A portable and spring-guided hand exoskeleton for exercising flexion/extension of the fingers
•A portable and spring-guided CPM device for the hand is proposed.•General finger motions were obtained through the finger flexion/extension experiment by four subjects.•The design of the linkage structure was optimized based on the users hand size for general finger motions.•A spring attached to th...
Saved in:
Published in | Mechanism and machine theory Vol. 135; pp. 176 - 191 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0094-114X 1873-3999 |
DOI | 10.1016/j.mechmachtheory.2019.02.004 |
Cover
Abstract | •A portable and spring-guided CPM device for the hand is proposed.•General finger motions were obtained through the finger flexion/extension experiment by four subjects.•The design of the linkage structure was optimized based on the users hand size for general finger motions.•A spring attached to the structure generates the forces to guide the fingers toward the desired posture.•Performance of the system was verified by simulation and experimented in terms of finger motions and force distribution by the spring.
In this paper, we developed a portable and spring-guided hand exoskeleton system for exercising flexion/extension of the fingers. The exoskeleton was designed with a simple structure to aid finger motion with one degree of freedom (DOF). The desired joint trajectory of the exoskeleton was determined based on the user joint ROM and general finger motion obtained by the hand flexion/extension experiments. The design of the linkage structure was optimized to maximally satisfy the desired trajectory. A spring attached to the structure generates the force to guide the fingers toward the desired posture when they deviate from the desired position. We used a finite element method (FEM) to analyze the transmitted moments for MCP and PIP joints. A prototype of the device was fabricated, and the performance of the system was experimentally verified. The experimental results of the finger motion indicated that the proposed system provided good guidance for flexion/extension of the fingers. Furthermore, the results of the force distribution experiment verified that the joint moments by the system are matched to the expected moments by FEM analysis. Thus, the CPM device successfully guided the users fingers along the desired trajectory and distributed the expected moments to the joints. |
---|---|
AbstractList | •A portable and spring-guided CPM device for the hand is proposed.•General finger motions were obtained through the finger flexion/extension experiment by four subjects.•The design of the linkage structure was optimized based on the users hand size for general finger motions.•A spring attached to the structure generates the forces to guide the fingers toward the desired posture.•Performance of the system was verified by simulation and experimented in terms of finger motions and force distribution by the spring.
In this paper, we developed a portable and spring-guided hand exoskeleton system for exercising flexion/extension of the fingers. The exoskeleton was designed with a simple structure to aid finger motion with one degree of freedom (DOF). The desired joint trajectory of the exoskeleton was determined based on the user joint ROM and general finger motion obtained by the hand flexion/extension experiments. The design of the linkage structure was optimized to maximally satisfy the desired trajectory. A spring attached to the structure generates the force to guide the fingers toward the desired posture when they deviate from the desired position. We used a finite element method (FEM) to analyze the transmitted moments for MCP and PIP joints. A prototype of the device was fabricated, and the performance of the system was experimentally verified. The experimental results of the finger motion indicated that the proposed system provided good guidance for flexion/extension of the fingers. Furthermore, the results of the force distribution experiment verified that the joint moments by the system are matched to the expected moments by FEM analysis. Thus, the CPM device successfully guided the users fingers along the desired trajectory and distributed the expected moments to the joints. |
Author | Bae, Joonbum Park, Yeongyu Jo, Inseong Lee, Jeongsoo |
Author_xml | – sequence: 1 givenname: Inseong surname: Jo fullname: Jo, Inseong email: isjo@unist.ac.kr – sequence: 2 givenname: Yeongyu surname: Park fullname: Park, Yeongyu email: ygpark@unist.ac.kr – sequence: 3 givenname: Jeongsoo surname: Lee fullname: Lee, Jeongsoo email: galanthus@unist.ac.kr – sequence: 4 givenname: Joonbum orcidid: 0000-0001-7030-2184 surname: Bae fullname: Bae, Joonbum email: jbbae@unist.ac.kr |
BookMark | eNqNkE9LwzAYxoNMcJt-hxy8tr5pmnYFL3M4FQZeFLxISNO3a2bXjCTK_PZmzIuednr_Pzzvb0JGgx2QkGsGKQNW3GzSLepuq3QXOrTuO82AVSlkKUB-RsZsVvKEV1U1ImOAKk8Yy98uyMT7DQCUIudj8j6nO-uCqnukamio3zkzrJP1p2mwod2hhXvrP7DHYAfaWhdrdNr4uEbbHvfGDje4Dzj4mFHb0uiFtnGKzl-S81b1Hq9-45S8Lu9fFo_J6vnhaTFfJToXEBLNK1AKtRY1F0XJtMizEhsBJeNlmyFWmouWC0DAWcHqWc0yrpVSUBbFLBN8Su6OutpZ7x22UpugQjQUnDK9ZCAPwORG_gUmD8AkZDICiyK3_0Qii62KWyeeL4_nGB_9Muik1wYHjY1xqINsrDlN6Ad2YpXx |
CitedBy_id | crossref_primary_10_1109_TIM_2023_3276514 crossref_primary_10_12688_f1000research_132382_1 crossref_primary_10_5194_ms_11_357_2020 crossref_primary_10_1007_s00422_023_00964_x crossref_primary_10_1007_s42235_022_00327_5 crossref_primary_10_3390_machines10121211 crossref_primary_10_3390_s23146339 crossref_primary_10_1017_S0263574722000881 crossref_primary_10_1186_s12984_024_01511_w crossref_primary_10_1016_j_ijmecsci_2021_106831 crossref_primary_10_1109_TMRB_2021_3064412 crossref_primary_10_1177_17298814211024880 crossref_primary_10_1109_TNSRE_2023_3337827 crossref_primary_10_1115_1_4067350 crossref_primary_10_12688_f1000research_132382_2 crossref_primary_10_3390_bioengineering11010005 crossref_primary_10_1145_3698240 crossref_primary_10_14232_analecta_2024_2_11_21 crossref_primary_10_3390_app112210825 crossref_primary_10_1016_j_mechmachtheory_2021_104526 crossref_primary_10_1109_TNSRE_2021_3097888 crossref_primary_10_3390_app132011287 crossref_primary_10_3390_robotics10010040 crossref_primary_10_1017_S0263574721000965 crossref_primary_10_3390_bioengineering9110682 crossref_primary_10_1109_LRA_2024_3358084 crossref_primary_10_1016_j_ifacol_2020_12_371 crossref_primary_10_1186_s10033_023_00882_w crossref_primary_10_3390_robotics11020053 crossref_primary_10_1016_j_heliyon_2024_e26941 crossref_primary_10_1109_ACCESS_2021_3049469 crossref_primary_10_3390_electronics10111322 crossref_primary_10_3389_frobt_2022_862340 crossref_primary_10_3390_biomimetics10040200 crossref_primary_10_3390_app12094540 crossref_primary_10_1177_09544062241271746 crossref_primary_10_1016_j_eswa_2023_122954 crossref_primary_10_3390_app122010580 crossref_primary_10_1109_LRA_2024_3354625 crossref_primary_10_1007_s10846_020_01186_0 |
Cites_doi | 10.1016/j.neuroimage.2012.05.009 10.1016/j.bbe.2014.01.003 10.1109/TMECH.2010.2090353 10.1016/j.mechatronics.2012.01.009 10.1016/S0140-6736(11)60325-5 10.5014/ajot.48.5.403 10.5014/ajot.44.10.914 10.1177/1545968309338191 10.1115/1.3140702 10.1016/j.maturitas.2011.11.011 10.1186/1743-0003-7-36 10.1682/JRRD.2005.04.0076 10.1016/j.mechatronics.2016.03.002 10.1016/j.mechmachtheory.2015.12.010 10.1016/j.mechmachtheory.2013.10.015 10.2340/16501977-0517 10.1152/jn.00546.2003 10.1161/hs0102.101224 10.1023/A:1024494031121 |
ContentType | Journal Article |
Copyright | 2019 The Authors |
Copyright_xml | – notice: 2019 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.mechmachtheory.2019.02.004 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3999 |
EndPage | 191 |
ExternalDocumentID | 10_1016_j_mechmachtheory_2019_02_004 S0094114X18320093 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K T9H TN5 TWZ WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c450t-c390aaecc5b35671c5427ed507137f2ee9c35f350e0e861b8b123caaa07668253 |
IEDL.DBID | .~1 |
ISSN | 0094-114X |
IngestDate | Tue Jul 01 01:48:29 EDT 2025 Thu Apr 24 23:04:03 EDT 2025 Fri Feb 23 02:18:29 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Wearable structure Hand rehabilitation Hand exoskeleton Continuous passive motion (CPM) |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c450t-c390aaecc5b35671c5427ed507137f2ee9c35f350e0e861b8b123caaa07668253 |
ORCID | 0000-0001-7030-2184 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0094114X18320093 |
PageCount | 16 |
ParticipantIDs | crossref_citationtrail_10_1016_j_mechmachtheory_2019_02_004 crossref_primary_10_1016_j_mechmachtheory_2019_02_004 elsevier_sciencedirect_doi_10_1016_j_mechmachtheory_2019_02_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2019 2019-05-00 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: May 2019 |
PublicationDecade | 2010 |
PublicationTitle | Mechanism and machine theory |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Hu, yu Tong, Song, Zheng, Leung (bib0004) 2009; 23 Ueki, Kawasaki, Ito, Nishimoto, Abe, Aoki, Ishigure, Ojika, Mouri (bib0020) 2012; 17 Szameitat, Shen, Conforto, Sterr (bib0005) 2012; 62 Yang, Xie, School (bib0023) 2016; 99 Li, Zheng, Zhang, Yao (bib0025) 2011 Zhang, Hua, Fu, Chen, Wang (bib0014) 2014; 73 Kamper, Cruz, Siegel (bib0021) 2003; 90 Zhang, Wang, Fu, Agrawal (bib0016) 2015 Hogan (bib0026) 1985; 107 Prange, Jannink, Groothuis-Oudshoorn, Hermens, IJzerman (bib0010) 2006; 43 Conti, Meli, Ridolfi (bib0022) 2016; 35 Kim, Sankar (bib0028) 2009 R. Buschfort, Brocke, Hess, Werner, Waldner, Hesse (bib0009) 2010; 42 Jo, Lee, Park, Bae (bib0029) 2017 Langhorne, Bernhardt, Kwakkel (bib0003) 2011; 377 Worsnopp, Peshkin, Colgate, Kamper (bib0019) 2007 Bae, Tomizuka (bib0027) 2012; 22 Pinter, Brainin (bib0001) 2012; 71 Schabowsky, Godfrey, Holley, Lum (bib0017) 2010; 7 Neumann, Rowan (bib0024) 2002 Dirette, Hinojosa (bib0006) 1994; 48 Bagg, Pombo, Hopman (bib0002) 2002; 33 Yun, Agarwal, Fox, Madden, Deshpande (bib0018) 2016 Iqbal, Khan, Tsagarakis, Caldwell (bib0015) 2014; 34 Rahmana, Al-Jumaily (bib0013) 2012 O’Driscoll, Giori (bib0008) 2000; 37 Giudice (bib0007) 1990; 44 Krebs, Palazzolo, Dipietro, Krol, Rannekleiv, Volpe, Hogan (bib0011) 2003; 15 Hillman (bib0012) 2006 Zhang (10.1016/j.mechmachtheory.2019.02.004_bib0016) 2015 Conti (10.1016/j.mechmachtheory.2019.02.004_bib0022) 2016; 35 Bae (10.1016/j.mechmachtheory.2019.02.004_bib0027) 2012; 22 Kamper (10.1016/j.mechmachtheory.2019.02.004_bib0021) 2003; 90 Yun (10.1016/j.mechmachtheory.2019.02.004_bib0018) 2016 Kim (10.1016/j.mechmachtheory.2019.02.004_bib0028) 2009 Krebs (10.1016/j.mechmachtheory.2019.02.004_bib0011) 2003; 15 Giudice (10.1016/j.mechmachtheory.2019.02.004_bib0007) 1990; 44 O’Driscoll (10.1016/j.mechmachtheory.2019.02.004_bib0008) 2000; 37 Rahmana (10.1016/j.mechmachtheory.2019.02.004_bib0013) 2012 Hillman (10.1016/j.mechmachtheory.2019.02.004_bib0012) 2006 Iqbal (10.1016/j.mechmachtheory.2019.02.004_bib0015) 2014; 34 Jo (10.1016/j.mechmachtheory.2019.02.004_bib0029) 2017 Szameitat (10.1016/j.mechmachtheory.2019.02.004_bib0005) 2012; 62 Schabowsky (10.1016/j.mechmachtheory.2019.02.004_bib0017) 2010; 7 Worsnopp (10.1016/j.mechmachtheory.2019.02.004_bib0019) 2007 Yang (10.1016/j.mechmachtheory.2019.02.004_bib0023) 2016; 99 R. Buschfort (10.1016/j.mechmachtheory.2019.02.004_bib0009) 2010; 42 Neumann (10.1016/j.mechmachtheory.2019.02.004_bib0024) 2002 Pinter (10.1016/j.mechmachtheory.2019.02.004_bib0001) 2012; 71 Langhorne (10.1016/j.mechmachtheory.2019.02.004_bib0003) 2011; 377 Hu (10.1016/j.mechmachtheory.2019.02.004_bib0004) 2009; 23 Zhang (10.1016/j.mechmachtheory.2019.02.004_bib0014) 2014; 73 Li (10.1016/j.mechmachtheory.2019.02.004_bib0025) 2011 Hogan (10.1016/j.mechmachtheory.2019.02.004_bib0026) 1985; 107 Bagg (10.1016/j.mechmachtheory.2019.02.004_bib0002) 2002; 33 Dirette (10.1016/j.mechmachtheory.2019.02.004_bib0006) 1994; 48 Prange (10.1016/j.mechmachtheory.2019.02.004_bib0010) 2006; 43 Ueki (10.1016/j.mechmachtheory.2019.02.004_bib0020) 2012; 17 |
References_xml | – volume: 42 start-page: 310 year: 2010 end-page: 314 ident: bib0009 article-title: Arm studio to intensify upper limb rehabilitation after stroke: concept, acceptance, utilization and preliminary clinical results publication-title: J. Rehabil. Med. – year: 2006 ident: bib0012 article-title: 2 rehabilitation robotics from past to present a historical perspective – volume: 35 start-page: 192 year: 2016 end-page: 207 ident: bib0022 article-title: A novel kinematic architecture for portable hand exoskeletons publication-title: Mechatronics – volume: 23 start-page: 837 year: 2009 end-page: 846 ident: bib0004 article-title: A comparison between electromyography-driven robot and passive motion device on wrist rehabilitation for chronic stroke publication-title: Neurorehabil. Neural Repair – start-page: 1 year: 2011 end-page: 6 ident: bib0025 article-title: Ihandrehab: an interactive hand exoskeleton for active and passive rehabilitation publication-title: International Conference on Rehabilitation Robotics (ICORR) – volume: 33 start-page: 179 year: 2002 end-page: 185 ident: bib0002 article-title: Effect of age on functional outcomes after stroke rehabilitation publication-title: Stroke – volume: 107 start-page: 1 year: 1985 end-page: 24 ident: bib0026 article-title: Impedance control: an approach to manipulation. parts i, ii, and iii publication-title: J. Dyn. Syst. Meas. Control – volume: 73 start-page: 103 year: 2014 end-page: 116 ident: bib0014 article-title: Design and development of a hand exoskeleton for rehabilitation of hand injuries publication-title: Mech. Mach. Theory – volume: 37 start-page: 179 year: 2000 end-page: 188 ident: bib0008 article-title: Continuous passive motion (cpm) : theory and principles of clinical application publication-title: J. Rehabil. Res. Dev. – volume: 43 start-page: 171 year: 2006 end-page: 184 ident: bib0010 article-title: Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke publication-title: J. Rehabil. Res. Dev. – start-page: 1028 year: 2012 end-page: 1034 ident: bib0013 article-title: Design and development of a hand exoskeleton for rehabilitation following stroke publication-title: International Symposium on Robotics and Intelligent Sensors (IRIS) – volume: 22 start-page: 213 year: 2012 end-page: 221 ident: bib0027 article-title: A gait rehabilitation strategy inspired by an iterative learning algorithm publication-title: Mechatronics – volume: 34 start-page: 79 year: 2014 end-page: 89 ident: bib0015 article-title: A novel exoskeleton robotic system for hand rehabilitation conceptualization to prototyping publication-title: Biocybern. Biomed. Eng. – volume: 62 start-page: 266 year: 2012 end-page: 280 ident: bib0005 article-title: Cortical activation during executed, imagined, observed, and passive wrist movements in healthy volunteers and stroke patients publication-title: NeuroImage – volume: 90 start-page: 3702 year: 2003 end-page: 3710 ident: bib0021 article-title: Stereotypical fingertip trajectories during grasp publication-title: J. Neurophysiol. – start-page: 1615 year: 2017 end-page: 1620 ident: bib0029 article-title: Design of a wearable hand exoskeleton for exercising flexion/extension of the fingers publication-title: IEEE Proceeding on Rehabilitation Robotics (ICORR) – volume: 44 start-page: 914 year: 1990 end-page: 921 ident: bib0007 article-title: Effects of continuous passive motion and elevation on hand edema publication-title: Am. J. Occup. Therapy – volume: 7 year: 2010 ident: bib0017 article-title: Development and pilot testing of hexorr: hand exoskeleton rehabilitation robot publication-title: J. Neuroeng. Rehabil. – volume: 71 start-page: 104 year: 2012 end-page: 108 ident: bib0001 article-title: Rehabilitation after stroke in older people publication-title: Maturitas – volume: 48 start-page: 403 year: 1994 end-page: 409 ident: bib0006 article-title: Effects of continuous passive motion on the edematous hands of two persons with flaccid hemiplegia publication-title: Am. J. Occup. Therapy – volume: 15 start-page: 7 year: 2003 end-page: 20 ident: bib0011 article-title: Rehabilitation robotics: performance-based progressive robot-assisted therapy publication-title: Auton. Robots – start-page: 390 year: 2016 end-page: 397 ident: bib0018 article-title: Accurate torque control of finger joints with ut hand exoskeleton through bowden cable sea publication-title: International Conference on Intelligent Robots and Systems (IROS) – volume: 17 start-page: 136 year: 2012 end-page: 146 ident: bib0020 article-title: Development of a hand-assist robot with multi-degrees-of-freedom for rehabilitation therapy publication-title: IEEE/ASME Trans. Mechatron. – start-page: 896 year: 2007 end-page: 901 ident: bib0019 article-title: An actuated finger exoskeleton for hand rehabilitation following stroke publication-title: IEEE International Conference on Rehabilitation Robotics (ICORR) – volume: 377 start-page: 1693 year: 2011 end-page: 1702 ident: bib0003 article-title: Stroke rehabilitation publication-title: Lancet – year: 2002 ident: bib0024 article-title: Kinesiology of the Musculoskeletal System: Foundations for Physical Rehabilitation – year: 2009 ident: bib0028 article-title: Introduction to Finite Element Analysis and Design – start-page: 5593 year: 2015 end-page: 5598 ident: bib0016 article-title: A human-robot interaction modeling approach for hand rehabilitation exoskeleton using biomechanical technique publication-title: International Conference on Intelligent Robots and Systems (IROS) – volume: 99 start-page: 83 year: 2016 end-page: 102 ident: bib0023 article-title: A novel motion-coupling design for a jointless tendon-driven finger exoskeleton for rehabilitation publication-title: Mech. Mach. Theory – volume: 62 start-page: 266 year: 2012 ident: 10.1016/j.mechmachtheory.2019.02.004_bib0005 article-title: Cortical activation during executed, imagined, observed, and passive wrist movements in healthy volunteers and stroke patients publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.05.009 – volume: 34 start-page: 79 year: 2014 ident: 10.1016/j.mechmachtheory.2019.02.004_bib0015 article-title: A novel exoskeleton robotic system for hand rehabilitation conceptualization to prototyping publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2014.01.003 – volume: 17 start-page: 136 year: 2012 ident: 10.1016/j.mechmachtheory.2019.02.004_bib0020 article-title: Development of a hand-assist robot with multi-degrees-of-freedom for rehabilitation therapy publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2010.2090353 – volume: 22 start-page: 213 year: 2012 ident: 10.1016/j.mechmachtheory.2019.02.004_bib0027 article-title: A gait rehabilitation strategy inspired by an iterative learning algorithm publication-title: Mechatronics doi: 10.1016/j.mechatronics.2012.01.009 – volume: 377 start-page: 1693 year: 2011 ident: 10.1016/j.mechmachtheory.2019.02.004_bib0003 article-title: Stroke rehabilitation publication-title: Lancet doi: 10.1016/S0140-6736(11)60325-5 – volume: 48 start-page: 403 year: 1994 ident: 10.1016/j.mechmachtheory.2019.02.004_bib0006 article-title: Effects of continuous passive motion on the edematous hands of two persons with flaccid hemiplegia publication-title: Am. J. Occup. Therapy doi: 10.5014/ajot.48.5.403 – volume: 44 start-page: 914 year: 1990 ident: 10.1016/j.mechmachtheory.2019.02.004_bib0007 article-title: Effects of continuous passive motion and elevation on hand edema publication-title: Am. J. Occup. Therapy doi: 10.5014/ajot.44.10.914 – volume: 23 start-page: 837 year: 2009 ident: 10.1016/j.mechmachtheory.2019.02.004_bib0004 article-title: A comparison between electromyography-driven robot and passive motion device on wrist rehabilitation for chronic stroke publication-title: Neurorehabil. Neural Repair doi: 10.1177/1545968309338191 – volume: 107 start-page: 1 year: 1985 ident: 10.1016/j.mechmachtheory.2019.02.004_bib0026 article-title: Impedance control: an approach to manipulation. parts i, ii, and iii publication-title: J. Dyn. Syst. Meas. Control doi: 10.1115/1.3140702 – volume: 71 start-page: 104 year: 2012 ident: 10.1016/j.mechmachtheory.2019.02.004_bib0001 article-title: Rehabilitation after stroke in older people publication-title: Maturitas doi: 10.1016/j.maturitas.2011.11.011 – volume: 37 start-page: 179 year: 2000 ident: 10.1016/j.mechmachtheory.2019.02.004_bib0008 article-title: Continuous passive motion (cpm) : theory and principles of clinical application publication-title: J. Rehabil. Res. Dev. – volume: 7 year: 2010 ident: 10.1016/j.mechmachtheory.2019.02.004_bib0017 article-title: Development and pilot testing of hexorr: hand exoskeleton rehabilitation robot publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-7-36 – year: 2002 ident: 10.1016/j.mechmachtheory.2019.02.004_bib0024 – volume: 43 start-page: 171 year: 2006 ident: 10.1016/j.mechmachtheory.2019.02.004_bib0010 article-title: Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke publication-title: J. Rehabil. Res. Dev. doi: 10.1682/JRRD.2005.04.0076 – start-page: 1028 year: 2012 ident: 10.1016/j.mechmachtheory.2019.02.004_bib0013 article-title: Design and development of a hand exoskeleton for rehabilitation following stroke – volume: 35 start-page: 192 year: 2016 ident: 10.1016/j.mechmachtheory.2019.02.004_bib0022 article-title: A novel kinematic architecture for portable hand exoskeletons publication-title: Mechatronics doi: 10.1016/j.mechatronics.2016.03.002 – start-page: 1 year: 2011 ident: 10.1016/j.mechmachtheory.2019.02.004_bib0025 article-title: Ihandrehab: an interactive hand exoskeleton for active and passive rehabilitation – volume: 99 start-page: 83 year: 2016 ident: 10.1016/j.mechmachtheory.2019.02.004_bib0023 article-title: A novel motion-coupling design for a jointless tendon-driven finger exoskeleton for rehabilitation publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2015.12.010 – start-page: 1615 year: 2017 ident: 10.1016/j.mechmachtheory.2019.02.004_bib0029 article-title: Design of a wearable hand exoskeleton for exercising flexion/extension of the fingers – volume: 73 start-page: 103 year: 2014 ident: 10.1016/j.mechmachtheory.2019.02.004_bib0014 article-title: Design and development of a hand exoskeleton for rehabilitation of hand injuries publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2013.10.015 – year: 2009 ident: 10.1016/j.mechmachtheory.2019.02.004_bib0028 – volume: 42 start-page: 310 year: 2010 ident: 10.1016/j.mechmachtheory.2019.02.004_bib0009 article-title: Arm studio to intensify upper limb rehabilitation after stroke: concept, acceptance, utilization and preliminary clinical results publication-title: J. Rehabil. Med. doi: 10.2340/16501977-0517 – volume: 90 start-page: 3702 year: 2003 ident: 10.1016/j.mechmachtheory.2019.02.004_bib0021 article-title: Stereotypical fingertip trajectories during grasp publication-title: J. Neurophysiol. doi: 10.1152/jn.00546.2003 – volume: 33 start-page: 179 year: 2002 ident: 10.1016/j.mechmachtheory.2019.02.004_bib0002 article-title: Effect of age on functional outcomes after stroke rehabilitation publication-title: Stroke doi: 10.1161/hs0102.101224 – year: 2006 ident: 10.1016/j.mechmachtheory.2019.02.004_bib0012 – start-page: 390 year: 2016 ident: 10.1016/j.mechmachtheory.2019.02.004_bib0018 article-title: Accurate torque control of finger joints with ut hand exoskeleton through bowden cable sea – volume: 15 start-page: 7 year: 2003 ident: 10.1016/j.mechmachtheory.2019.02.004_bib0011 article-title: Rehabilitation robotics: performance-based progressive robot-assisted therapy publication-title: Auton. Robots doi: 10.1023/A:1024494031121 – start-page: 896 year: 2007 ident: 10.1016/j.mechmachtheory.2019.02.004_bib0019 article-title: An actuated finger exoskeleton for hand rehabilitation following stroke – start-page: 5593 year: 2015 ident: 10.1016/j.mechmachtheory.2019.02.004_bib0016 article-title: A human-robot interaction modeling approach for hand rehabilitation exoskeleton using biomechanical technique |
SSID | ssj0007543 |
Score | 2.4413066 |
Snippet | •A portable and spring-guided CPM device for the hand is proposed.•General finger motions were obtained through the finger flexion/extension experiment by four... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 176 |
SubjectTerms | Continuous passive motion (CPM) Hand exoskeleton Hand rehabilitation Wearable structure |
Title | A portable and spring-guided hand exoskeleton for exercising flexion/extension of the fingers |
URI | https://dx.doi.org/10.1016/j.mechmachtheory.2019.02.004 |
Volume | 135 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-3999 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007543 issn: 0094-114X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-3999 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007543 issn: 0094-114X databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-3999 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007543 issn: 0094-114X databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-3999 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007543 issn: 0094-114X databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-3999 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007543 issn: 0094-114X databaseCode: AKRWK dateStart: 19720101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9jguhB_MT5MXLYta5dk6bFg4zhmIo7OdhFSpKmbrq1w22gF_923-uHbuBh4KGHliSUl_DeLy-_9wshDd8ROogiQG5KcguPHC3wgdpyjLDhEVoprB1-7Hu9Absf8mGFdMpaGKRVFr4_9-mZty6-NAtrNmfjMdb4BgzQ_BAXJW7MsYKdeUjru_r6pXkIXjDnAmZh623S-OV4TY0eTaUeZUWDn0j0CnIFT_Z3mFoJPd19sldgRtrOf-uAVExySHZXlASPyHObZkBaTQyVSUTz41brZTmOTEQxO07NRzp_gyADYI8CUqXFZUvQjMaoipkmzSwjjukzmsYU_pbGWdJvfkwG3dunTs8qbk6wNOP2wtJuYEsJs8OVyz3haM5awkSI_VwRt4wJtMtjl9vGNr7nKF9BANNSSlt4HuwZ3RNSTdLEnBLKmII9IEyZ0YbFTiBRNEy4vo86PsL4NXJdGirUhaw43m4xCUv-2Gu4buYQzRzarRDMXCP8p_csl9fYsN9NOSfh2nIJIRJsNMLZv0c4Jzv4lrMfL0h18b40l4BQFqqeLcE62WrfPfT630U16fo |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50BR8H8YnrMwevZdtt0rR4kEWU9bUnhb1ISNJU10dX3BX03zvTZn2AB8FDL20nhEmY-WYy8wVgP42kzfIckZvRIqAjxwBtoA0iJ0N8pDWGeocve0n3mp_1RX8Kjia9MFRW6W1_bdMra-3ftLw2W8-DAfX4ZhzRfJ82JQXm0zDDBdrkBsx0Ts-7vU-DLIUvnst4QAKzsP9V5vXk7N2TtndV3-A71XplNYkn_91TffM-J0uw6GEj69QzW4YpV67AwjcywVW46bAKS5tHx3SZs_rENbh9HeQuZ5QgZ-5tOHpAP4N4jyFYZf6-JfyNFUSMOSxbVVKcMmhsWDCcLSuqvN9oDa5Pjq-OuoG_PCGwXITjwMZZqDUukDCxSGRkBW9LlxP8i2XRdi6zsShiEbrQpUlkUoM-zGqtQ5kkGDbG69Aoh6XbAMa5wTAQV81Zx4so08QbJuM0JSof6dImHEwUpaxnFqcLLh7VpITsXv1UsyI1q7CtUM1NEJ_SzzXDxh_lDidron7sGIXO4E8jbP57hD2Y615dXqiL0975FszTl7oYchsa45dXt4OAZWx2_Yb8ADTk7KU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+portable+and+spring-guided+hand+exoskeleton+for+exercising+flexion%2Fextension+of+the+fingers&rft.jtitle=Mechanism+and+machine+theory&rft.au=Jo%2C+Inseong&rft.au=Park%2C+Yeongyu&rft.au=Lee%2C+Jeongsoo&rft.au=Bae%2C+Joonbum&rft.date=2019-05-01&rft.issn=0094-114X&rft.volume=135&rft.spage=176&rft.epage=191&rft_id=info:doi/10.1016%2Fj.mechmachtheory.2019.02.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mechmachtheory_2019_02_004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-114X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-114X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-114X&client=summon |