Personalized Predictions of Therapeutic Hypothermia Outcomes in Cardiac Arrest Patients with Shockable Rhythms Using Explainable Machine Learning

Background: Therapeutic hypothermia (TH) represents a critical therapeutic intervention for patients with cardiac arrest, although treatment efficacy and prognostic factors may vary between individuals. Precise, personalized outcome predictions can empower better clinical decisions. Methods: In this...

Full description

Saved in:
Bibliographic Details
Published inDiagnostics (Basel) Vol. 15; no. 3; p. 267
Main Authors Hong, Chien-Tai, Bamodu, Oluwaseun Adebayo, Chiu, Hung-Wen, Chiu, Wei-Ting, Chan, Lung, Chung, Chen-Chih
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 23.01.2025
MDPI
Subjects
Online AccessGet full text
ISSN2075-4418
2075-4418
DOI10.3390/diagnostics15030267

Cover

Abstract Background: Therapeutic hypothermia (TH) represents a critical therapeutic intervention for patients with cardiac arrest, although treatment efficacy and prognostic factors may vary between individuals. Precise, personalized outcome predictions can empower better clinical decisions. Methods: In this multi-center retrospective cohort study involving nine medical centers in Taiwan, we developed machine learning algorithms to predict neurological outcomes in patients who experienced cardiac arrest with shockable rhythms and underwent TH. The study cohort comprised 209 patients treated between January 2014 and September 2019. The models were trained on patients’ pre-treatment characteristics collected during this study period. The optimal artificial neural network (ANN) model was interpretable using the SHapley Additive exPlanations (SHAP) method. Results: Among the 209 enrolled patients, 79 (37.80%) demonstrated favorable neurological outcomes at discharge. The ANN model achieved an area under the curve value of 0.9089 (accuracy = 0.8330, precision = 0.7984, recall = 0.7492, specificity = 0.8846) for outcome prediction. SHAP analysis identified vital predictive features, including the dose of epinephrine during resuscitation, diabetes status, body temperature at return of spontaneous circulation (ROSC), whether the cardiac arrest was witnessed, and diastolic blood pressure at ROSC. Using real-life case examples, we demonstrated how the ANN model provides personalized prognostic predictions tailored to individuals’ distinct profiles. Conclusion: Our machine learning approach delivers personalized forecasts of TH outcomes in cardiac arrest patients with shockable rhythms. By accounting for each patient’s unique health history and cardiac arrest event details, the ANN model empowers more precise risk stratification, tailoring clinical decision-making regarding TH prognostication and optimizing personalized treatment planning.
AbstractList Background: Therapeutic hypothermia (TH) represents a critical therapeutic intervention for patients with cardiac arrest, although treatment efficacy and prognostic factors may vary between individuals. Precise, personalized outcome predictions can empower better clinical decisions. Methods: In this multi-center retrospective cohort study involving nine medical centers in Taiwan, we developed machine learning algorithms to predict neurological outcomes in patients who experienced cardiac arrest with shockable rhythms and underwent TH. The study cohort comprised 209 patients treated between January 2014 and September 2019. The models were trained on patients’ pre-treatment characteristics collected during this study period. The optimal artificial neural network (ANN) model was interpretable using the SHapley Additive exPlanations (SHAP) method. Results: Among the 209 enrolled patients, 79 (37.80%) demonstrated favorable neurological outcomes at discharge. The ANN model achieved an area under the curve value of 0.9089 (accuracy = 0.8330, precision = 0.7984, recall = 0.7492, specificity = 0.8846) for outcome prediction. SHAP analysis identified vital predictive features, including the dose of epinephrine during resuscitation, diabetes status, body temperature at return of spontaneous circulation (ROSC), whether the cardiac arrest was witnessed, and diastolic blood pressure at ROSC. Using real-life case examples, we demonstrated how the ANN model provides personalized prognostic predictions tailored to individuals’ distinct profiles. Conclusion: Our machine learning approach delivers personalized forecasts of TH outcomes in cardiac arrest patients with shockable rhythms. By accounting for each patient’s unique health history and cardiac arrest event details, the ANN model empowers more precise risk stratification, tailoring clinical decision-making regarding TH prognostication and optimizing personalized treatment planning.
Background: Therapeutic hypothermia (TH) represents a critical therapeutic intervention for patients with cardiac arrest, although treatment efficacy and prognostic factors may vary between individuals. Precise, personalized outcome predictions can empower better clinical decisions. Methods: In this multi-center retrospective cohort study involving nine medical centers in Taiwan, we developed machine learning algorithms to predict neurological outcomes in patients who experienced cardiac arrest with shockable rhythms and underwent TH. The study cohort comprised 209 patients treated between January 2014 and September 2019. The models were trained on patients' pre-treatment characteristics collected during this study period. The optimal artificial neural network (ANN) model was interpretable using the SHapley Additive exPlanations (SHAP) method. Results: Among the 209 enrolled patients, 79 (37.80%) demonstrated favorable neurological outcomes at discharge. The ANN model achieved an area under the curve value of 0.9089 (accuracy = 0.8330, precision = 0.7984, recall = 0.7492, specificity = 0.8846) for outcome prediction. SHAP analysis identified vital predictive features, including the dose of epinephrine during resuscitation, diabetes status, body temperature at return of spontaneous circulation (ROSC), whether the cardiac arrest was witnessed, and diastolic blood pressure at ROSC. Using real-life case examples, we demonstrated how the ANN model provides personalized prognostic predictions tailored to individuals' distinct profiles. Conclusion: Our machine learning approach delivers personalized forecasts of TH outcomes in cardiac arrest patients with shockable rhythms. By accounting for each patient's unique health history and cardiac arrest event details, the ANN model empowers more precise risk stratification, tailoring clinical decision-making regarding TH prognostication and optimizing personalized treatment planning.Background: Therapeutic hypothermia (TH) represents a critical therapeutic intervention for patients with cardiac arrest, although treatment efficacy and prognostic factors may vary between individuals. Precise, personalized outcome predictions can empower better clinical decisions. Methods: In this multi-center retrospective cohort study involving nine medical centers in Taiwan, we developed machine learning algorithms to predict neurological outcomes in patients who experienced cardiac arrest with shockable rhythms and underwent TH. The study cohort comprised 209 patients treated between January 2014 and September 2019. The models were trained on patients' pre-treatment characteristics collected during this study period. The optimal artificial neural network (ANN) model was interpretable using the SHapley Additive exPlanations (SHAP) method. Results: Among the 209 enrolled patients, 79 (37.80%) demonstrated favorable neurological outcomes at discharge. The ANN model achieved an area under the curve value of 0.9089 (accuracy = 0.8330, precision = 0.7984, recall = 0.7492, specificity = 0.8846) for outcome prediction. SHAP analysis identified vital predictive features, including the dose of epinephrine during resuscitation, diabetes status, body temperature at return of spontaneous circulation (ROSC), whether the cardiac arrest was witnessed, and diastolic blood pressure at ROSC. Using real-life case examples, we demonstrated how the ANN model provides personalized prognostic predictions tailored to individuals' distinct profiles. Conclusion: Our machine learning approach delivers personalized forecasts of TH outcomes in cardiac arrest patients with shockable rhythms. By accounting for each patient's unique health history and cardiac arrest event details, the ANN model empowers more precise risk stratification, tailoring clinical decision-making regarding TH prognostication and optimizing personalized treatment planning.
Background: Therapeutic hypothermia (TH) represents a critical therapeutic intervention for patients with cardiac arrest, although treatment efficacy and prognostic factors may vary between individuals. Precise, personalized outcome predictions can empower better clinical decisions. Methods: In this multi-center retrospective cohort study involving nine medical centers in Taiwan, we developed machine learning algorithms to predict neurological outcomes in patients who experienced cardiac arrest with shockable rhythms and underwent TH. The study cohort comprised 209 patients treated between January 2014 and September 2019. The models were trained on patients’ pre-treatment characteristics collected during this study period. The optimal artificial neural network (ANN) model was interpretable using the SHapley Additive exPlanations (SHAP) method. Results: Among the 209 enrolled patients, 79 (37.80%) demonstrated favorable neurological outcomes at discharge. The ANN model achieved an area under the curve value of 0.9089 (accuracy = 0.8330, precision = 0.7984, recall = 0.7492, specificity = 0.8846) for outcome prediction. SHAP analysis identified vital predictive features, including the dose of epinephrine during resuscitation, diabetes status, body temperature at return of spontaneous circulation (ROSC), whether the cardiac arrest was witnessed, and diastolic blood pressure at ROSC. Using real-life case examples, we demonstrated how the ANN model provides personalized prognostic predictions tailored to individuals’ distinct profiles. Conclusion: Our machine learning approach delivers personalized forecasts of TH outcomes in cardiac arrest patients with shockable rhythms. By accounting for each patient’s unique health history and cardiac arrest event details, the ANN model empowers more precise risk stratification, tailoring clinical decision-making regarding TH prognostication and optimizing personalized treatment planning.
Therapeutic hypothermia (TH) represents a critical therapeutic intervention for patients with cardiac arrest, although treatment efficacy and prognostic factors may vary between individuals. Precise, personalized outcome predictions can empower better clinical decisions. In this multi-center retrospective cohort study involving nine medical centers in Taiwan, we developed machine learning algorithms to predict neurological outcomes in patients who experienced cardiac arrest with shockable rhythms and underwent TH. The study cohort comprised 209 patients treated between January 2014 and September 2019. The models were trained on patients' pre-treatment characteristics collected during this study period. The optimal artificial neural network (ANN) model was interpretable using the SHapley Additive exPlanations (SHAP) method. Among the 209 enrolled patients, 79 (37.80%) demonstrated favorable neurological outcomes at discharge. The ANN model achieved an area under the curve value of 0.9089 (accuracy = 0.8330, precision = 0.7984, recall = 0.7492, specificity = 0.8846) for outcome prediction. SHAP analysis identified vital predictive features, including the dose of epinephrine during resuscitation, diabetes status, body temperature at return of spontaneous circulation (ROSC), whether the cardiac arrest was witnessed, and diastolic blood pressure at ROSC. Using real-life case examples, we demonstrated how the ANN model provides personalized prognostic predictions tailored to individuals' distinct profiles. Our machine learning approach delivers personalized forecasts of TH outcomes in cardiac arrest patients with shockable rhythms. By accounting for each patient's unique health history and cardiac arrest event details, the ANN model empowers more precise risk stratification, tailoring clinical decision-making regarding TH prognostication and optimizing personalized treatment planning.
Author Chan, Lung
Hong, Chien-Tai
Chiu, Hung-Wen
Chiu, Wei-Ting
Bamodu, Oluwaseun Adebayo
Chung, Chen-Chih
AuthorAffiliation 7 Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei City 110, Taiwan; hwchiu@tmu.edu.tw
5 Directorate of Postgraduate Studies, School of Clinical Medicine, Muhimbili University of Health and Allied Sciences, Ilala District, Dar es Salaam P.O. Box 65001, Tanzania
3 Taipei Neuroscience Institute, Taipei Medical University, Shuang Ho Hospital, New Taipei City 235, Taiwan
1 Department of Neurology, Taipei Medical University, Shuang Ho Hospital, New Taipei City 235, Taiwan; ct.hong@tmu.edu.tw (C.-T.H.); 11440@s.tmu.edu.tw (W.-T.C.); cjustinmd@gmail.com (L.C.)
4 Department of Prevention and Community Health, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA; dr_bamodu@yahoo.com
2 Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan
6 Ocean Road Cancer Institute, Ilala District, Dar es Salaam P.O. Box 3592, Tanza
AuthorAffiliation_xml – name: 2 Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan
– name: 5 Directorate of Postgraduate Studies, School of Clinical Medicine, Muhimbili University of Health and Allied Sciences, Ilala District, Dar es Salaam P.O. Box 65001, Tanzania
– name: 6 Ocean Road Cancer Institute, Ilala District, Dar es Salaam P.O. Box 3592, Tanzania
– name: 1 Department of Neurology, Taipei Medical University, Shuang Ho Hospital, New Taipei City 235, Taiwan; ct.hong@tmu.edu.tw (C.-T.H.); 11440@s.tmu.edu.tw (W.-T.C.); cjustinmd@gmail.com (L.C.)
– name: 7 Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei City 110, Taiwan; hwchiu@tmu.edu.tw
– name: 8 Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei City 110, Taiwan
– name: 3 Taipei Neuroscience Institute, Taipei Medical University, Shuang Ho Hospital, New Taipei City 235, Taiwan
– name: 4 Department of Prevention and Community Health, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA; dr_bamodu@yahoo.com
Author_xml – sequence: 1
  givenname: Chien-Tai
  surname: Hong
  fullname: Hong, Chien-Tai
– sequence: 2
  givenname: Oluwaseun Adebayo
  orcidid: 0000-0001-8229-0408
  surname: Bamodu
  fullname: Bamodu, Oluwaseun Adebayo
– sequence: 3
  givenname: Hung-Wen
  orcidid: 0000-0001-6919-8199
  surname: Chiu
  fullname: Chiu, Hung-Wen
– sequence: 4
  givenname: Wei-Ting
  surname: Chiu
  fullname: Chiu, Wei-Ting
– sequence: 5
  givenname: Lung
  orcidid: 0000-0001-5795-4460
  surname: Chan
  fullname: Chan, Lung
– sequence: 6
  givenname: Chen-Chih
  orcidid: 0000-0001-6743-6667
  surname: Chung
  fullname: Chung, Chen-Chih
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39941197$$D View this record in MEDLINE/PubMed
BookMark eNptks9u1DAQxiNURMvSJ0BClrhwWfCfJI5PqFoVWmlRV9Ceo4k92XhJ7MVOgOUteGPc3VK1CF_s8Xz6zecZP8-OnHeYZS8ZfSuEou-MhbXzcbQ6soIKykv5JDvhVBbzPGfV0YPzcXYa44ampZioePEsOxZK5YwpeZL9XmGI3kFvf6Ehq4DG6tF6F4lvyXWHAbY4pSrkYrf1Y4oHC-RqGrUfMBLryAJC8qLJWQgYR7KC0aIbI_lhx4586bz-Ck2P5HO3G7shkpto3Zqc_9z2YN0-8wl0Zx2SJUJwKfkie9pCH_H0bp9lNx_OrxcX8-XVx8vF2XKu84KOcwXIOC9kpbVRslUKmClVJaFpJXDKkVeGa9EankKWt6xqmSmUNEWhAYQQs-zywDUeNvU22AHCrvZg6_2FD-saQnp5jzVLpJy2KFDluQRQAilia4qmqcpUObHeH1jbqRnQ6NSBAP0j6OOMs1299t9rxiomC54nwps7QvDfptTJerBRY9-DQz_FWrCy5GUu5a3x1_9IN34KaYR7VSFLWaZBz7JXDy3de_k7-iQQB4EOPsaA7b2E0fr2j9X_-WPiDwjdyr4
Cites_doi 10.1038/s41598-022-11201-z
10.1016/j.jfma.2021.04.006
10.1016/j.resuscitation.2018.11.007
10.1155/2021/9590131
10.1016/j.ajem.2024.07.038
10.5603/CJ.a2019.0035
10.3390/diagnostics13050842
10.1056/NEJMoa1906661
10.1016/j.resuscitation.2021.08.040
10.1089/ther.2019.0004
10.1097/CCM.0000000000002367
10.1016/j.jfma.2021.07.004
10.1089/ther.2015.0030
10.1016/j.jfma.2022.11.012
10.1186/s13054-020-03103-1
10.1186/s13054-019-2721-1
10.1080/14017431.2018.1450991
10.1016/j.jfma.2020.07.036
10.1007/s10462-020-09896-5
10.1016/j.ajem.2023.06.040
10.31083/j.rcm2402055
10.1016/j.heliyon.2024.e41084
10.1161/CIRCEP.117.005689
10.1186/s13054-021-03505-9
10.1016/j.ajem.2017.07.087
10.1016/j.amjcard.2020.07.038
10.1007/s10822-020-00314-0
10.1038/s42256-019-0138-9
10.1056/NEJMoa2100591
10.1056/NEJMoa012689
10.1111/j.1553-2712.2011.01185.x
10.1016/j.jns.2021.117445
10.1016/j.isprsjprs.2016.01.011
10.1016/j.heliyon.2024.e26199
10.1515/9781400881970-018
ContentType Journal Article
Copyright 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
3V.
7XB
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.3390/diagnostics15030267
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest Research Library
Research Library (ProQuest)
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic

Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2075-4418
ExternalDocumentID oai_doaj_org_article_1d2c40fe3e9447aa93e0eefd5bb8699a
PMC11817524
39941197
10_3390_diagnostics15030267
Genre Journal Article
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GrantInformation_xml – fundername: National Science and Technology Council
  grantid: NSTC 111-2314-B-038-132-MY3
– fundername: Taipei Medical University-Shuang Ho Hospital
  grantid: 113FRP-14
GroupedDBID 53G
5VS
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BCNDV
BENPR
BPHCQ
CCPQU
CITATION
DWQXO
EBD
ESX
GNUQQ
GROUPED_DOAJ
GUQSH
HYE
IAO
IHR
ITC
KQ8
M2O
M48
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c450t-9ae122578ccd97f99a1d6987abf7a202e28d2c3fd27a214f18f1d597d55caa333
IEDL.DBID M48
ISSN 2075-4418
IngestDate Wed Aug 27 01:22:08 EDT 2025
Thu Aug 21 18:28:52 EDT 2025
Fri Sep 05 13:37:01 EDT 2025
Mon Jun 30 12:59:02 EDT 2025
Thu Apr 03 07:05:18 EDT 2025
Tue Jul 01 03:45:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords artificial neural network
clinical outcome
Shapley Additive exPlanations
machine learning
therapeutic hypothermia
cardiac arrest
shockable rhythms
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-9ae122578ccd97f99a1d6987abf7a202e28d2c3fd27a214f18f1d597d55caa333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Chien-Tai Hong and Oluwaseun Adebayo Bamodu contributed equally to this work.
ORCID 0000-0001-6743-6667
0000-0001-6919-8199
0000-0001-5795-4460
0000-0001-8229-0408
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/diagnostics15030267
PMID 39941197
PQID 3165767691
PQPubID 2032410
ParticipantIDs doaj_primary_oai_doaj_org_article_1d2c40fe3e9447aa93e0eefd5bb8699a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11817524
proquest_miscellaneous_3166264773
proquest_journals_3165767691
pubmed_primary_39941197
crossref_primary_10_3390_diagnostics15030267
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250123
PublicationDateYYYYMMDD 2025-01-23
PublicationDate_xml – month: 1
  year: 2025
  text: 20250123
  day: 23
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Diagnostics (Basel)
PublicationTitleAlternate Diagnostics (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Oh (ref_39) 2020; 10
Johnsson (ref_42) 2020; 24
Czajkowska (ref_16) 2021; 28
Bosson (ref_36) 2016; 6
Nielsen (ref_5) 2014; 370
Stoltzfus (ref_23) 2011; 18
Andersson (ref_29) 2021; 25
Borgquist (ref_38) 2017; 45
Lundberg (ref_35) 2020; 2
ref_33
Oh (ref_37) 2018; 36
Chiu (ref_19) 2022; 121
(ref_28) 2021; 54
ref_32
Rout (ref_7) 2020; 133
Kim (ref_15) 2019; 134
ref_18
Taccone (ref_1) 2020; 24
Lee (ref_41) 2024; 84
Kuan (ref_24) 2022; 19
Granfeldt (ref_6) 2021; 167
Nasir (ref_8) 2022; 21
Damluji (ref_10) 2018; 11
Belgiu (ref_25) 2016; 114
Bajorath (ref_34) 2020; 34
Chang (ref_13) 2022; 121
Chung (ref_11) 2021; 425
Lin (ref_17) 2023; 122
Bergstra (ref_30) 2012; 13
ref_22
ref_20
Chiu (ref_14) 2023; 24
Arrich (ref_2) 2016; 2
Lascarrou (ref_4) 2019; 381
Bamodu (ref_40) 2024; 10
Chiu (ref_21) 2021; 120
ref_27
Chiu (ref_9) 2023; 71
Bengio (ref_31) 2004; 5
Kuo (ref_26) 2024; 10
Dankiewicz (ref_3) 2021; 384
Salam (ref_12) 2018; 52
References_xml – ident: ref_18
  doi: 10.1038/s41598-022-11201-z
– volume: 2
  start-page: Cd004128
  year: 2016
  ident: ref_2
  article-title: Hypothermia for neuroprotection in adults after cardiopulmonary resuscitation
  publication-title: Cochrane Database Syst. Rev.
– ident: ref_32
– volume: 121
  start-page: 294
  year: 2022
  ident: ref_13
  article-title: Factors affecting outcomes in patients with cardiac arrest who receive target temperature management: The multi-center TIMECARD registry
  publication-title: J. Formos. Med. Assoc.
  doi: 10.1016/j.jfma.2021.04.006
– volume: 134
  start-page: 33
  year: 2019
  ident: ref_15
  article-title: Multimodal approach for neurologic prognostication of out-of-hospital cardiac arrest patients undergoing targeted temperature management
  publication-title: Resuscitation
  doi: 10.1016/j.resuscitation.2018.11.007
– ident: ref_27
  doi: 10.1155/2021/9590131
– volume: 84
  start-page: 87
  year: 2024
  ident: ref_41
  article-title: The compliance with TTM protocol may benefit outcomes in cardiac arrest survivors: A retrospective cohort study
  publication-title: Am. J. Emerg. Med.
  doi: 10.1016/j.ajem.2024.07.038
– volume: 28
  start-page: 95
  year: 2021
  ident: ref_16
  article-title: Predicting survival in out-of-hospital cardiac arrest patients undergoing targeted temperature management: The Polish Hypothermia Registry Risk Score
  publication-title: Cardiol. J.
  doi: 10.5603/CJ.a2019.0035
– ident: ref_20
  doi: 10.3390/diagnostics13050842
– volume: 381
  start-page: 2327
  year: 2019
  ident: ref_4
  article-title: Targeted Temperature Management for Cardiac Arrest with Nonshockable Rhythm
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1906661
– volume: 167
  start-page: 160
  year: 2021
  ident: ref_6
  article-title: Targeted temperature management in adult cardiac arrest: Systematic review and meta-analysis
  publication-title: Resuscitation
  doi: 10.1016/j.resuscitation.2021.08.040
– volume: 10
  start-page: 106
  year: 2020
  ident: ref_39
  article-title: Increased Glucose Variability During Long-Term Therapeutic Hypothermia as a Predictor of Poor Neurological Outcomes and Mortality: A Retrospective Study
  publication-title: Ther. Hypothermia Temp. Manag.
  doi: 10.1089/ther.2019.0004
– volume: 45
  start-page: 1337
  year: 2017
  ident: ref_38
  article-title: Dysglycemia, Glycemic Variability, and Outcome After Cardiac Arrest and Temperature Management at 33 °C and 36 °C
  publication-title: Crit. Care Med.
  doi: 10.1097/CCM.0000000000002367
– volume: 121
  start-page: 490
  year: 2022
  ident: ref_19
  article-title: Predicting the survivals and favorable neurologic outcomes after targeted temperature management by artificial neural networks
  publication-title: J. Formos. Med. Assoc. Taiwan Yi Zhi
  doi: 10.1016/j.jfma.2021.07.004
– volume: 6
  start-page: 71
  year: 2016
  ident: ref_36
  article-title: Effect of Therapeutic Hypothermia on Survival and Neurologic Outcome in the Elderly
  publication-title: Ther. Hypothermia Temp. Manag.
  doi: 10.1089/ther.2015.0030
– volume: 122
  start-page: 317
  year: 2023
  ident: ref_17
  article-title: TIMECARD score: An easily operated prediction model of unfavorable neurological outcomes in out-of-hospital cardiac arrest patients with targeted temperature management
  publication-title: J. Formos. Med. Assoc.
  doi: 10.1016/j.jfma.2022.11.012
– volume: 24
  start-page: 474
  year: 2020
  ident: ref_42
  article-title: Artificial neural networks improve early outcome prediction and risk classification in out-of-hospital cardiac arrest patients admitted to intensive care
  publication-title: Crit. Care
  doi: 10.1186/s13054-020-03103-1
– volume: 5
  start-page: 1089
  year: 2004
  ident: ref_31
  article-title: No Unbiased Estimator of the Variance of K-Fold Cross-Validation
  publication-title: J. Mach. Learn. Res.
– volume: 24
  start-page: 6
  year: 2020
  ident: ref_1
  article-title: High Quality Targeted Temperature Management (TTM) After Cardiac Arrest
  publication-title: Crit. Care
  doi: 10.1186/s13054-019-2721-1
– volume: 21
  start-page: 47
  year: 2022
  ident: ref_8
  article-title: Therapeutic Hypothermia Is Associated With a Decrease in All-cause Mortality in Cardiac Arrest Due to Shockable Rhythm
  publication-title: Crit. Pathw. Cardiol.
– volume: 52
  start-page: 133
  year: 2018
  ident: ref_12
  article-title: Importance of comorbidities in comatose survivors of shockable and non-shockable out-of-hospital cardiac arrest treated with target temperature management
  publication-title: Scand. Cardiovasc. J.
  doi: 10.1080/14017431.2018.1450991
– volume: 120
  start-page: 569
  year: 2021
  ident: ref_21
  article-title: Post-cardiac arrest care and targeted temperature management: A consensus of scientific statement from the Taiwan Society of Emergency & Critical Care Medicine, Taiwan Society of Critical Care Medicine and Taiwan Society of Emergency Medicine
  publication-title: J. Formos. Med. Assoc.
  doi: 10.1016/j.jfma.2020.07.036
– volume: 13
  start-page: 281
  year: 2012
  ident: ref_30
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– volume: 54
  start-page: 1937
  year: 2021
  ident: ref_28
  article-title: A comparative analysis of gradient boosting algorithms
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09896-5
– volume: 71
  start-page: 182
  year: 2023
  ident: ref_9
  article-title: Therapeutic hypothermia in patients after cardiac arrest: A systematic review and meta-analysis of randomized controlled trials
  publication-title: Am. J. Emerg. Med.
  doi: 10.1016/j.ajem.2023.06.040
– volume: 19
  start-page: 11409
  year: 2022
  ident: ref_24
  article-title: Logistic regression and artificial neural network-based simple predicting models for obstructive sleep apnea by age, sex, and body mass index
  publication-title: Math. Biosci. Eng.
– volume: 24
  start-page: 55
  year: 2023
  ident: ref_14
  article-title: Identifying Risk Factors for Prolonged Length of Stay in Hospital and Developing Prediction Models for Patients with Cardiac Arrest Receiving Targeted Temperature Management
  publication-title: Rev. Cardiovasc. Med.
  doi: 10.31083/j.rcm2402055
– volume: 10
  start-page: e41084
  year: 2024
  ident: ref_26
  article-title: Predictive modeling and interpretative analysis of risks of instability in patients with Myasthenia Gravis requiring intensive care unit admission
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2024.e41084
– volume: 11
  start-page: e005689
  year: 2018
  ident: ref_10
  article-title: Health Care Costs After Cardiac Arrest in the United States
  publication-title: Circ. Arrhythmia Electrophysiol.
  doi: 10.1161/CIRCEP.117.005689
– volume: 25
  start-page: 83
  year: 2021
  ident: ref_29
  article-title: Predicting neurological outcome after out-of-hospital cardiac arrest with cumulative information; development and internal validation of an artificial neural network algorithm
  publication-title: Crit. Care
  doi: 10.1186/s13054-021-03505-9
– volume: 36
  start-page: 243
  year: 2018
  ident: ref_37
  article-title: Age is related to neurological outcome in patients with out-of-hospital cardiac arrest (OHCA) receiving therapeutic hypothermia (TH)
  publication-title: Am. J. Emerg. Med.
  doi: 10.1016/j.ajem.2017.07.087
– volume: 133
  start-page: 48
  year: 2020
  ident: ref_7
  article-title: Meta-Analysis of the Usefulness of Therapeutic Hypothermia After Cardiac Arrest
  publication-title: Am. J. Cardiol.
  doi: 10.1016/j.amjcard.2020.07.038
– volume: 34
  start-page: 1013
  year: 2020
  ident: ref_34
  article-title: Interpretation of machine learning models using shapley values: Application to compound potency and multi-target activity predictions
  publication-title: J. Comput. Aided Mol. Des.
  doi: 10.1007/s10822-020-00314-0
– volume: 2
  start-page: 56
  year: 2020
  ident: ref_35
  article-title: From local explanations to global understanding with explainable AI for trees
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-019-0138-9
– volume: 384
  start-page: 2283
  year: 2021
  ident: ref_3
  article-title: Hypothermia versus Normothermia after Out-of-Hospital Cardiac Arrest
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2100591
– ident: ref_22
  doi: 10.1056/NEJMoa012689
– volume: 18
  start-page: 1099
  year: 2011
  ident: ref_23
  article-title: Logistic regression: A brief primer
  publication-title: Acad. Emerg. Med.
  doi: 10.1111/j.1553-2712.2011.01185.x
– volume: 425
  start-page: 117445
  year: 2021
  ident: ref_11
  article-title: Identifying prognostic factors and developing accurate outcome predictions for in-hospital cardiac arrest by using artificial neural networks
  publication-title: J. Neurol. Sci.
  doi: 10.1016/j.jns.2021.117445
– volume: 114
  start-page: 24
  year: 2016
  ident: ref_25
  article-title: Random forest in remote sensing: A review of applications and future directions
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.01.011
– volume: 10
  start-page: e26199
  year: 2024
  ident: ref_40
  article-title: Beyond diagnosis: Leveraging routine blood and urine biomarkers to predict severity and functional outcome in acute ischemic stroke
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2024.e26199
– volume: 370
  start-page: 1360
  year: 2014
  ident: ref_5
  article-title: Targeted temperature management after cardiac arrest
  publication-title: N. Engl. J. Med.
– ident: ref_33
  doi: 10.1515/9781400881970-018
SSID ssj0000913825
Score 2.2915463
Snippet Background: Therapeutic hypothermia (TH) represents a critical therapeutic intervention for patients with cardiac arrest, although treatment efficacy and...
Therapeutic hypothermia (TH) represents a critical therapeutic intervention for patients with cardiac arrest, although treatment efficacy and prognostic...
Background: Therapeutic hypothermia (TH) represents a critical therapeutic intervention for patients with cardiac arrest, although treatment efficacy and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 267
SubjectTerms artificial neural network
Cardiac arrest
Cardiac arrhythmia
Coma
Cooling
Drug dosages
Hypothermia
Machine learning
Medical prognosis
Medical records
Patients
Performance evaluation
Shapley Additive exPlanations
shockable rhythms
Support vector machines
therapeutic hypothermia
Variables
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gL4k1KQUbiSNT4ETs-lopqhbSwglbqLfJjzO6h2aqbPZR_wT_u2Mkuu6gSF47JWIrjmXG-iWe-IeSDV95pH1ADQflSOtClNRqBnMVwqGmsZblcbPpVTS7kl8v6cqfVV8oJG-iBh4U7ZoF7WUUQYKTU1hoBFUAMtXONMiZDo8pUO8FU3oNN4tarB5ohgXH9cRgy1xL3MWIgkRov7X2KMmP_fTDz72zJnc_P2RPyeMSN9GSY71PyALpn5OF0PBl_Tn7PNqj6FwQ6u0mCbFJ0Gen5nyIrOrm9zkVXVwtLv617NDhY0UVHT7OpeHxC6tZBZwPf6oqmH7X0xxy3zVRkRb_Pb_v51YrmVAOaMvjG8is6zWmZQEfG1p8vyMXZ5_PTSTm2Wyi9rKu-NBYYTx7sfTA64tqyoEyjrYva8ooDb1AXIgaOl0xG1kQWMB4Jde2tFUK8JAfdsoPXhCqwkRkUOGDSOmetFlI57UA2TgRZkI-blW-vB1aNFqORpKj2HkUV5FPSznZoosTON9BQ2tFQ2n8ZSkGONrptRz9dtYIpDLi0Mqwg77di9LB0bGI7WK7zGIz6pNaiIK8GU9jOBOGdTAexBWn2jGRvqvuSbjHPLN6p4lfXXB7-j5d7Qx7x1Ji4YiUXR-Sgv1nDW0RLvXuXHeMOi6sa_Q
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9swDCa6FBh2Gfaet27QgB1n1LJkyzoMw1q0CAYkC7oW6M3Qy00OtbPEObT_ov94lGyny1DsaFOAaZGSSJH8CPDZ5EYLY1ECNjcx107ESgo05BS6Q0WhFA3lYpNpPr7gPy6zyz2YDrUwPq1y2BPDRm0b4-_IDxnN0TQWuaTflr9j3zXKR1eHFhqqb61gvwaIsUewj1tyloxg_-hkOjvb3rp4FEz0iTr4IYb-_qHtMto8JjLaRsw3ZNo5ogKS_0Pm579ZlH8dS6fP4GlvT5LvnQI8hz1Xv4DHkz5i_hLuZoO1fessma08IagaaSpyfl98RcY3y1CMdb1Q5OemxUlxa7KoyXFQIYNf8F08yKzDYV0Tf4FLfs1xO_XFV-RsftPOr9ckpCAQn9nXl2WRSUjXdKRHcr16BRenJ-fH47hvwxAbniVtLJWjqV_ZxlgpKikVtbkshNKVUGmSurSwqWGVTfGR8ooWFbXop9gsM0oxxl7DqG5q9xZI7lRFJRK0o1xprZRgPNdCO15oZnkEX4aZL5cd2kaJXooXVPmAoCI48tLZDvVQ2eFFs7oq-5VXUmSOJ5VjTnIulJLMJc5VNtO6yPFnIjgYZFv263dd3mtbBJ-2ZFx5Ppyiatdswhj0BrkQLII3nSpsOUGzj_sAbQTFjpLssLpLqRfzgO7tK4FFlvJ3_-frPTxJfSvihMYpO4BRu9q4D2gftfpjr_R_ANhIF9Q
  priority: 102
  providerName: ProQuest
Title Personalized Predictions of Therapeutic Hypothermia Outcomes in Cardiac Arrest Patients with Shockable Rhythms Using Explainable Machine Learning
URI https://www.ncbi.nlm.nih.gov/pubmed/39941197
https://www.proquest.com/docview/3165767691
https://www.proquest.com/docview/3166264773
https://pubmed.ncbi.nlm.nih.gov/PMC11817524
https://doaj.org/article/1d2c40fe3e9447aa93e0eefd5bb8699a
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTUK8IL4XGJWReCQQx04cPyDEpk0VUkc1Vmlvkb-yVmLpaFOJ8l_wH3N2kkJReeExsa04vjv7znf3O4DXJjdaGIsUsLmJuXYiVlKgIqfQHCoKpWhIFxud58MJ_3SVXe1BXxW1W8DlTtPO15OaLL6-_f5t_QEF_r23ONFkf2fboDQPa4zqDfM1le7AQXAY-Vi-Tt8PW7P0kHtZiz70r7FbJ1QA8t-lff4dRPnHqXT2AO536iT52NL_Iey5-hHcHXUO88fwc9wr2z-cJeOFbwicRuYVufyde0WG69uQi3UzU-TzqkE-dEsyq8lJ4CCDX_BFPMi4hWFdEn9_S75McTf1uVfkYrpupjdLEiIQiA_s67KyyChEazrSAbleP4HJ2enlyTDuqjDEhmdJE0vlaOoF2xgrRSWlojaXhVC6EipNUpcWNjWssik-Ul7RoqIWzRSbZUYpxthT2K_ntTsEkjtVUYkN2lGutFZKMJ5roR0vNLM8gjf9ype3LdhGiUaKJ1S5g1ARHHvqbLp6pOzwYr64LjvBKylOjieVY05yLpSSzCXOVTbTusjxZyI46mlb9txXMpqjHSZySSN4tWlGwfPeFFW7-Sr0QWOQC8EieNaywmYmqPVx75-NoNhikq2pbrfUs2kA9_aJwCJL-fP_H_oC7qW-SnFC45QdwX6zWLmXqDo1egAHx6fn44tBuHoYBOH4BQP9JSE
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VqQRcEG8MBRYJblj1etde-1AhWlqltAlRSaXe3H25yaFOSFKh8C_4Q_w2ZtZ2SlDFrUd7LXntmd395vUNIe9MarQ0FiRgUxMK7WSocglAToE5lGVKMV8u1uun3VPx5Sw52yC_21oYTKts90S_UduJQR_5NmcpQGOZ5uzj9HuIXaMwutq20FBNawW74ynGmsKOI7f8ASbcfOfwM8j7fRwf7A_3umHTZSA0IokWYa4ci1FxjbG5LPNcMZuCJa50KVUcxS7ObGx4aWO4ZKJkWckswHCbJEYpjg5ROAI2BTpQOmRzd78_OFl5eZB1E2ywmu6I8zzatnUGHXIwAxbj2ABq7Uj0nQNugrv_Zm3-dQwePCD3G_xKP9UK95BsuOoRudNrIvSPya9Bi-5_OksHMxzwqk0nJR1eF3vR7nLqi78ux4p-vVqAENycjiu651XWwBuwawgd1Lyvc4oOY_ptBNs3FnvRk9FyMbqcU5_yQDGTsCkDoz2fHupowxx78YSc3opAnpJONancc0JTp0qWw4B2TCitlZJcpFpqJzLNrQjIh_bPF9Oa3aMAqwgFVdwgqIDsonRWjyI1t78xmV0UzUovGExORKXjLhdCKpVzFzlX2kTrLIWPCchWK9ui2S_mxbV2B-TtahhWOoZvVOUmV_4ZsD6FlDwgz2pVWM0EYKbAgHBAsjUlWZvq-kg1Hnk2caw8lkksXvx_Xm_I3e6wd1wcH_aPXpJ7MbZBjlgY8y3SWcyu3CvAZgv9ulkAlJzf9pr7A-IpVPU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVqq4IN6kFDAS3IgaPxInhwrRx2pL2WVVWqm34Fe6e2h22YfQ8i_4W_wqxo6zZVHFrcfEkeJkvhnP2DPfIPRWZ1oJbUACJtMxV1bEshDgyEkIh_JcSuLLxXr9rHvBP12mlxvod1sL49IqW5voDbUZa7dHvsdIBq6xyAqyV4W0iMFR58Pke-w6SLmT1radhgxtFsy-pxsLRR6ndvkDwrnZ_skRyP4dpZ3j88NuHDoOxJqnyTwupCXUgVhrU4iqKCQxGUTlUlVC0oRamhuqWWUoXBJekbwiBlxyk6ZaSuY2R2E52BKw6kMguHVw3B-crXZ8HAMnxGMN9RFjRbJnmmw6x8cMfhlzzaDWlkffReA21_ffDM6_lsTOA3Q_-LL4YwO-h2jD1o_Qdi-c1j9Gvwatp__TGjyYugEPczyu8PlN4RfuLie-EOx6JPGXxRwEYmd4VONDD18Nb3AdRPCg4YCdYbd5jL8OwZS7wi98NlzOh9cz7NMfsMsqDCVhuOdTRS0OLLJXT9DFnQjkKdqsx7V9jnBmZUUKGFCWcKmUlILxTAllea6Y4RF63_75ctIwfZQQITlBlbcIKkIHTjqrRx1Nt78xnl6VQetLApPjSWWZLTgXUhbMJtZWJlUqz-BjIrTbyrYMtmNW3iA9Qm9Ww6D17ihH1na88M9AJMqFYBF61kBhNRMAH3eHwxHK10CyNtX1kXo09MzirgpZpJTv_H9er9E26F75-aR_-gLdo64jckJiynbR5ny6sC_BTZurVwH_GH27a5X7A4FoWTk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Personalized+Predictions+of+Therapeutic+Hypothermia+Outcomes+in+Cardiac+Arrest+Patients+with+Shockable+Rhythms+Using+Explainable+Machine+Learning&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Hong%2C+Chien-Tai&rft.au=Bamodu%2C+Oluwaseun+Adebayo&rft.au=Chiu%2C+Hung-Wen&rft.au=Chiu%2C+Wei-Ting&rft.date=2025-01-23&rft.pub=MDPI&rft.eissn=2075-4418&rft.volume=15&rft.issue=3&rft_id=info:doi/10.3390%2Fdiagnostics15030267&rft.externalDocID=PMC11817524
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon