A portable and spring-guided hand exoskeleton for exercising flexion/extension of the fingers

•A portable and spring-guided CPM device for the hand is proposed.•General finger motions were obtained through the finger flexion/extension experiment by four subjects.•The design of the linkage structure was optimized based on the users hand size for general finger motions.•A spring attached to th...

Full description

Saved in:
Bibliographic Details
Published inMechanism and machine theory Vol. 135; pp. 176 - 191
Main Authors Jo, Inseong, Park, Yeongyu, Lee, Jeongsoo, Bae, Joonbum
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2019
Subjects
Online AccessGet full text
ISSN0094-114X
1873-3999
DOI10.1016/j.mechmachtheory.2019.02.004

Cover

Abstract •A portable and spring-guided CPM device for the hand is proposed.•General finger motions were obtained through the finger flexion/extension experiment by four subjects.•The design of the linkage structure was optimized based on the users hand size for general finger motions.•A spring attached to the structure generates the forces to guide the fingers toward the desired posture.•Performance of the system was verified by simulation and experimented in terms of finger motions and force distribution by the spring. In this paper, we developed a portable and spring-guided hand exoskeleton system for exercising flexion/extension of the fingers. The exoskeleton was designed with a simple structure to aid finger motion with one degree of freedom (DOF). The desired joint trajectory of the exoskeleton was determined based on the user joint ROM and general finger motion obtained by the hand flexion/extension experiments. The design of the linkage structure was optimized to maximally satisfy the desired trajectory. A spring attached to the structure generates the force to guide the fingers toward the desired posture when they deviate from the desired position. We used a finite element method (FEM) to analyze the transmitted moments for MCP and PIP joints. A prototype of the device was fabricated, and the performance of the system was experimentally verified. The experimental results of the finger motion indicated that the proposed system provided good guidance for flexion/extension of the fingers. Furthermore, the results of the force distribution experiment verified that the joint moments by the system are matched to the expected moments by FEM analysis. Thus, the CPM device successfully guided the users fingers along the desired trajectory and distributed the expected moments to the joints.
AbstractList •A portable and spring-guided CPM device for the hand is proposed.•General finger motions were obtained through the finger flexion/extension experiment by four subjects.•The design of the linkage structure was optimized based on the users hand size for general finger motions.•A spring attached to the structure generates the forces to guide the fingers toward the desired posture.•Performance of the system was verified by simulation and experimented in terms of finger motions and force distribution by the spring. In this paper, we developed a portable and spring-guided hand exoskeleton system for exercising flexion/extension of the fingers. The exoskeleton was designed with a simple structure to aid finger motion with one degree of freedom (DOF). The desired joint trajectory of the exoskeleton was determined based on the user joint ROM and general finger motion obtained by the hand flexion/extension experiments. The design of the linkage structure was optimized to maximally satisfy the desired trajectory. A spring attached to the structure generates the force to guide the fingers toward the desired posture when they deviate from the desired position. We used a finite element method (FEM) to analyze the transmitted moments for MCP and PIP joints. A prototype of the device was fabricated, and the performance of the system was experimentally verified. The experimental results of the finger motion indicated that the proposed system provided good guidance for flexion/extension of the fingers. Furthermore, the results of the force distribution experiment verified that the joint moments by the system are matched to the expected moments by FEM analysis. Thus, the CPM device successfully guided the users fingers along the desired trajectory and distributed the expected moments to the joints.
Author Bae, Joonbum
Park, Yeongyu
Jo, Inseong
Lee, Jeongsoo
Author_xml – sequence: 1
  givenname: Inseong
  surname: Jo
  fullname: Jo, Inseong
  email: isjo@unist.ac.kr
– sequence: 2
  givenname: Yeongyu
  surname: Park
  fullname: Park, Yeongyu
  email: ygpark@unist.ac.kr
– sequence: 3
  givenname: Jeongsoo
  surname: Lee
  fullname: Lee, Jeongsoo
  email: galanthus@unist.ac.kr
– sequence: 4
  givenname: Joonbum
  orcidid: 0000-0001-7030-2184
  surname: Bae
  fullname: Bae, Joonbum
  email: jbbae@unist.ac.kr
BookMark eNqNkE9LwzAYxoNMcJt-hxy8tr5pmnYFL3M4FQZeFLxISNO3a2bXjCTK_PZmzIuednr_Pzzvb0JGgx2QkGsGKQNW3GzSLepuq3QXOrTuO82AVSlkKUB-RsZsVvKEV1U1ImOAKk8Yy98uyMT7DQCUIudj8j6nO-uCqnukamio3zkzrJP1p2mwod2hhXvrP7DHYAfaWhdrdNr4uEbbHvfGDje4Dzj4mFHb0uiFtnGKzl-S81b1Hq9-45S8Lu9fFo_J6vnhaTFfJToXEBLNK1AKtRY1F0XJtMizEhsBJeNlmyFWmouWC0DAWcHqWc0yrpVSUBbFLBN8Su6OutpZ7x22UpugQjQUnDK9ZCAPwORG_gUmD8AkZDICiyK3_0Qii62KWyeeL4_nGB_9Muik1wYHjY1xqINsrDlN6Ad2YpXx
CitedBy_id crossref_primary_10_1109_TIM_2023_3276514
crossref_primary_10_12688_f1000research_132382_1
crossref_primary_10_5194_ms_11_357_2020
crossref_primary_10_1007_s00422_023_00964_x
crossref_primary_10_1007_s42235_022_00327_5
crossref_primary_10_3390_machines10121211
crossref_primary_10_3390_s23146339
crossref_primary_10_1017_S0263574722000881
crossref_primary_10_1186_s12984_024_01511_w
crossref_primary_10_1016_j_ijmecsci_2021_106831
crossref_primary_10_1109_TMRB_2021_3064412
crossref_primary_10_1177_17298814211024880
crossref_primary_10_1109_TNSRE_2023_3337827
crossref_primary_10_1115_1_4067350
crossref_primary_10_12688_f1000research_132382_2
crossref_primary_10_3390_bioengineering11010005
crossref_primary_10_1145_3698240
crossref_primary_10_14232_analecta_2024_2_11_21
crossref_primary_10_3390_app112210825
crossref_primary_10_1016_j_mechmachtheory_2021_104526
crossref_primary_10_1109_TNSRE_2021_3097888
crossref_primary_10_3390_app132011287
crossref_primary_10_3390_robotics10010040
crossref_primary_10_1017_S0263574721000965
crossref_primary_10_3390_bioengineering9110682
crossref_primary_10_1109_LRA_2024_3358084
crossref_primary_10_1016_j_ifacol_2020_12_371
crossref_primary_10_1186_s10033_023_00882_w
crossref_primary_10_3390_robotics11020053
crossref_primary_10_1016_j_heliyon_2024_e26941
crossref_primary_10_1109_ACCESS_2021_3049469
crossref_primary_10_3390_electronics10111322
crossref_primary_10_3389_frobt_2022_862340
crossref_primary_10_3390_biomimetics10040200
crossref_primary_10_3390_app12094540
crossref_primary_10_1177_09544062241271746
crossref_primary_10_1016_j_eswa_2023_122954
crossref_primary_10_3390_app122010580
crossref_primary_10_1109_LRA_2024_3354625
crossref_primary_10_1007_s10846_020_01186_0
Cites_doi 10.1016/j.neuroimage.2012.05.009
10.1016/j.bbe.2014.01.003
10.1109/TMECH.2010.2090353
10.1016/j.mechatronics.2012.01.009
10.1016/S0140-6736(11)60325-5
10.5014/ajot.48.5.403
10.5014/ajot.44.10.914
10.1177/1545968309338191
10.1115/1.3140702
10.1016/j.maturitas.2011.11.011
10.1186/1743-0003-7-36
10.1682/JRRD.2005.04.0076
10.1016/j.mechatronics.2016.03.002
10.1016/j.mechmachtheory.2015.12.010
10.1016/j.mechmachtheory.2013.10.015
10.2340/16501977-0517
10.1152/jn.00546.2003
10.1161/hs0102.101224
10.1023/A:1024494031121
ContentType Journal Article
Copyright 2019 The Authors
Copyright_xml – notice: 2019 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.mechmachtheory.2019.02.004
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3999
EndPage 191
ExternalDocumentID 10_1016_j_mechmachtheory_2019_02_004
S0094114X18320093
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
T9H
TN5
TWZ
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c450t-c390aaecc5b35671c5427ed507137f2ee9c35f350e0e861b8b123caaa07668253
IEDL.DBID .~1
ISSN 0094-114X
IngestDate Tue Jul 01 01:48:29 EDT 2025
Thu Apr 24 23:04:03 EDT 2025
Fri Feb 23 02:18:29 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Wearable structure
Hand rehabilitation
Hand exoskeleton
Continuous passive motion (CPM)
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-c390aaecc5b35671c5427ed507137f2ee9c35f350e0e861b8b123caaa07668253
ORCID 0000-0001-7030-2184
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0094114X18320093
PageCount 16
ParticipantIDs crossref_citationtrail_10_1016_j_mechmachtheory_2019_02_004
crossref_primary_10_1016_j_mechmachtheory_2019_02_004
elsevier_sciencedirect_doi_10_1016_j_mechmachtheory_2019_02_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2019
2019-05-00
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: May 2019
PublicationDecade 2010
PublicationTitle Mechanism and machine theory
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hu, yu Tong, Song, Zheng, Leung (bib0004) 2009; 23
Ueki, Kawasaki, Ito, Nishimoto, Abe, Aoki, Ishigure, Ojika, Mouri (bib0020) 2012; 17
Szameitat, Shen, Conforto, Sterr (bib0005) 2012; 62
Yang, Xie, School (bib0023) 2016; 99
Li, Zheng, Zhang, Yao (bib0025) 2011
Zhang, Hua, Fu, Chen, Wang (bib0014) 2014; 73
Kamper, Cruz, Siegel (bib0021) 2003; 90
Zhang, Wang, Fu, Agrawal (bib0016) 2015
Hogan (bib0026) 1985; 107
Prange, Jannink, Groothuis-Oudshoorn, Hermens, IJzerman (bib0010) 2006; 43
Conti, Meli, Ridolfi (bib0022) 2016; 35
Kim, Sankar (bib0028) 2009
R. Buschfort, Brocke, Hess, Werner, Waldner, Hesse (bib0009) 2010; 42
Jo, Lee, Park, Bae (bib0029) 2017
Langhorne, Bernhardt, Kwakkel (bib0003) 2011; 377
Worsnopp, Peshkin, Colgate, Kamper (bib0019) 2007
Bae, Tomizuka (bib0027) 2012; 22
Pinter, Brainin (bib0001) 2012; 71
Schabowsky, Godfrey, Holley, Lum (bib0017) 2010; 7
Neumann, Rowan (bib0024) 2002
Dirette, Hinojosa (bib0006) 1994; 48
Bagg, Pombo, Hopman (bib0002) 2002; 33
Yun, Agarwal, Fox, Madden, Deshpande (bib0018) 2016
Iqbal, Khan, Tsagarakis, Caldwell (bib0015) 2014; 34
Rahmana, Al-Jumaily (bib0013) 2012
O’Driscoll, Giori (bib0008) 2000; 37
Giudice (bib0007) 1990; 44
Krebs, Palazzolo, Dipietro, Krol, Rannekleiv, Volpe, Hogan (bib0011) 2003; 15
Hillman (bib0012) 2006
Zhang (10.1016/j.mechmachtheory.2019.02.004_bib0016) 2015
Conti (10.1016/j.mechmachtheory.2019.02.004_bib0022) 2016; 35
Bae (10.1016/j.mechmachtheory.2019.02.004_bib0027) 2012; 22
Kamper (10.1016/j.mechmachtheory.2019.02.004_bib0021) 2003; 90
Yun (10.1016/j.mechmachtheory.2019.02.004_bib0018) 2016
Kim (10.1016/j.mechmachtheory.2019.02.004_bib0028) 2009
Krebs (10.1016/j.mechmachtheory.2019.02.004_bib0011) 2003; 15
Giudice (10.1016/j.mechmachtheory.2019.02.004_bib0007) 1990; 44
O’Driscoll (10.1016/j.mechmachtheory.2019.02.004_bib0008) 2000; 37
Rahmana (10.1016/j.mechmachtheory.2019.02.004_bib0013) 2012
Hillman (10.1016/j.mechmachtheory.2019.02.004_bib0012) 2006
Iqbal (10.1016/j.mechmachtheory.2019.02.004_bib0015) 2014; 34
Jo (10.1016/j.mechmachtheory.2019.02.004_bib0029) 2017
Szameitat (10.1016/j.mechmachtheory.2019.02.004_bib0005) 2012; 62
Schabowsky (10.1016/j.mechmachtheory.2019.02.004_bib0017) 2010; 7
Worsnopp (10.1016/j.mechmachtheory.2019.02.004_bib0019) 2007
Yang (10.1016/j.mechmachtheory.2019.02.004_bib0023) 2016; 99
R. Buschfort (10.1016/j.mechmachtheory.2019.02.004_bib0009) 2010; 42
Neumann (10.1016/j.mechmachtheory.2019.02.004_bib0024) 2002
Pinter (10.1016/j.mechmachtheory.2019.02.004_bib0001) 2012; 71
Langhorne (10.1016/j.mechmachtheory.2019.02.004_bib0003) 2011; 377
Hu (10.1016/j.mechmachtheory.2019.02.004_bib0004) 2009; 23
Zhang (10.1016/j.mechmachtheory.2019.02.004_bib0014) 2014; 73
Li (10.1016/j.mechmachtheory.2019.02.004_bib0025) 2011
Hogan (10.1016/j.mechmachtheory.2019.02.004_bib0026) 1985; 107
Bagg (10.1016/j.mechmachtheory.2019.02.004_bib0002) 2002; 33
Dirette (10.1016/j.mechmachtheory.2019.02.004_bib0006) 1994; 48
Prange (10.1016/j.mechmachtheory.2019.02.004_bib0010) 2006; 43
Ueki (10.1016/j.mechmachtheory.2019.02.004_bib0020) 2012; 17
References_xml – volume: 42
  start-page: 310
  year: 2010
  end-page: 314
  ident: bib0009
  article-title: Arm studio to intensify upper limb rehabilitation after stroke: concept, acceptance, utilization and preliminary clinical results
  publication-title: J. Rehabil. Med.
– year: 2006
  ident: bib0012
  article-title: 2 rehabilitation robotics from past to present a historical perspective
– volume: 35
  start-page: 192
  year: 2016
  end-page: 207
  ident: bib0022
  article-title: A novel kinematic architecture for portable hand exoskeletons
  publication-title: Mechatronics
– volume: 23
  start-page: 837
  year: 2009
  end-page: 846
  ident: bib0004
  article-title: A comparison between electromyography-driven robot and passive motion device on wrist rehabilitation for chronic stroke
  publication-title: Neurorehabil. Neural Repair
– start-page: 1
  year: 2011
  end-page: 6
  ident: bib0025
  article-title: Ihandrehab: an interactive hand exoskeleton for active and passive rehabilitation
  publication-title: International Conference on Rehabilitation Robotics (ICORR)
– volume: 33
  start-page: 179
  year: 2002
  end-page: 185
  ident: bib0002
  article-title: Effect of age on functional outcomes after stroke rehabilitation
  publication-title: Stroke
– volume: 107
  start-page: 1
  year: 1985
  end-page: 24
  ident: bib0026
  article-title: Impedance control: an approach to manipulation. parts i, ii, and iii
  publication-title: J. Dyn. Syst. Meas. Control
– volume: 73
  start-page: 103
  year: 2014
  end-page: 116
  ident: bib0014
  article-title: Design and development of a hand exoskeleton for rehabilitation of hand injuries
  publication-title: Mech. Mach. Theory
– volume: 37
  start-page: 179
  year: 2000
  end-page: 188
  ident: bib0008
  article-title: Continuous passive motion (cpm) : theory and principles of clinical application
  publication-title: J. Rehabil. Res. Dev.
– volume: 43
  start-page: 171
  year: 2006
  end-page: 184
  ident: bib0010
  article-title: Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke
  publication-title: J. Rehabil. Res. Dev.
– start-page: 1028
  year: 2012
  end-page: 1034
  ident: bib0013
  article-title: Design and development of a hand exoskeleton for rehabilitation following stroke
  publication-title: International Symposium on Robotics and Intelligent Sensors (IRIS)
– volume: 22
  start-page: 213
  year: 2012
  end-page: 221
  ident: bib0027
  article-title: A gait rehabilitation strategy inspired by an iterative learning algorithm
  publication-title: Mechatronics
– volume: 34
  start-page: 79
  year: 2014
  end-page: 89
  ident: bib0015
  article-title: A novel exoskeleton robotic system for hand rehabilitation conceptualization to prototyping
  publication-title: Biocybern. Biomed. Eng.
– volume: 62
  start-page: 266
  year: 2012
  end-page: 280
  ident: bib0005
  article-title: Cortical activation during executed, imagined, observed, and passive wrist movements in healthy volunteers and stroke patients
  publication-title: NeuroImage
– volume: 90
  start-page: 3702
  year: 2003
  end-page: 3710
  ident: bib0021
  article-title: Stereotypical fingertip trajectories during grasp
  publication-title: J. Neurophysiol.
– start-page: 1615
  year: 2017
  end-page: 1620
  ident: bib0029
  article-title: Design of a wearable hand exoskeleton for exercising flexion/extension of the fingers
  publication-title: IEEE Proceeding on Rehabilitation Robotics (ICORR)
– volume: 44
  start-page: 914
  year: 1990
  end-page: 921
  ident: bib0007
  article-title: Effects of continuous passive motion and elevation on hand edema
  publication-title: Am. J. Occup. Therapy
– volume: 7
  year: 2010
  ident: bib0017
  article-title: Development and pilot testing of hexorr: hand exoskeleton rehabilitation robot
  publication-title: J. Neuroeng. Rehabil.
– volume: 71
  start-page: 104
  year: 2012
  end-page: 108
  ident: bib0001
  article-title: Rehabilitation after stroke in older people
  publication-title: Maturitas
– volume: 48
  start-page: 403
  year: 1994
  end-page: 409
  ident: bib0006
  article-title: Effects of continuous passive motion on the edematous hands of two persons with flaccid hemiplegia
  publication-title: Am. J. Occup. Therapy
– volume: 15
  start-page: 7
  year: 2003
  end-page: 20
  ident: bib0011
  article-title: Rehabilitation robotics: performance-based progressive robot-assisted therapy
  publication-title: Auton. Robots
– start-page: 390
  year: 2016
  end-page: 397
  ident: bib0018
  article-title: Accurate torque control of finger joints with ut hand exoskeleton through bowden cable sea
  publication-title: International Conference on Intelligent Robots and Systems (IROS)
– volume: 17
  start-page: 136
  year: 2012
  end-page: 146
  ident: bib0020
  article-title: Development of a hand-assist robot with multi-degrees-of-freedom for rehabilitation therapy
  publication-title: IEEE/ASME Trans. Mechatron.
– start-page: 896
  year: 2007
  end-page: 901
  ident: bib0019
  article-title: An actuated finger exoskeleton for hand rehabilitation following stroke
  publication-title: IEEE International Conference on Rehabilitation Robotics (ICORR)
– volume: 377
  start-page: 1693
  year: 2011
  end-page: 1702
  ident: bib0003
  article-title: Stroke rehabilitation
  publication-title: Lancet
– year: 2002
  ident: bib0024
  article-title: Kinesiology of the Musculoskeletal System: Foundations for Physical Rehabilitation
– year: 2009
  ident: bib0028
  article-title: Introduction to Finite Element Analysis and Design
– start-page: 5593
  year: 2015
  end-page: 5598
  ident: bib0016
  article-title: A human-robot interaction modeling approach for hand rehabilitation exoskeleton using biomechanical technique
  publication-title: International Conference on Intelligent Robots and Systems (IROS)
– volume: 99
  start-page: 83
  year: 2016
  end-page: 102
  ident: bib0023
  article-title: A novel motion-coupling design for a jointless tendon-driven finger exoskeleton for rehabilitation
  publication-title: Mech. Mach. Theory
– volume: 62
  start-page: 266
  year: 2012
  ident: 10.1016/j.mechmachtheory.2019.02.004_bib0005
  article-title: Cortical activation during executed, imagined, observed, and passive wrist movements in healthy volunteers and stroke patients
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.05.009
– volume: 34
  start-page: 79
  year: 2014
  ident: 10.1016/j.mechmachtheory.2019.02.004_bib0015
  article-title: A novel exoskeleton robotic system for hand rehabilitation conceptualization to prototyping
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2014.01.003
– volume: 17
  start-page: 136
  year: 2012
  ident: 10.1016/j.mechmachtheory.2019.02.004_bib0020
  article-title: Development of a hand-assist robot with multi-degrees-of-freedom for rehabilitation therapy
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2010.2090353
– volume: 22
  start-page: 213
  year: 2012
  ident: 10.1016/j.mechmachtheory.2019.02.004_bib0027
  article-title: A gait rehabilitation strategy inspired by an iterative learning algorithm
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2012.01.009
– volume: 377
  start-page: 1693
  year: 2011
  ident: 10.1016/j.mechmachtheory.2019.02.004_bib0003
  article-title: Stroke rehabilitation
  publication-title: Lancet
  doi: 10.1016/S0140-6736(11)60325-5
– volume: 48
  start-page: 403
  year: 1994
  ident: 10.1016/j.mechmachtheory.2019.02.004_bib0006
  article-title: Effects of continuous passive motion on the edematous hands of two persons with flaccid hemiplegia
  publication-title: Am. J. Occup. Therapy
  doi: 10.5014/ajot.48.5.403
– volume: 44
  start-page: 914
  year: 1990
  ident: 10.1016/j.mechmachtheory.2019.02.004_bib0007
  article-title: Effects of continuous passive motion and elevation on hand edema
  publication-title: Am. J. Occup. Therapy
  doi: 10.5014/ajot.44.10.914
– volume: 23
  start-page: 837
  year: 2009
  ident: 10.1016/j.mechmachtheory.2019.02.004_bib0004
  article-title: A comparison between electromyography-driven robot and passive motion device on wrist rehabilitation for chronic stroke
  publication-title: Neurorehabil. Neural Repair
  doi: 10.1177/1545968309338191
– volume: 107
  start-page: 1
  year: 1985
  ident: 10.1016/j.mechmachtheory.2019.02.004_bib0026
  article-title: Impedance control: an approach to manipulation. parts i, ii, and iii
  publication-title: J. Dyn. Syst. Meas. Control
  doi: 10.1115/1.3140702
– volume: 71
  start-page: 104
  year: 2012
  ident: 10.1016/j.mechmachtheory.2019.02.004_bib0001
  article-title: Rehabilitation after stroke in older people
  publication-title: Maturitas
  doi: 10.1016/j.maturitas.2011.11.011
– volume: 37
  start-page: 179
  year: 2000
  ident: 10.1016/j.mechmachtheory.2019.02.004_bib0008
  article-title: Continuous passive motion (cpm) : theory and principles of clinical application
  publication-title: J. Rehabil. Res. Dev.
– volume: 7
  year: 2010
  ident: 10.1016/j.mechmachtheory.2019.02.004_bib0017
  article-title: Development and pilot testing of hexorr: hand exoskeleton rehabilitation robot
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-7-36
– year: 2002
  ident: 10.1016/j.mechmachtheory.2019.02.004_bib0024
– volume: 43
  start-page: 171
  year: 2006
  ident: 10.1016/j.mechmachtheory.2019.02.004_bib0010
  article-title: Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke
  publication-title: J. Rehabil. Res. Dev.
  doi: 10.1682/JRRD.2005.04.0076
– start-page: 1028
  year: 2012
  ident: 10.1016/j.mechmachtheory.2019.02.004_bib0013
  article-title: Design and development of a hand exoskeleton for rehabilitation following stroke
– volume: 35
  start-page: 192
  year: 2016
  ident: 10.1016/j.mechmachtheory.2019.02.004_bib0022
  article-title: A novel kinematic architecture for portable hand exoskeletons
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2016.03.002
– start-page: 1
  year: 2011
  ident: 10.1016/j.mechmachtheory.2019.02.004_bib0025
  article-title: Ihandrehab: an interactive hand exoskeleton for active and passive rehabilitation
– volume: 99
  start-page: 83
  year: 2016
  ident: 10.1016/j.mechmachtheory.2019.02.004_bib0023
  article-title: A novel motion-coupling design for a jointless tendon-driven finger exoskeleton for rehabilitation
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2015.12.010
– start-page: 1615
  year: 2017
  ident: 10.1016/j.mechmachtheory.2019.02.004_bib0029
  article-title: Design of a wearable hand exoskeleton for exercising flexion/extension of the fingers
– volume: 73
  start-page: 103
  year: 2014
  ident: 10.1016/j.mechmachtheory.2019.02.004_bib0014
  article-title: Design and development of a hand exoskeleton for rehabilitation of hand injuries
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2013.10.015
– year: 2009
  ident: 10.1016/j.mechmachtheory.2019.02.004_bib0028
– volume: 42
  start-page: 310
  year: 2010
  ident: 10.1016/j.mechmachtheory.2019.02.004_bib0009
  article-title: Arm studio to intensify upper limb rehabilitation after stroke: concept, acceptance, utilization and preliminary clinical results
  publication-title: J. Rehabil. Med.
  doi: 10.2340/16501977-0517
– volume: 90
  start-page: 3702
  year: 2003
  ident: 10.1016/j.mechmachtheory.2019.02.004_bib0021
  article-title: Stereotypical fingertip trajectories during grasp
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00546.2003
– volume: 33
  start-page: 179
  year: 2002
  ident: 10.1016/j.mechmachtheory.2019.02.004_bib0002
  article-title: Effect of age on functional outcomes after stroke rehabilitation
  publication-title: Stroke
  doi: 10.1161/hs0102.101224
– year: 2006
  ident: 10.1016/j.mechmachtheory.2019.02.004_bib0012
– start-page: 390
  year: 2016
  ident: 10.1016/j.mechmachtheory.2019.02.004_bib0018
  article-title: Accurate torque control of finger joints with ut hand exoskeleton through bowden cable sea
– volume: 15
  start-page: 7
  year: 2003
  ident: 10.1016/j.mechmachtheory.2019.02.004_bib0011
  article-title: Rehabilitation robotics: performance-based progressive robot-assisted therapy
  publication-title: Auton. Robots
  doi: 10.1023/A:1024494031121
– start-page: 896
  year: 2007
  ident: 10.1016/j.mechmachtheory.2019.02.004_bib0019
  article-title: An actuated finger exoskeleton for hand rehabilitation following stroke
– start-page: 5593
  year: 2015
  ident: 10.1016/j.mechmachtheory.2019.02.004_bib0016
  article-title: A human-robot interaction modeling approach for hand rehabilitation exoskeleton using biomechanical technique
SSID ssj0007543
Score 2.4413066
Snippet •A portable and spring-guided CPM device for the hand is proposed.•General finger motions were obtained through the finger flexion/extension experiment by four...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 176
SubjectTerms Continuous passive motion (CPM)
Hand exoskeleton
Hand rehabilitation
Wearable structure
Title A portable and spring-guided hand exoskeleton for exercising flexion/extension of the fingers
URI https://dx.doi.org/10.1016/j.mechmachtheory.2019.02.004
Volume 135
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-3999
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007543
  issn: 0094-114X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-3999
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007543
  issn: 0094-114X
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-3999
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007543
  issn: 0094-114X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-3999
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007543
  issn: 0094-114X
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-3999
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007543
  issn: 0094-114X
  databaseCode: AKRWK
  dateStart: 19720101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9jguhB_MT5MXLYta5dk6bFg4zhmIo7OdhFSpKmbrq1w22gF_923-uHbuBh4KGHliSUl_DeLy-_9wshDd8ROogiQG5KcguPHC3wgdpyjLDhEVoprB1-7Hu9Absf8mGFdMpaGKRVFr4_9-mZty6-NAtrNmfjMdb4BgzQ_BAXJW7MsYKdeUjru_r6pXkIXjDnAmZh623S-OV4TY0eTaUeZUWDn0j0CnIFT_Z3mFoJPd19sldgRtrOf-uAVExySHZXlASPyHObZkBaTQyVSUTz41brZTmOTEQxO07NRzp_gyADYI8CUqXFZUvQjMaoipkmzSwjjukzmsYU_pbGWdJvfkwG3dunTs8qbk6wNOP2wtJuYEsJs8OVyz3haM5awkSI_VwRt4wJtMtjl9vGNr7nKF9BANNSSlt4HuwZ3RNSTdLEnBLKmII9IEyZ0YbFTiBRNEy4vo86PsL4NXJdGirUhaw43m4xCUv-2Gu4buYQzRzarRDMXCP8p_csl9fYsN9NOSfh2nIJIRJsNMLZv0c4Jzv4lrMfL0h18b40l4BQFqqeLcE62WrfPfT630U16fo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50BR8H8YnrMwevZdtt0rR4kEWU9bUnhb1ISNJU10dX3BX03zvTZn2AB8FDL20nhEmY-WYy8wVgP42kzfIckZvRIqAjxwBtoA0iJ0N8pDWGeocve0n3mp_1RX8Kjia9MFRW6W1_bdMra-3ftLw2W8-DAfX4ZhzRfJ82JQXm0zDDBdrkBsx0Ts-7vU-DLIUvnst4QAKzsP9V5vXk7N2TtndV3-A71XplNYkn_91TffM-J0uw6GEj69QzW4YpV67AwjcywVW46bAKS5tHx3SZs_rENbh9HeQuZ5QgZ-5tOHpAP4N4jyFYZf6-JfyNFUSMOSxbVVKcMmhsWDCcLSuqvN9oDa5Pjq-OuoG_PCGwXITjwMZZqDUukDCxSGRkBW9LlxP8i2XRdi6zsShiEbrQpUlkUoM-zGqtQ5kkGDbG69Aoh6XbAMa5wTAQV81Zx4so08QbJuM0JSof6dImHEwUpaxnFqcLLh7VpITsXv1UsyI1q7CtUM1NEJ_SzzXDxh_lDidron7sGIXO4E8jbP57hD2Y615dXqiL0975FszTl7oYchsa45dXt4OAZWx2_Yb8ADTk7KU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+portable+and+spring-guided+hand+exoskeleton+for+exercising+flexion%2Fextension+of+the+fingers&rft.jtitle=Mechanism+and+machine+theory&rft.au=Jo%2C+Inseong&rft.au=Park%2C+Yeongyu&rft.au=Lee%2C+Jeongsoo&rft.au=Bae%2C+Joonbum&rft.date=2019-05-01&rft.issn=0094-114X&rft.volume=135&rft.spage=176&rft.epage=191&rft_id=info:doi/10.1016%2Fj.mechmachtheory.2019.02.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mechmachtheory_2019_02_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-114X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-114X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-114X&client=summon