Mixtures of common t -factor analyzers for clustering high-dimensional microarray data
Motivation: Mixtures of factor analyzers enable model-based clustering to be undertaken for high-dimensional microarray data, where the number of observations n is small relative to the number of genes p. Moreover, when the number of clusters is not small, for example, where there are several differ...
Saved in:
| Published in | Bioinformatics Vol. 27; no. 9; pp. 1269 - 1276 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Oxford University Press
01.05.2011
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1367-4803 1367-4811 1367-4811 1460-2059 |
| DOI | 10.1093/bioinformatics/btr112 |
Cover
| Abstract | Motivation: Mixtures of factor analyzers enable model-based clustering to be undertaken for high-dimensional microarray data, where the number of observations n is small relative to the number of genes p. Moreover, when the number of clusters is not small, for example, where there are several different types of cancer, there may be the need to reduce further the number of parameters in the specification of the component-covariance matrices. A further reduction can be achieved by using mixtures of factor analyzers with common component-factor loadings (MCFA), which is a more parsimonious model. However, this approach is sensitive to both non-normality and outliers, which are commonly observed in microarray experiments. This sensitivity of the MCFA approach is due to its being based on a mixture model in which the multivariate normal family of distributions is assumed for the component-error and factor distributions.
Results: An extension to mixtures of t-factor analyzers with common component-factor loadings is considered, whereby the multivariate t-family is adopted for the component-error and factor distributions. An EM algorithm is developed for the fitting of mixtures of common t-factor analyzers. The model can handle data with tails longer than that of the normal distribution, is robust against outliers and allows the data to be displayed in low-dimensional plots. It is applied here to both synthetic data and some microarray gene expression data for clustering and shows its better performance over several existing methods.
Availability: The algorithms were implemented in Matlab. The Matlab code is available at http://blog.naver.com/aggie100.
Contact: jbaek@jnu.ac.kr
Supplementary information: Supplementary data are available at Bioinformatics online. |
|---|---|
| AbstractList | Mixtures of factor analyzers enable model-based clustering to be undertaken for high-dimensional microarray data, where the number of observations n is small relative to the number of genes p. Moreover, when the number of clusters is not small, for example, where there are several different types of cancer, there may be the need to reduce further the number of parameters in the specification of the component-covariance matrices. A further reduction can be achieved by using mixtures of factor analyzers with common component-factor loadings (MCFA), which is a more parsimonious model. However, this approach is sensitive to both non-normality and outliers, which are commonly observed in microarray experiments. This sensitivity of the MCFA approach is due to its being based on a mixture model in which the multivariate normal family of distributions is assumed for the component-error and factor distributions.MOTIVATIONMixtures of factor analyzers enable model-based clustering to be undertaken for high-dimensional microarray data, where the number of observations n is small relative to the number of genes p. Moreover, when the number of clusters is not small, for example, where there are several different types of cancer, there may be the need to reduce further the number of parameters in the specification of the component-covariance matrices. A further reduction can be achieved by using mixtures of factor analyzers with common component-factor loadings (MCFA), which is a more parsimonious model. However, this approach is sensitive to both non-normality and outliers, which are commonly observed in microarray experiments. This sensitivity of the MCFA approach is due to its being based on a mixture model in which the multivariate normal family of distributions is assumed for the component-error and factor distributions.An extension to mixtures of t-factor analyzers with common component-factor loadings is considered, whereby the multivariate t-family is adopted for the component-error and factor distributions. An EM algorithm is developed for the fitting of mixtures of common t-factor analyzers. The model can handle data with tails longer than that of the normal distribution, is robust against outliers and allows the data to be displayed in low-dimensional plots. It is applied here to both synthetic data and some microarray gene expression data for clustering and shows its better performance over several existing methods.RESULTSAn extension to mixtures of t-factor analyzers with common component-factor loadings is considered, whereby the multivariate t-family is adopted for the component-error and factor distributions. An EM algorithm is developed for the fitting of mixtures of common t-factor analyzers. The model can handle data with tails longer than that of the normal distribution, is robust against outliers and allows the data to be displayed in low-dimensional plots. It is applied here to both synthetic data and some microarray gene expression data for clustering and shows its better performance over several existing methods.The algorithms were implemented in Matlab. The Matlab code is available at http://blog.naver.com/aggie100.AVAILABILITYThe algorithms were implemented in Matlab. The Matlab code is available at http://blog.naver.com/aggie100. Motivation: Mixtures of factor analyzers enable model-based clustering to be undertaken for high-dimensional microarray data, where the number of observations n is small relative to the number of genes p. Moreover, when the number of clusters is not small, for example, where there are several different types of cancer, there may be the need to reduce further the number of parameters in the specification of the component-covariance matrices. A further reduction can be achieved by using mixtures of factor analyzers with common component-factor loadings (MCFA), which is a more parsimonious model. However, this approach is sensitive to both non-normality and outliers, which are commonly observed in microarray experiments. This sensitivity of the MCFA approach is due to its being based on a mixture model in which the multivariate normal family of distributions is assumed for the component-error and factor distributions.Results: An extension to mixtures of t-factor analyzers with common component-factor loadings is considered, whereby the multivariate t-family is adopted for the component-error and factor distributions. An EM algorithm is developed for the fitting of mixtures of common t-factor analyzers. The model can handle data with tails longer than that of the normal distribution, is robust against outliers and allows the data to be displayed in low-dimensional plots. It is applied here to both synthetic data and some microarray gene expression data for clustering and shows its better performance over several existing methods.Availability: The algorithms were implemented in Matlab. The Matlab code is available at http://blog.naver.com/aggie100.Contact: jbaeknu.ac.krSupplementary information: Supplementary data are available at Bioinformatics online. Motivation: Mixtures of factor analyzers enable model-based clustering to be undertaken for high-dimensional microarray data, where the number of observations n is small relative to the number of genes p. Moreover, when the number of clusters is not small, for example, where there are several different types of cancer, there may be the need to reduce further the number of parameters in the specification of the component-covariance matrices. A further reduction can be achieved by using mixtures of factor analyzers with common component-factor loadings (MCFA), which is a more parsimonious model. However, this approach is sensitive to both non-normality and outliers, which are commonly observed in microarray experiments. This sensitivity of the MCFA approach is due to its being based on a mixture model in which the multivariate normal family of distributions is assumed for the component-error and factor distributions. Results: An extension to mixtures of t-factor analyzers with common component-factor loadings is considered, whereby the multivariate t-family is adopted for the component-error and factor distributions. An EM algorithm is developed for the fitting of mixtures of common t-factor analyzers. The model can handle data with tails longer than that of the normal distribution, is robust against outliers and allows the data to be displayed in low-dimensional plots. It is applied here to both synthetic data and some microarray gene expression data for clustering and shows its better performance over several existing methods. Availability: The algorithms were implemented in Matlab. The Matlab code is available at http://blog.naver.com/aggie100. Contact: jbaek@jnu.ac.kr Supplementary information: Supplementary data are available at Bioinformatics online. Motivation: Mixtures of factor analyzers enable model-based clustering to be undertaken for high-dimensional microarray data, where the number of observations n is small relative to the number of genes p. Moreover, when the number of clusters is not small, for example, where there are several different types of cancer, there may be the need to reduce further the number of parameters in the specification of the component-covariance matrices. A further reduction can be achieved by using mixtures of factor analyzers with common component-factor loadings (MCFA), which is a more parsimonious model. However, this approach is sensitive to both non-normality and outliers, which are commonly observed in microarray experiments. This sensitivity of the MCFA approach is due to its being based on a mixture model in which the multivariate normal family of distributions is assumed for the component-error and factor distributions.Results: An extension to mixtures of t-factor analyzers with common component-factor loadings is considered, whereby the multivariate t-family is adopted for the component-error and factor distributions. An EM algorithm is developed for the fitting of mixtures of common t-factor analyzers. The model can handle data with tails longer than that of the normal distribution, is robust against outliers and allows the data to be displayed in low-dimensional plots. It is applied here to both synthetic data and some microarray gene expression data for clustering and shows its better performance over several existing methods. Mixtures of factor analyzers enable model-based clustering to be undertaken for high-dimensional microarray data, where the number of observations n is small relative to the number of genes p. Moreover, when the number of clusters is not small, for example, where there are several different types of cancer, there may be the need to reduce further the number of parameters in the specification of the component-covariance matrices. A further reduction can be achieved by using mixtures of factor analyzers with common component-factor loadings (MCFA), which is a more parsimonious model. However, this approach is sensitive to both non-normality and outliers, which are commonly observed in microarray experiments. This sensitivity of the MCFA approach is due to its being based on a mixture model in which the multivariate normal family of distributions is assumed for the component-error and factor distributions. An extension to mixtures of t-factor analyzers with common component-factor loadings is considered, whereby the multivariate t-family is adopted for the component-error and factor distributions. An EM algorithm is developed for the fitting of mixtures of common t-factor analyzers. The model can handle data with tails longer than that of the normal distribution, is robust against outliers and allows the data to be displayed in low-dimensional plots. It is applied here to both synthetic data and some microarray gene expression data for clustering and shows its better performance over several existing methods. The algorithms were implemented in Matlab. The Matlab code is available at http://blog.naver.com/aggie100. |
| Author | Baek, Jangsun McLachlan, Geoffrey J. |
| Author_xml | – sequence: 1 givenname: Jangsun surname: Baek fullname: Baek, Jangsun – sequence: 2 givenname: Geoffrey J. surname: McLachlan fullname: McLachlan, Geoffrey J. |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24095325$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21372081$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkctu1TAQhi1URC_wCCBvEGxCPXZiO2JVVdykIjbANpo4dmvk2AfbERyenhydQxEsoIvRzOL75_LPKTmKKVpCHgN7AawX56NPPrqUZ6zelPOxZgB-j5yAkKppNcDRbc3EMTkt5QtjrGOdfECOOQjFmYYT8vm9_16XbAtNjpo0zynSShuHpqZMMWLY_rC50HUSNWEp1WYfr-mNv75pJj_bWHxaITp7kxPmjFs6YcWH5L7DUOyjQz4jn16_-nj5trn68Obd5cVVY9qO1WZqJzVah25EKxiX0I8gEC0YDS0fuTYgNaBiTHRykopNSnfOWjW5NZgSZ0Tu-y5xg9tvGMKwyX7GvB2ADTujhj-NGvZGrcJne-Emp6-LLXWYfTE2BIw2LWXQfQ-tkuIOpORcSqW6lXz-TxKkgha0ht3eTw7oMs52ul3612NW4OkBwGIwuIzR-PKba1nfCb6b2e251f5SsnV3vv_lXzrj60qkWDP68B_1T2PKzJE |
| CitedBy_id | crossref_primary_10_1007_s11634_013_0137_3 crossref_primary_10_1109_TPAMI_2018_2885760 crossref_primary_10_1007_s11749_018_0585_3 crossref_primary_10_1016_j_jmva_2015_09_025 crossref_primary_10_1093_bioinformatics_btz599 crossref_primary_10_1007_s00357_016_9211_9 crossref_primary_10_1093_bib_bbs056 crossref_primary_10_1093_bioinformatics_btw227 crossref_primary_10_1109_TCBB_2012_108 crossref_primary_10_1016_j_csda_2013_11_008 crossref_primary_10_1016_j_jkss_2018_12_001 crossref_primary_10_1186_1471_2105_14_99 crossref_primary_10_1007_s00357_012_9114_3 crossref_primary_10_1007_s10260_013_0248_1 crossref_primary_10_1016_j_patrec_2015_02_011 crossref_primary_10_1080_03610918_2014_999088 crossref_primary_10_1007_s11634_016_0262_x crossref_primary_10_1016_j_csda_2014_10_007 crossref_primary_10_1080_10618600_2014_948179 crossref_primary_10_1177_1471082X13503455 crossref_primary_10_1016_j_jmva_2013_02_003 crossref_primary_10_1007_s00362_022_01344_6 crossref_primary_10_1016_j_csda_2016_01_005 crossref_primary_10_1007_s11634_018_0317_2 crossref_primary_10_1016_j_ecosta_2017_05_001 crossref_primary_10_1007_s11634_014_0165_7 crossref_primary_10_1007_s12559_018_9566_9 crossref_primary_10_1016_j_jmva_2017_07_009 crossref_primary_10_1007_s11749_021_00766_y crossref_primary_10_1016_j_csda_2013_02_012 crossref_primary_10_1109_TPAMI_2013_216 crossref_primary_10_1016_j_patcog_2012_05_003 crossref_primary_10_1371_journal_pone_0066256 crossref_primary_10_1016_j_csda_2013_07_008 crossref_primary_10_1002_sta4_43 crossref_primary_10_1007_s00357_023_09458_8 crossref_primary_10_1016_j_patrec_2018_07_003 crossref_primary_10_1007_s00357_019_09319_3 crossref_primary_10_1146_annurev_statistics_031017_100325 crossref_primary_10_1007_s10182_016_0281_0 crossref_primary_10_1080_02664763_2019_1579307 crossref_primary_10_1080_10543406_2011_608342 crossref_primary_10_1007_s10260_015_0298_7 crossref_primary_10_3390_s150819047 crossref_primary_10_1007_s00362_017_0964_y crossref_primary_10_1080_00031305_2022_2141856 crossref_primary_10_1007_s00357_023_09452_0 crossref_primary_10_1007_s10618_013_0317_y |
| Cites_doi | 10.1007/978-3-540-70981-7_1 10.1007/BF01908075 10.1073/pnas.252466999 10.1093/bioinformatics/bti779 10.1186/1471-2105-9-497 10.1093/bioinformatics/17.10.977 10.1016/S0167-9473(02)00183-4 10.1002/0471721182 10.1016/j.csda.2009.05.025 10.1016/j.csda.2006.09.015 10.18637/jss.v004.i02 10.2353/jmoldx.2006.050056 10.1109/TPAMI.2009.149 10.1093/bioinformatics/btg311 10.2307/2532201 10.1007/s11222-008-9056-0 10.1093/bioinformatics/btl406 10.1093/bioinformatics/btp707 10.1109/72.554192 10.1007/s00357-003-0015-3 10.1093/biostatistics/kxp062 10.1073/pnas.191502998 10.1109/34.865189 10.1093/bioinformatics/18.3.413 10.1214/aos/1176344136 10.1214/09-EJS487 10.1093/comjnl/41.8.578 |
| ContentType | Journal Article |
| Copyright | 2015 INIST-CNRS |
| Copyright_xml | – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SC 8FD JQ2 L7M L~C L~D 7X8 7QO FR3 P64 ADTOC UNPAY |
| DOI | 10.1093/bioinformatics/btr112 |
| DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic Biotechnology Research Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts |
| DatabaseTitleList | MEDLINE - Academic Computer and Information Systems Abstracts CrossRef Engineering Research Database MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1367-4811 1460-2059 |
| EndPage | 1276 |
| ExternalDocumentID | 10.1093/bioinformatics/btr112 21372081 24095325 10_1093_bioinformatics_btr112 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -E4 -~X .2P .DC .I3 0R~ 1TH 23N 2WC 4.4 48X 53G 5GY 5WA 70D AAIJN AAIMJ AAJKP AAJQQ AAKPC AAMDB AAMVS AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN AAYXX ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIJHB AJEEA AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASPBG AVWKF AXUDD AYOIW AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE CITATION COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EJD EMOBN F5P F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- NVLIB O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 RNS ROL RPM RUSNO RW1 RXO SV3 TEORI TJP TLC TOX TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 ~KM .-4 .GJ ABEFU ABNGD ACUKT AFFNX AGQPQ AI. AQDSO ATTQO AZFZN ELUNK HVGLF IQODW NTWIH O~Y PB- RIG RNI RZF RZO VH1 ZGI ABQTQ ADRIX AFXEN BCRHZ CGR CUY CVF ECM EIF M49 NPM ROX 482 7SC 8FD ABJNI JQ2 L7M L~C L~D ROZ TN5 WH7 7X8 7QO FR3 P64 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c450t-d4d7befafbae302619b13aae1c8142b28c1681a700356d670d785fee7dfe7d073 |
| IEDL.DBID | UNPAY |
| ISSN | 1367-4803 1367-4811 |
| IngestDate | Wed Oct 01 16:03:32 EDT 2025 Tue Oct 07 09:26:45 EDT 2025 Fri Jul 11 16:21:29 EDT 2025 Thu Jul 10 18:16:32 EDT 2025 Wed Feb 19 01:51:56 EST 2025 Mon Jul 21 09:17:13 EDT 2025 Tue Jul 01 03:27:03 EDT 2025 Thu Apr 24 22:59:54 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Cluster analysis Automatic classification Data Automatic analysis Microarray |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c450t-d4d7befafbae302619b13aae1c8142b28c1681a700356d670d785fee7dfe7d073 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://academic.oup.com/bioinformatics/article-pdf/27/9/1269/48866054/bioinformatics_27_9_1269.pdf |
| PMID | 21372081 |
| PQID | 1671418817 |
| PQPubID | 23500 |
| PageCount | 8 |
| ParticipantIDs | unpaywall_primary_10_1093_bioinformatics_btr112 proquest_miscellaneous_899147632 proquest_miscellaneous_862266775 proquest_miscellaneous_1671418817 pubmed_primary_21372081 pascalfrancis_primary_24095325 crossref_primary_10_1093_bioinformatics_btr112 crossref_citationtrail_10_1093_bioinformatics_btr112 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2011-05-01 |
| PublicationDateYYYYMMDD | 2011-05-01 |
| PublicationDate_xml | – month: 05 year: 2011 text: 2011-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford – name: England |
| PublicationTitle | Bioinformatics |
| PublicationTitleAlternate | Bioinformatics |
| PublicationYear | 2011 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | Zhou (2023012512183385000_B34) 2009; 3 McLachlan (2023012512183385000_B26) 2007; 51 Fraley (2023012512183385000_B9) 1998; 41 Galimberti (2023012512183385000_B12) 2009; 53 Giles (2023012512183385000_B13) 2003; 19 McLachlan (2023012512183385000_B20) 1988 Biernacki (2023012512183385000_B6) 2000; 22 Xie (2023012512183385000_B32) 2010; 26 Biernacki (2023012512183385000_B5) 1997; 29 Souto (2023012512183385000_B29) 2008; 9 McLachlan (2023012512183385000_B24) 2002; 18 Frühwirth-Schnatter (2023012512183385000_B11) 2010; 11 Hinton (2023012512183385000_B14) 1997; 8 McLachlan (2023012512183385000_B21) 2000 Thalamuthu (2023012512183385000_B31) 2006; 22 Team RDC (2023012512183385000_B30) 2004 Li (2023012512183385000_B17) 2002; 99 Banfield (2023012512183385000_B3) 1993; 49 Fraley (2023012512183385000_B10) 2003; 20 McNicholas (2023012512183385000_B27) 2008; 18 Celeux (2023012512183385000_B7) 2007 Chowdary (2023012512183385000_B8) 2006; 8 Martella (2023012512183385000_B19) 2006; 22 Baek (2023012512183385000_B2) 2010; 32 Keribin (2023012512183385000_B16) 2000; 62 Schwarz (2023012512183385000_B28) 1978; 6 Yeung (2023012512183385000_B33) 2001; 17 McLachlan (2023012512183385000_B22) 2000 Mclachlan (2023012512183385000_B23) 1999; 4 McLachlan (2023012512183385000_B25) 2003; 41 Bhattacherjee (2023012512183385000_B4) 2001; 98 Hubert (2023012512183385000_B15) 1985; 2 Lönnstedt (2023012512183385000_B18) 2002; 12 Baek (2023012512183385000_B1) 2008 |
| References_xml | – volume-title: Advances in Data Analysis. year: 2007 ident: 2023012512183385000_B7 article-title: Mixture models for classification doi: 10.1007/978-3-540-70981-7_1 – volume: 2 start-page: 193 year: 1985 ident: 2023012512183385000_B15 article-title: Comparing partitions publication-title: J. Classific. doi: 10.1007/BF01908075 – volume: 99 start-page: 16875 year: 2002 ident: 2023012512183385000_B17 article-title: Genome-wide coexpression dynamics: theory and application publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.252466999 – volume: 22 start-page: 202 year: 2006 ident: 2023012512183385000_B19 article-title: Classification of microarray data with factor mixture models publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti779 – volume: 9 start-page: 497 year: 2008 ident: 2023012512183385000_B29 article-title: Clustering cancer gene expression data: a comparative study publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-497 – volume: 17 start-page: 977 year: 2001 ident: 2023012512183385000_B33 article-title: Model-based clustering and data transformations for gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.10.977 – volume: 29 start-page: 451 year: 1997 ident: 2023012512183385000_B5 article-title: Using the classification likelihood to choose the number of clusters publication-title: Comput. Sci. Stat. – volume: 62 start-page: 49 year: 2000 ident: 2023012512183385000_B16 article-title: Consistent estimation of the order of mixture models publication-title: Sankhya Ser. A – volume: 41 start-page: 379 year: 2003 ident: 2023012512183385000_B25 article-title: Modelling high-dimensional data by mixtures of factor analyzers publication-title: Comput. Stat. Data Anal. doi: 10.1016/S0167-9473(02)00183-4 – volume-title: Mixture Models: Inference and Applications to Clustering. year: 1988 ident: 2023012512183385000_B20 – volume-title: Finite Mixture Models. year: 2000 ident: 2023012512183385000_B21 doi: 10.1002/0471721182 – volume: 53 start-page: 4301 year: 2009 ident: 2023012512183385000_B12 article-title: Penalized factor mixture analysis for variable selection in Clustered Data publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2009.05.025 – volume: 51 start-page: 5327 year: 2007 ident: 2023012512183385000_B26 article-title: Extension of the mixture of factor analyzers model to incorporate the multivariate t distribution publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2006.09.015 – volume: 4 start-page: 2 year: 1999 ident: 2023012512183385000_B23 article-title: The EMMIX software for the fitting of mixtures of normal and t-components publication-title: J. Stat. Softw. doi: 10.18637/jss.v004.i02 – volume-title: Technical Report NI08018-SCH year: 2008 ident: 2023012512183385000_B1 article-title: Mixtures of factor analyzers with common factor loadings for the clustering and visualisation of high-dimensional data – volume: 8 start-page: 31 year: 2006 ident: 2023012512183385000_B8 article-title: Prognostic gene expression signatures can be measured in tissues collected in RNAlater preservative publication-title: J. Mol. Diagn. doi: 10.2353/jmoldx.2006.050056 – volume: 32 start-page: 1298 year: 2010 ident: 2023012512183385000_B2 article-title: Mixtures of factor analyzers with common factor loadings: applications to the clustering and visualisation of high-dimensional data publication-title: IEEE Trans. Pattern Anal. Mach. Intel. doi: 10.1109/TPAMI.2009.149 – volume: 19 start-page: 2254 year: 2003 ident: 2023012512183385000_B13 article-title: Normality of oligonucleotide microarray data and implications for parametric statistical analyses publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg311 – volume-title: R: A Language and Environment for Statistical Computing. year: 2004 ident: 2023012512183385000_B30 – volume: 49 start-page: 803 year: 1993 ident: 2023012512183385000_B3 article-title: Model-based Gaussian and non-Gaussian clustering publication-title: Biometrics doi: 10.2307/2532201 – volume: 18 start-page: 285 year: 2008 ident: 2023012512183385000_B27 article-title: Parsimonious Gaussian mixture models publication-title: Stat. Comput. doi: 10.1007/s11222-008-9056-0 – volume: 22 start-page: 2405 year: 2006 ident: 2023012512183385000_B31 article-title: Evaluation and comparison of gene clustering methods in microarray analysis publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl406 – volume: 26 start-page: 501 year: 2010 ident: 2023012512183385000_B32 article-title: Penalized mixtures of factor analyzers with application to clustering high dimensional microarray data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp707 – volume: 12 start-page: 31 year: 2002 ident: 2023012512183385000_B18 article-title: Replicated microarray data publication-title: Stat. Sinica – volume: 8 start-page: 65 year: 1997 ident: 2023012512183385000_B14 article-title: Modeling the manifolds of images of handwritten digits publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.554192 – volume: 20 start-page: 263 year: 2003 ident: 2023012512183385000_B10 article-title: Enhanced model-based clustering, density estimation, and discriminant analysis software: MCLUST publication-title: J. Classific. doi: 10.1007/s00357-003-0015-3 – volume: 11 start-page: 317 year: 2010 ident: 2023012512183385000_B11 article-title: Bayesian inference for finite mixtures of univariate and multivariate skew-normal and skew-t distributions publication-title: Biostatistics doi: 10.1093/biostatistics/kxp062 – start-page: 599 volume-title: Proceedings of the Seventeenth International Conference on Machine Learning. year: 2000 ident: 2023012512183385000_B22 article-title: Mixtures of factor analyzers – volume: 98 start-page: 13790 year: 2001 ident: 2023012512183385000_B4 article-title: Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.191502998 – volume: 22 start-page: 719 year: 2000 ident: 2023012512183385000_B6 article-title: Assessing a mixture model for clustering with the integrated completed likelihood publication-title: IEEE Trans. Pattern Anal. Mach. Intel. doi: 10.1109/34.865189 – volume: 18 start-page: 413 year: 2002 ident: 2023012512183385000_B24 article-title: Mixture model-based approach to the clustering of microarray expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.3.413 – volume: 6 start-page: 461 year: 1978 ident: 2023012512183385000_B28 article-title: Estimating the dimension of a model publication-title: Ann. Stat. doi: 10.1214/aos/1176344136 – volume: 3 start-page: 1473 year: 2009 ident: 2023012512183385000_B34 article-title: Penalized model-based clustering with unconstrained covariance matrices publication-title: Electron. J. Stat. doi: 10.1214/09-EJS487 – volume: 41 start-page: 578 year: 1998 ident: 2023012512183385000_B9 article-title: How many clusters? Which clustering methods? Answers via model-based cluster analysis publication-title: Comput.J. doi: 10.1093/comjnl/41.8.578 |
| SSID | ssj0005056 ssj0051444 |
| Score | 2.2936864 |
| Snippet | Motivation: Mixtures of factor analyzers enable model-based clustering to be undertaken for high-dimensional microarray data, where the number of observations... Mixtures of factor analyzers enable model-based clustering to be undertaken for high-dimensional microarray data, where the number of observations n is small... |
| SourceID | unpaywall proquest pubmed pascalfrancis crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1269 |
| SubjectTerms | Algorithms Bioinformatics Biological and medical sciences Cluster Analysis Clustering Factor Analysis, Statistical Fundamental and applied biological sciences. Psychology Gene Expression Profiling - methods General aspects Genes Humans Mathematical models Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) Matlab Matrices Models, Statistical Normal Distribution Oligonucleotide Array Sequence Analysis - methods Sensitivity and Specificity Software Stress concentration |
| Title | Mixtures of common t -factor analyzers for clustering high-dimensional microarray data |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/21372081 https://www.proquest.com/docview/1671418817 https://www.proquest.com/docview/862266775 https://www.proquest.com/docview/899147632 https://academic.oup.com/bioinformatics/article-pdf/27/9/1269/48866054/bioinformatics_27_9_1269.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 27 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: KQ8 dateStart: 19960101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: ADMLS dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1367-4811 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: DIK dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1367-4811 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: GX1 dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central (Free e-resource, activated by CARLI) customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: OVEED dateStart: 20010101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid – providerCode: PRVASL databaseName: Oxford Journals Open Access (Activated by CARLI) customDbUrl: eissn: 1367-4811 dateEnd: 20220930 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press – providerCode: PRVASL databaseName: Oxford Journals Open Access (Activated by CARLI) customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEB52s5S2lL4f7iOo0Ktiy5Yl-7iULkthtz1sID0ZvQxLUyckNm323B_e0cpOu6HPQw8GH0aWJY08nzwz3wC8kglzziS4v01hKVdOUe99ojV3QqP9qp3yucMnp-J4yt_O8tkemCEXRvVR4ZMhpUGfL3oKUU9bHPfzSZe2jvHUXsYsFWWMWigQl_Md6SqVVVl5iQnK78OByBGwj-Bgevr-8EPIyJKUF5f1k_t7xoY8nzLb7Vy3K8bSKxbs1lKtcTLrUAXjZzD1JlzvmqXafFbz-Q-m6-gOfB0GHSJWPk66Vk_MxQ4f5H-elbtwu4e-5DA85R7sueY-XAvFMDcPYHpy_sW7M9ZkURPsHfcHaWmoB0SU5065QKhKsANi5p3nd0CrSzzdMrW-REGgFyGffIShWq3Uhvjo14cwPXpz9vqY9kUfqOF50lLLrdSuVrVWLrs8IGqWKeWYKRhPdVoYJgqmpHeBCitkYmWBGuWkrfHCD9YjGDWLxj0BglhL54JbZqzlZSIUz6zOmdJMpHWukwj4sJCV6RnRfWGOeRU881m1M3Fh_SOYbJstAyXInxqMr2jJthWiqTLP0jyCl4PaVLi7vctGNW7RrSsmJOOsKJiMgPxCBs-kiLKkzH8jgqcAjpYEX-Vx0Mrv78B8naKCRRBv1fTvhvX0n1s8gxvhl7yPF30Oo3bVuReI6Vo9hv2zd7NxvzO_ATVVVck |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB7SDaUtpe-H-wgq9CrbsmXJPobSEAoJPXQhPRm9DCFb77Jrk2zO_eEdRfa2Wfo89GDwYWRZ0sjzyTPzDcBbmTLnTIr725SWcuUU9d4n2nAnNNqvximfO3x0LA6n_MNJcbIDZsyFUUNUeDymNOjT-UAh6mmLk2E-6cI2CZ7aq4RlokpQCwXicr4lXWeyrmovEaP8DdgVBQL2CexOjz_ufw4ZWZLy8qp-8nDP2JjnU-XbnetuyVh2zYLdXagVTmYTqmD8DKbegVt9u1DrczWb_WC6Du7D13HQIWLlLO47HZvLLT7I_zwrD-DeAH3JfnjKQ9hx7SO4GYphrh_D9Oj0wrszVmTeEOwd9wfpaKgHRJTnTrlEqEqwA2Jmved3QKtLPN0ytb5EQaAXIV98hKFaLtWa-OjXJzA9eP_p3SEdij5Qw4u0o5ZbqV2jGq1cfnVA1CxXyjFTMp7prDRMlExJ7wIVVsjUyhI1yknb4IUfrKcwaeetew4EsZYuBLfMWMurVCieW10wpZnImkKnEfBxIWszMKL7whyzOnjm83pr4sL6RxBvmi0CJcifGuxd05JNK0RTVZFnRQRvRrWpcXd7l41q3bxf1UxIxllZMhkB-YUMnkkRZUlZ_EYETwEcLQm-yrOgld_fgfk6RSWLINmo6d8N68U_t3gJt8MveR8v-gom3bJ3rxHTdXpv2JPfADe3VK0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixtures+of+common+t-factor+analyzers+for+clustering+high-dimensional+microarray+data&rft.jtitle=Bioinformatics&rft.au=Baek%2C+Jangsun&rft.au=McLachlan%2C+Geoffrey+J&rft.date=2011-05-01&rft.issn=1367-4803&rft.eissn=1460-2059&rft.volume=27&rft.issue=9&rft.spage=1269&rft.epage=1276&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtr112&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |