Mixtures of common t -factor analyzers for clustering high-dimensional microarray data

Motivation: Mixtures of factor analyzers enable model-based clustering to be undertaken for high-dimensional microarray data, where the number of observations n is small relative to the number of genes p. Moreover, when the number of clusters is not small, for example, where there are several differ...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 27; no. 9; pp. 1269 - 1276
Main Authors Baek, Jangsun, McLachlan, Geoffrey J.
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.05.2011
Subjects
Online AccessGet full text
ISSN1367-4803
1367-4811
1367-4811
1460-2059
DOI10.1093/bioinformatics/btr112

Cover

Abstract Motivation: Mixtures of factor analyzers enable model-based clustering to be undertaken for high-dimensional microarray data, where the number of observations n is small relative to the number of genes p. Moreover, when the number of clusters is not small, for example, where there are several different types of cancer, there may be the need to reduce further the number of parameters in the specification of the component-covariance matrices. A further reduction can be achieved by using mixtures of factor analyzers with common component-factor loadings (MCFA), which is a more parsimonious model. However, this approach is sensitive to both non-normality and outliers, which are commonly observed in microarray experiments. This sensitivity of the MCFA approach is due to its being based on a mixture model in which the multivariate normal family of distributions is assumed for the component-error and factor distributions. Results: An extension to mixtures of t-factor analyzers with common component-factor loadings is considered, whereby the multivariate t-family is adopted for the component-error and factor distributions. An EM algorithm is developed for the fitting of mixtures of common t-factor analyzers. The model can handle data with tails longer than that of the normal distribution, is robust against outliers and allows the data to be displayed in low-dimensional plots. It is applied here to both synthetic data and some microarray gene expression data for clustering and shows its better performance over several existing methods. Availability: The algorithms were implemented in Matlab. The Matlab code is available at http://blog.naver.com/aggie100. Contact:  jbaek@jnu.ac.kr Supplementary information:  Supplementary data are available at Bioinformatics online.
AbstractList Mixtures of factor analyzers enable model-based clustering to be undertaken for high-dimensional microarray data, where the number of observations n is small relative to the number of genes p. Moreover, when the number of clusters is not small, for example, where there are several different types of cancer, there may be the need to reduce further the number of parameters in the specification of the component-covariance matrices. A further reduction can be achieved by using mixtures of factor analyzers with common component-factor loadings (MCFA), which is a more parsimonious model. However, this approach is sensitive to both non-normality and outliers, which are commonly observed in microarray experiments. This sensitivity of the MCFA approach is due to its being based on a mixture model in which the multivariate normal family of distributions is assumed for the component-error and factor distributions.MOTIVATIONMixtures of factor analyzers enable model-based clustering to be undertaken for high-dimensional microarray data, where the number of observations n is small relative to the number of genes p. Moreover, when the number of clusters is not small, for example, where there are several different types of cancer, there may be the need to reduce further the number of parameters in the specification of the component-covariance matrices. A further reduction can be achieved by using mixtures of factor analyzers with common component-factor loadings (MCFA), which is a more parsimonious model. However, this approach is sensitive to both non-normality and outliers, which are commonly observed in microarray experiments. This sensitivity of the MCFA approach is due to its being based on a mixture model in which the multivariate normal family of distributions is assumed for the component-error and factor distributions.An extension to mixtures of t-factor analyzers with common component-factor loadings is considered, whereby the multivariate t-family is adopted for the component-error and factor distributions. An EM algorithm is developed for the fitting of mixtures of common t-factor analyzers. The model can handle data with tails longer than that of the normal distribution, is robust against outliers and allows the data to be displayed in low-dimensional plots. It is applied here to both synthetic data and some microarray gene expression data for clustering and shows its better performance over several existing methods.RESULTSAn extension to mixtures of t-factor analyzers with common component-factor loadings is considered, whereby the multivariate t-family is adopted for the component-error and factor distributions. An EM algorithm is developed for the fitting of mixtures of common t-factor analyzers. The model can handle data with tails longer than that of the normal distribution, is robust against outliers and allows the data to be displayed in low-dimensional plots. It is applied here to both synthetic data and some microarray gene expression data for clustering and shows its better performance over several existing methods.The algorithms were implemented in Matlab. The Matlab code is available at http://blog.naver.com/aggie100.AVAILABILITYThe algorithms were implemented in Matlab. The Matlab code is available at http://blog.naver.com/aggie100.
Motivation: Mixtures of factor analyzers enable model-based clustering to be undertaken for high-dimensional microarray data, where the number of observations n is small relative to the number of genes p. Moreover, when the number of clusters is not small, for example, where there are several different types of cancer, there may be the need to reduce further the number of parameters in the specification of the component-covariance matrices. A further reduction can be achieved by using mixtures of factor analyzers with common component-factor loadings (MCFA), which is a more parsimonious model. However, this approach is sensitive to both non-normality and outliers, which are commonly observed in microarray experiments. This sensitivity of the MCFA approach is due to its being based on a mixture model in which the multivariate normal family of distributions is assumed for the component-error and factor distributions.Results: An extension to mixtures of t-factor analyzers with common component-factor loadings is considered, whereby the multivariate t-family is adopted for the component-error and factor distributions. An EM algorithm is developed for the fitting of mixtures of common t-factor analyzers. The model can handle data with tails longer than that of the normal distribution, is robust against outliers and allows the data to be displayed in low-dimensional plots. It is applied here to both synthetic data and some microarray gene expression data for clustering and shows its better performance over several existing methods.Availability: The algorithms were implemented in Matlab. The Matlab code is available at http://blog.naver.com/aggie100.Contact: jbaeknu.ac.krSupplementary information: Supplementary data are available at Bioinformatics online.
Motivation: Mixtures of factor analyzers enable model-based clustering to be undertaken for high-dimensional microarray data, where the number of observations n is small relative to the number of genes p. Moreover, when the number of clusters is not small, for example, where there are several different types of cancer, there may be the need to reduce further the number of parameters in the specification of the component-covariance matrices. A further reduction can be achieved by using mixtures of factor analyzers with common component-factor loadings (MCFA), which is a more parsimonious model. However, this approach is sensitive to both non-normality and outliers, which are commonly observed in microarray experiments. This sensitivity of the MCFA approach is due to its being based on a mixture model in which the multivariate normal family of distributions is assumed for the component-error and factor distributions. Results: An extension to mixtures of t-factor analyzers with common component-factor loadings is considered, whereby the multivariate t-family is adopted for the component-error and factor distributions. An EM algorithm is developed for the fitting of mixtures of common t-factor analyzers. The model can handle data with tails longer than that of the normal distribution, is robust against outliers and allows the data to be displayed in low-dimensional plots. It is applied here to both synthetic data and some microarray gene expression data for clustering and shows its better performance over several existing methods. Availability: The algorithms were implemented in Matlab. The Matlab code is available at http://blog.naver.com/aggie100. Contact:  jbaek@jnu.ac.kr Supplementary information:  Supplementary data are available at Bioinformatics online.
Motivation: Mixtures of factor analyzers enable model-based clustering to be undertaken for high-dimensional microarray data, where the number of observations n is small relative to the number of genes p. Moreover, when the number of clusters is not small, for example, where there are several different types of cancer, there may be the need to reduce further the number of parameters in the specification of the component-covariance matrices. A further reduction can be achieved by using mixtures of factor analyzers with common component-factor loadings (MCFA), which is a more parsimonious model. However, this approach is sensitive to both non-normality and outliers, which are commonly observed in microarray experiments. This sensitivity of the MCFA approach is due to its being based on a mixture model in which the multivariate normal family of distributions is assumed for the component-error and factor distributions.Results: An extension to mixtures of t-factor analyzers with common component-factor loadings is considered, whereby the multivariate t-family is adopted for the component-error and factor distributions. An EM algorithm is developed for the fitting of mixtures of common t-factor analyzers. The model can handle data with tails longer than that of the normal distribution, is robust against outliers and allows the data to be displayed in low-dimensional plots. It is applied here to both synthetic data and some microarray gene expression data for clustering and shows its better performance over several existing methods.
Mixtures of factor analyzers enable model-based clustering to be undertaken for high-dimensional microarray data, where the number of observations n is small relative to the number of genes p. Moreover, when the number of clusters is not small, for example, where there are several different types of cancer, there may be the need to reduce further the number of parameters in the specification of the component-covariance matrices. A further reduction can be achieved by using mixtures of factor analyzers with common component-factor loadings (MCFA), which is a more parsimonious model. However, this approach is sensitive to both non-normality and outliers, which are commonly observed in microarray experiments. This sensitivity of the MCFA approach is due to its being based on a mixture model in which the multivariate normal family of distributions is assumed for the component-error and factor distributions. An extension to mixtures of t-factor analyzers with common component-factor loadings is considered, whereby the multivariate t-family is adopted for the component-error and factor distributions. An EM algorithm is developed for the fitting of mixtures of common t-factor analyzers. The model can handle data with tails longer than that of the normal distribution, is robust against outliers and allows the data to be displayed in low-dimensional plots. It is applied here to both synthetic data and some microarray gene expression data for clustering and shows its better performance over several existing methods. The algorithms were implemented in Matlab. The Matlab code is available at http://blog.naver.com/aggie100.
Author Baek, Jangsun
McLachlan, Geoffrey J.
Author_xml – sequence: 1
  givenname: Jangsun
  surname: Baek
  fullname: Baek, Jangsun
– sequence: 2
  givenname: Geoffrey J.
  surname: McLachlan
  fullname: McLachlan, Geoffrey J.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24095325$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21372081$$D View this record in MEDLINE/PubMed
BookMark eNqNkctu1TAQhi1URC_wCCBvEGxCPXZiO2JVVdykIjbANpo4dmvk2AfbERyenhydQxEsoIvRzOL75_LPKTmKKVpCHgN7AawX56NPPrqUZ6zelPOxZgB-j5yAkKppNcDRbc3EMTkt5QtjrGOdfECOOQjFmYYT8vm9_16XbAtNjpo0zynSShuHpqZMMWLY_rC50HUSNWEp1WYfr-mNv75pJj_bWHxaITp7kxPmjFs6YcWH5L7DUOyjQz4jn16_-nj5trn68Obd5cVVY9qO1WZqJzVah25EKxiX0I8gEC0YDS0fuTYgNaBiTHRykopNSnfOWjW5NZgSZ0Tu-y5xg9tvGMKwyX7GvB2ADTujhj-NGvZGrcJne-Emp6-LLXWYfTE2BIw2LWXQfQ-tkuIOpORcSqW6lXz-TxKkgha0ht3eTw7oMs52ul3612NW4OkBwGIwuIzR-PKba1nfCb6b2e251f5SsnV3vv_lXzrj60qkWDP68B_1T2PKzJE
CitedBy_id crossref_primary_10_1007_s11634_013_0137_3
crossref_primary_10_1109_TPAMI_2018_2885760
crossref_primary_10_1007_s11749_018_0585_3
crossref_primary_10_1016_j_jmva_2015_09_025
crossref_primary_10_1093_bioinformatics_btz599
crossref_primary_10_1007_s00357_016_9211_9
crossref_primary_10_1093_bib_bbs056
crossref_primary_10_1093_bioinformatics_btw227
crossref_primary_10_1109_TCBB_2012_108
crossref_primary_10_1016_j_csda_2013_11_008
crossref_primary_10_1016_j_jkss_2018_12_001
crossref_primary_10_1186_1471_2105_14_99
crossref_primary_10_1007_s00357_012_9114_3
crossref_primary_10_1007_s10260_013_0248_1
crossref_primary_10_1016_j_patrec_2015_02_011
crossref_primary_10_1080_03610918_2014_999088
crossref_primary_10_1007_s11634_016_0262_x
crossref_primary_10_1016_j_csda_2014_10_007
crossref_primary_10_1080_10618600_2014_948179
crossref_primary_10_1177_1471082X13503455
crossref_primary_10_1016_j_jmva_2013_02_003
crossref_primary_10_1007_s00362_022_01344_6
crossref_primary_10_1016_j_csda_2016_01_005
crossref_primary_10_1007_s11634_018_0317_2
crossref_primary_10_1016_j_ecosta_2017_05_001
crossref_primary_10_1007_s11634_014_0165_7
crossref_primary_10_1007_s12559_018_9566_9
crossref_primary_10_1016_j_jmva_2017_07_009
crossref_primary_10_1007_s11749_021_00766_y
crossref_primary_10_1016_j_csda_2013_02_012
crossref_primary_10_1109_TPAMI_2013_216
crossref_primary_10_1016_j_patcog_2012_05_003
crossref_primary_10_1371_journal_pone_0066256
crossref_primary_10_1016_j_csda_2013_07_008
crossref_primary_10_1002_sta4_43
crossref_primary_10_1007_s00357_023_09458_8
crossref_primary_10_1016_j_patrec_2018_07_003
crossref_primary_10_1007_s00357_019_09319_3
crossref_primary_10_1146_annurev_statistics_031017_100325
crossref_primary_10_1007_s10182_016_0281_0
crossref_primary_10_1080_02664763_2019_1579307
crossref_primary_10_1080_10543406_2011_608342
crossref_primary_10_1007_s10260_015_0298_7
crossref_primary_10_3390_s150819047
crossref_primary_10_1007_s00362_017_0964_y
crossref_primary_10_1080_00031305_2022_2141856
crossref_primary_10_1007_s00357_023_09452_0
crossref_primary_10_1007_s10618_013_0317_y
Cites_doi 10.1007/978-3-540-70981-7_1
10.1007/BF01908075
10.1073/pnas.252466999
10.1093/bioinformatics/bti779
10.1186/1471-2105-9-497
10.1093/bioinformatics/17.10.977
10.1016/S0167-9473(02)00183-4
10.1002/0471721182
10.1016/j.csda.2009.05.025
10.1016/j.csda.2006.09.015
10.18637/jss.v004.i02
10.2353/jmoldx.2006.050056
10.1109/TPAMI.2009.149
10.1093/bioinformatics/btg311
10.2307/2532201
10.1007/s11222-008-9056-0
10.1093/bioinformatics/btl406
10.1093/bioinformatics/btp707
10.1109/72.554192
10.1007/s00357-003-0015-3
10.1093/biostatistics/kxp062
10.1073/pnas.191502998
10.1109/34.865189
10.1093/bioinformatics/18.3.413
10.1214/aos/1176344136
10.1214/09-EJS487
10.1093/comjnl/41.8.578
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright_xml – notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
7QO
FR3
P64
ADTOC
UNPAY
DOI 10.1093/bioinformatics/btr112
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Biotechnology Research Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE - Academic
Computer and Information Systems Abstracts
CrossRef
Engineering Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
1460-2059
EndPage 1276
ExternalDocumentID 10.1093/bioinformatics/btr112
21372081
24095325
10_1093_bioinformatics_btr112
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-E4
-~X
.2P
.DC
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
CITATION
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNS
ROL
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TLC
TOX
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
.-4
.GJ
ABEFU
ABNGD
ACUKT
AFFNX
AGQPQ
AI.
AQDSO
ATTQO
AZFZN
ELUNK
HVGLF
IQODW
NTWIH
O~Y
PB-
RIG
RNI
RZF
RZO
VH1
ZGI
ABQTQ
ADRIX
AFXEN
BCRHZ
CGR
CUY
CVF
ECM
EIF
M49
NPM
ROX
482
7SC
8FD
ABJNI
JQ2
L7M
L~C
L~D
ROZ
TN5
WH7
7X8
7QO
FR3
P64
ADTOC
UNPAY
ID FETCH-LOGICAL-c450t-d4d7befafbae302619b13aae1c8142b28c1681a700356d670d785fee7dfe7d073
IEDL.DBID UNPAY
ISSN 1367-4803
1367-4811
IngestDate Wed Oct 01 16:03:32 EDT 2025
Tue Oct 07 09:26:45 EDT 2025
Fri Jul 11 16:21:29 EDT 2025
Thu Jul 10 18:16:32 EDT 2025
Wed Feb 19 01:51:56 EST 2025
Mon Jul 21 09:17:13 EDT 2025
Tue Jul 01 03:27:03 EDT 2025
Thu Apr 24 22:59:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Cluster analysis
Automatic classification
Data
Automatic analysis
Microarray
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-d4d7befafbae302619b13aae1c8142b28c1681a700356d670d785fee7dfe7d073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://academic.oup.com/bioinformatics/article-pdf/27/9/1269/48866054/bioinformatics_27_9_1269.pdf
PMID 21372081
PQID 1671418817
PQPubID 23500
PageCount 8
ParticipantIDs unpaywall_primary_10_1093_bioinformatics_btr112
proquest_miscellaneous_899147632
proquest_miscellaneous_862266775
proquest_miscellaneous_1671418817
pubmed_primary_21372081
pascalfrancis_primary_24095325
crossref_primary_10_1093_bioinformatics_btr112
crossref_citationtrail_10_1093_bioinformatics_btr112
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-05-01
PublicationDateYYYYMMDD 2011-05-01
PublicationDate_xml – month: 05
  year: 2011
  text: 2011-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2011
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Zhou (2023012512183385000_B34) 2009; 3
McLachlan (2023012512183385000_B26) 2007; 51
Fraley (2023012512183385000_B9) 1998; 41
Galimberti (2023012512183385000_B12) 2009; 53
Giles (2023012512183385000_B13) 2003; 19
McLachlan (2023012512183385000_B20) 1988
Biernacki (2023012512183385000_B6) 2000; 22
Xie (2023012512183385000_B32) 2010; 26
Biernacki (2023012512183385000_B5) 1997; 29
Souto (2023012512183385000_B29) 2008; 9
McLachlan (2023012512183385000_B24) 2002; 18
Frühwirth-Schnatter (2023012512183385000_B11) 2010; 11
Hinton (2023012512183385000_B14) 1997; 8
McLachlan (2023012512183385000_B21) 2000
Thalamuthu (2023012512183385000_B31) 2006; 22
Team RDC (2023012512183385000_B30) 2004
Li (2023012512183385000_B17) 2002; 99
Banfield (2023012512183385000_B3) 1993; 49
Fraley (2023012512183385000_B10) 2003; 20
McNicholas (2023012512183385000_B27) 2008; 18
Celeux (2023012512183385000_B7) 2007
Chowdary (2023012512183385000_B8) 2006; 8
Martella (2023012512183385000_B19) 2006; 22
Baek (2023012512183385000_B2) 2010; 32
Keribin (2023012512183385000_B16) 2000; 62
Schwarz (2023012512183385000_B28) 1978; 6
Yeung (2023012512183385000_B33) 2001; 17
McLachlan (2023012512183385000_B22) 2000
Mclachlan (2023012512183385000_B23) 1999; 4
McLachlan (2023012512183385000_B25) 2003; 41
Bhattacherjee (2023012512183385000_B4) 2001; 98
Hubert (2023012512183385000_B15) 1985; 2
Lönnstedt (2023012512183385000_B18) 2002; 12
Baek (2023012512183385000_B1) 2008
References_xml – volume-title: Advances in Data Analysis.
  year: 2007
  ident: 2023012512183385000_B7
  article-title: Mixture models for classification
  doi: 10.1007/978-3-540-70981-7_1
– volume: 2
  start-page: 193
  year: 1985
  ident: 2023012512183385000_B15
  article-title: Comparing partitions
  publication-title: J. Classific.
  doi: 10.1007/BF01908075
– volume: 99
  start-page: 16875
  year: 2002
  ident: 2023012512183385000_B17
  article-title: Genome-wide coexpression dynamics: theory and application
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.252466999
– volume: 22
  start-page: 202
  year: 2006
  ident: 2023012512183385000_B19
  article-title: Classification of microarray data with factor mixture models
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti779
– volume: 9
  start-page: 497
  year: 2008
  ident: 2023012512183385000_B29
  article-title: Clustering cancer gene expression data: a comparative study
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-497
– volume: 17
  start-page: 977
  year: 2001
  ident: 2023012512183385000_B33
  article-title: Model-based clustering and data transformations for gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.10.977
– volume: 29
  start-page: 451
  year: 1997
  ident: 2023012512183385000_B5
  article-title: Using the classification likelihood to choose the number of clusters
  publication-title: Comput. Sci. Stat.
– volume: 62
  start-page: 49
  year: 2000
  ident: 2023012512183385000_B16
  article-title: Consistent estimation of the order of mixture models
  publication-title: Sankhya Ser. A
– volume: 41
  start-page: 379
  year: 2003
  ident: 2023012512183385000_B25
  article-title: Modelling high-dimensional data by mixtures of factor analyzers
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/S0167-9473(02)00183-4
– volume-title: Mixture Models: Inference and Applications to Clustering.
  year: 1988
  ident: 2023012512183385000_B20
– volume-title: Finite Mixture Models.
  year: 2000
  ident: 2023012512183385000_B21
  doi: 10.1002/0471721182
– volume: 53
  start-page: 4301
  year: 2009
  ident: 2023012512183385000_B12
  article-title: Penalized factor mixture analysis for variable selection in Clustered Data
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2009.05.025
– volume: 51
  start-page: 5327
  year: 2007
  ident: 2023012512183385000_B26
  article-title: Extension of the mixture of factor analyzers model to incorporate the multivariate t distribution
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2006.09.015
– volume: 4
  start-page: 2
  year: 1999
  ident: 2023012512183385000_B23
  article-title: The EMMIX software for the fitting of mixtures of normal and t-components
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v004.i02
– volume-title: Technical Report NI08018-SCH
  year: 2008
  ident: 2023012512183385000_B1
  article-title: Mixtures of factor analyzers with common factor loadings for the clustering and visualisation of high-dimensional data
– volume: 8
  start-page: 31
  year: 2006
  ident: 2023012512183385000_B8
  article-title: Prognostic gene expression signatures can be measured in tissues collected in RNAlater preservative
  publication-title: J. Mol. Diagn.
  doi: 10.2353/jmoldx.2006.050056
– volume: 32
  start-page: 1298
  year: 2010
  ident: 2023012512183385000_B2
  article-title: Mixtures of factor analyzers with common factor loadings: applications to the clustering and visualisation of high-dimensional data
  publication-title: IEEE Trans. Pattern Anal. Mach. Intel.
  doi: 10.1109/TPAMI.2009.149
– volume: 19
  start-page: 2254
  year: 2003
  ident: 2023012512183385000_B13
  article-title: Normality of oligonucleotide microarray data and implications for parametric statistical analyses
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg311
– volume-title: R: A Language and Environment for Statistical Computing.
  year: 2004
  ident: 2023012512183385000_B30
– volume: 49
  start-page: 803
  year: 1993
  ident: 2023012512183385000_B3
  article-title: Model-based Gaussian and non-Gaussian clustering
  publication-title: Biometrics
  doi: 10.2307/2532201
– volume: 18
  start-page: 285
  year: 2008
  ident: 2023012512183385000_B27
  article-title: Parsimonious Gaussian mixture models
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-008-9056-0
– volume: 22
  start-page: 2405
  year: 2006
  ident: 2023012512183385000_B31
  article-title: Evaluation and comparison of gene clustering methods in microarray analysis
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl406
– volume: 26
  start-page: 501
  year: 2010
  ident: 2023012512183385000_B32
  article-title: Penalized mixtures of factor analyzers with application to clustering high dimensional microarray data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp707
– volume: 12
  start-page: 31
  year: 2002
  ident: 2023012512183385000_B18
  article-title: Replicated microarray data
  publication-title: Stat. Sinica
– volume: 8
  start-page: 65
  year: 1997
  ident: 2023012512183385000_B14
  article-title: Modeling the manifolds of images of handwritten digits
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.554192
– volume: 20
  start-page: 263
  year: 2003
  ident: 2023012512183385000_B10
  article-title: Enhanced model-based clustering, density estimation, and discriminant analysis software: MCLUST
  publication-title: J. Classific.
  doi: 10.1007/s00357-003-0015-3
– volume: 11
  start-page: 317
  year: 2010
  ident: 2023012512183385000_B11
  article-title: Bayesian inference for finite mixtures of univariate and multivariate skew-normal and skew-t distributions
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxp062
– start-page: 599
  volume-title: Proceedings of the Seventeenth International Conference on Machine Learning.
  year: 2000
  ident: 2023012512183385000_B22
  article-title: Mixtures of factor analyzers
– volume: 98
  start-page: 13790
  year: 2001
  ident: 2023012512183385000_B4
  article-title: Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.191502998
– volume: 22
  start-page: 719
  year: 2000
  ident: 2023012512183385000_B6
  article-title: Assessing a mixture model for clustering with the integrated completed likelihood
  publication-title: IEEE Trans. Pattern Anal. Mach. Intel.
  doi: 10.1109/34.865189
– volume: 18
  start-page: 413
  year: 2002
  ident: 2023012512183385000_B24
  article-title: Mixture model-based approach to the clustering of microarray expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.3.413
– volume: 6
  start-page: 461
  year: 1978
  ident: 2023012512183385000_B28
  article-title: Estimating the dimension of a model
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176344136
– volume: 3
  start-page: 1473
  year: 2009
  ident: 2023012512183385000_B34
  article-title: Penalized model-based clustering with unconstrained covariance matrices
  publication-title: Electron. J. Stat.
  doi: 10.1214/09-EJS487
– volume: 41
  start-page: 578
  year: 1998
  ident: 2023012512183385000_B9
  article-title: How many clusters? Which clustering methods? Answers via model-based cluster analysis
  publication-title: Comput.J.
  doi: 10.1093/comjnl/41.8.578
SSID ssj0005056
ssj0051444
Score 2.2936864
Snippet Motivation: Mixtures of factor analyzers enable model-based clustering to be undertaken for high-dimensional microarray data, where the number of observations...
Mixtures of factor analyzers enable model-based clustering to be undertaken for high-dimensional microarray data, where the number of observations n is small...
SourceID unpaywall
proquest
pubmed
pascalfrancis
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1269
SubjectTerms Algorithms
Bioinformatics
Biological and medical sciences
Cluster Analysis
Clustering
Factor Analysis, Statistical
Fundamental and applied biological sciences. Psychology
Gene Expression Profiling - methods
General aspects
Genes
Humans
Mathematical models
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Matlab
Matrices
Models, Statistical
Normal Distribution
Oligonucleotide Array Sequence Analysis - methods
Sensitivity and Specificity
Software
Stress concentration
Title Mixtures of common t -factor analyzers for clustering high-dimensional microarray data
URI https://www.ncbi.nlm.nih.gov/pubmed/21372081
https://www.proquest.com/docview/1671418817
https://www.proquest.com/docview/862266775
https://www.proquest.com/docview/899147632
https://academic.oup.com/bioinformatics/article-pdf/27/9/1269/48866054/bioinformatics_27_9_1269.pdf
UnpaywallVersion publishedVersion
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: KQ8
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: DIK
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: GX1
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central (Free e-resource, activated by CARLI)
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: OVEED
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access (Activated by CARLI)
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 20220930
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access (Activated by CARLI)
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEB52s5S2lL4f7iOo0Ktiy5Yl-7iULkthtz1sID0ZvQxLUyckNm323B_e0cpOu6HPQw8GH0aWJY08nzwz3wC8kglzziS4v01hKVdOUe99ojV3QqP9qp3yucMnp-J4yt_O8tkemCEXRvVR4ZMhpUGfL3oKUU9bHPfzSZe2jvHUXsYsFWWMWigQl_Md6SqVVVl5iQnK78OByBGwj-Bgevr-8EPIyJKUF5f1k_t7xoY8nzLb7Vy3K8bSKxbs1lKtcTLrUAXjZzD1JlzvmqXafFbz-Q-m6-gOfB0GHSJWPk66Vk_MxQ4f5H-elbtwu4e-5DA85R7sueY-XAvFMDcPYHpy_sW7M9ZkURPsHfcHaWmoB0SU5065QKhKsANi5p3nd0CrSzzdMrW-REGgFyGffIShWq3Uhvjo14cwPXpz9vqY9kUfqOF50lLLrdSuVrVWLrs8IGqWKeWYKRhPdVoYJgqmpHeBCitkYmWBGuWkrfHCD9YjGDWLxj0BglhL54JbZqzlZSIUz6zOmdJMpHWukwj4sJCV6RnRfWGOeRU881m1M3Fh_SOYbJstAyXInxqMr2jJthWiqTLP0jyCl4PaVLi7vctGNW7RrSsmJOOsKJiMgPxCBs-kiLKkzH8jgqcAjpYEX-Vx0Mrv78B8naKCRRBv1fTvhvX0n1s8gxvhl7yPF30Oo3bVuReI6Vo9hv2zd7NxvzO_ATVVVck
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB7SDaUtpe-H-wgq9CrbsmXJPobSEAoJPXQhPRm9DCFb77Jrk2zO_eEdRfa2Wfo89GDwYWRZ0sjzyTPzDcBbmTLnTIr725SWcuUU9d4n2nAnNNqvximfO3x0LA6n_MNJcbIDZsyFUUNUeDymNOjT-UAh6mmLk2E-6cI2CZ7aq4RlokpQCwXicr4lXWeyrmovEaP8DdgVBQL2CexOjz_ufw4ZWZLy8qp-8nDP2JjnU-XbnetuyVh2zYLdXagVTmYTqmD8DKbegVt9u1DrczWb_WC6Du7D13HQIWLlLO47HZvLLT7I_zwrD-DeAH3JfnjKQ9hx7SO4GYphrh_D9Oj0wrszVmTeEOwd9wfpaKgHRJTnTrlEqEqwA2Jmved3QKtLPN0ytb5EQaAXIV98hKFaLtWa-OjXJzA9eP_p3SEdij5Qw4u0o5ZbqV2jGq1cfnVA1CxXyjFTMp7prDRMlExJ7wIVVsjUyhI1yknb4IUfrKcwaeetew4EsZYuBLfMWMurVCieW10wpZnImkKnEfBxIWszMKL7whyzOnjm83pr4sL6RxBvmi0CJcifGuxd05JNK0RTVZFnRQRvRrWpcXd7l41q3bxf1UxIxllZMhkB-YUMnkkRZUlZ_EYETwEcLQm-yrOgld_fgfk6RSWLINmo6d8N68U_t3gJt8MveR8v-gom3bJ3rxHTdXpv2JPfADe3VK0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixtures+of+common+t-factor+analyzers+for+clustering+high-dimensional+microarray+data&rft.jtitle=Bioinformatics&rft.au=Baek%2C+Jangsun&rft.au=McLachlan%2C+Geoffrey+J&rft.date=2011-05-01&rft.issn=1367-4803&rft.eissn=1460-2059&rft.volume=27&rft.issue=9&rft.spage=1269&rft.epage=1276&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtr112&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon