Neuraminidase-mediated haemagglutination of recent human influenza A(H3N2) viruses is determined by arginine 150 flanking the neuraminidase catalytic site
Over the last decade, an increasing proportion of circulating human influenza A(H3N2) viruses exhibited haemagglutination activity that was sensitive to neuraminidase inhibitors. This change in haemagglutination as compared to older circulating A(H3N2) viruses prompted an investigation of the underl...
Saved in:
Published in | Journal of general virology Vol. 98; no. 6; pp. 1274 - 1281 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Microbiology Society
01.06.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-1317 1465-2099 1465-2099 |
DOI | 10.1099/jgv.0.000809 |
Cover
Abstract | Over the last decade, an increasing proportion of circulating human influenza A(H3N2) viruses exhibited haemagglutination activity that was sensitive to neuraminidase inhibitors. This change in haemagglutination as compared to older circulating A(H3N2) viruses prompted an investigation of the underlying molecular basis. Recent human influenza A(H3N2) viruses were found to agglutinate turkey erythrocytes in a manner that could be blocked with either oseltamivir or neuraminidase-specific antisera, indicating that agglutination was driven by neuraminidase, with a low or negligible contribution of haemagglutinin. Using representative virus recombinants it was shown that the haemagglutinin of a recent A(H3N2) virus indeed had decreased activity to agglutinate turkey erythrocytes, while its neuraminidase displayed increased haemagglutinating activity. Viruses with chimeric and mutant neuraminidases were used to identify the amino acid substitution histidine to arginine at position 150 flanking the neuraminidase catalytic site as the determinant of this neuraminidase-mediated haemagglutination. An analysis of publicly available neuraminidase gene sequences showed that viruses with histidine at position 150 were rapidly replaced by viruses with arginine at this position between 2005 and 2008, in agreement with the phenotypic data. As a consequence of neuraminidase-mediated haemagglutination of recent A(H3N2) viruses and poor haemagglutination via haemagglutinin, haemagglutination inhibition assays with A(H3N2) antisera are no longer useful to characterize the antigenic properties of the haemagglutinin of these viruses for vaccine strain selection purposes. Continuous monitoring of the evolution of these viruses and potential consequences for vaccine strain selection remains important. |
---|---|
AbstractList | Over the last decade, an increasing proportion of circulating human influenza A(H3N2) viruses exhibited haemagglutination activity that was sensitive to neuraminidase inhibitors. This change in haemagglutination as compared to older circulating A(H3N2) viruses prompted an investigation of the underlying molecular basis. Recent human influenza A(H3N2) viruses were found to agglutinate turkey erythrocytes in a manner that could be blocked with either oseltamivir or neuraminidase-specific antisera, indicating that agglutination was driven by neuraminidase, with a low or negligible contribution of haemagglutinin. Using representative virus recombinants it was shown that the haemagglutinin of a recent A(H3N2) virus indeed had decreased activity to agglutinate turkey erythrocytes, while its neuraminidase displayed increased haemagglutinating activity. Viruses with chimeric and mutant neuraminidases were used to identify the amino acid substitution histidine to arginine at position 150 flanking the neuraminidase catalytic site as the determinant of this neuraminidase-mediated haemagglutination. An analysis of publicly available neuraminidase gene sequences showed that viruses with histidine at position 150 were rapidly replaced by viruses with arginine at this position between 2005 and 2008, in agreement with the phenotypic data. As a consequence of neuraminidase-mediated haemagglutination of recent A(H3N2) viruses and poor haemagglutination via haemagglutinin, haemagglutination inhibition assays with A(H3N2) antisera are no longer useful to characterize the antigenic properties of the haemagglutinin of these viruses for vaccine strain selection purposes. Continuous monitoring of the evolution of these viruses and potential consequences for vaccine strain selection remains important. Over the last decade, an increasing proportion of circulating human influenza A(H3N2) viruses exhibited haemagglutination activity that was sensitive to neuraminidase inhibitors. This change in haemagglutination as compared to older circulating A(H3N2) viruses prompted an investigation of the underlying molecular basis. Recent human influenza A(H3N2) viruses were found to agglutinate turkey erythrocytes in a manner that could be blocked with either oseltamivir or neuraminidase-specific antisera, indicating that agglutination was driven by neuraminidase, with a low or negligible contribution of haemagglutinin. Using representative virus recombinants it was shown that the haemagglutinin of a recent A(H3N2) virus indeed had decreased activity to agglutinate turkey erythrocytes, while its neuraminidase displayed increased haemagglutinating activity. Viruses with chimeric and mutant neuraminidases were used to identify the amino acid substitution histidine to arginine at position 150 flanking the neuraminidase catalytic site as the determinant of this neuraminidase-mediated haemagglutination. An analysis of publicly available neuraminidase gene sequences showed that viruses with histidine at position 150 were rapidly replaced by viruses with arginine at this position between 2005 and 2008, in agreement with the phenotypic data. As a consequence of neuraminidase-mediated haemagglutination of recent A(H3N2) viruses and poor haemagglutination via haemagglutinin, haemagglutination inhibition assays with A(H3N2) antisera are no longer useful to characterize the antigenic properties of the haemagglutinin of these viruses for vaccine strain selection purposes. Continuous monitoring of the evolution of these viruses and potential consequences for vaccine strain selection remains important.Over the last decade, an increasing proportion of circulating human influenza A(H3N2) viruses exhibited haemagglutination activity that was sensitive to neuraminidase inhibitors. This change in haemagglutination as compared to older circulating A(H3N2) viruses prompted an investigation of the underlying molecular basis. Recent human influenza A(H3N2) viruses were found to agglutinate turkey erythrocytes in a manner that could be blocked with either oseltamivir or neuraminidase-specific antisera, indicating that agglutination was driven by neuraminidase, with a low or negligible contribution of haemagglutinin. Using representative virus recombinants it was shown that the haemagglutinin of a recent A(H3N2) virus indeed had decreased activity to agglutinate turkey erythrocytes, while its neuraminidase displayed increased haemagglutinating activity. Viruses with chimeric and mutant neuraminidases were used to identify the amino acid substitution histidine to arginine at position 150 flanking the neuraminidase catalytic site as the determinant of this neuraminidase-mediated haemagglutination. An analysis of publicly available neuraminidase gene sequences showed that viruses with histidine at position 150 were rapidly replaced by viruses with arginine at this position between 2005 and 2008, in agreement with the phenotypic data. As a consequence of neuraminidase-mediated haemagglutination of recent A(H3N2) viruses and poor haemagglutination via haemagglutinin, haemagglutination inhibition assays with A(H3N2) antisera are no longer useful to characterize the antigenic properties of the haemagglutinin of these viruses for vaccine strain selection purposes. Continuous monitoring of the evolution of these viruses and potential consequences for vaccine strain selection remains important. |
Author | Spronken, Monique I. Richard, Mathilde J. Schrauwen, Eefje J. A. Mögling, Ramona Rimmelzwaan, Guus F. Beek, Ruud van Vliet, Stefan van der Fouchier, Ron A. M. |
Author_xml | – sequence: 1 givenname: Ramona surname: Mögling fullname: Mögling, Ramona organization: Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands – sequence: 2 givenname: Mathilde J. surname: Richard fullname: Richard, Mathilde J. organization: Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands – sequence: 3 givenname: Stefan van der surname: Vliet fullname: Vliet, Stefan van der organization: Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands – sequence: 4 givenname: Ruud van surname: Beek fullname: Beek, Ruud van organization: Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands – sequence: 5 givenname: Eefje J. A. surname: Schrauwen fullname: Schrauwen, Eefje J. A. organization: Laboratory for Microbiology and Infection Control, Amphia Hospital, Breda, The Netherlands – sequence: 6 givenname: Monique I. surname: Spronken fullname: Spronken, Monique I. organization: Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands – sequence: 7 givenname: Guus F. surname: Rimmelzwaan fullname: Rimmelzwaan, Guus F. organization: Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands – sequence: 8 givenname: Ron A. M. surname: Fouchier fullname: Fouchier, Ron A. M. organization: Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28612701$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUFv1DAUhC1URLeFG2fkY5HI8myv4_iCVFVAkapygbP14jhZl8QptrPS8lP4tbhsiwri9A5v5huN5oQchTk4Ql4yWDPQ-u3NsFvDGgAa0E_Iim1qWfHyOCIrAM4rJpg6Jicp3QCwzUaqZ-SYNzXjCtiK_Lx2S8TJB99hctXkOo_ZdXSLbsJhGJfsA2Y_Bzr3NDrrQqbbZcJAfejHxYUfSM_PLsU1f013Pi7JJeoT7Vx2sVALqd1TjEMJCI4yCbQfMXzzYaB562h4nE4tZhz32VuafHbPydMex-Re3N9T8vXD-y8Xl9XV54-fLs6vKruRkKsWWt2r2kqmGiFRt7hR0KimEdgCQq0FsFY2IHsJuutsZ-uW16iY7aUQrBGn5N2Be7u0pf9dxYijuY1-wrg3M3rz9yf4rRnmnZG65o0WBXB2D4jz98WlbCafrBtLUTcvyTANWgmtOC_SV4-z_oQ8DFIE_CCwcU4put5Yn38PUKL9aBiYu9VNWd2AOaxeTG_-MT1w_yv_BSGEsXo |
CitedBy_id | crossref_primary_10_3390_v13060973 crossref_primary_10_1016_j_celrep_2023_112766 crossref_primary_10_1016_S0213_005X_19_30182_X crossref_primary_10_1007_s00216_021_03806_6 crossref_primary_10_1016_j_vaccine_2018_06_032 crossref_primary_10_1128_mSphere_00567_21 crossref_primary_10_3390_v11040346 crossref_primary_10_3390_ijerph17155423 crossref_primary_10_1016_j_antiviral_2023_105719 crossref_primary_10_1371_journal_ppat_1011135 crossref_primary_10_1128_JCM_00750_20 crossref_primary_10_1016_j_tim_2019_08_010 crossref_primary_10_1128_mBio_01512_21 crossref_primary_10_1111_febs_15668 crossref_primary_10_1016_j_vaccine_2022_10_018 crossref_primary_10_1074_jbc_REV120_013309 crossref_primary_10_3389_fmicb_2024_1345794 crossref_primary_10_1080_21645515_2019_1565269 crossref_primary_10_1111_irv_70044 crossref_primary_10_1371_journal_ppat_1007860 crossref_primary_10_1038_s41467_021_25713_1 crossref_primary_10_1128_mBio_02332_17 crossref_primary_10_3390_v11050458 crossref_primary_10_3389_fcimb_2019_00344 crossref_primary_10_3389_fmicb_2019_00039 crossref_primary_10_1099_jgv_0_001348 crossref_primary_10_1080_21505594_2023_2235459 crossref_primary_10_1038_s41467_023_41908_0 crossref_primary_10_1016_j_chom_2024_01_003 crossref_primary_10_1038_s41467_021_26409_2 crossref_primary_10_1016_j_tim_2019_03_001 crossref_primary_10_1101_cshperspect_a038448 |
Cites_doi | 10.1084/jem.78.5.407 10.1006/viro.2001.1121 10.1371/journal.pone.0079252 10.1126/science.1244730 10.1016/j.virol.2005.05.009 10.1007/s00705-009-0393-x 10.1016/0002-9343(87)90556-0 10.1006/viro.2000.0679 10.1128/JVI.01426-12 10.1371/journal.pone.0033880 10.1086/507558 10.1002/rmv.352 10.1016/j.vaccine.2016.11.060 10.1038/nature05114 10.1038/srep01551 10.1128/JVI.00458-10 10.1186/1743-422X-4-42 10.1111/irv.12333 10.1073/pnas.1218841110 10.1016/j.virusres.2004.02.028 10.1128/JVI.71.9.6706-6713.1997 10.1038/nrg2053 10.1128/JVI.74.13.6015-6020.2000 10.1016/j.jviromet.2015.02.014 10.1021/jm00031a011 10.1128/AAC.01417-09 10.1111/j.1348-0421.1993.tb01689.x 10.1128/JVI.01077-14 10.1021/ja9073672 10.1016/0042-6822(84)90223-X 10.1073/pnas.100133697 10.1146/annurev.biochem.69.1.531 10.1128/JVI.69.2.1099-1106.1995 10.1128/JCM.03575-13 10.1128/JVI.02962-14 10.1016/j.antiviral.2009.11.005 10.1016/S1473-3099(02)00366-3 10.1099/0022-1317-76-7-1719 10.1006/viro.1996.8323 10.1128/JVI.01889-13 10.1128/JVI.78.22.12665-12667.2004 |
ContentType | Journal Article |
Copyright | 2017 The Authors 2017 |
Copyright_xml | – notice: 2017 The Authors 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1099/jgv.0.000809 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | http://jgv.microbiologyresearch.org |
EISSN | 1465-2099 |
EndPage | 1281 |
ExternalDocumentID | PMC5962893 28612701 10_1099_jgv_0_000809 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Institute of Allergy and Infectious Diseases grantid: HHSN272201400008C |
GroupedDBID | --- -~X .55 18M 2WC 4.4 5GY 5RE AAJMC AAYXX ABDNZ ACBTR ACGFO ACPEE ADBBV ADCDP ADCOW AEILP AENEX ALMA_UNASSIGNED_HOLDINGS BAWUL CITATION CJ0 CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 IH2 K-O L7B OK1 P2P RGM TR2 W8F WH7 WOQ X7M Y6R YKV YSK ~KM .GJ 186 39C 3O- 53G ACYGS AFFNX AGCDD AI. AJKYU C1A CGR CUY CVF ECM EIF NPM OHT PKN VH1 WHG ZGI 7X8 5PM |
ID | FETCH-LOGICAL-c450t-b0b9f76c517835a9ba47087883ab0a069301b5805f509ddcdc6b26a71cf533183 |
ISSN | 0022-1317 1465-2099 |
IngestDate | Thu Aug 21 14:00:12 EDT 2025 Fri Sep 05 06:39:42 EDT 2025 Wed Feb 19 02:43:22 EST 2025 Tue Jul 01 04:07:31 EDT 2025 Thu Apr 24 23:00:11 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c450t-b0b9f76c517835a9ba47087883ab0a069301b5805f509ddcdc6b26a71cf533183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | http://doi.org/10.1099/jgv.0.000809 |
PMID | 28612701 |
PQID | 1909739722 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5962893 proquest_miscellaneous_1909739722 pubmed_primary_28612701 crossref_citationtrail_10_1099_jgv_0_000809 crossref_primary_10_1099_jgv_0_000809 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-06-01 2017-Jun 20170601 |
PublicationDateYYYYMMDD | 2017-06-01 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of general virology |
PublicationTitleAlternate | J Gen Virol |
PublicationYear | 2017 |
Publisher | Microbiology Society |
Publisher_xml | – name: Microbiology Society |
References | (R5) 2017 R41 R40 R21 R43 R20 R42 R23 R22 Kobasa (R29) 1997; 71 R25 R24 R27 R26 R28 Wright (R12) 2013 R1 R2 R3 R4 R6 R7 R9 Liu (R8) 1995; 69 R30 R10 R32 R31 R34 R11 R33 R14 R36 R13 R35 R16 R38 R15 R37 R18 R17 R39 R19 8126701 - J Med Chem. 1994 Mar 4;37(5):616-24 7815489 - J Virol. 1995 Feb;69(2):1099-106 17163394 - J Infect Dis. 2006 Nov 1;194 Suppl 2:S82-91 17262054 - Nat Rev Genet. 2007 Mar;8(3):196-205 19871338 - J Exp Med. 1943 Nov 1;78(5):407-23 15507653 - J Virol. 2004 Nov;78(22):12665-7 24027333 - J Virol. 2013 Dec;87(23):12531-40 26073976 - Influenza Other Respir Viruses. 2015 Jun 13;:null 19917319 - Antiviral Res. 2010 Feb;85(2):381-8 20410266 - J Virol. 2010 Jul;84(13):6769-81 24991002 - J Virol. 2014 Sep;88(18):10986-9 17490484 - Virol J. 2007 May 09;4:42 12206966 - Lancet Infect Dis. 2002 Sep;2(9):517 10801978 - Proc Natl Acad Sci U S A. 2000 May 23;97(11):6108-13 10966468 - Annu Rev Biochem. 2000;69:531-69 24223916 - PLoS One. 2013 Nov 01;8(11):e79252 16915235 - Nature. 2006 Sep 7;443(7107):45-9 10846083 - J Virol. 2000 Jul;74(13):6015-20 22563453 - PLoS One. 2012;7(5):e33880 24264991 - Science. 2013 Nov 22;342(6161):976-9 3591814 - Am J Med. 1987 Jun 19;82(6A):20-5 11118381 - Virology. 2000 Dec 20;278(2):587-96 24622097 - J Clin Microbiol. 2014 May;52(5):1672-7 23531861 - Sci Rep. 2013;3:1551 9018149 - Virology. 1997 Jan 20;227(2):493-9 6485252 - Virology. 1984 Sep;137(2):314-23 15950996 - Virology. 2005 Aug 15;339(1):12-20 23236176 - Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21474-9 25712563 - J Virol Methods. 2015 Jun 1;217:55-63 25609810 - J Virol. 2015 Apr;89(7):3763-75 23015718 - J Virol. 2012 Dec;86(24):13371-83 8246828 - Microbiol Immunol. 1993;37(8):661-5 19458903 - Arch Virol. 2009;154(6):945-57 11601919 - Virology. 2001 Oct 10;289(1):74-85 9261394 - J Virol. 1997 Sep;71(9):6706-13 15163504 - Virus Res. 2004 Jul;103(1-2):155-61 11987141 - Rev Med Virol. 2002 May-Jun;12(3):159-66 20155919 - J Am Chem Soc. 2010 Mar 10;132(9):2883-5 9049377 - J Gen Virol. 1995 Jul;76 ( Pt 7):1719-28 27899226 - Vaccine. 2017 Jan 3;35(1):46-52 20028826 - Antimicrob Agents Chemother. 2010 Mar;54(3):1102-10 |
References_xml | – ident: R42 doi: 10.1084/jem.78.5.407 – ident: R16 doi: 10.1006/viro.2001.1121 – ident: R33 doi: 10.1371/journal.pone.0079252 – ident: R41 doi: 10.1126/science.1244730 – ident: R11 doi: 10.1016/j.virol.2005.05.009 – ident: R27 doi: 10.1007/s00705-009-0393-x – ident: R2 doi: 10.1016/0002-9343(87)90556-0 – ident: R15 doi: 10.1006/viro.2000.0679 – ident: R20 doi: 10.1128/JVI.01426-12 – ident: R10 doi: 10.1371/journal.pone.0033880 – ident: R4 doi: 10.1086/507558 – ident: R7 doi: 10.1002/rmv.352 – ident: R37 doi: 10.1016/j.vaccine.2016.11.060 – start-page: 1785 volume-title: Fields Virology year: 2013 ident: R12 article-title: Orthomyxoviruses – ident: R24 doi: 10.1038/nature05114 – ident: R25 doi: 10.1038/srep01551 – ident: R18 doi: 10.1128/JVI.00458-10 – ident: R22 doi: 10.1186/1743-422X-4-42 – ident: R38 doi: 10.1111/irv.12333 – ident: R19 doi: 10.1073/pnas.1218841110 – ident: R40 doi: 10.1016/j.virusres.2004.02.028 – volume: 71 start-page: 6706 year: 1997 ident: R29 article-title: Neuraminidase hemadsorption activity, conserved in avian influenza A viruses, does not influence viral replication in ducks publication-title: J Virol doi: 10.1128/JVI.71.9.6706-6713.1997 – ident: R1 doi: 10.1038/nrg2053 – ident: R9 doi: 10.1128/JVI.74.13.6015-6020.2000 – ident: R23 doi: 10.1016/j.jviromet.2015.02.014 – ident: R26 doi: 10.1021/jm00031a011 – ident: R34 doi: 10.1128/AAC.01417-09 – ident: R14 doi: 10.1111/j.1348-0421.1993.tb01689.x – ident: R36 doi: 10.1128/JVI.01077-14 – ident: R31 doi: 10.1021/ja9073672 – ident: R28 doi: 10.1016/0042-6822(84)90223-X – ident: R39 doi: 10.1073/pnas.100133697 – ident: R6 doi: 10.1146/annurev.biochem.69.1.531 – volume: 69 start-page: 1099 year: 1995 ident: R8 article-title: Influenza type A virus neuraminidase does not play a role in viral entry, replication, assembly, or budding publication-title: J Virol doi: 10.1128/JVI.69.2.1099-1106.1995 – ident: R21 doi: 10.1128/JCM.03575-13 – ident: R43 doi: 10.1128/JVI.02962-14 – ident: R35 doi: 10.1016/j.antiviral.2009.11.005 – ident: R3 doi: 10.1016/S1473-3099(02)00366-3 – year: 2017 ident: R5 article-title: Influenza vaccine viruses and reagents. WHO – ident: R30 doi: 10.1099/0022-1317-76-7-1719 – ident: R17 doi: 10.1006/viro.1996.8323 – ident: R32 doi: 10.1128/JVI.01889-13 – ident: R13 doi: 10.1128/JVI.78.22.12665-12667.2004 – reference: 20410266 - J Virol. 2010 Jul;84(13):6769-81 – reference: 10846083 - J Virol. 2000 Jul;74(13):6015-20 – reference: 8246828 - Microbiol Immunol. 1993;37(8):661-5 – reference: 23015718 - J Virol. 2012 Dec;86(24):13371-83 – reference: 15507653 - J Virol. 2004 Nov;78(22):12665-7 – reference: 23236176 - Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21474-9 – reference: 20155919 - J Am Chem Soc. 2010 Mar 10;132(9):2883-5 – reference: 19458903 - Arch Virol. 2009;154(6):945-57 – reference: 17262054 - Nat Rev Genet. 2007 Mar;8(3):196-205 – reference: 26073976 - Influenza Other Respir Viruses. 2015 Jun 13;:null – reference: 7815489 - J Virol. 1995 Feb;69(2):1099-106 – reference: 24264991 - Science. 2013 Nov 22;342(6161):976-9 – reference: 6485252 - Virology. 1984 Sep;137(2):314-23 – reference: 25712563 - J Virol Methods. 2015 Jun 1;217:55-63 – reference: 24223916 - PLoS One. 2013 Nov 01;8(11):e79252 – reference: 11118381 - Virology. 2000 Dec 20;278(2):587-96 – reference: 10801978 - Proc Natl Acad Sci U S A. 2000 May 23;97(11):6108-13 – reference: 3591814 - Am J Med. 1987 Jun 19;82(6A):20-5 – reference: 15950996 - Virology. 2005 Aug 15;339(1):12-20 – reference: 19917319 - Antiviral Res. 2010 Feb;85(2):381-8 – reference: 19871338 - J Exp Med. 1943 Nov 1;78(5):407-23 – reference: 24622097 - J Clin Microbiol. 2014 May;52(5):1672-7 – reference: 22563453 - PLoS One. 2012;7(5):e33880 – reference: 17490484 - Virol J. 2007 May 09;4:42 – reference: 12206966 - Lancet Infect Dis. 2002 Sep;2(9):517 – reference: 9018149 - Virology. 1997 Jan 20;227(2):493-9 – reference: 9049377 - J Gen Virol. 1995 Jul;76 ( Pt 7):1719-28 – reference: 9261394 - J Virol. 1997 Sep;71(9):6706-13 – reference: 27899226 - Vaccine. 2017 Jan 3;35(1):46-52 – reference: 11601919 - Virology. 2001 Oct 10;289(1):74-85 – reference: 24027333 - J Virol. 2013 Dec;87(23):12531-40 – reference: 10966468 - Annu Rev Biochem. 2000;69:531-69 – reference: 24991002 - J Virol. 2014 Sep;88(18):10986-9 – reference: 20028826 - Antimicrob Agents Chemother. 2010 Mar;54(3):1102-10 – reference: 8126701 - J Med Chem. 1994 Mar 4;37(5):616-24 – reference: 16915235 - Nature. 2006 Sep 7;443(7107):45-9 – reference: 15163504 - Virus Res. 2004 Jul;103(1-2):155-61 – reference: 11987141 - Rev Med Virol. 2002 May-Jun;12(3):159-66 – reference: 23531861 - Sci Rep. 2013;3:1551 – reference: 17163394 - J Infect Dis. 2006 Nov 1;194 Suppl 2:S82-91 – reference: 25609810 - J Virol. 2015 Apr;89(7):3763-75 |
SSID | ssj0014457 |
Score | 2.3866613 |
Snippet | Over the last decade, an increasing proportion of circulating human influenza A(H3N2) viruses exhibited haemagglutination activity that was sensitive to... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1274 |
SubjectTerms | Animals Arginine - genetics Arginine - metabolism Catalytic Domain DNA Mutational Analysis Erythrocytes Evolution, Molecular Hemagglutination Hemagglutination Inhibition Tests Humans Influenza A Virus, H3N2 Subtype - enzymology Influenza A Virus, H3N2 Subtype - genetics Influenza, Human - virology Neuraminidase - genetics Neuraminidase - metabolism Recombination, Genetic Reverse Genetics Turkeys |
Title | Neuraminidase-mediated haemagglutination of recent human influenza A(H3N2) viruses is determined by arginine 150 flanking the neuraminidase catalytic site |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28612701 https://www.proquest.com/docview/1909739722 https://pubmed.ncbi.nlm.nih.gov/PMC5962893 |
Volume | 98 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9swFBVZx2AvY9_LvtBggw3jzHZky3pMy0YopIzSjr4FyZbdQOqUxC6kP2X_dG-715IdZ01h64sJlmIluSdXR9K95xLyMUpCIVSYuhpWOS4TkrkySpkb8AzobBrpKMXk5MlRND5lh2fhWa_3uxO1VJVqkFzvzCu5i1XhHtgVs2T_w7LtQ-EGvAb7whUsDNd_sjEqa0gUB0lhLnLrJBAkkOdSX8g8x5GLlhGCZ8Njf1OTb2ZKk1xLZwQMczw8CnB34Gq2rFYYoLVyUhslY_ipXOZYR0I7wOucbC7rcgs1ZS26n8Cp94LWKAGLZ9K38N7cCF3jaFtb-hM8s9-P8rmtsnKMdZDaScMKAJj0ohIz0LVzOGhaMQkLRTF-AqMubfBatsE9Nu9rXTv-46pKu1sdPt-EZJlwp1lHm8oGtXZ9Oyyr_aHJBB1o484ZxvB5pgRT4-9F3MF113n7gSkYZIkAnjHunGTgeTjJ5FcDDAsEyi263QAilxc14II4wnN9fzPVtgGQPyYHWPYIyOI9cj_gQPswT_2sjU6CZW7IG6F7_FI2ZwOG_todGLWs7SjbxOrGaunvoN8Oizp5TB5ZGNCRwfIT0tPFU_LAFERdPyO_diOa3kA0XWTUIJrWiKYtounoM-L5C7VoprMV3aCZqjVt0EwBzbRBMwU00y000xbNFNH8nJx-_3ZyMHZt9RA3YaFXuspTIuPgi3zc3JRCSca9mMfxUCpPelgC1Fdh7IUZcOY0TdIkUkEkuZ9ksASCme4F2SsWhX5FqPCGWjAuRCYUUyyJJRsqznmqeRYq5veJ0_z008RK62OFl_nUhHiIKdhsijq8aLM--dT2vjSSMrf0-9BYcQo-Hw_yZKEX1WoKJF5wWEgEQZ-8NFZtn9TAoU_4lr3bDqgnv91SzM5rXXmLyNd3fucb8nDzt31L9splpd8BZy_V-xrdfwClifRH |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neuraminidase-mediated+haemagglutination+of+recent+human+influenza+A%28H3N2%29+viruses+is+determined+by+arginine+150+flanking+the+neuraminidase+catalytic+site&rft.jtitle=Journal+of+general+virology&rft.au=M%C3%B6gling%2C+Ramona&rft.au=Richard%2C+Mathilde+J.&rft.au=van+der+Vliet%2C+Stefan&rft.au=van+Beek%2C+Ruud&rft.date=2017-06-01&rft.pub=Microbiology+Society&rft.issn=0022-1317&rft.eissn=1465-2099&rft.volume=98&rft.issue=6&rft.spage=1274&rft.epage=1281&rft_id=info:doi/10.1099%2Fjgv.0.000809&rft_id=info%3Apmid%2F28612701&rft.externalDocID=PMC5962893 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1317&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1317&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1317&client=summon |