Neuraminidase-mediated haemagglutination of recent human influenza A(H3N2) viruses is determined by arginine 150 flanking the neuraminidase catalytic site

Over the last decade, an increasing proportion of circulating human influenza A(H3N2) viruses exhibited haemagglutination activity that was sensitive to neuraminidase inhibitors. This change in haemagglutination as compared to older circulating A(H3N2) viruses prompted an investigation of the underl...

Full description

Saved in:
Bibliographic Details
Published inJournal of general virology Vol. 98; no. 6; pp. 1274 - 1281
Main Authors Mögling, Ramona, Richard, Mathilde J., Vliet, Stefan van der, Beek, Ruud van, Schrauwen, Eefje J. A., Spronken, Monique I., Rimmelzwaan, Guus F., Fouchier, Ron A. M.
Format Journal Article
LanguageEnglish
Published England Microbiology Society 01.06.2017
Subjects
Online AccessGet full text
ISSN0022-1317
1465-2099
1465-2099
DOI10.1099/jgv.0.000809

Cover

Abstract Over the last decade, an increasing proportion of circulating human influenza A(H3N2) viruses exhibited haemagglutination activity that was sensitive to neuraminidase inhibitors. This change in haemagglutination as compared to older circulating A(H3N2) viruses prompted an investigation of the underlying molecular basis. Recent human influenza A(H3N2) viruses were found to agglutinate turkey erythrocytes in a manner that could be blocked with either oseltamivir or neuraminidase-specific antisera, indicating that agglutination was driven by neuraminidase, with a low or negligible contribution of haemagglutinin. Using representative virus recombinants it was shown that the haemagglutinin of a recent A(H3N2) virus indeed had decreased activity to agglutinate turkey erythrocytes, while its neuraminidase displayed increased haemagglutinating activity. Viruses with chimeric and mutant neuraminidases were used to identify the amino acid substitution histidine to arginine at position 150 flanking the neuraminidase catalytic site as the determinant of this neuraminidase-mediated haemagglutination. An analysis of publicly available neuraminidase gene sequences showed that viruses with histidine at position 150 were rapidly replaced by viruses with arginine at this position between 2005 and 2008, in agreement with the phenotypic data. As a consequence of neuraminidase-mediated haemagglutination of recent A(H3N2) viruses and poor haemagglutination via haemagglutinin, haemagglutination inhibition assays with A(H3N2) antisera are no longer useful to characterize the antigenic properties of the haemagglutinin of these viruses for vaccine strain selection purposes. Continuous monitoring of the evolution of these viruses and potential consequences for vaccine strain selection remains important.
AbstractList Over the last decade, an increasing proportion of circulating human influenza A(H3N2) viruses exhibited haemagglutination activity that was sensitive to neuraminidase inhibitors. This change in haemagglutination as compared to older circulating A(H3N2) viruses prompted an investigation of the underlying molecular basis. Recent human influenza A(H3N2) viruses were found to agglutinate turkey erythrocytes in a manner that could be blocked with either oseltamivir or neuraminidase-specific antisera, indicating that agglutination was driven by neuraminidase, with a low or negligible contribution of haemagglutinin. Using representative virus recombinants it was shown that the haemagglutinin of a recent A(H3N2) virus indeed had decreased activity to agglutinate turkey erythrocytes, while its neuraminidase displayed increased haemagglutinating activity. Viruses with chimeric and mutant neuraminidases were used to identify the amino acid substitution histidine to arginine at position 150 flanking the neuraminidase catalytic site as the determinant of this neuraminidase-mediated haemagglutination. An analysis of publicly available neuraminidase gene sequences showed that viruses with histidine at position 150 were rapidly replaced by viruses with arginine at this position between 2005 and 2008, in agreement with the phenotypic data. As a consequence of neuraminidase-mediated haemagglutination of recent A(H3N2) viruses and poor haemagglutination via haemagglutinin, haemagglutination inhibition assays with A(H3N2) antisera are no longer useful to characterize the antigenic properties of the haemagglutinin of these viruses for vaccine strain selection purposes. Continuous monitoring of the evolution of these viruses and potential consequences for vaccine strain selection remains important.
Over the last decade, an increasing proportion of circulating human influenza A(H3N2) viruses exhibited haemagglutination activity that was sensitive to neuraminidase inhibitors. This change in haemagglutination as compared to older circulating A(H3N2) viruses prompted an investigation of the underlying molecular basis. Recent human influenza A(H3N2) viruses were found to agglutinate turkey erythrocytes in a manner that could be blocked with either oseltamivir or neuraminidase-specific antisera, indicating that agglutination was driven by neuraminidase, with a low or negligible contribution of haemagglutinin. Using representative virus recombinants it was shown that the haemagglutinin of a recent A(H3N2) virus indeed had decreased activity to agglutinate turkey erythrocytes, while its neuraminidase displayed increased haemagglutinating activity. Viruses with chimeric and mutant neuraminidases were used to identify the amino acid substitution histidine to arginine at position 150 flanking the neuraminidase catalytic site as the determinant of this neuraminidase-mediated haemagglutination. An analysis of publicly available neuraminidase gene sequences showed that viruses with histidine at position 150 were rapidly replaced by viruses with arginine at this position between 2005 and 2008, in agreement with the phenotypic data. As a consequence of neuraminidase-mediated haemagglutination of recent A(H3N2) viruses and poor haemagglutination via haemagglutinin, haemagglutination inhibition assays with A(H3N2) antisera are no longer useful to characterize the antigenic properties of the haemagglutinin of these viruses for vaccine strain selection purposes. Continuous monitoring of the evolution of these viruses and potential consequences for vaccine strain selection remains important.Over the last decade, an increasing proportion of circulating human influenza A(H3N2) viruses exhibited haemagglutination activity that was sensitive to neuraminidase inhibitors. This change in haemagglutination as compared to older circulating A(H3N2) viruses prompted an investigation of the underlying molecular basis. Recent human influenza A(H3N2) viruses were found to agglutinate turkey erythrocytes in a manner that could be blocked with either oseltamivir or neuraminidase-specific antisera, indicating that agglutination was driven by neuraminidase, with a low or negligible contribution of haemagglutinin. Using representative virus recombinants it was shown that the haemagglutinin of a recent A(H3N2) virus indeed had decreased activity to agglutinate turkey erythrocytes, while its neuraminidase displayed increased haemagglutinating activity. Viruses with chimeric and mutant neuraminidases were used to identify the amino acid substitution histidine to arginine at position 150 flanking the neuraminidase catalytic site as the determinant of this neuraminidase-mediated haemagglutination. An analysis of publicly available neuraminidase gene sequences showed that viruses with histidine at position 150 were rapidly replaced by viruses with arginine at this position between 2005 and 2008, in agreement with the phenotypic data. As a consequence of neuraminidase-mediated haemagglutination of recent A(H3N2) viruses and poor haemagglutination via haemagglutinin, haemagglutination inhibition assays with A(H3N2) antisera are no longer useful to characterize the antigenic properties of the haemagglutinin of these viruses for vaccine strain selection purposes. Continuous monitoring of the evolution of these viruses and potential consequences for vaccine strain selection remains important.
Author Spronken, Monique I.
Richard, Mathilde J.
Schrauwen, Eefje J. A.
Mögling, Ramona
Rimmelzwaan, Guus F.
Beek, Ruud van
Vliet, Stefan van der
Fouchier, Ron A. M.
Author_xml – sequence: 1
  givenname: Ramona
  surname: Mögling
  fullname: Mögling, Ramona
  organization: Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
– sequence: 2
  givenname: Mathilde J.
  surname: Richard
  fullname: Richard, Mathilde J.
  organization: Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
– sequence: 3
  givenname: Stefan van der
  surname: Vliet
  fullname: Vliet, Stefan van der
  organization: Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
– sequence: 4
  givenname: Ruud van
  surname: Beek
  fullname: Beek, Ruud van
  organization: Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
– sequence: 5
  givenname: Eefje J. A.
  surname: Schrauwen
  fullname: Schrauwen, Eefje J. A.
  organization: Laboratory for Microbiology and Infection Control, Amphia Hospital, Breda, The Netherlands
– sequence: 6
  givenname: Monique I.
  surname: Spronken
  fullname: Spronken, Monique I.
  organization: Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
– sequence: 7
  givenname: Guus F.
  surname: Rimmelzwaan
  fullname: Rimmelzwaan, Guus F.
  organization: Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
– sequence: 8
  givenname: Ron A. M.
  surname: Fouchier
  fullname: Fouchier, Ron A. M.
  organization: Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28612701$$D View this record in MEDLINE/PubMed
BookMark eNptkUFv1DAUhC1URLeFG2fkY5HI8myv4_iCVFVAkapygbP14jhZl8QptrPS8lP4tbhsiwri9A5v5huN5oQchTk4Ql4yWDPQ-u3NsFvDGgAa0E_Iim1qWfHyOCIrAM4rJpg6Jicp3QCwzUaqZ-SYNzXjCtiK_Lx2S8TJB99hctXkOo_ZdXSLbsJhGJfsA2Y_Bzr3NDrrQqbbZcJAfejHxYUfSM_PLsU1f013Pi7JJeoT7Vx2sVALqd1TjEMJCI4yCbQfMXzzYaB562h4nE4tZhz32VuafHbPydMex-Re3N9T8vXD-y8Xl9XV54-fLs6vKruRkKsWWt2r2kqmGiFRt7hR0KimEdgCQq0FsFY2IHsJuutsZ-uW16iY7aUQrBGn5N2Be7u0pf9dxYijuY1-wrg3M3rz9yf4rRnmnZG65o0WBXB2D4jz98WlbCafrBtLUTcvyTANWgmtOC_SV4-z_oQ8DFIE_CCwcU4put5Yn38PUKL9aBiYu9VNWd2AOaxeTG_-MT1w_yv_BSGEsXo
CitedBy_id crossref_primary_10_3390_v13060973
crossref_primary_10_1016_j_celrep_2023_112766
crossref_primary_10_1016_S0213_005X_19_30182_X
crossref_primary_10_1007_s00216_021_03806_6
crossref_primary_10_1016_j_vaccine_2018_06_032
crossref_primary_10_1128_mSphere_00567_21
crossref_primary_10_3390_v11040346
crossref_primary_10_3390_ijerph17155423
crossref_primary_10_1016_j_antiviral_2023_105719
crossref_primary_10_1371_journal_ppat_1011135
crossref_primary_10_1128_JCM_00750_20
crossref_primary_10_1016_j_tim_2019_08_010
crossref_primary_10_1128_mBio_01512_21
crossref_primary_10_1111_febs_15668
crossref_primary_10_1016_j_vaccine_2022_10_018
crossref_primary_10_1074_jbc_REV120_013309
crossref_primary_10_3389_fmicb_2024_1345794
crossref_primary_10_1080_21645515_2019_1565269
crossref_primary_10_1111_irv_70044
crossref_primary_10_1371_journal_ppat_1007860
crossref_primary_10_1038_s41467_021_25713_1
crossref_primary_10_1128_mBio_02332_17
crossref_primary_10_3390_v11050458
crossref_primary_10_3389_fcimb_2019_00344
crossref_primary_10_3389_fmicb_2019_00039
crossref_primary_10_1099_jgv_0_001348
crossref_primary_10_1080_21505594_2023_2235459
crossref_primary_10_1038_s41467_023_41908_0
crossref_primary_10_1016_j_chom_2024_01_003
crossref_primary_10_1038_s41467_021_26409_2
crossref_primary_10_1016_j_tim_2019_03_001
crossref_primary_10_1101_cshperspect_a038448
Cites_doi 10.1084/jem.78.5.407
10.1006/viro.2001.1121
10.1371/journal.pone.0079252
10.1126/science.1244730
10.1016/j.virol.2005.05.009
10.1007/s00705-009-0393-x
10.1016/0002-9343(87)90556-0
10.1006/viro.2000.0679
10.1128/JVI.01426-12
10.1371/journal.pone.0033880
10.1086/507558
10.1002/rmv.352
10.1016/j.vaccine.2016.11.060
10.1038/nature05114
10.1038/srep01551
10.1128/JVI.00458-10
10.1186/1743-422X-4-42
10.1111/irv.12333
10.1073/pnas.1218841110
10.1016/j.virusres.2004.02.028
10.1128/JVI.71.9.6706-6713.1997
10.1038/nrg2053
10.1128/JVI.74.13.6015-6020.2000
10.1016/j.jviromet.2015.02.014
10.1021/jm00031a011
10.1128/AAC.01417-09
10.1111/j.1348-0421.1993.tb01689.x
10.1128/JVI.01077-14
10.1021/ja9073672
10.1016/0042-6822(84)90223-X
10.1073/pnas.100133697
10.1146/annurev.biochem.69.1.531
10.1128/JVI.69.2.1099-1106.1995
10.1128/JCM.03575-13
10.1128/JVI.02962-14
10.1016/j.antiviral.2009.11.005
10.1016/S1473-3099(02)00366-3
10.1099/0022-1317-76-7-1719
10.1006/viro.1996.8323
10.1128/JVI.01889-13
10.1128/JVI.78.22.12665-12667.2004
ContentType Journal Article
Copyright 2017 The Authors 2017
Copyright_xml – notice: 2017 The Authors 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1099/jgv.0.000809
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate http://jgv.microbiologyresearch.org
EISSN 1465-2099
EndPage 1281
ExternalDocumentID PMC5962893
28612701
10_1099_jgv_0_000809
Genre Journal Article
GrantInformation_xml – fundername: National Institute of Allergy and Infectious Diseases
  grantid: HHSN272201400008C
GroupedDBID ---
-~X
.55
18M
2WC
4.4
5GY
5RE
AAJMC
AAYXX
ABDNZ
ACBTR
ACGFO
ACPEE
ADBBV
ADCDP
ADCOW
AEILP
AENEX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CITATION
CJ0
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
IH2
K-O
L7B
OK1
P2P
RGM
TR2
W8F
WH7
WOQ
X7M
Y6R
YKV
YSK
~KM
.GJ
186
39C
3O-
53G
ACYGS
AFFNX
AGCDD
AI.
AJKYU
C1A
CGR
CUY
CVF
ECM
EIF
NPM
OHT
PKN
VH1
WHG
ZGI
7X8
5PM
ID FETCH-LOGICAL-c450t-b0b9f76c517835a9ba47087883ab0a069301b5805f509ddcdc6b26a71cf533183
ISSN 0022-1317
1465-2099
IngestDate Thu Aug 21 14:00:12 EDT 2025
Fri Sep 05 06:39:42 EDT 2025
Wed Feb 19 02:43:22 EST 2025
Tue Jul 01 04:07:31 EDT 2025
Thu Apr 24 23:00:11 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c450t-b0b9f76c517835a9ba47087883ab0a069301b5805f509ddcdc6b26a71cf533183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
OpenAccessLink http://doi.org/10.1099/jgv.0.000809
PMID 28612701
PQID 1909739722
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5962893
proquest_miscellaneous_1909739722
pubmed_primary_28612701
crossref_citationtrail_10_1099_jgv_0_000809
crossref_primary_10_1099_jgv_0_000809
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-01
2017-Jun
20170601
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of general virology
PublicationTitleAlternate J Gen Virol
PublicationYear 2017
Publisher Microbiology Society
Publisher_xml – name: Microbiology Society
References (R5) 2017
R41
R40
R21
R43
R20
R42
R23
R22
Kobasa (R29) 1997; 71
R25
R24
R27
R26
R28
Wright (R12) 2013
R1
R2
R3
R4
R6
R7
R9
Liu (R8) 1995; 69
R30
R10
R32
R31
R34
R11
R33
R14
R36
R13
R35
R16
R38
R15
R37
R18
R17
R39
R19
8126701 - J Med Chem. 1994 Mar 4;37(5):616-24
7815489 - J Virol. 1995 Feb;69(2):1099-106
17163394 - J Infect Dis. 2006 Nov 1;194 Suppl 2:S82-91
17262054 - Nat Rev Genet. 2007 Mar;8(3):196-205
19871338 - J Exp Med. 1943 Nov 1;78(5):407-23
15507653 - J Virol. 2004 Nov;78(22):12665-7
24027333 - J Virol. 2013 Dec;87(23):12531-40
26073976 - Influenza Other Respir Viruses. 2015 Jun 13;:null
19917319 - Antiviral Res. 2010 Feb;85(2):381-8
20410266 - J Virol. 2010 Jul;84(13):6769-81
24991002 - J Virol. 2014 Sep;88(18):10986-9
17490484 - Virol J. 2007 May 09;4:42
12206966 - Lancet Infect Dis. 2002 Sep;2(9):517
10801978 - Proc Natl Acad Sci U S A. 2000 May 23;97(11):6108-13
10966468 - Annu Rev Biochem. 2000;69:531-69
24223916 - PLoS One. 2013 Nov 01;8(11):e79252
16915235 - Nature. 2006 Sep 7;443(7107):45-9
10846083 - J Virol. 2000 Jul;74(13):6015-20
22563453 - PLoS One. 2012;7(5):e33880
24264991 - Science. 2013 Nov 22;342(6161):976-9
3591814 - Am J Med. 1987 Jun 19;82(6A):20-5
11118381 - Virology. 2000 Dec 20;278(2):587-96
24622097 - J Clin Microbiol. 2014 May;52(5):1672-7
23531861 - Sci Rep. 2013;3:1551
9018149 - Virology. 1997 Jan 20;227(2):493-9
6485252 - Virology. 1984 Sep;137(2):314-23
15950996 - Virology. 2005 Aug 15;339(1):12-20
23236176 - Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21474-9
25712563 - J Virol Methods. 2015 Jun 1;217:55-63
25609810 - J Virol. 2015 Apr;89(7):3763-75
23015718 - J Virol. 2012 Dec;86(24):13371-83
8246828 - Microbiol Immunol. 1993;37(8):661-5
19458903 - Arch Virol. 2009;154(6):945-57
11601919 - Virology. 2001 Oct 10;289(1):74-85
9261394 - J Virol. 1997 Sep;71(9):6706-13
15163504 - Virus Res. 2004 Jul;103(1-2):155-61
11987141 - Rev Med Virol. 2002 May-Jun;12(3):159-66
20155919 - J Am Chem Soc. 2010 Mar 10;132(9):2883-5
9049377 - J Gen Virol. 1995 Jul;76 ( Pt 7):1719-28
27899226 - Vaccine. 2017 Jan 3;35(1):46-52
20028826 - Antimicrob Agents Chemother. 2010 Mar;54(3):1102-10
References_xml – ident: R42
  doi: 10.1084/jem.78.5.407
– ident: R16
  doi: 10.1006/viro.2001.1121
– ident: R33
  doi: 10.1371/journal.pone.0079252
– ident: R41
  doi: 10.1126/science.1244730
– ident: R11
  doi: 10.1016/j.virol.2005.05.009
– ident: R27
  doi: 10.1007/s00705-009-0393-x
– ident: R2
  doi: 10.1016/0002-9343(87)90556-0
– ident: R15
  doi: 10.1006/viro.2000.0679
– ident: R20
  doi: 10.1128/JVI.01426-12
– ident: R10
  doi: 10.1371/journal.pone.0033880
– ident: R4
  doi: 10.1086/507558
– ident: R7
  doi: 10.1002/rmv.352
– ident: R37
  doi: 10.1016/j.vaccine.2016.11.060
– start-page: 1785
  volume-title: Fields Virology
  year: 2013
  ident: R12
  article-title: Orthomyxoviruses
– ident: R24
  doi: 10.1038/nature05114
– ident: R25
  doi: 10.1038/srep01551
– ident: R18
  doi: 10.1128/JVI.00458-10
– ident: R22
  doi: 10.1186/1743-422X-4-42
– ident: R38
  doi: 10.1111/irv.12333
– ident: R19
  doi: 10.1073/pnas.1218841110
– ident: R40
  doi: 10.1016/j.virusres.2004.02.028
– volume: 71
  start-page: 6706
  year: 1997
  ident: R29
  article-title: Neuraminidase hemadsorption activity, conserved in avian influenza A viruses, does not influence viral replication in ducks
  publication-title: J Virol
  doi: 10.1128/JVI.71.9.6706-6713.1997
– ident: R1
  doi: 10.1038/nrg2053
– ident: R9
  doi: 10.1128/JVI.74.13.6015-6020.2000
– ident: R23
  doi: 10.1016/j.jviromet.2015.02.014
– ident: R26
  doi: 10.1021/jm00031a011
– ident: R34
  doi: 10.1128/AAC.01417-09
– ident: R14
  doi: 10.1111/j.1348-0421.1993.tb01689.x
– ident: R36
  doi: 10.1128/JVI.01077-14
– ident: R31
  doi: 10.1021/ja9073672
– ident: R28
  doi: 10.1016/0042-6822(84)90223-X
– ident: R39
  doi: 10.1073/pnas.100133697
– ident: R6
  doi: 10.1146/annurev.biochem.69.1.531
– volume: 69
  start-page: 1099
  year: 1995
  ident: R8
  article-title: Influenza type A virus neuraminidase does not play a role in viral entry, replication, assembly, or budding
  publication-title: J Virol
  doi: 10.1128/JVI.69.2.1099-1106.1995
– ident: R21
  doi: 10.1128/JCM.03575-13
– ident: R43
  doi: 10.1128/JVI.02962-14
– ident: R35
  doi: 10.1016/j.antiviral.2009.11.005
– ident: R3
  doi: 10.1016/S1473-3099(02)00366-3
– year: 2017
  ident: R5
  article-title: Influenza vaccine viruses and reagents. WHO
– ident: R30
  doi: 10.1099/0022-1317-76-7-1719
– ident: R17
  doi: 10.1006/viro.1996.8323
– ident: R32
  doi: 10.1128/JVI.01889-13
– ident: R13
  doi: 10.1128/JVI.78.22.12665-12667.2004
– reference: 20410266 - J Virol. 2010 Jul;84(13):6769-81
– reference: 10846083 - J Virol. 2000 Jul;74(13):6015-20
– reference: 8246828 - Microbiol Immunol. 1993;37(8):661-5
– reference: 23015718 - J Virol. 2012 Dec;86(24):13371-83
– reference: 15507653 - J Virol. 2004 Nov;78(22):12665-7
– reference: 23236176 - Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21474-9
– reference: 20155919 - J Am Chem Soc. 2010 Mar 10;132(9):2883-5
– reference: 19458903 - Arch Virol. 2009;154(6):945-57
– reference: 17262054 - Nat Rev Genet. 2007 Mar;8(3):196-205
– reference: 26073976 - Influenza Other Respir Viruses. 2015 Jun 13;:null
– reference: 7815489 - J Virol. 1995 Feb;69(2):1099-106
– reference: 24264991 - Science. 2013 Nov 22;342(6161):976-9
– reference: 6485252 - Virology. 1984 Sep;137(2):314-23
– reference: 25712563 - J Virol Methods. 2015 Jun 1;217:55-63
– reference: 24223916 - PLoS One. 2013 Nov 01;8(11):e79252
– reference: 11118381 - Virology. 2000 Dec 20;278(2):587-96
– reference: 10801978 - Proc Natl Acad Sci U S A. 2000 May 23;97(11):6108-13
– reference: 3591814 - Am J Med. 1987 Jun 19;82(6A):20-5
– reference: 15950996 - Virology. 2005 Aug 15;339(1):12-20
– reference: 19917319 - Antiviral Res. 2010 Feb;85(2):381-8
– reference: 19871338 - J Exp Med. 1943 Nov 1;78(5):407-23
– reference: 24622097 - J Clin Microbiol. 2014 May;52(5):1672-7
– reference: 22563453 - PLoS One. 2012;7(5):e33880
– reference: 17490484 - Virol J. 2007 May 09;4:42
– reference: 12206966 - Lancet Infect Dis. 2002 Sep;2(9):517
– reference: 9018149 - Virology. 1997 Jan 20;227(2):493-9
– reference: 9049377 - J Gen Virol. 1995 Jul;76 ( Pt 7):1719-28
– reference: 9261394 - J Virol. 1997 Sep;71(9):6706-13
– reference: 27899226 - Vaccine. 2017 Jan 3;35(1):46-52
– reference: 11601919 - Virology. 2001 Oct 10;289(1):74-85
– reference: 24027333 - J Virol. 2013 Dec;87(23):12531-40
– reference: 10966468 - Annu Rev Biochem. 2000;69:531-69
– reference: 24991002 - J Virol. 2014 Sep;88(18):10986-9
– reference: 20028826 - Antimicrob Agents Chemother. 2010 Mar;54(3):1102-10
– reference: 8126701 - J Med Chem. 1994 Mar 4;37(5):616-24
– reference: 16915235 - Nature. 2006 Sep 7;443(7107):45-9
– reference: 15163504 - Virus Res. 2004 Jul;103(1-2):155-61
– reference: 11987141 - Rev Med Virol. 2002 May-Jun;12(3):159-66
– reference: 23531861 - Sci Rep. 2013;3:1551
– reference: 17163394 - J Infect Dis. 2006 Nov 1;194 Suppl 2:S82-91
– reference: 25609810 - J Virol. 2015 Apr;89(7):3763-75
SSID ssj0014457
Score 2.3866613
Snippet Over the last decade, an increasing proportion of circulating human influenza A(H3N2) viruses exhibited haemagglutination activity that was sensitive to...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1274
SubjectTerms Animals
Arginine - genetics
Arginine - metabolism
Catalytic Domain
DNA Mutational Analysis
Erythrocytes
Evolution, Molecular
Hemagglutination
Hemagglutination Inhibition Tests
Humans
Influenza A Virus, H3N2 Subtype - enzymology
Influenza A Virus, H3N2 Subtype - genetics
Influenza, Human - virology
Neuraminidase - genetics
Neuraminidase - metabolism
Recombination, Genetic
Reverse Genetics
Turkeys
Title Neuraminidase-mediated haemagglutination of recent human influenza A(H3N2) viruses is determined by arginine 150 flanking the neuraminidase catalytic site
URI https://www.ncbi.nlm.nih.gov/pubmed/28612701
https://www.proquest.com/docview/1909739722
https://pubmed.ncbi.nlm.nih.gov/PMC5962893
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9swFBVZx2AvY9_LvtBggw3jzHZky3pMy0YopIzSjr4FyZbdQOqUxC6kP2X_dG-715IdZ01h64sJlmIluSdXR9K95xLyMUpCIVSYuhpWOS4TkrkySpkb8AzobBrpKMXk5MlRND5lh2fhWa_3uxO1VJVqkFzvzCu5i1XhHtgVs2T_w7LtQ-EGvAb7whUsDNd_sjEqa0gUB0lhLnLrJBAkkOdSX8g8x5GLlhGCZ8Njf1OTb2ZKk1xLZwQMczw8CnB34Gq2rFYYoLVyUhslY_ipXOZYR0I7wOucbC7rcgs1ZS26n8Cp94LWKAGLZ9K38N7cCF3jaFtb-hM8s9-P8rmtsnKMdZDaScMKAJj0ohIz0LVzOGhaMQkLRTF-AqMubfBatsE9Nu9rXTv-46pKu1sdPt-EZJlwp1lHm8oGtXZ9Oyyr_aHJBB1o484ZxvB5pgRT4-9F3MF113n7gSkYZIkAnjHunGTgeTjJ5FcDDAsEyi263QAilxc14II4wnN9fzPVtgGQPyYHWPYIyOI9cj_gQPswT_2sjU6CZW7IG6F7_FI2ZwOG_todGLWs7SjbxOrGaunvoN8Oizp5TB5ZGNCRwfIT0tPFU_LAFERdPyO_diOa3kA0XWTUIJrWiKYtounoM-L5C7VoprMV3aCZqjVt0EwBzbRBMwU00y000xbNFNH8nJx-_3ZyMHZt9RA3YaFXuspTIuPgi3zc3JRCSca9mMfxUCpPelgC1Fdh7IUZcOY0TdIkUkEkuZ9ksASCme4F2SsWhX5FqPCGWjAuRCYUUyyJJRsqznmqeRYq5veJ0_z008RK62OFl_nUhHiIKdhsijq8aLM--dT2vjSSMrf0-9BYcQo-Hw_yZKEX1WoKJF5wWEgEQZ-8NFZtn9TAoU_4lr3bDqgnv91SzM5rXXmLyNd3fucb8nDzt31L9splpd8BZy_V-xrdfwClifRH
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neuraminidase-mediated+haemagglutination+of+recent+human+influenza+A%28H3N2%29+viruses+is+determined+by+arginine+150+flanking+the+neuraminidase+catalytic+site&rft.jtitle=Journal+of+general+virology&rft.au=M%C3%B6gling%2C+Ramona&rft.au=Richard%2C+Mathilde+J.&rft.au=van+der+Vliet%2C+Stefan&rft.au=van+Beek%2C+Ruud&rft.date=2017-06-01&rft.pub=Microbiology+Society&rft.issn=0022-1317&rft.eissn=1465-2099&rft.volume=98&rft.issue=6&rft.spage=1274&rft.epage=1281&rft_id=info:doi/10.1099%2Fjgv.0.000809&rft_id=info%3Apmid%2F28612701&rft.externalDocID=PMC5962893
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1317&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1317&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1317&client=summon