRE].
Di VitaSMastroliaPSchubertUYundinVThree-loop master integrals for ladder-box diagrams with one massive legJHEP2014091482014JHEP...09..148D10.1007/JHEP09(2014)148[arXiv:1408.3107] [INSPIRE]
HennJMMelnikovKSmirnovVATwo-loop planar master integrals for the production of off-shell vector bosons in hadron collisionsJHEP2014050902014JHEP...05..090H10.1007/JHEP05(2014)090[arXiv:1402.7078] [INSPIRE]
BoncianiRDi VitaSMastroliaPSchubertUTwo-loop master integrals for the mixed EW-QCD virtual corrections to Drell-Yan scatteringJHEP2016090912016JHEP...09..091B10.1007/JHEP09(2016)091[arXiv:1604.08581] [INSPIRE]
AdamsLBognerCWeinzierlSThe two-loop sunrise graph in two space-time dimensions with arbitrary masses in terms of elliptic dilogarithmsJ. Math. Phys.2014551023012014JMP....55j2301A339045910.1063/1.48965631298.81204[arXiv:1405.5640] [INSPIRE]
ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett.B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
O.V. Tarasov, Generalized recurrence relations for two loop propagator integrals with arbitrary masses, Nucl. Phys.B 502 (1997) 455 [hep-ph/9703319] [INSPIRE].
ArgeriMMagnus and Dyson series for master integralsJHEP2014030822014JHEP...03..082A319096410.1007/JHEP03(2014)0821333.81379[arXiv:1401.2979] [INSPIRE]
T. Gehrmann, J.M. Henn and N.A. Lo Presti, Analytic form of the two-loop planar five-gluon all-plus-helicity amplitude in QCD, Phys. Rev. Lett.116 (2016) 062001 [Erratum ibid.116 (2016) 189903] [arXiv:1511.05409] [INSPIRE].
E.K. Leinartas, Factorization of rational functions of several variables into partial fractions, Izv. Vyssh. Uchebn. Zaved. Mat.22 (1978) 47 [Soviet Math. 22 (1978) 35].
LeeRNSmirnovVAEvaluating the last missing ingredient for the three-loop quark static potential by differential equationsJHEP2016100892016JHEP...10..089L[arXiv:1608.02605] [INSPIRE]
Caron-HuotSHennJMIterative structure of finite loop integralsJHEP2014061142014JHEP...06..114C323431210.1007/JHEP06(2014)1141333.81217[arXiv:1404.2922] [INSPIRE]
B. Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal (in German), Ph.D. thesis, University of Innsbruck, Innsbruck Austria, (1965).
GrozinAHennJMKorchemskyGPMarquardPThe three-loop cusp anomalous dimension in QCD and its supersymmetric extensionsJHEP201601140201
T Gehrmann (5792_CR47) 2014; 113
5792_CR29
C Anzai (5792_CR27) 2015; 07
AV Smirnov (5792_CR68) 2013; 184
E Remiddi (5792_CR83) 2016; B 907
F Caola (5792_CR16) 2014; 09
A Grozin (5792_CR28) 2016; 01
S Caron-Huot (5792_CR14) 2014; 06
5792_CR65
AV Smirnov (5792_CR69) 2015; 189
5792_CR64
T Gehrmann (5792_CR15) 2014; 06
S Vita Di (5792_CR19) 2014; 09
5792_CR67
KG Chetyrkin (5792_CR56) 1981; B 192
S Bloch (5792_CR80) 2015; 151
C Anastasiou (5792_CR4) 2015; 114
JM Henn (5792_CR32) 2016; 05
AV Smirnov (5792_CR62) 2011; 97
JM Henn (5792_CR13) 2014; 05
A Grozin (5792_CR21) 2015; 114
CG Papadopoulos (5792_CR86) 2015; 01
5792_CR54
R Bonciani (5792_CR36) 2016; 12
5792_CR53
5792_CR52
M Argeri (5792_CR12) 2014; 03
OV Tarasov (5792_CR51) 1996; D 54
M Grazzini (5792_CR48) 2016; B 761
T Gehrmann (5792_CR85) 2013; 08
RN Lee (5792_CR63) 2013; 11
M Caffo (5792_CR76) 1998; A 111
Y Li (5792_CR17) 2014; D 90
M Höschele (5792_CR18) 2014; 09
A Manteuffel von (5792_CR60) 2015; B 744
RM Schabinger (5792_CR58) 2012; 01
C Studerus (5792_CR66) 2010; 181
R Bonciani (5792_CR33) 2016; 09
F Cascioli (5792_CR46) 2014; B 735
RN Lee (5792_CR38) 2015; 04
AB Goncharov (5792_CR72) 1998; 5
5792_CR88
O Gituliar (5792_CR30) 2016; 02
5792_CR43
5792_CR42
B Buchberger (5792_CR75) 1970; 4
5792_CR41
S Bloch (5792_CR78) 2015; 148
RN Lee (5792_CR35) 2016; 10
FV Tkachov (5792_CR55) 1981; B 100
T Gehrmann (5792_CR24) 2015; 09
M Bonetti (5792_CR37) 2017; B 916
P Kant (5792_CR59) 2014; 185
G Bell (5792_CR22) 2014; 12
JM Henn (5792_CR10) 2013; 11
5792_CR40
5792_CR84
G Passarino (5792_CR49) 1979; B 160
5792_CR82
5792_CR1
JM Henn (5792_CR9) 2013; 07
KJ Larsen (5792_CR61) 2016; D 93
D Binosi (5792_CR87) 2009; 180
5792_CR2
JM Henn (5792_CR39) 2015; A 48
B Eden (5792_CR34) 2016; 10
M Brucherseifer (5792_CR44) 2014; B 736
M Assadsolimani (5792_CR45) 2014; D 90
5792_CR7
J Gluza (5792_CR57) 2011; D 83
5792_CR3
5792_CR77
T Gehrmann (5792_CR25) 2015; 09
E Remiddi (5792_CR6) 1997; A 110
5792_CR74
K-T Chen (5792_CR71) 1977; 83
JM Henn (5792_CR8) 2013; 110
R Bonciani (5792_CR26) 2015; 08
5792_CR73
L Adams (5792_CR81) 2015; 56
AV Kotikov (5792_CR5) 1991; B 254
A Manteuffel von (5792_CR20) 2015; D 92
5792_CR70
L Adams (5792_CR79) 2014; 55
RN Lee (5792_CR31) 2016; B 757
JM Henn (5792_CR11) 2014; 03
T Huber (5792_CR23) 2015; 04
AI Davydychev (5792_CR50) 1991; B 263
References_xml – reference: SmirnovAVSmirnovVAFIRE4, LiteRed and accompanying tools to solve integration by parts relationsComput. Phys. Commun.201318428202013CoPhC.184.2820S10.1016/j.cpc.2013.06.0161344.81031[arXiv:1302.5885] [INSPIRE]
– reference: D.A. Cox, J. Little and D. O’Shea, Ideals, varieties, and algorithms: an introduction to computational algebraic geometry and commutative algebra, Undergrad. Texts Math., Springer-Verlag, Secaucus NJ U.S.A., (2007).
– reference: ArgeriMMagnus and Dyson series for master integralsJHEP2014030822014JHEP...03..082A319096410.1007/JHEP03(2014)0821333.81379[arXiv:1401.2979] [INSPIRE]
– reference: AdamsLBognerCWeinzierlSThe two-loop sunrise integral around four space-time dimensions and generalisations of the Clausen and Glaisher functions towards the elliptic caseJ. Math. Phys.2015560723032015JMP....56g2303A340595610.1063/1.49269851320.81059[arXiv:1504.03255] [INSPIRE]
– reference: T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys.B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].
– reference: BuchbergerBEin algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems (in German)Aequat. Math.1970437410.1007/BF018441690212.06401
– reference: S. Laporta and E. Remiddi, Analytic treatment of the two loop equal mass sunrise graph, Nucl. Phys.B 704 (2005) 349 [hep-ph/0406160] [INSPIRE].
– reference: TarasovOVConnection between Feynman integrals having different values of the space-time dimensionPhys. Rev.1996D 5464791996PhRvD..54.6479T14235860925.81121[hep-th/9606018] [INSPIRE]
– reference: SmirnovAVPetukhovAVThe number of master integrals is finiteLett. Math. Phys.201197372011LMaPh..97...37S280231510.1007/s11005-010-0450-01216.81076[arXiv:1004.4199] [INSPIRE]
– reference: HuberTKränklSTwo-loop master integrals for non-leptonic heavy-to-heavy decaysJHEP2015041402015JHEP...04..140H10.1007/JHEP04(2015)140[arXiv:1503.00735] [INSPIRE]
– reference: BoncianiRDel DucaVFrellesvigHHennJMMorielloFSmirnovVATwo-loop planar master integrals for Higgs → 3 partons with full heavy-quark mass dependenceJHEP2016120962016JHEP...12..096B10.1007/JHEP12(2016)096[arXiv:1609.06685] [INSPIRE]
– reference: LeeRNSmirnovVAEvaluating the last missing ingredient for the three-loop quark static potential by differential equationsJHEP2016100892016JHEP...10..089L[arXiv:1608.02605] [INSPIRE]
– reference: GehrmannTGunsSKaraDThe rare decay H → Zγ in perturbative QCDJHEP20150903810.1007/JHEP09(2015)038[arXiv:1505.00561] [INSPIRE]
– reference: GituliarOMaster integrals for splitting functions from differential equations in QCDJHEP2016020172016JHEP...02..017G10.1007/JHEP02(2016)017[arXiv:1512.02045] [INSPIRE]
– reference: C. Anastasiou, E.W.N. Glover and C. Oleari, The two-loop scalar and tensor pentabox graph with light-like legs, Nucl. Phys.B 575 (2000) 416 [Erratum ibid.B 585 (2000) 763] [hep-ph/9912251] [INSPIRE].
– reference: RemiddiEDifferential equations for Feynman graph amplitudesNuovo Cim.1997A 11014351997NCimA.110.1435R[hep-th/9711188] [INSPIRE]
– reference: A. von Manteuffel and C. Studerus, Reduze 2 — distributed Feynman integral reduction, arXiv:1201.4330 [INSPIRE].
– reference: GrazziniMKallweitSRathlevDWiesemannMW ±Z production at hadron colliders in NNLO QCDPhys. Lett.2016B 7611792016PhLB..761..179G10.1016/j.physletb.2016.08.017[arXiv:1604.08576] [INSPIRE]
– reference: E.K. Leinartas, Factorization of rational functions of several variables into partial fractions, Izv. Vyssh. Uchebn. Zaved. Mat.22 (1978) 47 [Soviet Math. 22 (1978) 35].
– reference: GluzaJKajdaKKosowerDATowards a basis for planar two-loop integralsPhys. Rev.2011D 830450122011PhRvD..83d5012G[arXiv:1009.0472] [INSPIRE]
– reference: G. Ossola, Automated higher-order calculations: status and prospects, PoS (DIS2015) 150 [arXiv:1508.01894] [INSPIRE].
– reference: L. Adams, C. Bogner, A. Schweitzer and S. Weinzierl, The kite integral to all orders in terms of elliptic polylogarithms, arXiv:1607.01571 [INSPIRE].
– reference: GehrmannTTancrediLWeihsETwo-loop master integrals for qq¯→VV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ q\overline{q}\to V\ V $$\end{document} : the planar topologiesJHEP2013080702013JHEP...08..070G10.1007/JHEP08(2013)070[arXiv:1306.6344] [INSPIRE]
– reference: LeeRNMingulovKTTotal Born cross section of e+e−-pair production in relativistic ion collisions from differential equationsPhys. Lett.2016B 7572072016PhLB..757..207L10.1016/j.physletb.2016.03.083[arXiv:1602.02463] [INSPIRE]
– reference: TkachovFVA theorem on analytical calculability of four loop renormalization group functionsPhys. Lett.1981B 100651981PhLB..100...65T60764010.1016/0370-2693(81)90288-4[INSPIRE]
– reference: AssadsolimaniMKantPTauskBUwerPCalculation of two-loop QCD corrections for hadronic single top-quark production in the t channelPhys. Rev.2014D 901140242014PhRvD..90k4024A[arXiv:1409.3654] [INSPIRE]
– reference: RemiddiETancrediLDifferential equations and dispersion relations for Feynman amplitudes. The two-loop massive sunrise and the kite integralNucl. Phys.2016B 9074002016NuPhB.907..400R349843710.1016/j.nuclphysb.2016.04.0131336.81038[arXiv:1602.01481] [INSPIRE]
– reference: PapadopoulosCGTommasiniDWeverCTwo-loop master integrals with the simplified differential equations approachJHEP2015010722015JHEP...01..072P10.1007/JHEP01(2015)072[arXiv:1409.6114] [INSPIRE]
– reference: PassarinoGVeltmanMJGOne loop corrections for e+e− annihilation into μ+μ− in the Weinberg modelNucl. Phys.1979B 1601511979NuPhB.160..151P10.1016/0550-3213(79)90234-7[INSPIRE]
– reference: LarsenKJZhangYIntegration-by-parts reductions from unitarity cuts and algebraic geometryPhys. Rev.2016D 930417012016PhRvD..93d1701L3499242[arXiv:1511.01071] [INSPIRE]
– reference: Di VitaSMastroliaPSchubertUYundinVThree-loop master integrals for ladder-box diagrams with one massive legJHEP2014091482014JHEP...09..148D10.1007/JHEP09(2014)148[arXiv:1408.3107] [INSPIRE]
– reference: GehrmannTvon ManteuffelATancrediLWeihsEThe two-loop master integrals for qq¯→VV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ q\overline{q}\to V\ V $$\end{document}JHEP2014060322014JHEP...06..032G10.1007/JHEP06(2014)032[arXiv:1404.4853] [INSPIRE]
– reference: B. Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal (in German), Ph.D. thesis, University of Innsbruck, Innsbruck Austria, (1965).
– reference: E.W.N. Glover, Two loop QCD helicity amplitudes for massless quark quark scattering, JHEP04 (2004) 021 [hep-ph/0401119] [INSPIRE].
– reference: ChetyrkinKGTkachovFVIntegration by parts: the algorithm to calculate β-functions in 4 loopsNucl. Phys.1981B 1921591981NuPhB.192..159C10.1016/0550-3213(81)90199-1[INSPIRE]
– reference: ChenK-TIterated path integralsBull. Amer. Math. Soc.19778383145496810.1090/S0002-9904-1977-14320-60389.58001[INSPIRE]
– reference: von ManteuffelASchabingerRMZhuHXThe two-loop soft function for heavy quark pair production at future linear collidersPhys. Rev.2015D 920450342015PhRvD..92d5034V[arXiv:1408.5134] [INSPIRE]
– reference: GrozinAHennJMKorchemskyGPMarquardPThree loop cusp anomalous dimension in QCDPhys. Rev. Lett.20151140620062015PhRvL.114f2006G10.1103/PhysRevLett.114.062006[arXiv:1409.0023] [INSPIRE]
– reference: AnzaiCExact N3LO results for qq′ → H + XJHEP2015071402015JHEP...07..140A10.1007/JHEP07(2015)140[arXiv:1506.02674] [INSPIRE]
– reference: StuderusCReduze-Feynman integral reduction in C++Comput. Phys. Commun.201018112932010CoPhC.181.1293S264497110.1016/j.cpc.2010.03.0121219.81133[arXiv:0912.2546] [INSPIRE]
– reference: BoncianiRDel DucaVFrellesvigHHennJMMorielloFSmirnovVANext-to-leading order QCD corrections to the decay width H → ZγJHEP2015081082015JHEP...08..108B10.1007/JHEP08(2015)108[arXiv:1505.00567] [INSPIRE]
– reference: EdenBSmirnovVAEvaluating four-loop conformal Feynman integrals by D-dimensional differential equationsJHEP2016101152016JHEP...10..115E357854010.1007/JHEP10(2016)115[arXiv:1607.06427] [INSPIRE]
– reference: HöscheleMHoffJUedaTAdequate bases of phase space master integrals for gg → h at NNLO and beyondJHEP2014091162014JHEP...09..116H10.1007/JHEP09(2014)116[arXiv:1407.4049] [INSPIRE]
– reference: KantPFinding linear dependencies in integration-by-parts equations: a Monte Carlo approachComput. Phys. Commun.201418514732014CoPhC.185.1473K10.1016/j.cpc.2014.01.0171344.81020[arXiv:1309.7287] [INSPIRE]
– reference: LiYvon ManteuffelASchabingerRMZhuHXN3LO Higgs boson and Drell-Yan production at threshold: the one-loop two-emission contributionPhys. Rev.2014D 900530062014PhRvD..90e3006L[arXiv:1404.5839] [INSPIRE]
– reference: SmirnovAVFIRE5: a C++ implementation of Feynman Integral REductionComput. Phys. Commun.20151891822015CoPhC.189..182S10.1016/j.cpc.2014.11.0241344.81030[arXiv:1408.2372] [INSPIRE]
– reference: AnastasiouCDuhrCDulatFHerzogFMistlbergerBHiggs boson gluon-fusion production in QCD at three loopsPhys. Rev. Lett.20151142120012015PhRvL.114u2001A10.1103/PhysRevLett.114.212001[arXiv:1503.06056] [INSPIRE]
– reference: KotikovAVDifferential equations method: new technique for massive Feynman diagrams calculationPhys. Lett.1991B 2541581991PhLB..254..158K109291110.1016/0370-2693(91)90413-K[INSPIRE]
– reference: BrucherseiferMCaolaFMelnikovKOn the NNLO QCD corrections to single-top production at the LHCPhys. Lett.2014B 736582014PhLB..736...58B10.1016/j.physletb.2014.06.075[arXiv:1404.7116] [INSPIRE]
– reference: HennJMMultiloop integrals in dimensional regularization made simplePhys. Rev. Lett.20131102516012013PhRvL.110y1601H10.1103/PhysRevLett.110.251601[arXiv:1304.1806] [INSPIRE]
– reference: BonettiMMelnikovKTancrediLTwo-loop electroweak corrections to Higgs-gluon couplings to higher orders in the dimensional regularization parameterNucl. Phys.2017B 9167092017NuPhB.916..709B10.1016/j.nuclphysb.2017.01.0201356.81224[arXiv:1610.05497] [INSPIRE]
– reference: LeeRNReducing differential equations for multiloop master integralsJHEP2015041082015JHEP...04..108L335126110.1007/JHEP04(2015)108[arXiv:1411.0911] [INSPIRE]
– reference: DavydychevAIA simple formula for reducing Feynman diagrams to scalar integralsPhys. Lett.1991B 2631071991PhLB..263..107D111651910.1016/0370-2693(91)91715-8[INSPIRE]
– reference: BlochSVanhovePThe elliptic dilogarithm for the sunset graphJ. Number Theor.2015148328328318310.1016/j.jnt.2014.09.0321319.81044[arXiv:1309.5865] [INSPIRE]
– reference: Caron-HuotSHennJMIterative structure of finite loop integralsJHEP2014061142014JHEP...06..114C323431210.1007/JHEP06(2014)1141333.81217[arXiv:1404.2922] [INSPIRE]
– reference: O.V. Tarasov, Generalized recurrence relations for two loop propagator integrals with arbitrary masses, Nucl. Phys.B 502 (1997) 455 [hep-ph/9703319] [INSPIRE].
– reference: R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
– reference: J.A.M. Vermaseren, Axodraw, Comput. Phys. Commun.83 (1994) 45 [INSPIRE].
– reference: CaolaFHennJMMelnikovKSmirnovVANon-planar master integrals for the production of two off-shell vector bosons in collisions of massless partonsJHEP2014090432014JHEP...09..043C10.1007/JHEP09(2014)043[arXiv:1404.5590] [INSPIRE]
– reference: HennJMSmirnovAVSmirnovVASteinhauserMA planar four-loop form factor and cusp anomalous dimension in QCDJHEP2016050662016JHEP...05..066H352178510.1007/JHEP05(2016)066[arXiv:1604.03126] [INSPIRE]
– reference: GrozinAHennJMKorchemskyGPMarquardPThe three-loop cusp anomalous dimension in QCD and its supersymmetric extensionsJHEP2016011402016JHEP...01..140G347144010.1007/JHEP01(2016)140[arXiv:1510.07803] [INSPIRE]
– reference: O. Gituliar and V. Magerya, Fuchsia and master integrals for splitting functions from differential equations in QCD, PoS (LL2016) 030 [arXiv:1607.00759] [INSPIRE].
– reference: HennJMLectures on differential equations for Feynman integralsJ. Phys.2015A 481530012015JPhA...48o3001H33357061312.81078[arXiv:1412.2296] [INSPIRE]
– reference: S. Bloch, M. Kerr and P. Vanhove, Local mirror symmetry and the sunset Feynman integral, arXiv:1601.08181 [INSPIRE].
– reference: ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett.B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
– reference: CaffoMCzyzHLaportaSRemiddiEThe master differential equations for the two loop sunrise selfmass amplitudesNuovo Cim.1998A 1113651998NCimA.111..365C[hep-th/9805118] [INSPIRE]
– reference: S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys.A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].
– reference: BlochSKerrMVanhovePA Feynman integral via higher normal functionsCompos. Math.20151512329343388910.1112/S0010437X150074721365.81090[arXiv:1406.2664] [INSPIRE]
– reference: BoncianiRDi VitaSMastroliaPSchubertUTwo-loop master integrals for the mixed EW-QCD virtual corrections to Drell-Yan scatteringJHEP2016090912016JHEP...09..091B10.1007/JHEP09(2016)091[arXiv:1604.08581] [INSPIRE]
– reference: LeeRNPomeranskyAACritical points and number of master integralsJHEP2013111652013JHEP...11..165L313217210.1007/JHEP11(2013)1651342.81139[arXiv:1308.6676] [INSPIRE]
– reference: C. Meyer, Algorithmic transformation of multi-loop master integrals to a canonical basis with CANONICA, in preparation.
– reference: AdamsLBognerCWeinzierlSThe two-loop sunrise graph in two space-time dimensions with arbitrary masses in terms of elliptic dilogarithmsJ. Math. Phys.2014551023012014JMP....55j2301A339045910.1063/1.48965631298.81204[arXiv:1405.5640] [INSPIRE]
– reference: CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett.B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
– reference: HennJMSmirnovVAAnalytic results for two-loop master integrals for Bhabha scattering IJHEP2013110412013JHEP...11..041H10.1007/JHEP11(2013)041[arXiv:1307.4083] [INSPIRE]
– reference: GehrmannTvon ManteuffelATancrediLThe two-loop helicity amplitudes for qq¯′→V1V2→4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ q\ {\overline{q}}^{\prime}\to {V}_1{V}_2\to\ 4 $$\end{document} leptonsJHEP2015091282015JHEP...09..128G10.1007/JHEP09(2015)128[arXiv:1503.04812] [INSPIRE]
– reference: CascioliFZZ production at hadron colliders in NNLO QCDPhys. Lett.2014B 7353112014PhLB..735..311C10.1016/j.physletb.2014.06.056[arXiv:1405.2219] [INSPIRE]
– reference: GoncharovABMultiple polylogarithms, cyclotomy and modular complexesMath. Res. Lett.19985497165332010.4310/MRL.1998.v5.n4.a70961.11040[arXiv:1105.2076] [INSPIRE]
– reference: SchabingerRMA new algorithm for the generation of unitarity-compatible integration by parts relationsJHEP2012010772012JHEP...01..077S294929910.1007/JHEP01(2012)0771306.81359[arXiv:1111.4220] [INSPIRE]
– reference: C. Anastasiou and A. Lazopoulos, Automatic integral reduction for higher order perturbative calculations, JHEP07 (2004) 046 [hep-ph/0404258] [INSPIRE].
– reference: T. Gehrmann, J.M. Henn and N.A. Lo Presti, Analytic form of the two-loop planar five-gluon all-plus-helicity amplitude in QCD, Phys. Rev. Lett.116 (2016) 062001 [Erratum ibid.116 (2016) 189903] [arXiv:1511.05409] [INSPIRE].
– reference: GehrmannTW +W − production at hadron colliders in next to next to leading order QCDPhys. Rev. Lett.20141132120012014PhRvL.113u2001G10.1103/PhysRevLett.113.212001[arXiv:1408.5243] [INSPIRE]
– reference: BinosiDCollinsJKaufholdCTheusslLJaxoDraw: a graphical user interface for drawing Feynman diagrams. Version 2.0 release notesComput. Phys. Commun.200918017092009CoPhC.180.1709B10.1016/j.cpc.2009.02.020[arXiv:0811.4113] [INSPIRE]
– reference: A. Raichev, Leinartas’s partial fraction decomposition, arXiv:1206.4740.
– reference: von ManteuffelASchabingerRMA novel approach to integration by parts reductionPhys. Lett.2015B 7441012015PhLB..744..101V334186810.1016/j.physletb.2015.03.0291330.81151[arXiv:1406.4513] [INSPIRE]
– reference: HennJMSmirnovAVSmirnovVAEvaluating single-scale and/or non-planar diagrams by differential equationsJHEP2014030882014JHEP...03..088H10.1007/JHEP03(2014)088[arXiv:1312.2588] [INSPIRE]
– reference: HennJMMelnikovKSmirnovVATwo-loop planar master integrals for the production of off-shell vector bosons in hadron collisionsJHEP2014050902014JHEP...05..090H10.1007/JHEP05(2014)090[arXiv:1402.7078] [INSPIRE]
– reference: BellGHuberTMaster integrals for the two-loop penguin contribution in non-leptonic B-decaysJHEP2014121292014JHEP...12..129B10.1007/JHEP12(2014)129[arXiv:1410.2804] [INSPIRE]
– reference: HennJMSmirnovAVSmirnovVAAnalytic results for planar three-loop four-point integrals from a Knizhnik-Zamolodchikov equationJHEP2013071282013JHEP...07..128H310617110.1007/JHEP07(2013)1281342.81352[arXiv:1306.2799] [INSPIRE]
– ident: 5792_CR53
  doi: 10.1016/S0550-3213(00)00079-1
– volume: 01
  start-page: 077
  year: 2012
  ident: 5792_CR58
  publication-title: JHEP
  doi: 10.1007/JHEP01(2012)077
– volume: 07
  start-page: 140
  year: 2015
  ident: 5792_CR27
  publication-title: JHEP
  doi: 10.1007/JHEP07(2015)140
– ident: 5792_CR3
  doi: 10.22323/1.247.0150
– ident: 5792_CR73
– volume: 185
  start-page: 1473
  year: 2014
  ident: 5792_CR59
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2014.01.017
– volume: 148
  start-page: 328
  year: 2015
  ident: 5792_CR78
  publication-title: J. Number Theor.
  doi: 10.1016/j.jnt.2014.09.032
– volume: D 54
  start-page: 6479
  year: 1996
  ident: 5792_CR51
  publication-title: Phys. Rev.
– ident: 5792_CR88
  doi: 10.1016/0010-4655(94)90034-5
– volume: B 263
  start-page: 107
  year: 1991
  ident: 5792_CR50
  publication-title: Phys. Lett.
  doi: 10.1016/0370-2693(91)91715-8
– volume: 01
  start-page: 140
  year: 2016
  ident: 5792_CR28
  publication-title: JHEP
  doi: 10.1007/JHEP01(2016)140
– volume: 180
  start-page: 1709
  year: 2009
  ident: 5792_CR87
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2009.02.020
– ident: 5792_CR54
  doi: 10.1088/1126-6708/2004/04/021
– volume: 02
  start-page: 017
  year: 2016
  ident: 5792_CR30
  publication-title: JHEP
  doi: 10.1007/JHEP02(2016)017
– ident: 5792_CR64
– ident: 5792_CR29
  doi: 10.1103/PhysRevLett.116.062001
– volume: 56
  start-page: 072303
  year: 2015
  ident: 5792_CR81
  publication-title: J. Math. Phys.
  doi: 10.1063/1.4926985
– volume: 114
  start-page: 212001
  year: 2015
  ident: 5792_CR4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.212001
– volume: B 916
  start-page: 709
  year: 2017
  ident: 5792_CR37
  publication-title: Nucl. Phys.
  doi: 10.1016/j.nuclphysb.2017.01.020
– volume: 03
  start-page: 082
  year: 2014
  ident: 5792_CR12
  publication-title: JHEP
  doi: 10.1007/JHEP03(2014)082
– ident: 5792_CR41
– volume: A 48
  start-page: 153001
  year: 2015
  ident: 5792_CR39
  publication-title: J. Phys.
– volume: B 735
  start-page: 311
  year: 2014
  ident: 5792_CR46
  publication-title: Phys. Lett.
  doi: 10.1016/j.physletb.2014.06.056
– volume: A 111
  start-page: 365
  year: 1998
  ident: 5792_CR76
  publication-title: Nuovo Cim.
– volume: B 254
  start-page: 158
  year: 1991
  ident: 5792_CR5
  publication-title: Phys. Lett.
  doi: 10.1016/0370-2693(91)90413-K
– volume: 09
  start-page: 038
  year: 2015
  ident: 5792_CR25
  publication-title: JHEP
  doi: 10.1007/JHEP09(2015)038
– volume: B 100
  start-page: 65
  year: 1981
  ident: 5792_CR55
  publication-title: Phys. Lett.
  doi: 10.1016/0370-2693(81)90288-4
– volume: D 83
  start-page: 045012
  year: 2011
  ident: 5792_CR57
  publication-title: Phys. Rev.
– ident: 5792_CR52
  doi: 10.1016/S0550-3213(97)00376-3
– volume: 181
  start-page: 1293
  year: 2010
  ident: 5792_CR66
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2010.03.012
– volume: 09
  start-page: 091
  year: 2016
  ident: 5792_CR33
  publication-title: JHEP
  doi: 10.1007/JHEP09(2016)091
– volume: B 757
  start-page: 207
  year: 2016
  ident: 5792_CR31
  publication-title: Phys. Lett.
– volume: 83
  start-page: 831
  year: 1977
  ident: 5792_CR71
  publication-title: Bull. Amer. Math. Soc.
  doi: 10.1090/S0002-9904-1977-14320-6
– volume: 151
  start-page: 2329
  year: 2015
  ident: 5792_CR80
  publication-title: Compos. Math.
  doi: 10.1112/S0010437X15007472
– ident: 5792_CR1
  doi: 10.1016/j.physletb.2012.08.020
– ident: 5792_CR2
  doi: 10.1016/j.physletb.2012.08.021
– volume: 5
  start-page: 497
  year: 1998
  ident: 5792_CR72
  publication-title: Math. Res. Lett.
  doi: 10.4310/MRL.1998.v5.n4.a7
– volume: 97
  start-page: 37
  year: 2011
  ident: 5792_CR62
  publication-title: Lett. Math. Phys.
  doi: 10.1007/s11005-010-0450-0
– volume: D 90
  start-page: 114024
  year: 2014
  ident: 5792_CR45
  publication-title: Phys. Rev.
– ident: 5792_CR65
– volume: 189
  start-page: 182
  year: 2015
  ident: 5792_CR69
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2014.11.024
– ident: 5792_CR77
  doi: 10.1016/j.nuclphysb.2004.10.044
– volume: 12
  start-page: 129
  year: 2014
  ident: 5792_CR22
  publication-title: JHEP
  doi: 10.1007/JHEP12(2014)129
– volume: 04
  start-page: 108
  year: 2015
  ident: 5792_CR38
  publication-title: JHEP
– ident: 5792_CR82
– volume: 09
  start-page: 128
  year: 2015
  ident: 5792_CR24
  publication-title: JHEP
  doi: 10.1007/JHEP09(2015)128
– volume: D 92
  start-page: 045034
  year: 2015
  ident: 5792_CR20
  publication-title: Phys. Rev.
– volume: 07
  start-page: 128
  year: 2013
  ident: 5792_CR9
  publication-title: JHEP
  doi: 10.1007/JHEP07(2013)128
– volume: 09
  start-page: 148
  year: 2014
  ident: 5792_CR19
  publication-title: JHEP
  doi: 10.1007/JHEP09(2014)148
– volume: B 761
  start-page: 179
  year: 2016
  ident: 5792_CR48
  publication-title: Phys. Lett.
  doi: 10.1016/j.physletb.2016.08.017
– volume: 113
  start-page: 212001
  year: 2014
  ident: 5792_CR47
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.212001
– volume: 114
  start-page: 062006
  year: 2015
  ident: 5792_CR21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.062006
– volume: 4
  start-page: 374
  year: 1970
  ident: 5792_CR75
  publication-title: Aequat. Math.
  doi: 10.1007/BF01844169
– volume: 04
  start-page: 140
  year: 2015
  ident: 5792_CR23
  publication-title: JHEP
  doi: 10.1007/JHEP04(2015)140
– volume: B 160
  start-page: 151
  year: 1979
  ident: 5792_CR49
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(79)90234-7
– ident: 5792_CR40
  doi: 10.22323/1.260.0030
– volume: B 736
  start-page: 58
  year: 2014
  ident: 5792_CR44
  publication-title: Phys. Lett.
  doi: 10.1016/j.physletb.2014.06.075
– volume: 184
  start-page: 2820
  year: 2013
  ident: 5792_CR68
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2013.06.016
– volume: 08
  start-page: 070
  year: 2013
  ident: 5792_CR85
  publication-title: JHEP
  doi: 10.1007/JHEP08(2013)070
– volume: D 90
  start-page: 053006
  year: 2014
  ident: 5792_CR17
  publication-title: Phys. Rev.
– ident: 5792_CR43
– volume: 06
  start-page: 032
  year: 2014
  ident: 5792_CR15
  publication-title: JHEP
  doi: 10.1007/JHEP06(2014)032
– volume: 11
  start-page: 165
  year: 2013
  ident: 5792_CR63
  publication-title: JHEP
– volume: B 744
  start-page: 101
  year: 2015
  ident: 5792_CR60
  publication-title: Phys. Lett.
  doi: 10.1016/j.physletb.2015.03.029
– ident: 5792_CR74
– volume: 55
  start-page: 102301
  year: 2014
  ident: 5792_CR79
  publication-title: J. Math. Phys.
  doi: 10.1063/1.4896563
– volume: 09
  start-page: 043
  year: 2014
  ident: 5792_CR16
  publication-title: JHEP
  doi: 10.1007/JHEP09(2014)043
– volume: B 907
  start-page: 400
  year: 2016
  ident: 5792_CR83
  publication-title: Nucl. Phys.
  doi: 10.1016/j.nuclphysb.2016.04.013
– volume: A 110
  start-page: 1435
  year: 1997
  ident: 5792_CR6
  publication-title: Nuovo Cim.
  doi: 10.1007/BF03185566
– volume: D 93
  start-page: 041701
  year: 2016
  ident: 5792_CR61
  publication-title: Phys. Rev.
– volume: 10
  start-page: 089
  year: 2016
  ident: 5792_CR35
  publication-title: JHEP
– ident: 5792_CR7
  doi: 10.1016/S0550-3213(00)00223-6
– volume: 09
  start-page: 116
  year: 2014
  ident: 5792_CR18
  publication-title: JHEP
  doi: 10.1007/JHEP09(2014)116
– ident: 5792_CR70
– volume: 05
  start-page: 066
  year: 2016
  ident: 5792_CR32
  publication-title: JHEP
  doi: 10.1007/JHEP05(2016)066
– volume: 05
  start-page: 090
  year: 2014
  ident: 5792_CR13
  publication-title: JHEP
  doi: 10.1007/JHEP05(2014)090
– volume: 11
  start-page: 041
  year: 2013
  ident: 5792_CR10
  publication-title: JHEP
  doi: 10.1007/JHEP11(2013)041
– volume: 110
  start-page: 251601
  year: 2013
  ident: 5792_CR8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.251601
– volume: 03
  start-page: 088
  year: 2014
  ident: 5792_CR11
  publication-title: JHEP
  doi: 10.1007/JHEP03(2014)088
– volume: 10
  start-page: 115
  year: 2016
  ident: 5792_CR34
  publication-title: JHEP
  doi: 10.1007/JHEP10(2016)115
– ident: 5792_CR84
– volume: 12
  start-page: 096
  year: 2016
  ident: 5792_CR36
  publication-title: JHEP
  doi: 10.1007/JHEP12(2016)096
– ident: 5792_CR67
– volume: 08
  start-page: 108
  year: 2015
  ident: 5792_CR26
  publication-title: JHEP
  doi: 10.1007/JHEP08(2015)108
– volume: 06
  start-page: 114
  year: 2014
  ident: 5792_CR14
  publication-title: JHEP
  doi: 10.1007/JHEP06(2014)114
– volume: 01
  start-page: 072
  year: 2015
  ident: 5792_CR86
  publication-title: JHEP
  doi: 10.1007/JHEP01(2015)072
– ident: 5792_CR42
– volume: B 192
  start-page: 159
  year: 1981
  ident: 5792_CR56
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(81)90199-1
SSID ssj0015190
Score 2.5605366
Snippet A bstract The method of differential equations has been proven to be a powerful tool for the computation of multi-loop Feynman integrals appearing in quantum...
The method of differential equations has been proven to be a powerful tool for the computation of multi-loop Feynman integrals appearing in quantum field...
Abstract The method of differential equations has been proven to be a powerful tool for the computation of multi-loop Feynman integrals appearing in quantum...
SourceID doaj
unpaywall
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Canonical forms
Classical and Quantum Gravitation
Differential equations
Elementary Particles
Field theory
High energy physics
Integrals
Mathematical analysis
Mathematical models
Physics
Physics and Astronomy
QCD Phenomenology
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Quantum theory
Regular Article - Theoretical Physics
Regulators
Relativity Theory
String Theory
Transformations
Transformations (mathematics)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhENIeSpKm1G1SVOghe3Cj1cOSj23IsgQaekhobkaWRpTi2tvuLiX_viO_cCihl9yMLY-l0YzmExp_Q8gHxZnwIeg0Gkgq8zBPzVyLVDmOaNsKayD-O_zlOlveyqs7dTcp9RVzwjp64E5x54Ax03vOg80BRVmbyxJXUOdViZsb7ePqy0w-bKb68wPEJWwg8mH6_Gp5-ZXJMwx2esZicaNJDGqp-h_gy_FI9DnZ39Yre__HVtUk6iwOyIseLtJPXTcPyQ7UR2SvTdt065fk282AO1ESHYqdoNNWFH51JN5r2gTapg2mVdOs6ALu65-2pj1PRLWOVw1FDTftL5I0Sjsmt4vLm4tl2pdKSJ1UbJMGLb2VLgjDjDcIgXwZMPTaANo5rZxnykdiHq2FVBKkCNJkJRfB4mQBF-IV2cXPwGtCAYA7pXwejJUl-rfMMzCWC28RzTGRkI-D8grX84jHchZVMTAgd9ouorYL1HZCzsYXVh2FxuNNP8fZGJtF7uv2BlpE0VtE8T-LSMjJMJdF75DrYm4QauKCk80T8n58jK4Uz0dsDc0W2-TxHDjjTCVkNtjARMRjfZ6NRvLP-H58h9Wk7ZunGN9b8izK69KHTsju5vcWThEZbcp3rRP8BXcwCVM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_qFVEfxE-MVongQ-8hdm8_ssmDiJU7joJHkRb7Fjb7UZGYpL07pP-9s0k2nkh9C8lks5md2fkls_sbgHeCEmack4k3kITnbpZkM8kSoSmibcVUZv3e4S-rdHnOTy7ExR6swl4Yv6wyzIndRG0a7f-RH80yxApoMensY3uV-KpRPrsaSmioobSC-dBRjN2BfeqZsSawfzxfnX4d8wqIV0gg-CHy6GQ5PyX8EIOgnBJf9GgnNnUU_n_hzjFV-gDubetW3fxSVbUTjRaP4OEAI-NP_bg_hj1bP4G73XJOvX4K384CHsWW4lAEBZ25iu1VT-69jhsXd8sJk6pp2nhhb-qfqo4H_ohq7Y-aGDXfdFsnY9_aMzhfzM8-L5OhhEKiuSCbxEluFNeOZSQzGUIjUzoMycpZqbUU2hBhPGGPlIwLbjlzPEtLypzCQbSUsecwwcfYFxBba6kWwuQuU7xEv-d5ajNFmVGI8giL4H1QXqEHfnFf5qIqAjNyr-3Ca7tAbUdwON7Q9tQat4se-9EYxTwndneiub4sBhcrLKIrYyh1KrdodErlvMRYq40o8TNYmggOwlgWg6Ouiz9mFcHb8TK6mM-bqNo2W5TJfX44pUREMA02sNPEbX2ejkbyz_v9-G7bHdmX_-_aK7jvJfsFQwcw2Vxv7WvEQpvyzWDgvwGeygZg
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6hIgQcUHmJQEFG4tA9BLJ-xM6xrbpaVQJxaEVvkWOPhVCaLOyuUP8947y0peqhtygZT5J5ZL5o7M8AnxTPhA9BpzFAUlmEeWrmWqTKcULbVliDce3w12_58kKeXarLgSQproX5r3__5Wx5-j2Th1Sm9Kyj1n5IFSrvurL5ydQuIBiSjbw9twfdKDkdM_8NODl1QJ_C422zstd_bV3vFJnFPjwb0CE76t35HB5g8wIedbM03fol_DgfYSZpYuPeJpSjNcPfPWf3mrWBdbME07ptV2yB182VbdhAC1Gv41HLyKBttyKSRW2v4GJxen6yTIedEVInVbZJg5beSheEyYw3hHh8FajS2oDaOa2cz5SPPDxaC6kkShGkySsugiXfIBfiNezRbfANMETkTilfBGNlReksixyN5cJbAm-ZSODzaLzSDbThcfeKuhwJj3trl9HaJVk7gcNpwKpnzLhb9Dh6YxKLVNfdCYqAcsicEgk0ec95sAVSLFlbyIpKqPOqor9b7RM4GH1ZDvm3LueGkCV9X_J5Ah-ny5Q5sR1iG2y3JFPEtm_OM5XAbIyBHRV3PfNsCpJb7_frJ652ZN_eQ-87eBIP-0lBB7C3-bPF94R3NtWHLtb_Aa7I91A
  priority: 102
  providerName: Springer Nature
Title Transforming differential equations of multi-loop Feynman integrals into canonical form
URI https://link.springer.com/article/10.1007/JHEP04(2017)006
https://www.proquest.com/docview/1883505361
https://www.proquest.com/docview/1904246205
https://link.springer.com/content/pdf/10.1007%2FJHEP04%282017%29006.pdf
https://doaj.org/article/e064dd22fa9e49faa94b990cd5b8257d
UnpaywallVersion publishedVersion
Volume 2017
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: AMVHM
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: 8FG
  dateStart: 20121201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: C6C
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: C24
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: U2A
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB61iRDlwBsRKJGRODQHp84-_Di2UdKoElGEGlFO1nofrcC1Q5MIlV_P7PqhAOoBictqE0_W3t3Z2c-Z2W8APnASUGVM5FsF8VliRn48iqjPJUG0LaiItT07_HEezpbs_JJf7sFZcxbGRbs3LsnqTINlaSo2xytldrz657PJImAIwojjCUqsUwEl9qEbcgTlHegu54uTL87XSRIfbXDi0qyQ0A8jl6cO65GPm2PYEP4E0fHXa70K2JFtcxDYJEg7e5Wj9P8Nh7au00fwcFusxN0Pkec7u9P0CVw3_aqCUr4Nt5tsKH_-Qfn4Hzr-FB7XCNY7qVTuGezp4jk8cJGkcv0CPl80UBjv4TX5V9CO5J7-XvGKr73SeC6S0c_LcuVN9V1xIwqvpq7I17ZWejjppTu16dnWXsJyOrkYz_w6e4MvGQ82vomYEkwaGgexihGVqcwgGhBGR1JGXKqAK8sVFEWUcaYZNSwOM0KNQP3RhNJX0MHb6Nfgaa2J5FwlJhYsQ5PDklDHglAlEGAGtAfDZp5SWVOb2wwbedqQMlejltoxS3HEenDU_mBVsXrcL3pqJ74Vs3Tc7ovy9iqtV3eqEdgpRYgRiUZ9FyJhGW7zUvEM38Aj1YPDRm3S2kas01GM6BdtYDjqwfv2Mq5u67IRhS63KJNY13RIAt6DQaMdO03c98yDVh__6l-l463sm3-QfQsHtloFLh1CZ3O71e8Qk22yPuzH07M-dE8n88Un_DQmzJbhuO_-5cBySbCsVuUv2OEwpw
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVqhwQDxFSgEjgdQ9hGYdO04OFaKwq-1rVaGt6C11_ABVIUmbXVX75_htjJM4LELl1luU2E48Hs98ztjfIPSOkSBUxnDfKohPEzP04yEPfSYJoG0Riljbs8Mn02hyRg_P2fka-uXOwthtlc4mNoZaldL-I98dxoAVQGOi4cfqyrdZo2x01aXQEF1qBbXXUIx1BzuO9PIGlnD13sEXGO_3hIxHs88Tv8sy4EvKgrlvOFWCShPGQaxiQA8qM-C1hNFcSs6kCpiynDach5RRTUND4ygjoRHQT03sD1FwARs0pAks_jb2R9PTr30cA_BR4AiFAr57OBmdBnQHnC4fBDbJ0oovbFIG_IVz-9DsA7S5KCqxvBF5vuL9xo_Qww624k-tnj1Ga7p4gu4120dl_RR9mzn8Cy1hl3QFjEeO9VVLJl7j0uBm-6Kfl2WFx3pZ_BQF7vgq8tpelRhGumyOamLb2jN0difCfI7W4TX6BcJaayIZU4mJBc3AztAk0rEgoRKAKoPQQx-c8FLZ8ZnbtBp56piYW2mnVtopSNtDO32FqqXyuL3ovh2Nvpjl4G5ulNff025KpxrQnFKEGJFoUHIhEpqBb5eKZbDs5spD224s084w1OkfNfbQ2_4xTGkbpxGFLhdQJrHx6IgEzEMDpwMrTdz2zYNeSf7p3-UPXa2U3fr_p71Bm5PZyXF6fDA9eonu21rtZqVttD6_XuhXgMPm2etO2TG6uOv59RsqSELQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIl4HxFMEChgJpO4hXa9jr5MDQkAbti1UPbSit-D40QqFJG12Ve1f49cxTuKwCJVbb1HiOMl4PPM5M_4GoTeckkhbK0KnICFL7CSMJyIKuaKAtmUkY-P2Dn89mM6O2d4JP1lDv_xeGJdW6W1ia6h1pdw_8vEkBqwAGjOdjG2fFnG4nb6vz0NXQcpFWn05jU5F9s3yEpZvzbvdbRjrt5SmO0efZmFfYSBUjJN5aAXTkikbxSTWMSAHnVvwWNIaoZTgShOuHZ-NEBHjzLDIsnia08hK-EZD3c9QMP83hGNxd7vU089DBAOQEfFUQkSM92Y7h4RtgrsVI-LKK614wbZYwF8IdwjK3kW3F2Utl5eyKFb8Xnof3esBK_7QadgDtGbKh-hmmziqmkfo25FHvtAT9uVWwGwU2Jx3NOINrixuExfDoqpqnJpl-VOWuGeqKBp3VGEY46rdpIldb4_R8bWI8glah8eYpwgbY6jiXCc2liwHC8OSqYkljbQEPEmiAG154WWqZzJ3BTWKzHMwd9LOnLQzkHaANocb6o7E4-qmH91oDM0c-3Z7oro4zfrJnBnAcVpTamViQL2lTFgOXl1pnsOCW-gAbfixzHqT0GR_FDhAr4fLMJldhEaWplpAm8RFoqeU8ACNvA6sdHHVO48GJfnn-36cmXql7bP_v9ordAtmVfZl92D_ObrjbuqylDbQ-vxiYV4AAJvnL1tNx-j7dU-t31AhQGo
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VrRBw4I0IFBQkDt2Dt1k_4uRYUJdVJaoeuqKcIsePVhCS0M0KlV_POC8toB6QuFnJxInt8cwXzfgbgLeCRsw4J4lXEMJTNyfJXDIiNEW0rZhKrD87_PEkXq748bk434EPw1mYNtt9CEl2Zxo8S1PZHNTGbUX1j5dHpxFHEEZbnqDUBxVQ4hbsxgJB-QR2Vyenh5_bWCdNCdrgtC2zQmMSy7ZOHbYlQecYD4Q_kTz4cmnriO_7PqeRL4K05ataSv_fcOgYOr0HdzZlra5_qKLY8k6LB3A5jKtLSvk62zT5TP_8g_LxPwz8IdzvEWx42KncI9ix5WO43WaS6vUT-HQ2QGF8RzjUX0E7UoT2e8crvg4rF7aZjKSoqjpc2OvymyrDnrqiWPtWFeKiV-2pzdD39hRWi6Oz90vSV28gmouoIU5yo7h2LIkSkyAqM7lDNKCclVpLoU0kjOcKkpJxwS1njidxTplTqD-WMvYMJvga-xxCay3VQpjUJYrnaHJ4GttEUWYUAsyIBTAb1inTPbW5r7BRZAMpczdrmZ-zDGcsgP3xgbpj9bhZ9J1f-FHM03G3F6qri6zf3ZlFYGcMpU6lFvVdqZTn6Oa1ETn-gUsTwN6gNllvI9bZPEH0izYwngfwZryNu9uHbFRpqw3KpD40HdNIBDAdtGOri5u-eTrq41_j63R8lH3xD7Iv4a5vdolLezBprjb2FWKyJn_d77dfIkoqog
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transforming+differential+equations+of+multi-loop+Feynman+integrals+into+canonical+form&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Meyer%2C+Christoph&rft.date=2017-04-01&rft.eissn=1029-8479&rft.volume=2017&rft.issue=4&rft.spage=1&rft.epage=43&rft_id=info:doi/10.1007%2FJHEP04%282017%29006&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon