RADIO DIAGNOSTICS OF ELECTRON ACCELERATION SITES DURING THE ERUPTION OF A FLUX ROPE IN THE SOLAR CORONA
ABSTRACT Electron acceleration in the solar corona is often associated with flares and the eruption of twisted magnetic structures known as flux ropes. However, the locations and mechanisms of such particle acceleration during the flare and eruption are still subject to much investigation. Observing...
Saved in:
Published in | The Astrophysical journal Vol. 833; no. 1; pp. 87 - 102 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
The American Astronomical Society
10.12.2016
IOP Publishing American Astronomical Society |
Subjects | |
Online Access | Get full text |
ISSN | 0004-637X 1538-4357 |
DOI | 10.3847/1538-4357/833/1/87 |
Cover
Abstract | ABSTRACT Electron acceleration in the solar corona is often associated with flares and the eruption of twisted magnetic structures known as flux ropes. However, the locations and mechanisms of such particle acceleration during the flare and eruption are still subject to much investigation. Observing the exact sites of particle acceleration can help confirm how the flare and eruption are initiated and how they evolve. Here we use the Atmospheric Imaging Assembly to analyze a flare and erupting flux rope on 2014 April 18, while observations from the Nançay Radio Astronomy Facility allow us to diagnose the sites of electron acceleration during the eruption. Our analysis shows evidence of a pre-formed flux rope that slowly rises and becomes destabilized at the time of a C-class flare, plasma jet, and the escape of 75 keV electrons from the rope center into the corona. As the eruption proceeds, continued acceleration of electrons with energies of ∼5 keV occurs above the flux rope for a period over 5 minutes. At the flare peak, one site of electron acceleration is located close to the flare site, while another is driven by the erupting flux rope into the corona at speeds of up to 400 km s−1. Energetic electrons then fill the erupting volume, eventually allowing the flux rope legs to be clearly imaged from radio sources at 150-445 MHz. Following the analysis of Joshi et al. (2015), we conclude that the sites of energetic electrons are consistent with flux rope eruption via a tether cutting or flux cancellation scenario inside a magnetic fan-spine structure. In total, our radio observations allow us to better understand the evolution of a flux rope eruption and its associated electron acceleration sites, from eruption initiation to propagation into the corona. |
---|---|
AbstractList | Electron acceleration in the solar corona is often associated with flares and the eruption of twisted magnetic structures known as flux ropes. However, the locations and mechanisms of such particle acceleration during the flare and eruption are still subject to much investigation. Observing the exact sites of particle acceleration can help confirm how the flare and eruption are initiated and how they evolve. Here we use the Atmospheric Imaging Assembly to analyze a flare and erupting flux rope on 2014 April 18, while observations from the Nançay Radio Astronomy Facility allow us to diagnose the sites of electron acceleration during the eruption. Our analysis shows evidence of a pre-formed flux rope that slowly rises and becomes destabilized at the time of a C-class flare, plasma jet, and the escape of ≳75 keV electrons from the rope center into the corona. As the eruption proceeds, continued acceleration of electrons with energies of ∼5 keV occurs above the flux rope for a period over 5 minutes. At the flare peak, one site of electron acceleration is located close to the flare site, while another is driven by the erupting flux rope into the corona at speeds of up to 400 km s
−1
. Energetic electrons then fill the erupting volume, eventually allowing the flux rope legs to be clearly imaged from radio sources at 150–445 MHz. Following the analysis of Joshi et al. (2015), we conclude that the sites of energetic electrons are consistent with flux rope eruption via a tether cutting or flux cancellation scenario inside a magnetic fan-spine structure. In total, our radio observations allow us to better understand the evolution of a flux rope eruption and its associated electron acceleration sites, from eruption initiation to propagation into the corona. Electron acceleration in the solar corona is often associated with flares and the eruption of twisted magnetic structures known as flux ropes. However, the locations and mechanisms of such particle acceleration during the flare and eruption are still subject to much investigation. Observing the exact sites of particle acceleration can help confirm how the flare and eruption are initiated and how they evolve. Here we use the Atmospheric Imaging Assembly to analyze a flare and erupting flux rope on 2014 April 18, while observations from the Nançay Radio Astronomy Facility allow us to diagnose the sites of electron acceleration during the eruption. Our analysis shows evidence of a pre-formed flux rope that slowly rises and becomes destabilized at the time of a C-class flare, plasma jet, and the escape of ≳75 keV electrons from the rope center into the corona. As the eruption proceeds, continued acceleration of electrons with energies of ∼5 keV occurs above the flux rope for a period over 5 minutes. At the flare peak, one site of electron acceleration is located close to the flare site, while another is driven by the erupting flux rope into the corona at speeds of up to 400 km s−1. Energetic electrons then fill the erupting volume, eventually allowing the flux rope legs to be clearly imaged from radio sources at 150–445 MHz. Following the analysis of Joshi et al. (2015), we conclude that the sites of energetic electrons are consistent with flux rope eruption via a tether cutting or flux cancellation scenario inside a magnetic fan-spine structure. In total, our radio observations allow us to better understand the evolution of a flux rope eruption and its associated electron acceleration sites, from eruption initiation to propagation into the corona. Electron acceleration in the solar corona is often associated with flares and the eruption of twisted magnetic structures known as flux ropes. However, the locations and mechanisms of such particle acceleration during the flare and eruption are still subject to much investigation. Observing the exact sites of particle acceleration can help confirm how the flare and eruption are initiated and how they evolve. Here we use the Atmospheric Imaging Assembly to analyze a flare and erupting flux rope on 2014 April 18, while observations from the Nançay Radio Astronomy Facility allow us to diagnose the sites of electron acceleration during the eruption. Our analysis shows evidence of a pre-formed flux rope that slowly rises and becomes destabilized at the time of a C-class flare, plasma jet, and the escape of ≳75 keV electrons from the rope center into the corona. As the eruption proceeds, continued acceleration of electrons with energies of ∼5 keV occurs above the flux rope for a period over 5 minutes. At the flare peak, one site of electron acceleration is located close to the flare site, while another is driven by the erupting flux rope into the corona at speeds of up to 400 km s{sup −1}. Energetic electrons then fill the erupting volume, eventually allowing the flux rope legs to be clearly imaged from radio sources at 150–445 MHz. Following the analysis of Joshi et al. (2015), we conclude that the sites of energetic electrons are consistent with flux rope eruption via a tether cutting or flux cancellation scenario inside a magnetic fan-spine structure. In total, our radio observations allow us to better understand the evolution of a flux rope eruption and its associated electron acceleration sites, from eruption initiation to propagation into the corona. Electron acceleration in the solar corona is often associated with flares and the eruption of twisted magnetic structures known as flux ropes. However, the locations and mechanisms of such particle acceleration during the flare and eruption are still subject to much investigation. Observing the exact sites of particle acceleration can help confirm how the flare and eruption are initiated and how they evolve. Here we use the Atmospheric Imaging Assembly to analyse a flare and erupting flux rope on 2014-April-18, while observations from the Nancay Radio Astronomy Facility allows us to diagnose the sites of electron acceleration during the eruption. Our analysis shows evidence for a pre-formed flux rope which slowly rises and becomes destabilised at the time of a C-class flare, plasma jet and the escape of >75 keV electrons from rope center into the corona. As the eruption proceeds, continued acceleration of electrons with energies of ~5 keV occurs above the flux rope for a period over 5 minutes. At flare peak, one site of electron acceleration is located close to the flare site while another is driven by the erupting flux rope into the corona at speeds of up to 400 km/s. Energetic electrons then fill the erupting volume, eventually allowing the flux rope legs to be clearly imaged from radio sources at 150-445MHz. Following the analysis of Joshi et al. (2015), we conclude that the sites of energetic electrons are consistent with flux rope eruption via a tether-cutting or flux cancellation scenario inside a magnetic fan-spine structure. In total, our radio observations allow us to better understand the evolution of a flux rope eruption and its associated electron acceleration sites, from eruption initiation to propagation into the corona. ABSTRACT Electron acceleration in the solar corona is often associated with flares and the eruption of twisted magnetic structures known as flux ropes. However, the locations and mechanisms of such particle acceleration during the flare and eruption are still subject to much investigation. Observing the exact sites of particle acceleration can help confirm how the flare and eruption are initiated and how they evolve. Here we use the Atmospheric Imaging Assembly to analyze a flare and erupting flux rope on 2014 April 18, while observations from the Nançay Radio Astronomy Facility allow us to diagnose the sites of electron acceleration during the eruption. Our analysis shows evidence of a pre-formed flux rope that slowly rises and becomes destabilized at the time of a C-class flare, plasma jet, and the escape of 75 keV electrons from the rope center into the corona. As the eruption proceeds, continued acceleration of electrons with energies of ∼5 keV occurs above the flux rope for a period over 5 minutes. At the flare peak, one site of electron acceleration is located close to the flare site, while another is driven by the erupting flux rope into the corona at speeds of up to 400 km s−1. Energetic electrons then fill the erupting volume, eventually allowing the flux rope legs to be clearly imaged from radio sources at 150-445 MHz. Following the analysis of Joshi et al. (2015), we conclude that the sites of energetic electrons are consistent with flux rope eruption via a tether cutting or flux cancellation scenario inside a magnetic fan-spine structure. In total, our radio observations allow us to better understand the evolution of a flux rope eruption and its associated electron acceleration sites, from eruption initiation to propagation into the corona. |
Author | Vilmer, Nicole Gallagher, Peter T. Carley, Eoin P. |
Author_xml | – sequence: 1 givenname: Eoin P. surname: Carley fullname: Carley, Eoin P. email: eoin.carley@obspm.fr organization: PSL Research University LESIA, Observatoire de Paris, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, F-92195 Meudon, France – sequence: 2 givenname: Nicole surname: Vilmer fullname: Vilmer, Nicole organization: Station de Radioastronomie de Nançay, Observatoire de Paris, PSL Research University, CNRS, Univ. Orléans, 18330 Nançay, France – sequence: 3 givenname: Peter T. orcidid: 0000-0001-9745-0400 surname: Gallagher fullname: Gallagher, Peter T. organization: Trinity College Dublin Astrophysics Research Group, School of Physics, Dublin 2, Ireland |
BackLink | https://insu.hal.science/insu-01551402$$DView record in HAL https://www.osti.gov/biblio/22660936$$D View this record in Osti.gov |
BookMark | eNp9kV9r2zAUxcVoYWnaL9AnwfY0cKM_liw_GsdJDCYutgN9E7Itrw6Z5dnOYN9-cjNSGKNP0r33dw73cu7ATWc6DcAjRk9UuN4KMyoclzJvJShd4ZXwPoHFtXkDFggh1-HUe_kM7sbxOJfE9xfgexas4xSu42C7T_MiDnOYbmCURGGRpXsYhKH9Z0ER2yKPiyiH60MW77ew2EUwyg7PbxMrCeAmObzALH2OYLx_G-dpEmQwTK1RcA9uG3Ua9cPfdwkOm6gId06SbuMwSJzKZWhyaqZZXfraazxCGoRpWRHNSlGVwqMKc8YazjWpS14z3DSuIMrFXAtsIeKXnC7Bl4uvGadWjlU76eq1Ml2nq0kSwjny6Ux9u1Cv6iT7of2hht_SqFbugkS23XiWCDOGXUR-4XfLfjA_z3qc5NGch85eIQnlTHBPYGopcqGqwYzjoJurL0ZyzkjOccg5Dmkzkljai5ZA_COyC6upNd00qPb0sfTpIm1N_77Qh4Kv_xGo_nhFZF839A-c0Kd2 |
CitedBy_id | crossref_primary_10_1038_s41467_019_10204_1 crossref_primary_10_3847_1538_4357_aacd07 crossref_primary_10_3847_2041_8213_ac4df2 crossref_primary_10_1016_j_asr_2018_10_023 crossref_primary_10_3847_1538_4357_ad26fd crossref_primary_10_3847_1538_4357_aa9cee crossref_primary_10_3847_1538_4357_ac1acd crossref_primary_10_3389_fspas_2020_551558 crossref_primary_10_1016_j_jastp_2018_04_017 crossref_primary_10_3847_1538_4357_ace904 crossref_primary_10_1007_s11207_018_1353_y crossref_primary_10_1051_0004_6361_201937273 crossref_primary_10_1051_0004_6361_202451426 crossref_primary_10_3389_fspas_2020_00056 crossref_primary_10_1007_s11207_022_02063_9 crossref_primary_10_3847_1538_4357_aadb89 crossref_primary_10_1007_s11207_022_02096_0 crossref_primary_10_1051_0004_6361_201732298 crossref_primary_10_3847_1538_4357_aa7c1b crossref_primary_10_3847_1538_4357_ac2aa6 crossref_primary_10_1051_0004_6361_202243903 crossref_primary_10_1007_s11207_017_1117_0 crossref_primary_10_1093_mnras_staa3480 |
Cites_doi | 10.1088/2041-8205/763/1/L21 10.1051/0004-6361:20020309 10.1088/0004-637X/812/1/50 10.1023/A:1022428818870 10.1051/0004-6361/201528015 10.1088/0004-637X/782/1/43 10.1086/309567 10.1088/0004-637X/762/1/60 10.1088/2041-8205/716/1/L57 10.1007/BF00153671 10.1016/j.asr.2005.03.070 10.1086/306563 10.1086/167766 10.1088/0004-637X/729/2/107 10.1007/BF00670737 10.12942/lrsp-2012-3 10.1051/0004-6361/201219454 10.1007/BF00733425 10.1086/323421 10.1051/0004-6361/201527347 10.1038/211695a0 10.1038/nphys2767 10.1088/0004-637X/769/2/96 10.1029/1999JA900033 10.1086/147104 10.1086/512854 10.1088/0004-637X/750/2/134 10.1086/320559 10.1007/s11214-010-9710-7 10.1086/429530 10.1007/s00159-008-0013-x 10.1007/BF00150879 10.1051/0004-6361:20041551 10.1029/2011JA017318 10.1051/0004-6361/201117255 10.1007/BF00670741 10.1007/BF00733434 10.1086/341486 10.1007/s11207-013-0289-5 10.1088/0004-637X/753/1/52 10.1086/508011 10.1088/0004-637X/702/1/791 10.1051/0004-6361/201118626 10.1088/2041-8205/733/2/L25 10.1088/0004-637X/795/1/68 10.1051/0004-6361:20021593 10.1007/s11214-007-9143-0 10.1088/2041-8205/808/1/L15 10.1088/0004-637X/750/1/44 10.1007/s11214-011-9801-0 10.1088/0004-637X/804/2/82 10.1071/PH590369 10.1088/0004-637X/750/2/147 10.1051/0004-6361:20031247 10.1051/0004-6361/201220873 10.12942/lrsp-2011-1 10.1088/0004-637X/771/2/82 10.1007/s11207-011-9776-8 10.1023/B:SOLA.0000013034.61996.c4 10.1038/ncomms1753 10.1051/0004-6361:20010358 10.1007/BF00206193 10.1051/0004-6361:20020385 10.1086/322301 10.1023/A:1005049730506 10.1086/507442 10.1007/s11207-008-9186-8 10.1007/s11207-006-0202-6 10.1086/424564 10.1086/524294 10.1007/s11207-011-9834-2 10.1007/BF00159942 10.1007/BFb0106458 10.1017/S1323358000014375 |
ContentType | Journal Article |
Copyright | 2016. The American Astronomical Society. All rights reserved. Copyright IOP Publishing Dec 10, 2016 Attribution - NonCommercial - NoDerivatives |
Copyright_xml | – notice: 2016. The American Astronomical Society. All rights reserved. – notice: Copyright IOP Publishing Dec 10, 2016 – notice: Attribution - NonCommercial - NoDerivatives |
DBID | AAYXX CITATION 7TG 8FD H8D KL. L7M 1XC VOOES OTOTI |
DOI | 10.3847/1538-4357/833/1/87 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) OSTI.GOV |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
DocumentTitleAlternate | RADIO DIAGNOSTICS OF ELECTRON ACCELERATION SITES DURING THE ERUPTION OF A FLUX ROPE IN THE SOLAR CORONA |
EISSN | 1538-4357 |
ExternalDocumentID | 22660936 oai_HAL_insu_01551402v1 10_3847_1538_4357_833_1_87 apjaa4152 |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 2WC 4.4 6J9 85S AAFWJ AAGCD AAJIO AALHV ABHWH ACBEA ACGFS ACHIP ACNCT ADACN ADIYS AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS EJD F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 WH7 XSW AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M 1XC 41~ 6TJ 6TS 9M8 ABDPE ADXHL AETEA AI. FA8 MVM OHT VH1 VOOES WHG YYP ZCG ZKB ZY4 ABPTK OTOTI |
ID | FETCH-LOGICAL-c450t-d5e5db9e7f722f013bc2e5b8cb873a1655f66e2db6d51ff482a416e81e5b29b63 |
IEDL.DBID | O3W |
ISSN | 0004-637X |
IngestDate | Fri May 19 00:38:46 EDT 2023 Fri Sep 12 12:55:07 EDT 2025 Wed Aug 13 09:20:08 EDT 2025 Tue Jul 01 04:08:44 EDT 2025 Thu Apr 24 23:12:39 EDT 2025 Wed Aug 21 03:41:34 EDT 2024 Thu Jan 07 13:49:48 EST 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Attribution - NonCommercial - NoDerivatives: http://creativecommons.org/licenses/by-nc-nd |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c450t-d5e5db9e7f722f013bc2e5b8cb873a1655f66e2db6d51ff482a416e81e5b29b63 |
Notes | The Sun and the Heliosphere AAS01293 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9745-0400 0000-0002-6872-3630 |
OpenAccessLink | https://insu.hal.science/insu-01551402 |
PQID | 2365867813 |
PQPubID | 4562441 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_3847_1538_4357_833_1_87 iop_journals_10_3847_1538_4357_833_1_87 hal_primary_oai_HAL_insu_01551402v1 osti_scitechconnect_22660936 proquest_journals_2365867813 crossref_citationtrail_10_3847_1538_4357_833_1_87 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-12-10 |
PublicationDateYYYYMMDD | 2016-12-10 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia – name: United States |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2016 |
Publisher | The American Astronomical Society IOP Publishing American Astronomical Society |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing – name: American Astronomical Society |
References | Mann (apjaa4152bib53) 2003; 400 Poquerusse (apjaa4152bib66) 1994; 286 Schrijver (apjaa4152bib75) 2008; 674 Robinson (apjaa4152bib68) 1975; 2 Downs (apjaa4152bib20) 2012; 750 Kopp (apjaa4152bib37) 1976; 50 McLean (apjaa4152bib56) 1985 Wild (apjaa4152bib84) 1959; 12 Huang (apjaa4152bib25) 2011; 729 Karlicky (apjaa4152bib30) 1994; 155 Brueckner (apjaa4152bib10) 1995; 162 Lecacheux (apjaa4152bib42) 2000; 119 Zhang (apjaa4152bib86) 2012; 3 Dresing (apjaa4152bib21) 2016; 586 Liu (apjaa4152bib47) 2012; 753 Kahler (apjaa4152bib28) 2007; 129 Karlický (apjaa4152bib29) 2005; 432 Pomoell (apjaa4152bib65) 2008; 253 Newkirk (apjaa4152bib59) 1961; 133 Maia (apjaa4152bib49) 1999; 104 Attrill (apjaa4152bib2) 2007; 656 Aurass (apjaa4152bib3) 1994; 155 Chen (apjaa4152bib13) 2013a; 763 Mann (apjaa4152bib52) 1999b; 348 Khan (apjaa4152bib32) 2002; 388 Lin (apjaa4152bib46) 2002; 210 Kundu (apjaa4152bib39) 2001; 559 Santandrea (apjaa4152bib72) 2013; 286 Joshi (apjaa4152bib27) 2015; 812 Klassen (apjaa4152bib36) 2003b; 218 Sturrock (apjaa4152bib78) 1966; 211 Klassen (apjaa4152bib35) 2003a; 410 Hirayama (apjaa4152bib24) 1974; 34 Lin (apjaa4152bib45) 2011; 159 Yan (apjaa4152bib85) 2006; 239 Marqué (apjaa4152bib54) 2002; 387 Pick (apjaa4152bib64) 2008; 16 Saint-Hilaire (apjaa4152bib69) 2013; 762 Bain (apjaa4152bib6) 2014; 782 Leblanc (apjaa4152bib41) 1998; 183 Carmichael (apjaa4152bib12) 1964; 50 Lin (apjaa4152bib44) 2000 Bain (apjaa4152bib5) 2012; 750 Meegan (apjaa4152bib57) 2009; 702 Mann (apjaa4152bib51) 1999a Bastian (apjaa4152bib7) 2001; 558 Chen (apjaa4152bib15) 2011; 8 Démoulin (apjaa4152bib18) 2012; 750 Kozarev (apjaa4152bib38) 2011; 733 Moore (apjaa4152bib58) 2001; 552 Chen (apjaa4152bib16) 2002; 572 Klassen (apjaa4152bib34) 2012; 542 Song (apjaa4152bib76) 2015; 808 Saito (apjaa4152bib70) 1977; 55 Pick (apjaa4152bib62) 1986; 104 Paesold (apjaa4152bib61) 2001; 371 Schmidt (apjaa4152bib74) 2012; 117 Benz (apjaa4152bib8) 1982; 108 Masson (apjaa4152bib55) 2013; 771 Salas-Matamoros (apjaa4152bib71) 2016; 590 Innes (apjaa4152bib26) 2011; 531 Lynch (apjaa4152bib48) 2004; 617 van Haarlem (apjaa4152bib80) 2013; 556 Kerdraon (apjaa4152bib31) 1997; Vol. 483 Nitta (apjaa4152bib60) 2006; 650 van Ballegooijen (apjaa4152bib79) 1989; 343 Antiochos (apjaa4152bib1) 1999; 510 Aurass (apjaa4152bib4) 1999 Pick (apjaa4152bib63) 2005; 625 Scherrer (apjaa4152bib73) 2012; 275 Webb (apjaa4152bib83) 2012; 9 Berghmans (apjaa4152bib9) 2006; 38 Veronig (apjaa4152bib81) 2010; 716 Gallagher (apjaa4152bib22) 2011; 158 Carley (apjaa4152bib11) 2013; 9 Chen (apjaa4152bib14) 2013b; 769 Maia (apjaa4152bib50) 2007; 660 Zucca (apjaa4152bib88) 2014; 795 Domingo (apjaa4152bib19) 1995; 162 Zimovets (apjaa4152bib87) 2012; 547 Cheng (apjaa4152bib17) 2015; 804 Klassen (apjaa4152bib33) 1999; 343 Kundu (apjaa4152bib40) 1995; 447 Lemen (apjaa4152bib43) 2012; 275 |
References_xml | – volume: 763 start-page: L21 year: 2013a ident: apjaa4152bib13 publication-title: ApJL doi: 10.1088/2041-8205/763/1/L21 – volume: 348 start-page: 614 year: 1999b ident: apjaa4152bib52 publication-title: A&A – volume: 387 start-page: 317 year: 2002 ident: apjaa4152bib54 publication-title: A&A doi: 10.1051/0004-6361:20020309 – volume: 812 start-page: 50 year: 2015 ident: apjaa4152bib27 publication-title: ApJ doi: 10.1088/0004-637X/812/1/50 – volume: 210 start-page: 3 year: 2002 ident: apjaa4152bib46 publication-title: SoPh doi: 10.1023/A:1022428818870 – volume: 590 start-page: A135 year: 2016 ident: apjaa4152bib71 publication-title: A&A doi: 10.1051/0004-6361/201528015 – volume: 782 start-page: 43 year: 2014 ident: apjaa4152bib6 publication-title: ApJ doi: 10.1088/0004-637X/782/1/43 – volume: 447 start-page: L135 year: 1995 ident: apjaa4152bib40 publication-title: ApJL doi: 10.1086/309567 – volume: 762 start-page: 60 year: 2013 ident: apjaa4152bib69 publication-title: ApJ doi: 10.1088/0004-637X/762/1/60 – volume: 716 start-page: L57 year: 2010 ident: apjaa4152bib81 publication-title: ApJL doi: 10.1088/2041-8205/716/1/L57 – volume: 34 start-page: 323 year: 1974 ident: apjaa4152bib24 publication-title: SoPh doi: 10.1007/BF00153671 – volume: 38 start-page: 1807 year: 2006 ident: apjaa4152bib9 publication-title: AdSpR doi: 10.1016/j.asr.2005.03.070 – volume: 510 start-page: 485 year: 1999 ident: apjaa4152bib1 publication-title: ApJ doi: 10.1086/306563 – volume: 343 start-page: 971 year: 1989 ident: apjaa4152bib79 publication-title: ApJ doi: 10.1086/167766 – volume: 729 start-page: 107 year: 2011 ident: apjaa4152bib25 publication-title: ApJ doi: 10.1088/0004-637X/729/2/107 – volume: 155 start-page: 171 year: 1994 ident: apjaa4152bib30 publication-title: SoPh doi: 10.1007/BF00670737 – volume: 9 start-page: 3 year: 2012 ident: apjaa4152bib83 publication-title: LRSP doi: 10.12942/lrsp-2012-3 – volume: 547 start-page: A6 year: 2012 ident: apjaa4152bib87 publication-title: A&A doi: 10.1051/0004-6361/201219454 – volume: 162 start-page: 1 year: 1995 ident: apjaa4152bib19 publication-title: SoPh doi: 10.1007/BF00733425 – volume: 558 start-page: L65 year: 2001 ident: apjaa4152bib7 publication-title: ApJL doi: 10.1086/323421 – volume: 586 start-page: A55 year: 2016 ident: apjaa4152bib21 publication-title: A&A doi: 10.1051/0004-6361/201527347 – start-page: 15 year: 2000 ident: apjaa4152bib44 – volume: 211 start-page: 695 year: 1966 ident: apjaa4152bib78 publication-title: Natur doi: 10.1038/211695a0 – volume: 9 start-page: 811 year: 2013 ident: apjaa4152bib11 publication-title: NatPh doi: 10.1038/nphys2767 – volume: 769 start-page: 96 year: 2013b ident: apjaa4152bib14 publication-title: ApJ doi: 10.1088/0004-637X/769/2/96 – volume: 104 start-page: 12507 year: 1999 ident: apjaa4152bib49 publication-title: JGR doi: 10.1029/1999JA900033 – volume: 133 start-page: 983 year: 1961 ident: apjaa4152bib59 publication-title: ApJ doi: 10.1086/147104 – volume: 656 start-page: L101 year: 2007 ident: apjaa4152bib2 publication-title: ApJL doi: 10.1086/512854 – volume: 750 start-page: 134 year: 2012 ident: apjaa4152bib20 publication-title: ApJ doi: 10.1088/0004-637X/750/2/134 – volume: 552 start-page: 833 year: 2001 ident: apjaa4152bib58 publication-title: ApJ doi: 10.1086/320559 – volume: 158 start-page: 365 year: 2011 ident: apjaa4152bib22 publication-title: SSRv doi: 10.1007/s11214-010-9710-7 – year: 1985 ident: apjaa4152bib56 – volume: 625 start-page: 1019 year: 2005 ident: apjaa4152bib63 publication-title: ApJ doi: 10.1086/429530 – volume: 16 start-page: 1 year: 2008 ident: apjaa4152bib64 publication-title: A&ARv doi: 10.1007/s00159-008-0013-x – volume: 55 start-page: 121 year: 1977 ident: apjaa4152bib70 publication-title: SoPh doi: 10.1007/BF00150879 – volume: 432 start-page: 705 year: 2005 ident: apjaa4152bib29 publication-title: A&A doi: 10.1051/0004-6361:20041551 – volume: 286 start-page: 611 year: 1994 ident: apjaa4152bib66 publication-title: A&A – volume: 343 start-page: 287 year: 1999 ident: apjaa4152bib33 publication-title: A&A – volume: 117 start-page: 4106 year: 2012 ident: apjaa4152bib74 publication-title: JGRA doi: 10.1029/2011JA017318 – volume: 531 start-page: L13 year: 2011 ident: apjaa4152bib26 publication-title: A&A doi: 10.1051/0004-6361/201117255 – volume: 155 start-page: 203 year: 1994 ident: apjaa4152bib3 publication-title: SoPh doi: 10.1007/BF00670741 – volume: 162 start-page: 357 year: 1995 ident: apjaa4152bib10 publication-title: SoPh doi: 10.1007/BF00733434 – volume: 572 start-page: L99 year: 2002 ident: apjaa4152bib16 publication-title: ApJL doi: 10.1086/341486 – volume: 286 start-page: 5 year: 2013 ident: apjaa4152bib72 publication-title: SoPh doi: 10.1007/s11207-013-0289-5 – volume: 753 start-page: 52 year: 2012 ident: apjaa4152bib47 publication-title: ApJ doi: 10.1088/0004-637X/753/1/52 – volume: 660 start-page: 874 year: 2007 ident: apjaa4152bib50 publication-title: ApJ doi: 10.1086/508011 – volume: 702 start-page: 791 year: 2009 ident: apjaa4152bib57 publication-title: ApJ doi: 10.1088/0004-637X/702/1/791 – volume: 542 start-page: A28 year: 2012 ident: apjaa4152bib34 publication-title: A&A doi: 10.1051/0004-6361/201118626 – volume: 733 start-page: L25 year: 2011 ident: apjaa4152bib38 publication-title: ApJL doi: 10.1088/2041-8205/733/2/L25 – volume: 795 start-page: 68 year: 2014 ident: apjaa4152bib88 publication-title: ApJ doi: 10.1088/0004-637X/795/1/68 – volume: 400 start-page: 329 year: 2003 ident: apjaa4152bib53 publication-title: A&A doi: 10.1051/0004-6361:20021593 – volume: 129 start-page: 359 year: 2007 ident: apjaa4152bib28 publication-title: SSRv doi: 10.1007/s11214-007-9143-0 – volume: 808 start-page: L15 year: 2015 ident: apjaa4152bib76 publication-title: ApJL doi: 10.1088/2041-8205/808/1/L15 – volume: 750 start-page: 44 year: 2012 ident: apjaa4152bib5 publication-title: ApJ doi: 10.1088/0004-637X/750/1/44 – volume: 159 start-page: 421 year: 2011 ident: apjaa4152bib45 publication-title: SSRv doi: 10.1007/s11214-011-9801-0 – volume: 804 start-page: 82 year: 2015 ident: apjaa4152bib17 publication-title: ApJ doi: 10.1088/0004-637X/804/2/82 – volume: 12 start-page: 369 year: 1959 ident: apjaa4152bib84 publication-title: AuJPh doi: 10.1071/PH590369 – start-page: 293 year: 1999 ident: apjaa4152bib4 – volume: 750 start-page: 147 year: 2012 ident: apjaa4152bib18 publication-title: ApJ doi: 10.1088/0004-637X/750/2/147 – volume: 410 start-page: 307 year: 2003a ident: apjaa4152bib35 publication-title: A&A doi: 10.1051/0004-6361:20031247 – volume: 556 start-page: A2 year: 2013 ident: apjaa4152bib80 publication-title: A&A doi: 10.1051/0004-6361/201220873 – volume: 8 start-page: 1 year: 2011 ident: apjaa4152bib15 publication-title: LRSP doi: 10.12942/lrsp-2011-1 – volume: 771 start-page: 82 year: 2013 ident: apjaa4152bib55 publication-title: ApJ doi: 10.1088/0004-637X/771/2/82 – volume: 275 start-page: 17 year: 2012 ident: apjaa4152bib43 publication-title: SoPh doi: 10.1007/s11207-011-9776-8 – volume: 218 start-page: 197 year: 2003b ident: apjaa4152bib36 publication-title: SoPh doi: 10.1023/B:SOLA.0000013034.61996.c4 – volume: 3 start-page: 747 year: 2012 ident: apjaa4152bib86 publication-title: NatCo doi: 10.1038/ncomms1753 – volume: 108 start-page: 161 year: 1982 ident: apjaa4152bib8 publication-title: A&A – volume: 371 start-page: 333 year: 2001 ident: apjaa4152bib61 publication-title: A&A doi: 10.1051/0004-6361:20010358 – volume: 50 start-page: 85 year: 1976 ident: apjaa4152bib37 publication-title: SoPh doi: 10.1007/BF00206193 – volume: 388 start-page: 363 year: 2002 ident: apjaa4152bib32 publication-title: A&A doi: 10.1051/0004-6361:20020385 – volume: 559 start-page: 443 year: 2001 ident: apjaa4152bib39 publication-title: ApJ doi: 10.1086/322301 – volume: 183 start-page: 165 year: 1998 ident: apjaa4152bib41 publication-title: SoPh doi: 10.1023/A:1005049730506 – volume: 119 start-page: 321 year: 2000 ident: apjaa4152bib42 publication-title: GMS – volume: 650 start-page: 438 year: 2006 ident: apjaa4152bib60 publication-title: ApJ doi: 10.1086/507442 – volume: 253 start-page: 249 year: 2008 ident: apjaa4152bib65 publication-title: SoPh doi: 10.1007/s11207-008-9186-8 – volume: 239 start-page: 277 year: 2006 ident: apjaa4152bib85 publication-title: SoPh doi: 10.1007/s11207-006-0202-6 – start-page: 477 year: 1999a ident: apjaa4152bib51 – volume: 617 start-page: 589 year: 2004 ident: apjaa4152bib48 publication-title: ApJ doi: 10.1086/424564 – volume: 674 start-page: 586 year: 2008 ident: apjaa4152bib75 publication-title: ApJ doi: 10.1086/524294 – volume: 275 start-page: 207 year: 2012 ident: apjaa4152bib73 publication-title: SoPh doi: 10.1007/s11207-011-9834-2 – volume: 50 start-page: 451 year: 1964 ident: apjaa4152bib12 publication-title: NASSP – volume: 104 start-page: 19 year: 1986 ident: apjaa4152bib62 publication-title: SoPh doi: 10.1007/BF00159942 – volume: Vol. 483 start-page: 192 year: 1997 ident: apjaa4152bib31 doi: 10.1007/BFb0106458 – volume: 2 start-page: 374 year: 1975 ident: apjaa4152bib68 publication-title: PASAu doi: 10.1017/S1323358000014375 |
SSID | ssj0004299 |
Score | 2.407538 |
Snippet | ABSTRACT Electron acceleration in the solar corona is often associated with flares and the eruption of twisted magnetic structures known as flux ropes.... Electron acceleration in the solar corona is often associated with flares and the eruption of twisted magnetic structures known as flux ropes. However, the... |
SourceID | osti hal proquest crossref iop |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 87 |
SubjectTerms | ACCELERATION acceleration of particles ASTRONOMY Astrophysics ASTROPHYSICS, COSMOLOGY AND ASTRONOMY BLOWERS CANCELLATION Corona Electron acceleration ERUPTION Fluctuations KEV RANGE Magnetic flux MASS MHZ RANGE Particle acceleration Physics PLASMA JETS Radio astronomy Radio observation Radio sources (astronomy) Sciences of the Universe Solar and Stellar Astrophysics SOLAR CORONA SOLAR FLARES SOLAR PARTICLES Spine SUN Sun: coronal mass ejections (CMEs) Sun: flares Sun: particle emission Sun: radio radiation TAIL ELECTRONS |
Title | RADIO DIAGNOSTICS OF ELECTRON ACCELERATION SITES DURING THE ERUPTION OF A FLUX ROPE IN THE SOLAR CORONA |
URI | https://iopscience.iop.org/article/10.3847/1538-4357/833/1/87 https://www.proquest.com/docview/2365867813 https://insu.hal.science/insu-01551402 https://www.osti.gov/biblio/22660936 |
Volume | 833 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfoJiRe0BigFbbJ0hA8oND6I3byGKUpDSpN1TSib1ac2EMI2op2SPz3nJOs04SYeLN055Pl-_DP1vkOoTfEgh1owz1rfe5xYUqvpLz2mDHaEl5z0_Qh-zwTk4J_WvmrLjen-Quz2Xah_wMM20LB7RY6_2YQSweNj8IpLwcBYwMyCGQPHTNA5u7ulbEvd98iadihX-4JJlftn5l_yLh3LvW-uqzIHqwAIvUGfO2vSN0cP-MT9LTDjThqV_kMPTLrU3QW7dxL9ubHb_wWN-P2oWJ3ih7P29FzdL2IRmmGR2n0cZblyzTOcTbGyTSJl4tshqM4hnH7VIVzCGQ5HhUuRQIvJwlOFsW8ocCUCI-nxQq7zD-czhpynk2jBY4zEBS9QMU4WcYTr2uv4FXcH-692jd-rUMjraTUAhTUFTW-DiodSFYS4ftWCENrLWqfWMsDWgJ6MwEBJhpqwV6io_Vmbc4QBlQWVgTYpay4qzAvdWmkMWUJqLiqaR-R281VVVd73LXA-K7gDuIUopxClFOIAoUoogLZR-8Pc7Zt5Y0Hua9AZwdGVzR7Ek2VS-hXLSwc0l-kj96BTlXnprsH5V3c4yy33w40ta1tH507u1BgrK7YbuWykqq9AjArhiETQL61lzsZlAHcA3BA2Kv_Xsdr9AQgWtMqiQzP0dH-5425ABi015eol2bzy8bk_wA46_K2 |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEF_sieKL6Klc9U4XFH2QmO5HdpPHkCY2GpPSNNi3JR-bE9G22Cr43zubpD0O8fBtYGaHJfOxvyyzMwi9Ii34QaW51bYOt7jQpVVS3lhM66olvOG6m0P2KRWzgn9YOYdqwu4tzGY7pP53QPaNgvtPaOKbQS61uxiFU17aLmM2sV1pb5t2hG47DNAxuHTGPl89jaTegIC5JZhc9e9m_qHn2tk0-mIqI0ewC8jWG4i3v7J1dwRFD9D9ATtiv9_pQ3RLr0_Rmb8zt9mb77_xa9zR_WXF7hTdmffUI3S58Kdxhqex_z7N8mUc5DiLcJiEwXKRpdgPAqD76yqcQzLL8bQwZRJ4OQtxuCjmHQeW-DhKihU21X84Tjt2niX-AgcZKPIfoyIKl8HMGkYsWDV3JnurcbTTVJ6WraS0BThY1VQ7lVtXrmQlEY7TCqFpU4nGIW3LXVoCgtMuASHqVYI9QSfrzVqfIQzIzKsJiEtZc9NlXlalllqXJSDjuqFjRA4fV9VD_3EzBuObgv8QYxBlDKKMQRQYRBHlyjF6e1yz7btv3Cj9Emx2FDSNs2d-okxRv-qh4YT-ImP0BmyqhlDd3ajv4ppkuf165ClwuTE6N36hwGFNw93aVCbVewWAVkw8JoB98JcrHZQB5AOAQNjT_97HC3R3Po1UEqcfn6F7gNi6yUlkco5O9j9-6gtARfvqeef3fwDiqvWr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radio+Diagnostics+of+Electron+Acceleration+Sites+During+the+Eruption+of+a+Flux+Rope+in+the+Solar+Corona&rft.jtitle=The+Astrophysical+journal&rft.au=Carley%2C+Eoin+P.&rft.au=Vilmer%2C+Nicole&rft.au=Gallagher%2C+Peter+T.&rft.date=2016-12-10&rft.pub=American+Astronomical+Society&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=833&rft.issue=1&rft_id=info:doi/10.3847%2F1538-4357%2F833%2F1%2F87&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_insu_01551402v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |