RADIO DIAGNOSTICS OF ELECTRON ACCELERATION SITES DURING THE ERUPTION OF A FLUX ROPE IN THE SOLAR CORONA

ABSTRACT Electron acceleration in the solar corona is often associated with flares and the eruption of twisted magnetic structures known as flux ropes. However, the locations and mechanisms of such particle acceleration during the flare and eruption are still subject to much investigation. Observing...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 833; no. 1; pp. 87 - 102
Main Authors Carley, Eoin P., Vilmer, Nicole, Gallagher, Peter T.
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 10.12.2016
IOP Publishing
American Astronomical Society
Subjects
Online AccessGet full text
ISSN0004-637X
1538-4357
DOI10.3847/1538-4357/833/1/87

Cover

Abstract ABSTRACT Electron acceleration in the solar corona is often associated with flares and the eruption of twisted magnetic structures known as flux ropes. However, the locations and mechanisms of such particle acceleration during the flare and eruption are still subject to much investigation. Observing the exact sites of particle acceleration can help confirm how the flare and eruption are initiated and how they evolve. Here we use the Atmospheric Imaging Assembly to analyze a flare and erupting flux rope on 2014 April 18, while observations from the Nançay Radio Astronomy Facility allow us to diagnose the sites of electron acceleration during the eruption. Our analysis shows evidence of a pre-formed flux rope that slowly rises and becomes destabilized at the time of a C-class flare, plasma jet, and the escape of 75 keV electrons from the rope center into the corona. As the eruption proceeds, continued acceleration of electrons with energies of ∼5 keV occurs above the flux rope for a period over 5 minutes. At the flare peak, one site of electron acceleration is located close to the flare site, while another is driven by the erupting flux rope into the corona at speeds of up to 400 km s−1. Energetic electrons then fill the erupting volume, eventually allowing the flux rope legs to be clearly imaged from radio sources at 150-445 MHz. Following the analysis of Joshi et al. (2015), we conclude that the sites of energetic electrons are consistent with flux rope eruption via a tether cutting or flux cancellation scenario inside a magnetic fan-spine structure. In total, our radio observations allow us to better understand the evolution of a flux rope eruption and its associated electron acceleration sites, from eruption initiation to propagation into the corona.
AbstractList Electron acceleration in the solar corona is often associated with flares and the eruption of twisted magnetic structures known as flux ropes. However, the locations and mechanisms of such particle acceleration during the flare and eruption are still subject to much investigation. Observing the exact sites of particle acceleration can help confirm how the flare and eruption are initiated and how they evolve. Here we use the Atmospheric Imaging Assembly to analyze a flare and erupting flux rope on 2014 April 18, while observations from the Nançay Radio Astronomy Facility allow us to diagnose the sites of electron acceleration during the eruption. Our analysis shows evidence of a pre-formed flux rope that slowly rises and becomes destabilized at the time of a C-class flare, plasma jet, and the escape of ≳75 keV electrons from the rope center into the corona. As the eruption proceeds, continued acceleration of electrons with energies of ∼5 keV occurs above the flux rope for a period over 5 minutes. At the flare peak, one site of electron acceleration is located close to the flare site, while another is driven by the erupting flux rope into the corona at speeds of up to 400 km s −1 . Energetic electrons then fill the erupting volume, eventually allowing the flux rope legs to be clearly imaged from radio sources at 150–445 MHz. Following the analysis of Joshi et al. (2015), we conclude that the sites of energetic electrons are consistent with flux rope eruption via a tether cutting or flux cancellation scenario inside a magnetic fan-spine structure. In total, our radio observations allow us to better understand the evolution of a flux rope eruption and its associated electron acceleration sites, from eruption initiation to propagation into the corona.
Electron acceleration in the solar corona is often associated with flares and the eruption of twisted magnetic structures known as flux ropes. However, the locations and mechanisms of such particle acceleration during the flare and eruption are still subject to much investigation. Observing the exact sites of particle acceleration can help confirm how the flare and eruption are initiated and how they evolve. Here we use the Atmospheric Imaging Assembly to analyze a flare and erupting flux rope on 2014 April 18, while observations from the Nançay Radio Astronomy Facility allow us to diagnose the sites of electron acceleration during the eruption. Our analysis shows evidence of a pre-formed flux rope that slowly rises and becomes destabilized at the time of a C-class flare, plasma jet, and the escape of ≳75 keV electrons from the rope center into the corona. As the eruption proceeds, continued acceleration of electrons with energies of ∼5 keV occurs above the flux rope for a period over 5 minutes. At the flare peak, one site of electron acceleration is located close to the flare site, while another is driven by the erupting flux rope into the corona at speeds of up to 400 km s−1. Energetic electrons then fill the erupting volume, eventually allowing the flux rope legs to be clearly imaged from radio sources at 150–445 MHz. Following the analysis of Joshi et al. (2015), we conclude that the sites of energetic electrons are consistent with flux rope eruption via a tether cutting or flux cancellation scenario inside a magnetic fan-spine structure. In total, our radio observations allow us to better understand the evolution of a flux rope eruption and its associated electron acceleration sites, from eruption initiation to propagation into the corona.
Electron acceleration in the solar corona is often associated with flares and the eruption of twisted magnetic structures known as flux ropes. However, the locations and mechanisms of such particle acceleration during the flare and eruption are still subject to much investigation. Observing the exact sites of particle acceleration can help confirm how the flare and eruption are initiated and how they evolve. Here we use the Atmospheric Imaging Assembly to analyze a flare and erupting flux rope on 2014 April 18, while observations from the Nançay Radio Astronomy Facility allow us to diagnose the sites of electron acceleration during the eruption. Our analysis shows evidence of a pre-formed flux rope that slowly rises and becomes destabilized at the time of a C-class flare, plasma jet, and the escape of ≳75 keV electrons from the rope center into the corona. As the eruption proceeds, continued acceleration of electrons with energies of ∼5 keV occurs above the flux rope for a period over 5 minutes. At the flare peak, one site of electron acceleration is located close to the flare site, while another is driven by the erupting flux rope into the corona at speeds of up to 400 km s{sup −1}. Energetic electrons then fill the erupting volume, eventually allowing the flux rope legs to be clearly imaged from radio sources at 150–445 MHz. Following the analysis of Joshi et al. (2015), we conclude that the sites of energetic electrons are consistent with flux rope eruption via a tether cutting or flux cancellation scenario inside a magnetic fan-spine structure. In total, our radio observations allow us to better understand the evolution of a flux rope eruption and its associated electron acceleration sites, from eruption initiation to propagation into the corona.
Electron acceleration in the solar corona is often associated with flares and the eruption of twisted magnetic structures known as flux ropes. However, the locations and mechanisms of such particle acceleration during the flare and eruption are still subject to much investigation. Observing the exact sites of particle acceleration can help confirm how the flare and eruption are initiated and how they evolve. Here we use the Atmospheric Imaging Assembly to analyse a flare and erupting flux rope on 2014-April-18, while observations from the Nancay Radio Astronomy Facility allows us to diagnose the sites of electron acceleration during the eruption. Our analysis shows evidence for a pre-formed flux rope which slowly rises and becomes destabilised at the time of a C-class flare, plasma jet and the escape of >75 keV electrons from rope center into the corona. As the eruption proceeds, continued acceleration of electrons with energies of ~5 keV occurs above the flux rope for a period over 5 minutes. At flare peak, one site of electron acceleration is located close to the flare site while another is driven by the erupting flux rope into the corona at speeds of up to 400 km/s. Energetic electrons then fill the erupting volume, eventually allowing the flux rope legs to be clearly imaged from radio sources at 150-445MHz. Following the analysis of Joshi et al. (2015), we conclude that the sites of energetic electrons are consistent with flux rope eruption via a tether-cutting or flux cancellation scenario inside a magnetic fan-spine structure. In total, our radio observations allow us to better understand the evolution of a flux rope eruption and its associated electron acceleration sites, from eruption initiation to propagation into the corona.
ABSTRACT Electron acceleration in the solar corona is often associated with flares and the eruption of twisted magnetic structures known as flux ropes. However, the locations and mechanisms of such particle acceleration during the flare and eruption are still subject to much investigation. Observing the exact sites of particle acceleration can help confirm how the flare and eruption are initiated and how they evolve. Here we use the Atmospheric Imaging Assembly to analyze a flare and erupting flux rope on 2014 April 18, while observations from the Nançay Radio Astronomy Facility allow us to diagnose the sites of electron acceleration during the eruption. Our analysis shows evidence of a pre-formed flux rope that slowly rises and becomes destabilized at the time of a C-class flare, plasma jet, and the escape of 75 keV electrons from the rope center into the corona. As the eruption proceeds, continued acceleration of electrons with energies of ∼5 keV occurs above the flux rope for a period over 5 minutes. At the flare peak, one site of electron acceleration is located close to the flare site, while another is driven by the erupting flux rope into the corona at speeds of up to 400 km s−1. Energetic electrons then fill the erupting volume, eventually allowing the flux rope legs to be clearly imaged from radio sources at 150-445 MHz. Following the analysis of Joshi et al. (2015), we conclude that the sites of energetic electrons are consistent with flux rope eruption via a tether cutting or flux cancellation scenario inside a magnetic fan-spine structure. In total, our radio observations allow us to better understand the evolution of a flux rope eruption and its associated electron acceleration sites, from eruption initiation to propagation into the corona.
Author Vilmer, Nicole
Gallagher, Peter T.
Carley, Eoin P.
Author_xml – sequence: 1
  givenname: Eoin P.
  surname: Carley
  fullname: Carley, Eoin P.
  email: eoin.carley@obspm.fr
  organization: PSL Research University LESIA, Observatoire de Paris, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, F-92195 Meudon, France
– sequence: 2
  givenname: Nicole
  surname: Vilmer
  fullname: Vilmer, Nicole
  organization: Station de Radioastronomie de Nançay, Observatoire de Paris, PSL Research University, CNRS, Univ. Orléans, 18330 Nançay, France
– sequence: 3
  givenname: Peter T.
  orcidid: 0000-0001-9745-0400
  surname: Gallagher
  fullname: Gallagher, Peter T.
  organization: Trinity College Dublin Astrophysics Research Group, School of Physics, Dublin 2, Ireland
BackLink https://insu.hal.science/insu-01551402$$DView record in HAL
https://www.osti.gov/biblio/22660936$$D View this record in Osti.gov
BookMark eNp9kV9r2zAUxcVoYWnaL9AnwfY0cKM_liw_GsdJDCYutgN9E7Itrw6Z5dnOYN9-cjNSGKNP0r33dw73cu7ATWc6DcAjRk9UuN4KMyoclzJvJShd4ZXwPoHFtXkDFggh1-HUe_kM7sbxOJfE9xfgexas4xSu42C7T_MiDnOYbmCURGGRpXsYhKH9Z0ER2yKPiyiH60MW77ew2EUwyg7PbxMrCeAmObzALH2OYLx_G-dpEmQwTK1RcA9uG3Ua9cPfdwkOm6gId06SbuMwSJzKZWhyaqZZXfraazxCGoRpWRHNSlGVwqMKc8YazjWpS14z3DSuIMrFXAtsIeKXnC7Bl4uvGadWjlU76eq1Ml2nq0kSwjny6Ux9u1Cv6iT7of2hht_SqFbugkS23XiWCDOGXUR-4XfLfjA_z3qc5NGch85eIQnlTHBPYGopcqGqwYzjoJurL0ZyzkjOccg5Dmkzkljai5ZA_COyC6upNd00qPb0sfTpIm1N_77Qh4Kv_xGo_nhFZF839A-c0Kd2
CitedBy_id crossref_primary_10_1038_s41467_019_10204_1
crossref_primary_10_3847_1538_4357_aacd07
crossref_primary_10_3847_2041_8213_ac4df2
crossref_primary_10_1016_j_asr_2018_10_023
crossref_primary_10_3847_1538_4357_ad26fd
crossref_primary_10_3847_1538_4357_aa9cee
crossref_primary_10_3847_1538_4357_ac1acd
crossref_primary_10_3389_fspas_2020_551558
crossref_primary_10_1016_j_jastp_2018_04_017
crossref_primary_10_3847_1538_4357_ace904
crossref_primary_10_1007_s11207_018_1353_y
crossref_primary_10_1051_0004_6361_201937273
crossref_primary_10_1051_0004_6361_202451426
crossref_primary_10_3389_fspas_2020_00056
crossref_primary_10_1007_s11207_022_02063_9
crossref_primary_10_3847_1538_4357_aadb89
crossref_primary_10_1007_s11207_022_02096_0
crossref_primary_10_1051_0004_6361_201732298
crossref_primary_10_3847_1538_4357_aa7c1b
crossref_primary_10_3847_1538_4357_ac2aa6
crossref_primary_10_1051_0004_6361_202243903
crossref_primary_10_1007_s11207_017_1117_0
crossref_primary_10_1093_mnras_staa3480
Cites_doi 10.1088/2041-8205/763/1/L21
10.1051/0004-6361:20020309
10.1088/0004-637X/812/1/50
10.1023/A:1022428818870
10.1051/0004-6361/201528015
10.1088/0004-637X/782/1/43
10.1086/309567
10.1088/0004-637X/762/1/60
10.1088/2041-8205/716/1/L57
10.1007/BF00153671
10.1016/j.asr.2005.03.070
10.1086/306563
10.1086/167766
10.1088/0004-637X/729/2/107
10.1007/BF00670737
10.12942/lrsp-2012-3
10.1051/0004-6361/201219454
10.1007/BF00733425
10.1086/323421
10.1051/0004-6361/201527347
10.1038/211695a0
10.1038/nphys2767
10.1088/0004-637X/769/2/96
10.1029/1999JA900033
10.1086/147104
10.1086/512854
10.1088/0004-637X/750/2/134
10.1086/320559
10.1007/s11214-010-9710-7
10.1086/429530
10.1007/s00159-008-0013-x
10.1007/BF00150879
10.1051/0004-6361:20041551
10.1029/2011JA017318
10.1051/0004-6361/201117255
10.1007/BF00670741
10.1007/BF00733434
10.1086/341486
10.1007/s11207-013-0289-5
10.1088/0004-637X/753/1/52
10.1086/508011
10.1088/0004-637X/702/1/791
10.1051/0004-6361/201118626
10.1088/2041-8205/733/2/L25
10.1088/0004-637X/795/1/68
10.1051/0004-6361:20021593
10.1007/s11214-007-9143-0
10.1088/2041-8205/808/1/L15
10.1088/0004-637X/750/1/44
10.1007/s11214-011-9801-0
10.1088/0004-637X/804/2/82
10.1071/PH590369
10.1088/0004-637X/750/2/147
10.1051/0004-6361:20031247
10.1051/0004-6361/201220873
10.12942/lrsp-2011-1
10.1088/0004-637X/771/2/82
10.1007/s11207-011-9776-8
10.1023/B:SOLA.0000013034.61996.c4
10.1038/ncomms1753
10.1051/0004-6361:20010358
10.1007/BF00206193
10.1051/0004-6361:20020385
10.1086/322301
10.1023/A:1005049730506
10.1086/507442
10.1007/s11207-008-9186-8
10.1007/s11207-006-0202-6
10.1086/424564
10.1086/524294
10.1007/s11207-011-9834-2
10.1007/BF00159942
10.1007/BFb0106458
10.1017/S1323358000014375
ContentType Journal Article
Copyright 2016. The American Astronomical Society. All rights reserved.
Copyright IOP Publishing Dec 10, 2016
Attribution - NonCommercial - NoDerivatives
Copyright_xml – notice: 2016. The American Astronomical Society. All rights reserved.
– notice: Copyright IOP Publishing Dec 10, 2016
– notice: Attribution - NonCommercial - NoDerivatives
DBID AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
1XC
VOOES
OTOTI
DOI 10.3847/1538-4357/833/1/87
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
OSTI.GOV
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef
Aerospace Database



DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
DocumentTitleAlternate RADIO DIAGNOSTICS OF ELECTRON ACCELERATION SITES DURING THE ERUPTION OF A FLUX ROPE IN THE SOLAR CORONA
EISSN 1538-4357
ExternalDocumentID 22660936
oai_HAL_insu_01551402v1
10_3847_1538_4357_833_1_87
apjaa4152
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
2WC
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
AALHV
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
ADIYS
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
EJD
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
WH7
XSW
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
1XC
41~
6TJ
6TS
9M8
ABDPE
ADXHL
AETEA
AI.
FA8
MVM
OHT
VH1
VOOES
WHG
YYP
ZCG
ZKB
ZY4
ABPTK
OTOTI
ID FETCH-LOGICAL-c450t-d5e5db9e7f722f013bc2e5b8cb873a1655f66e2db6d51ff482a416e81e5b29b63
IEDL.DBID O3W
ISSN 0004-637X
IngestDate Fri May 19 00:38:46 EDT 2023
Fri Sep 12 12:55:07 EDT 2025
Wed Aug 13 09:20:08 EDT 2025
Tue Jul 01 04:08:44 EDT 2025
Thu Apr 24 23:12:39 EDT 2025
Wed Aug 21 03:41:34 EDT 2024
Thu Jan 07 13:49:48 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution - NonCommercial - NoDerivatives: http://creativecommons.org/licenses/by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-d5e5db9e7f722f013bc2e5b8cb873a1655f66e2db6d51ff482a416e81e5b29b63
Notes The Sun and the Heliosphere
AAS01293
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9745-0400
0000-0002-6872-3630
OpenAccessLink https://insu.hal.science/insu-01551402
PQID 2365867813
PQPubID 4562441
PageCount 16
ParticipantIDs crossref_primary_10_3847_1538_4357_833_1_87
iop_journals_10_3847_1538_4357_833_1_87
hal_primary_oai_HAL_insu_01551402v1
osti_scitechconnect_22660936
proquest_journals_2365867813
crossref_citationtrail_10_3847_1538_4357_833_1_87
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12-10
PublicationDateYYYYMMDD 2016-12-10
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-10
  day: 10
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
– name: United States
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2016
Publisher The American Astronomical Society
IOP Publishing
American Astronomical Society
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
– name: American Astronomical Society
References Mann (apjaa4152bib53) 2003; 400
Poquerusse (apjaa4152bib66) 1994; 286
Schrijver (apjaa4152bib75) 2008; 674
Robinson (apjaa4152bib68) 1975; 2
Downs (apjaa4152bib20) 2012; 750
Kopp (apjaa4152bib37) 1976; 50
McLean (apjaa4152bib56) 1985
Wild (apjaa4152bib84) 1959; 12
Huang (apjaa4152bib25) 2011; 729
Karlicky (apjaa4152bib30) 1994; 155
Brueckner (apjaa4152bib10) 1995; 162
Lecacheux (apjaa4152bib42) 2000; 119
Zhang (apjaa4152bib86) 2012; 3
Dresing (apjaa4152bib21) 2016; 586
Liu (apjaa4152bib47) 2012; 753
Kahler (apjaa4152bib28) 2007; 129
Karlický (apjaa4152bib29) 2005; 432
Pomoell (apjaa4152bib65) 2008; 253
Newkirk (apjaa4152bib59) 1961; 133
Maia (apjaa4152bib49) 1999; 104
Attrill (apjaa4152bib2) 2007; 656
Aurass (apjaa4152bib3) 1994; 155
Chen (apjaa4152bib13) 2013a; 763
Mann (apjaa4152bib52) 1999b; 348
Khan (apjaa4152bib32) 2002; 388
Lin (apjaa4152bib46) 2002; 210
Kundu (apjaa4152bib39) 2001; 559
Santandrea (apjaa4152bib72) 2013; 286
Joshi (apjaa4152bib27) 2015; 812
Klassen (apjaa4152bib36) 2003b; 218
Sturrock (apjaa4152bib78) 1966; 211
Klassen (apjaa4152bib35) 2003a; 410
Hirayama (apjaa4152bib24) 1974; 34
Lin (apjaa4152bib45) 2011; 159
Yan (apjaa4152bib85) 2006; 239
Marqué (apjaa4152bib54) 2002; 387
Pick (apjaa4152bib64) 2008; 16
Saint-Hilaire (apjaa4152bib69) 2013; 762
Bain (apjaa4152bib6) 2014; 782
Leblanc (apjaa4152bib41) 1998; 183
Carmichael (apjaa4152bib12) 1964; 50
Lin (apjaa4152bib44) 2000
Bain (apjaa4152bib5) 2012; 750
Meegan (apjaa4152bib57) 2009; 702
Mann (apjaa4152bib51) 1999a
Bastian (apjaa4152bib7) 2001; 558
Chen (apjaa4152bib15) 2011; 8
Démoulin (apjaa4152bib18) 2012; 750
Kozarev (apjaa4152bib38) 2011; 733
Moore (apjaa4152bib58) 2001; 552
Chen (apjaa4152bib16) 2002; 572
Klassen (apjaa4152bib34) 2012; 542
Song (apjaa4152bib76) 2015; 808
Saito (apjaa4152bib70) 1977; 55
Pick (apjaa4152bib62) 1986; 104
Paesold (apjaa4152bib61) 2001; 371
Schmidt (apjaa4152bib74) 2012; 117
Benz (apjaa4152bib8) 1982; 108
Masson (apjaa4152bib55) 2013; 771
Salas-Matamoros (apjaa4152bib71) 2016; 590
Innes (apjaa4152bib26) 2011; 531
Lynch (apjaa4152bib48) 2004; 617
van Haarlem (apjaa4152bib80) 2013; 556
Kerdraon (apjaa4152bib31) 1997; Vol. 483
Nitta (apjaa4152bib60) 2006; 650
van Ballegooijen (apjaa4152bib79) 1989; 343
Antiochos (apjaa4152bib1) 1999; 510
Aurass (apjaa4152bib4) 1999
Pick (apjaa4152bib63) 2005; 625
Scherrer (apjaa4152bib73) 2012; 275
Webb (apjaa4152bib83) 2012; 9
Berghmans (apjaa4152bib9) 2006; 38
Veronig (apjaa4152bib81) 2010; 716
Gallagher (apjaa4152bib22) 2011; 158
Carley (apjaa4152bib11) 2013; 9
Chen (apjaa4152bib14) 2013b; 769
Maia (apjaa4152bib50) 2007; 660
Zucca (apjaa4152bib88) 2014; 795
Domingo (apjaa4152bib19) 1995; 162
Zimovets (apjaa4152bib87) 2012; 547
Cheng (apjaa4152bib17) 2015; 804
Klassen (apjaa4152bib33) 1999; 343
Kundu (apjaa4152bib40) 1995; 447
Lemen (apjaa4152bib43) 2012; 275
References_xml – volume: 763
  start-page: L21
  year: 2013a
  ident: apjaa4152bib13
  publication-title: ApJL
  doi: 10.1088/2041-8205/763/1/L21
– volume: 348
  start-page: 614
  year: 1999b
  ident: apjaa4152bib52
  publication-title: A&A
– volume: 387
  start-page: 317
  year: 2002
  ident: apjaa4152bib54
  publication-title: A&A
  doi: 10.1051/0004-6361:20020309
– volume: 812
  start-page: 50
  year: 2015
  ident: apjaa4152bib27
  publication-title: ApJ
  doi: 10.1088/0004-637X/812/1/50
– volume: 210
  start-page: 3
  year: 2002
  ident: apjaa4152bib46
  publication-title: SoPh
  doi: 10.1023/A:1022428818870
– volume: 590
  start-page: A135
  year: 2016
  ident: apjaa4152bib71
  publication-title: A&A
  doi: 10.1051/0004-6361/201528015
– volume: 782
  start-page: 43
  year: 2014
  ident: apjaa4152bib6
  publication-title: ApJ
  doi: 10.1088/0004-637X/782/1/43
– volume: 447
  start-page: L135
  year: 1995
  ident: apjaa4152bib40
  publication-title: ApJL
  doi: 10.1086/309567
– volume: 762
  start-page: 60
  year: 2013
  ident: apjaa4152bib69
  publication-title: ApJ
  doi: 10.1088/0004-637X/762/1/60
– volume: 716
  start-page: L57
  year: 2010
  ident: apjaa4152bib81
  publication-title: ApJL
  doi: 10.1088/2041-8205/716/1/L57
– volume: 34
  start-page: 323
  year: 1974
  ident: apjaa4152bib24
  publication-title: SoPh
  doi: 10.1007/BF00153671
– volume: 38
  start-page: 1807
  year: 2006
  ident: apjaa4152bib9
  publication-title: AdSpR
  doi: 10.1016/j.asr.2005.03.070
– volume: 510
  start-page: 485
  year: 1999
  ident: apjaa4152bib1
  publication-title: ApJ
  doi: 10.1086/306563
– volume: 343
  start-page: 971
  year: 1989
  ident: apjaa4152bib79
  publication-title: ApJ
  doi: 10.1086/167766
– volume: 729
  start-page: 107
  year: 2011
  ident: apjaa4152bib25
  publication-title: ApJ
  doi: 10.1088/0004-637X/729/2/107
– volume: 155
  start-page: 171
  year: 1994
  ident: apjaa4152bib30
  publication-title: SoPh
  doi: 10.1007/BF00670737
– volume: 9
  start-page: 3
  year: 2012
  ident: apjaa4152bib83
  publication-title: LRSP
  doi: 10.12942/lrsp-2012-3
– volume: 547
  start-page: A6
  year: 2012
  ident: apjaa4152bib87
  publication-title: A&A
  doi: 10.1051/0004-6361/201219454
– volume: 162
  start-page: 1
  year: 1995
  ident: apjaa4152bib19
  publication-title: SoPh
  doi: 10.1007/BF00733425
– volume: 558
  start-page: L65
  year: 2001
  ident: apjaa4152bib7
  publication-title: ApJL
  doi: 10.1086/323421
– volume: 586
  start-page: A55
  year: 2016
  ident: apjaa4152bib21
  publication-title: A&A
  doi: 10.1051/0004-6361/201527347
– start-page: 15
  year: 2000
  ident: apjaa4152bib44
– volume: 211
  start-page: 695
  year: 1966
  ident: apjaa4152bib78
  publication-title: Natur
  doi: 10.1038/211695a0
– volume: 9
  start-page: 811
  year: 2013
  ident: apjaa4152bib11
  publication-title: NatPh
  doi: 10.1038/nphys2767
– volume: 769
  start-page: 96
  year: 2013b
  ident: apjaa4152bib14
  publication-title: ApJ
  doi: 10.1088/0004-637X/769/2/96
– volume: 104
  start-page: 12507
  year: 1999
  ident: apjaa4152bib49
  publication-title: JGR
  doi: 10.1029/1999JA900033
– volume: 133
  start-page: 983
  year: 1961
  ident: apjaa4152bib59
  publication-title: ApJ
  doi: 10.1086/147104
– volume: 656
  start-page: L101
  year: 2007
  ident: apjaa4152bib2
  publication-title: ApJL
  doi: 10.1086/512854
– volume: 750
  start-page: 134
  year: 2012
  ident: apjaa4152bib20
  publication-title: ApJ
  doi: 10.1088/0004-637X/750/2/134
– volume: 552
  start-page: 833
  year: 2001
  ident: apjaa4152bib58
  publication-title: ApJ
  doi: 10.1086/320559
– volume: 158
  start-page: 365
  year: 2011
  ident: apjaa4152bib22
  publication-title: SSRv
  doi: 10.1007/s11214-010-9710-7
– year: 1985
  ident: apjaa4152bib56
– volume: 625
  start-page: 1019
  year: 2005
  ident: apjaa4152bib63
  publication-title: ApJ
  doi: 10.1086/429530
– volume: 16
  start-page: 1
  year: 2008
  ident: apjaa4152bib64
  publication-title: A&ARv
  doi: 10.1007/s00159-008-0013-x
– volume: 55
  start-page: 121
  year: 1977
  ident: apjaa4152bib70
  publication-title: SoPh
  doi: 10.1007/BF00150879
– volume: 432
  start-page: 705
  year: 2005
  ident: apjaa4152bib29
  publication-title: A&A
  doi: 10.1051/0004-6361:20041551
– volume: 286
  start-page: 611
  year: 1994
  ident: apjaa4152bib66
  publication-title: A&A
– volume: 343
  start-page: 287
  year: 1999
  ident: apjaa4152bib33
  publication-title: A&A
– volume: 117
  start-page: 4106
  year: 2012
  ident: apjaa4152bib74
  publication-title: JGRA
  doi: 10.1029/2011JA017318
– volume: 531
  start-page: L13
  year: 2011
  ident: apjaa4152bib26
  publication-title: A&A
  doi: 10.1051/0004-6361/201117255
– volume: 155
  start-page: 203
  year: 1994
  ident: apjaa4152bib3
  publication-title: SoPh
  doi: 10.1007/BF00670741
– volume: 162
  start-page: 357
  year: 1995
  ident: apjaa4152bib10
  publication-title: SoPh
  doi: 10.1007/BF00733434
– volume: 572
  start-page: L99
  year: 2002
  ident: apjaa4152bib16
  publication-title: ApJL
  doi: 10.1086/341486
– volume: 286
  start-page: 5
  year: 2013
  ident: apjaa4152bib72
  publication-title: SoPh
  doi: 10.1007/s11207-013-0289-5
– volume: 753
  start-page: 52
  year: 2012
  ident: apjaa4152bib47
  publication-title: ApJ
  doi: 10.1088/0004-637X/753/1/52
– volume: 660
  start-page: 874
  year: 2007
  ident: apjaa4152bib50
  publication-title: ApJ
  doi: 10.1086/508011
– volume: 702
  start-page: 791
  year: 2009
  ident: apjaa4152bib57
  publication-title: ApJ
  doi: 10.1088/0004-637X/702/1/791
– volume: 542
  start-page: A28
  year: 2012
  ident: apjaa4152bib34
  publication-title: A&A
  doi: 10.1051/0004-6361/201118626
– volume: 733
  start-page: L25
  year: 2011
  ident: apjaa4152bib38
  publication-title: ApJL
  doi: 10.1088/2041-8205/733/2/L25
– volume: 795
  start-page: 68
  year: 2014
  ident: apjaa4152bib88
  publication-title: ApJ
  doi: 10.1088/0004-637X/795/1/68
– volume: 400
  start-page: 329
  year: 2003
  ident: apjaa4152bib53
  publication-title: A&A
  doi: 10.1051/0004-6361:20021593
– volume: 129
  start-page: 359
  year: 2007
  ident: apjaa4152bib28
  publication-title: SSRv
  doi: 10.1007/s11214-007-9143-0
– volume: 808
  start-page: L15
  year: 2015
  ident: apjaa4152bib76
  publication-title: ApJL
  doi: 10.1088/2041-8205/808/1/L15
– volume: 750
  start-page: 44
  year: 2012
  ident: apjaa4152bib5
  publication-title: ApJ
  doi: 10.1088/0004-637X/750/1/44
– volume: 159
  start-page: 421
  year: 2011
  ident: apjaa4152bib45
  publication-title: SSRv
  doi: 10.1007/s11214-011-9801-0
– volume: 804
  start-page: 82
  year: 2015
  ident: apjaa4152bib17
  publication-title: ApJ
  doi: 10.1088/0004-637X/804/2/82
– volume: 12
  start-page: 369
  year: 1959
  ident: apjaa4152bib84
  publication-title: AuJPh
  doi: 10.1071/PH590369
– start-page: 293
  year: 1999
  ident: apjaa4152bib4
– volume: 750
  start-page: 147
  year: 2012
  ident: apjaa4152bib18
  publication-title: ApJ
  doi: 10.1088/0004-637X/750/2/147
– volume: 410
  start-page: 307
  year: 2003a
  ident: apjaa4152bib35
  publication-title: A&A
  doi: 10.1051/0004-6361:20031247
– volume: 556
  start-page: A2
  year: 2013
  ident: apjaa4152bib80
  publication-title: A&A
  doi: 10.1051/0004-6361/201220873
– volume: 8
  start-page: 1
  year: 2011
  ident: apjaa4152bib15
  publication-title: LRSP
  doi: 10.12942/lrsp-2011-1
– volume: 771
  start-page: 82
  year: 2013
  ident: apjaa4152bib55
  publication-title: ApJ
  doi: 10.1088/0004-637X/771/2/82
– volume: 275
  start-page: 17
  year: 2012
  ident: apjaa4152bib43
  publication-title: SoPh
  doi: 10.1007/s11207-011-9776-8
– volume: 218
  start-page: 197
  year: 2003b
  ident: apjaa4152bib36
  publication-title: SoPh
  doi: 10.1023/B:SOLA.0000013034.61996.c4
– volume: 3
  start-page: 747
  year: 2012
  ident: apjaa4152bib86
  publication-title: NatCo
  doi: 10.1038/ncomms1753
– volume: 108
  start-page: 161
  year: 1982
  ident: apjaa4152bib8
  publication-title: A&A
– volume: 371
  start-page: 333
  year: 2001
  ident: apjaa4152bib61
  publication-title: A&A
  doi: 10.1051/0004-6361:20010358
– volume: 50
  start-page: 85
  year: 1976
  ident: apjaa4152bib37
  publication-title: SoPh
  doi: 10.1007/BF00206193
– volume: 388
  start-page: 363
  year: 2002
  ident: apjaa4152bib32
  publication-title: A&A
  doi: 10.1051/0004-6361:20020385
– volume: 559
  start-page: 443
  year: 2001
  ident: apjaa4152bib39
  publication-title: ApJ
  doi: 10.1086/322301
– volume: 183
  start-page: 165
  year: 1998
  ident: apjaa4152bib41
  publication-title: SoPh
  doi: 10.1023/A:1005049730506
– volume: 119
  start-page: 321
  year: 2000
  ident: apjaa4152bib42
  publication-title: GMS
– volume: 650
  start-page: 438
  year: 2006
  ident: apjaa4152bib60
  publication-title: ApJ
  doi: 10.1086/507442
– volume: 253
  start-page: 249
  year: 2008
  ident: apjaa4152bib65
  publication-title: SoPh
  doi: 10.1007/s11207-008-9186-8
– volume: 239
  start-page: 277
  year: 2006
  ident: apjaa4152bib85
  publication-title: SoPh
  doi: 10.1007/s11207-006-0202-6
– start-page: 477
  year: 1999a
  ident: apjaa4152bib51
– volume: 617
  start-page: 589
  year: 2004
  ident: apjaa4152bib48
  publication-title: ApJ
  doi: 10.1086/424564
– volume: 674
  start-page: 586
  year: 2008
  ident: apjaa4152bib75
  publication-title: ApJ
  doi: 10.1086/524294
– volume: 275
  start-page: 207
  year: 2012
  ident: apjaa4152bib73
  publication-title: SoPh
  doi: 10.1007/s11207-011-9834-2
– volume: 50
  start-page: 451
  year: 1964
  ident: apjaa4152bib12
  publication-title: NASSP
– volume: 104
  start-page: 19
  year: 1986
  ident: apjaa4152bib62
  publication-title: SoPh
  doi: 10.1007/BF00159942
– volume: Vol. 483
  start-page: 192
  year: 1997
  ident: apjaa4152bib31
  doi: 10.1007/BFb0106458
– volume: 2
  start-page: 374
  year: 1975
  ident: apjaa4152bib68
  publication-title: PASAu
  doi: 10.1017/S1323358000014375
SSID ssj0004299
Score 2.407538
Snippet ABSTRACT Electron acceleration in the solar corona is often associated with flares and the eruption of twisted magnetic structures known as flux ropes....
Electron acceleration in the solar corona is often associated with flares and the eruption of twisted magnetic structures known as flux ropes. However, the...
SourceID osti
hal
proquest
crossref
iop
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 87
SubjectTerms ACCELERATION
acceleration of particles
ASTRONOMY
Astrophysics
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
BLOWERS
CANCELLATION
Corona
Electron acceleration
ERUPTION
Fluctuations
KEV RANGE
Magnetic flux
MASS
MHZ RANGE
Particle acceleration
Physics
PLASMA JETS
Radio astronomy
Radio observation
Radio sources (astronomy)
Sciences of the Universe
Solar and Stellar Astrophysics
SOLAR CORONA
SOLAR FLARES
SOLAR PARTICLES
Spine
SUN
Sun: coronal mass ejections (CMEs)
Sun: flares
Sun: particle emission
Sun: radio radiation
TAIL ELECTRONS
Title RADIO DIAGNOSTICS OF ELECTRON ACCELERATION SITES DURING THE ERUPTION OF A FLUX ROPE IN THE SOLAR CORONA
URI https://iopscience.iop.org/article/10.3847/1538-4357/833/1/87
https://www.proquest.com/docview/2365867813
https://insu.hal.science/insu-01551402
https://www.osti.gov/biblio/22660936
Volume 833
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfoJiRe0BigFbbJ0hA8oND6I3byGKUpDSpN1TSib1ac2EMI2op2SPz3nJOs04SYeLN055Pl-_DP1vkOoTfEgh1owz1rfe5xYUqvpLz2mDHaEl5z0_Qh-zwTk4J_WvmrLjen-Quz2Xah_wMM20LB7RY6_2YQSweNj8IpLwcBYwMyCGQPHTNA5u7ulbEvd98iadihX-4JJlftn5l_yLh3LvW-uqzIHqwAIvUGfO2vSN0cP-MT9LTDjThqV_kMPTLrU3QW7dxL9ubHb_wWN-P2oWJ3ih7P29FzdL2IRmmGR2n0cZblyzTOcTbGyTSJl4tshqM4hnH7VIVzCGQ5HhUuRQIvJwlOFsW8ocCUCI-nxQq7zD-czhpynk2jBY4zEBS9QMU4WcYTr2uv4FXcH-692jd-rUMjraTUAhTUFTW-DiodSFYS4ftWCENrLWqfWMsDWgJ6MwEBJhpqwV6io_Vmbc4QBlQWVgTYpay4qzAvdWmkMWUJqLiqaR-R281VVVd73LXA-K7gDuIUopxClFOIAoUoogLZR-8Pc7Zt5Y0Hua9AZwdGVzR7Ek2VS-hXLSwc0l-kj96BTlXnprsH5V3c4yy33w40ta1tH507u1BgrK7YbuWykqq9AjArhiETQL61lzsZlAHcA3BA2Kv_Xsdr9AQgWtMqiQzP0dH-5425ABi015eol2bzy8bk_wA46_K2
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEF_sieKL6Klc9U4XFH2QmO5HdpPHkCY2GpPSNNi3JR-bE9G22Cr43zubpD0O8fBtYGaHJfOxvyyzMwi9Ii34QaW51bYOt7jQpVVS3lhM66olvOG6m0P2KRWzgn9YOYdqwu4tzGY7pP53QPaNgvtPaOKbQS61uxiFU17aLmM2sV1pb5t2hG47DNAxuHTGPl89jaTegIC5JZhc9e9m_qHn2tk0-mIqI0ewC8jWG4i3v7J1dwRFD9D9ATtiv9_pQ3RLr0_Rmb8zt9mb77_xa9zR_WXF7hTdmffUI3S58Kdxhqex_z7N8mUc5DiLcJiEwXKRpdgPAqD76yqcQzLL8bQwZRJ4OQtxuCjmHQeW-DhKihU21X84Tjt2niX-AgcZKPIfoyIKl8HMGkYsWDV3JnurcbTTVJ6WraS0BThY1VQ7lVtXrmQlEY7TCqFpU4nGIW3LXVoCgtMuASHqVYI9QSfrzVqfIQzIzKsJiEtZc9NlXlalllqXJSDjuqFjRA4fV9VD_3EzBuObgv8QYxBlDKKMQRQYRBHlyjF6e1yz7btv3Cj9Emx2FDSNs2d-okxRv-qh4YT-ImP0BmyqhlDd3ajv4ppkuf165ClwuTE6N36hwGFNw93aVCbVewWAVkw8JoB98JcrHZQB5AOAQNjT_97HC3R3Po1UEqcfn6F7gNi6yUlkco5O9j9-6gtARfvqeef3fwDiqvWr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radio+Diagnostics+of+Electron+Acceleration+Sites+During+the+Eruption+of+a+Flux+Rope+in+the+Solar+Corona&rft.jtitle=The+Astrophysical+journal&rft.au=Carley%2C+Eoin+P.&rft.au=Vilmer%2C+Nicole&rft.au=Gallagher%2C+Peter+T.&rft.date=2016-12-10&rft.pub=American+Astronomical+Society&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=833&rft.issue=1&rft_id=info:doi/10.3847%2F1538-4357%2F833%2F1%2F87&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_insu_01551402v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon