Type 1 conventional dendritic cells are systemically dysregulated early in pancreatic carcinogenesis
Type 1 conventional dendritic cells (cDC1s) are typically thought to be dysregulated secondarily to invasive cancer. Here, we report that cDC1 dysfunction instead develops in the earliest stages of preinvasive pancreatic intraepithelial neoplasia (PanIN) in the KrasLSL-G12D/+ Trp53LSL-R172H/+ Pdx1-C...
Saved in:
Published in | The Journal of experimental medicine Vol. 217; no. 8 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Rockefeller University Press
03.08.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-1007 1540-9538 1540-9538 |
DOI | 10.1084/jem.20190673 |
Cover
Abstract | Type 1 conventional dendritic cells (cDC1s) are typically thought to be dysregulated secondarily to invasive cancer. Here, we report that cDC1 dysfunction instead develops in the earliest stages of preinvasive pancreatic intraepithelial neoplasia (PanIN) in the KrasLSL-G12D/+ Trp53LSL-R172H/+ Pdx1-Cre–driven (KPC) mouse model of pancreatic cancer. cDC1 dysfunction is systemic and progressive, driven by increased apoptosis, and results in suboptimal up-regulation of T cell–polarizing cytokines during cDC1 maturation. The underlying mechanism is linked to elevated IL-6 concomitant with neoplasia. Neutralization of IL-6 in vivo ameliorates cDC1 apoptosis, rescuing cDC1 abundance in tumor-bearing mice. CD8+ T cell response to vaccination is impaired as a result of cDC1 dysregulation. Yet, combination therapy with CD40 agonist and Flt3 ligand restores cDC1 abundance to normal levels, decreases cDC1 apoptosis, and repairs cDC1 maturation to drive superior control of tumor outgrowth. Our study therefore reveals the unexpectedly early and systemic onset of cDC1 dysregulation during pancreatic carcinogenesis and suggests therapeutically tractable strategies toward cDC1 repair. |
---|---|
AbstractList | Type 1 conventional dendritic cells (cDC1s) are typically thought to be dysregulated secondarily to invasive cancer. Here, we report that cDC1 dysfunction instead develops in the earliest stages of preinvasive pancreatic intraepithelial neoplasia (PanIN) in the KrasLSL-G12D/+ Trp53LSL-R172H/+ Pdx1-Cre-driven (KPC) mouse model of pancreatic cancer. cDC1 dysfunction is systemic and progressive, driven by increased apoptosis, and results in suboptimal up-regulation of T cell-polarizing cytokines during cDC1 maturation. The underlying mechanism is linked to elevated IL-6 concomitant with neoplasia. Neutralization of IL-6 in vivo ameliorates cDC1 apoptosis, rescuing cDC1 abundance in tumor-bearing mice. CD8+ T cell response to vaccination is impaired as a result of cDC1 dysregulation. Yet, combination therapy with CD40 agonist and Flt3 ligand restores cDC1 abundance to normal levels, decreases cDC1 apoptosis, and repairs cDC1 maturation to drive superior control of tumor outgrowth. Our study therefore reveals the unexpectedly early and systemic onset of cDC1 dysregulation during pancreatic carcinogenesis and suggests therapeutically tractable strategies toward cDC1 repair. Type 1 conventional dendritic cells are progressively and systemically dysregulated during pancreatic carcinogenesis, subject to semimaturation and IL-6–driven apoptosis. Yet, CD40 agonist synergizes with Flt3L to rescue cDC1 abundance and maturation, enabling a return to full CD8 + T cell priming. Type 1 conventional dendritic cells (cDC1s) are typically thought to be dysregulated secondarily to invasive cancer. Here, we report that cDC1 dysfunction instead develops in the earliest stages of preinvasive pancreatic intraepithelial neoplasia (PanIN) in the Kras LSL- G12D/+ Trp53 LSL- R172H/+ Pdx1-Cre –driven (KPC) mouse model of pancreatic cancer. cDC1 dysfunction is systemic and progressive, driven by increased apoptosis, and results in suboptimal up-regulation of T cell–polarizing cytokines during cDC1 maturation. The underlying mechanism is linked to elevated IL-6 concomitant with neoplasia. Neutralization of IL-6 in vivo ameliorates cDC1 apoptosis, rescuing cDC1 abundance in tumor-bearing mice. CD8 + T cell response to vaccination is impaired as a result of cDC1 dysregulation. Yet, combination therapy with CD40 agonist and Flt3 ligand restores cDC1 abundance to normal levels, decreases cDC1 apoptosis, and repairs cDC1 maturation to drive superior control of tumor outgrowth. Our study therefore reveals the unexpectedly early and systemic onset of cDC1 dysregulation during pancreatic carcinogenesis and suggests therapeutically tractable strategies toward cDC1 repair. Type 1 conventional dendritic cells (cDC1s) are typically thought to be dysregulated secondarily to invasive cancer. Here, we report that cDC1 dysfunction instead develops in the earliest stages of preinvasive pancreatic intraepithelial neoplasia (PanIN) in the KrasLSL-G12D/+ Trp53LSL-R172H/+ Pdx1-Cre-driven (KPC) mouse model of pancreatic cancer. cDC1 dysfunction is systemic and progressive, driven by increased apoptosis, and results in suboptimal up-regulation of T cell-polarizing cytokines during cDC1 maturation. The underlying mechanism is linked to elevated IL-6 concomitant with neoplasia. Neutralization of IL-6 in vivo ameliorates cDC1 apoptosis, rescuing cDC1 abundance in tumor-bearing mice. CD8+ T cell response to vaccination is impaired as a result of cDC1 dysregulation. Yet, combination therapy with CD40 agonist and Flt3 ligand restores cDC1 abundance to normal levels, decreases cDC1 apoptosis, and repairs cDC1 maturation to drive superior control of tumor outgrowth. Our study therefore reveals the unexpectedly early and systemic onset of cDC1 dysregulation during pancreatic carcinogenesis and suggests therapeutically tractable strategies toward cDC1 repair.Type 1 conventional dendritic cells (cDC1s) are typically thought to be dysregulated secondarily to invasive cancer. Here, we report that cDC1 dysfunction instead develops in the earliest stages of preinvasive pancreatic intraepithelial neoplasia (PanIN) in the KrasLSL-G12D/+ Trp53LSL-R172H/+ Pdx1-Cre-driven (KPC) mouse model of pancreatic cancer. cDC1 dysfunction is systemic and progressive, driven by increased apoptosis, and results in suboptimal up-regulation of T cell-polarizing cytokines during cDC1 maturation. The underlying mechanism is linked to elevated IL-6 concomitant with neoplasia. Neutralization of IL-6 in vivo ameliorates cDC1 apoptosis, rescuing cDC1 abundance in tumor-bearing mice. CD8+ T cell response to vaccination is impaired as a result of cDC1 dysregulation. Yet, combination therapy with CD40 agonist and Flt3 ligand restores cDC1 abundance to normal levels, decreases cDC1 apoptosis, and repairs cDC1 maturation to drive superior control of tumor outgrowth. Our study therefore reveals the unexpectedly early and systemic onset of cDC1 dysregulation during pancreatic carcinogenesis and suggests therapeutically tractable strategies toward cDC1 repair. |
Author | Vonderheide, Robert H. Lin, Jeffrey H. Wattenberg, Max M. Carpenter, Erica L. Feldser, David M. Huffman, Austin P. Walter, David M. Beatty, Gregory L. Furth, Emma E. |
AuthorAffiliation | 6 Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 5 Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 4 Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 1 Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 2 Cell and Molecular Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 3 Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA |
AuthorAffiliation_xml | – name: 2 Cell and Molecular Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA – name: 5 Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA – name: 4 Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA – name: 1 Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA – name: 3 Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA – name: 6 Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA |
Author_xml | – sequence: 1 givenname: Jeffrey H. orcidid: 0000-0002-2518-6863 surname: Lin fullname: Lin, Jeffrey H. – sequence: 2 givenname: Austin P. surname: Huffman fullname: Huffman, Austin P. – sequence: 3 givenname: Max M. surname: Wattenberg fullname: Wattenberg, Max M. – sequence: 4 givenname: David M. surname: Walter fullname: Walter, David M. – sequence: 5 givenname: Erica L. orcidid: 0000-0002-0735-3605 surname: Carpenter fullname: Carpenter, Erica L. – sequence: 6 givenname: David M. orcidid: 0000-0001-5975-864X surname: Feldser fullname: Feldser, David M. – sequence: 7 givenname: Gregory L. orcidid: 0000-0001-7165-5993 surname: Beatty fullname: Beatty, Gregory L. – sequence: 8 givenname: Emma E. surname: Furth fullname: Furth, Emma E. – sequence: 9 givenname: Robert H. orcidid: 0000-0002-7252-954X surname: Vonderheide fullname: Vonderheide, Robert H. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32453421$$D View this record in MEDLINE/PubMed |
BookMark | eNptUUtr3DAQFiWl2Wx767nomEOdSrLkx6UQQl4Q6CU9i7E03irI0lbyBvzvo22ypQ05DWi-x-j7TshRiAEJ-czZGWed_PaA05lgvGdNW78jK64kq3pVd0dkxZgQFWesPSYnOT8wxqVUzQdyXAupain4itj7ZYuUUxPDI4bZxQCeWgw2udkZatD7TCEhzUuecXIGvF-oXXLCzc7DjJYipPLkAt1CMAnhDw-ScSFuMGB2-SN5P4LP-OllrsnPq8v7i5vq7sf17cX5XWWkYnPVs94Mqh9HPnA0FroWmqYWHYfGWDughXYY-0Z15XQYDFPjqAbWDkphCULwek2-P-tud8OE1pQPJfB6m9wEadERnP5_E9wvvYmPuq37jhevNTl9EUjx9w7zrCeX9xlAwLjLWkjW9FK0bVegX_71-mtyiLYAxDPApJhLXKM2boZ9wsXaec2Z3venS3_60F8hfX1FOui-CX8CB7yfkg |
CitedBy_id | crossref_primary_10_3390_cancers16162876 crossref_primary_10_1016_j_it_2021_10_004 crossref_primary_10_1016_j_csbj_2023_03_037 crossref_primary_10_1038_s41568_024_00785_5 crossref_primary_10_1093_carcin_bgae065 crossref_primary_10_4103_jcrt_jcrt_2383_23 crossref_primary_10_1158_2326_6066_CIR_22_0927 crossref_primary_10_1038_s43018_023_00703_y crossref_primary_10_1007_s00262_023_03433_3 crossref_primary_10_1016_j_bbcan_2025_189302 crossref_primary_10_32948_ajo_2024_12_10 crossref_primary_10_1126_sciimmunol_add4817 crossref_primary_10_3389_fimmu_2021_724883 crossref_primary_10_3389_fimmu_2024_1393451 crossref_primary_10_1038_s41568_022_00546_2 crossref_primary_10_1084_jem_20221757 crossref_primary_10_3389_fimmu_2022_823842 crossref_primary_10_1084_jem_20200816 crossref_primary_10_1053_j_gastro_2023_05_036 crossref_primary_10_1016_j_intimp_2024_111548 crossref_primary_10_3390_cancers14174209 crossref_primary_10_1146_annurev_pathmechdis_031621_024600 crossref_primary_10_3390_cancers13164138 crossref_primary_10_3389_fimmu_2023_1258538 crossref_primary_10_1136_jitc_2020_001963 crossref_primary_10_1002_cyto_a_24788 crossref_primary_10_1016_j_xcrm_2022_100878 crossref_primary_10_1084_jem_20200264 crossref_primary_10_3389_fimmu_2022_802690 crossref_primary_10_1158_1078_0432_CCR_21_1047 crossref_primary_10_1172_jci_insight_145389 crossref_primary_10_1016_j_it_2022_04_010 crossref_primary_10_3389_fimmu_2020_605619 crossref_primary_10_3389_fimmu_2022_1041010 crossref_primary_10_1007_s00262_023_03535_y crossref_primary_10_1111_imcb_12575 crossref_primary_10_1038_s41577_023_00884_8 crossref_primary_10_3389_fonc_2021_666340 crossref_primary_10_1038_s41467_024_46048_7 crossref_primary_10_3390_cancers13133179 crossref_primary_10_1016_j_csbj_2024_04_054 crossref_primary_10_1038_s41467_023_41768_8 crossref_primary_10_3390_life13071482 crossref_primary_10_1016_j_tips_2024_10_009 crossref_primary_10_1038_s41467_023_39759_w crossref_primary_10_1158_2326_6066_CIR_21_0946 crossref_primary_10_3389_fimmu_2022_1081919 crossref_primary_10_3389_fimmu_2020_613815 crossref_primary_10_1136_gutjnl_2024_333492 crossref_primary_10_3390_cells13151267 crossref_primary_10_1038_s41577_024_01091_9 crossref_primary_10_3390_biomedicines10051181 crossref_primary_10_1038_s41568_021_00347_z crossref_primary_10_1155_2024_4468145 crossref_primary_10_1038_s41590_024_01820_1 crossref_primary_10_3389_fimmu_2022_1012673 crossref_primary_10_1016_j_smim_2021_101481 crossref_primary_10_1016_j_celrep_2023_112501 crossref_primary_10_1038_s41467_021_22535_z crossref_primary_10_1038_s41698_023_00459_9 crossref_primary_10_1101_gad_348523_121 crossref_primary_10_1016_j_smim_2023_101848 crossref_primary_10_1038_s41568_022_00503_z crossref_primary_10_3390_cancers12113340 crossref_primary_10_1007_s00251_024_01335_x crossref_primary_10_1038_s41698_024_00681_z crossref_primary_10_1186_s12967_024_05205_8 crossref_primary_10_1186_s40779_023_00496_2 crossref_primary_10_1158_2326_6066_CIR_20_0785 crossref_primary_10_1038_s41392_023_01376_w crossref_primary_10_1158_1078_0432_CCR_22_2181 crossref_primary_10_1158_1078_0432_CCR_21_2585 crossref_primary_10_3389_fonc_2021_682217 crossref_primary_10_1186_s13046_023_02935_3 crossref_primary_10_1038_s41577_024_01111_8 crossref_primary_10_1016_j_ccell_2022_05_006 crossref_primary_10_1021_acsami_4c02528 crossref_primary_10_3389_fimmu_2020_629722 crossref_primary_10_3389_froh_2022_902160 crossref_primary_10_1016_j_imlet_2021_04_002 crossref_primary_10_1016_j_biopha_2022_113541 crossref_primary_10_1016_j_jare_2025_02_036 crossref_primary_10_1186_s10020_024_01059_4 crossref_primary_10_3390_cancers13010146 crossref_primary_10_3389_fonc_2021_653625 crossref_primary_10_1080_2162402X_2023_2204015 crossref_primary_10_1186_s13045_024_01561_6 crossref_primary_10_1007_s11605_021_05087_x crossref_primary_10_1158_2767_9764_CRC_24_0172 crossref_primary_10_26508_lsa_202101337 crossref_primary_10_1016_j_bbcan_2020_188387 crossref_primary_10_1158_1078_0432_CCR_23_1444 crossref_primary_10_1038_s41392_024_01979_x crossref_primary_10_3389_fimmu_2024_1341079 crossref_primary_10_1038_s41467_021_23832_3 crossref_primary_10_1038_s41590_023_01598_8 crossref_primary_10_1016_j_ccell_2021_07_007 crossref_primary_10_1158_1078_0432_CCR_22_1630 crossref_primary_10_1136_jitc_2021_003809 crossref_primary_10_1002_path_6199 crossref_primary_10_1042_CS20191211 crossref_primary_10_1038_s41571_024_00859_1 crossref_primary_10_1053_j_gastro_2021_09_066 crossref_primary_10_3390_cancers14051216 crossref_primary_10_1186_s12943_022_01515_x crossref_primary_10_3389_fcell_2021_783617 crossref_primary_10_1016_j_ccell_2020_08_004 crossref_primary_10_1016_j_trecan_2023_07_004 crossref_primary_10_1172_jci_insight_151593 crossref_primary_10_1038_s43018_022_00349_2 crossref_primary_10_1016_j_jbc_2024_107752 crossref_primary_10_1038_s41416_020_01160_5 crossref_primary_10_1038_s41467_023_41792_8 crossref_primary_10_3390_cancers15061776 crossref_primary_10_1016_j_pharmthera_2020_107709 crossref_primary_10_1016_j_cpt_2024_07_004 crossref_primary_10_1186_s13046_021_02237_6 crossref_primary_10_1002_eji_202149487 crossref_primary_10_1158_0008_5472_CAN_24_0830 crossref_primary_10_1080_17474124_2024_2322648 crossref_primary_10_1200_JCO_21_02616 crossref_primary_10_1016_j_celrep_2022_111201 crossref_primary_10_2174_1568009623666230712095021 crossref_primary_10_1158_0008_5472_CAN_22_0094 |
Cites_doi | 10.1016/j.ccr.2012.01.008 10.1016/j.immuni.2018.06.006 10.1016/j.trecan.2018.09.001 10.1126/science.1164206 10.1016/j.ccell.2020.02.008 10.1038/s41586-019-1004-y 10.1016/j.it.2016.01.002 10.1016/j.immuni.2016.03.012 10.1126/science.1203486 10.1172/jci.insight.88328 10.1002/jlb.67.1.2 10.1016/j.ccr.2014.03.014 10.1016/j.ccell.2017.07.007 10.1158/1078-0432.CCR-05-0185 10.1084/jem.20162024 10.1158/2326-6066.CIR-16-0188 10.1186/s13059-014-0550-8 10.1002/embj.201488027 10.1016/j.ccell.2017.04.003 10.1038/ni.3200 10.1016/j.ccell.2018.03.008 10.1101/gad.943001 10.1084/jem.20030323 10.1016/j.ccr.2005.04.023 10.1158/0008-5472.CAN-05-2193 10.1016/j.celrep.2016.05.058 10.1158/0008-5472.CAN-07-0175 10.1016/j.celrep.2015.11.053 10.1038/s41577-019-0210-z 10.1053/j.gastro.2010.10.009 10.1002/cncr.20672 10.1093/bioinformatics/btt656 10.1158/2159-8290.CD-15-0510 10.1038/bjc.2017.124 10.1084/jem.20092140 10.1146/annurev-immunol-020711-074950 10.1158/2326-6074.CRICIMTEATIAACR18-A123 10.1016/j.cell.2014.12.033 10.1016/j.immuni.2016.08.015 10.1182/blood.V91.4.1101 10.1007/BF02786323 10.1073/pnas.1918971117 10.1371/journal.pone.0013441 10.1038/nprot.2009.95 10.1016/j.ccell.2014.09.007 10.1158/2326-6066.CIR-14-0215 10.4049/jimmunol.173.6.3844 10.1097/00006676-199205000-00017 10.1038/s41467-018-03600-6 10.1038/nature14292 10.1073/pnas.1320318110 10.1038/nature24462 10.1038/31002 10.1038/nature14404 10.1016/j.ccr.2011.03.009 10.1016/j.ccr.2012.04.025 10.1038/ng1180 10.1016/j.ccell.2016.06.003 10.3389/fimmu.2013.00438 10.1158/1535-7163.MCT-16-0899 10.1136/gutjnl-2016-311585 |
ContentType | Journal Article |
Copyright | 2020 Lin et al. 2020 Lin et al. 2020 |
Copyright_xml | – notice: 2020 Lin et al. – notice: 2020 Lin et al. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1084/jem.20190673 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | Early and systemic dysregulation of dendritic cells during pancreatic carcinogenesis |
EISSN | 1540-9538 |
ExternalDocumentID | PMC7398166 32453421 10_1084_jem_20190673 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: T32 HL007439 – fundername: NCI NIH HHS grantid: P01 CA210944 – fundername: NCI NIH HHS grantid: R01 CA229803 – fundername: NCI NIH HHS grantid: K12 CA076931 – fundername: NIEHS NIH HHS grantid: P30 ES013508 – fundername: NCI NIH HHS grantid: P30 CA016520 – fundername: NCI NIH HHS grantid: R01 CA197916 – fundername: ; – fundername: ; grantid: R01 CA229803; P30 CA016520; P01 CA210944; T32 HL007439-41; R01 CA197916 |
GroupedDBID | --- -~X 18M 29K 2WC 36B 4.4 53G 5GY 5RE 5VS AAYXX ABOCM ABZEH ACGFO ACNCT ACPRK ADBBV AENEX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C45 CITATION CS3 D-I DIK DU5 E3Z EBS EMB F5P F9R GX1 H13 HYE IH2 KQ8 L7B N9A O5R O5S OK1 P2P P6G R.V RHI SJN TR2 TRP UHB W8F WOQ CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c450t-909cb59ff1b1ecda87a663281a6cddbeda7bf9658342abc05ff5b07b55e084213 |
ISSN | 0022-1007 1540-9538 |
IngestDate | Thu Aug 21 17:25:47 EDT 2025 Fri Sep 05 03:48:55 EDT 2025 Mon Jul 21 05:14:48 EDT 2025 Tue Jul 01 00:41:14 EDT 2025 Thu Apr 24 22:55:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | 2020 Lin et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c450t-909cb59ff1b1ecda87a663281a6cddbeda7bf9658342abc05ff5b07b55e084213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Disclosures: E.L. Carpenter reported personal fees from Imedex, personal fees from AstraZeneca, grants from Janssen, grants from Merck, and grants from Becton Dickinson outside the submitted work. G.L. Beatty reported personal fees from Seattle Genetics, personal fees from Aduro Biotech, personal fees from AstraZeneca, personal fees from Bristol-Myers Squibb, personal fees from Genmab, personal fees from Merck, personal fees from Shattuck Labs, personal fees from Boehinger Ingelheim, personal fees from BiolineRx, personal fees from Incyte, grants from Arcus Biosciences, grants from Verastem, grants from Halozyme, grants from Biothera, grants from Newlink, grants from Janssen, grants from Bristol-Myers Squibb, and grants from Incyte outside the submitted work; in addition, G.L. Beatty had a patent to 10577417 with royalties paid "Novartis, U of Pennsylvania." R.H. Vonderheide reported personal fees from Celgene, personal fees from Celldex, personal fees from Janssen, personal fees from Lilly, personal fees from Medimmune, personal fees from Verastem, grants from Apexigen, grants from Fibrogen, grants from Inovio, grants from Janssen, and grants from Lilly outside the submitted work; in addition, R.H. Vonderheide had a patent to cellular immunotherapy licensed "Novartis" and a patent to VLA-4 research antibody licensed "BD Pharmigen." No other disclosures were reported. |
ORCID | 0000-0001-5975-864X 0000-0002-7252-954X 0000-0002-2518-6863 0000-0001-7165-5993 0000-0002-0735-3605 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7398166 |
PMID | 32453421 |
PQID | 2406942778 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7398166 proquest_miscellaneous_2406942778 pubmed_primary_32453421 crossref_citationtrail_10_1084_jem_20190673 crossref_primary_10_1084_jem_20190673 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-03 |
PublicationDateYYYYMMDD | 2020-08-03 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of experimental medicine |
PublicationTitleAlternate | J Exp Med |
PublicationYear | 2020 |
Publisher | Rockefeller University Press |
Publisher_xml | – name: Rockefeller University Press |
References | Mace (2023072716042475500_bib39) 2018; 67 Dalod (2023072716042475500_bib11) 2014; 33 Liao (2023072716042475500_bib35) 2014; 30 Jackson (2023072716042475500_bib29) 2005; 65 Hiraoka (2023072716042475500_bib26) 2011; 140 Clark (2023072716042475500_bib10) 2007; 67 Hildner (2023072716042475500_bib24) 2008; 322 Spranger (2023072716042475500_bib59) 2017; 31 Jongbloed (2023072716042475500_bib30) 2010; 207 McAllister (2023072716042475500_bib41) 2014; 25 Böttcher (2023072716042475500_bib6) 2018; 4 Schlitzer (2023072716042475500_bib55) 2015; 16 Ebrahimi (2023072716042475500_bib14) 2004; 101 Long (2023072716042475500_bib36) 2017; 16 Park (2023072716042475500_bib49) 2004; 173 Merad (2023072716042475500_bib42) 2013; 31 Schreiber (2023072716042475500_bib57) 2011; 331 Mootha (2023072716042475500_bib44) 2003; 34 Schoenberger (2023072716042475500_bib56) 1998; 393 Rooney (2023072716042475500_bib52) 2015; 160 Broz (2023072716042475500_bib7) 2014; 26 Dudek (2023072716042475500_bib12) 2013; 4 Li (2023072716042475500_bib34) 2018; 49 Chao (2023072716042475500_bib9) 2016; 4 Raphael (2023072716042475500_bib50) 2017; 32 Spranger (2023072716042475500_bib58) 2015; 523 Morrison (2023072716042475500_bib45) 2020; 117 Love (2023072716042475500_bib37) 2014; 15 Vonderheide (2023072716042475500_bib64) 2018; 33 van Kooten (2023072716042475500_bib63) 2000; 67 Twyman-Saint Victor (2023072716042475500_bib62) 2015; 520 Balachandran (2023072716042475500_bib3) 2017; 551 Hoffmann (2023072716042475500_bib27) 2002; 8 Evans (2023072716042475500_bib17) 2016; 1 Lesina (2023072716042475500_bib33) 2011; 19 Hansson (2023072716042475500_bib22) 2017; 116 Jackson (2023072716042475500_bib28) 2001; 15 O’Hara (2023072716042475500_bib47) 2019 Hegde (2023072716042475500_bib23) 2020; 37 Almand (2023072716042475500_bib2) 2000; 6 Öhlund (2023072716042475500_bib48) 2017; 214 Winograd (2023072716042475500_bib66) 2015; 3 Bares (2023072716042475500_bib4) 2015 Gabrilovich (2023072716042475500_bib19) 1997; 3 Martignoni (2023072716042475500_bib40) 2005; 11 Byrne (2023072716042475500_bib8) 2016; 15 Bayne (2023072716042475500_bib5) 2012; 21 Engelhardt (2023072716042475500_bib16) 2012; 21 Feig (2023072716042475500_bib18) 2013; 110 Karsunky (2023072716042475500_bib31) 2003; 198 Munn (2023072716042475500_bib46) 2016; 37 Sánchez-Paulete (2023072716042475500_bib54) 2016; 6 Lee (2023072716042475500_bib32) 2019; 567 Hingorani (2023072716042475500_bib25) 2005; 7 Elsässer (2023072716042475500_bib15) 1992; 7 Wculek (2023072716042475500_bib65) 2020; 20 Roberts (2023072716042475500_bib51) 2016; 30 Guilliams (2023072716042475500_bib21) 2016; 45 Meyer (2023072716042475500_bib43) 2018; 9 Grewal (2023072716042475500_bib20) 1997; 16 Lyman (2023072716042475500_bib38) 1998; 91 DuPage (2023072716042475500_bib13) 2009; 4 Salmon (2023072716042475500_bib53) 2016; 44 Alanio (2023072716042475500_bib1) 2019; 7 Tang (2023072716042475500_bib60) 2015; 13 Tjomsland (2023072716042475500_bib61) 2010; 5 32697286 - J Exp Med. 2020 Aug 3;217(8) |
References_xml | – volume: 21 start-page: 402 year: 2012 ident: 2023072716042475500_bib16 article-title: Marginating dendritic cells of the tumor microenvironment cross-present tumor antigens and stably engage tumor-specific T cells publication-title: Cancer Cell doi: 10.1016/j.ccr.2012.01.008 – volume: 49 start-page: 178 year: 2018 ident: 2023072716042475500_bib34 article-title: Tumor cell-intrinsic factors underlie heterogeneity of immune cell infiltration and response to immunotherapy publication-title: Immunity doi: 10.1016/j.immuni.2018.06.006 – volume: 4 start-page: 784 year: 2018 ident: 2023072716042475500_bib6 article-title: The role of type 1 conventional dendritic cells in cancer immunity publication-title: Trends Cancer doi: 10.1016/j.trecan.2018.09.001 – volume: 322 start-page: 1097 year: 2008 ident: 2023072716042475500_bib24 article-title: Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity publication-title: Science doi: 10.1126/science.1164206 – year: 2019 ident: 2023072716042475500_bib47 – volume: 37 start-page: 289 year: 2020 ident: 2023072716042475500_bib23 article-title: Dendritic cell paucity leads to dysfunctional immune surveillance in pancreatic cancer publication-title: Cancer Cell doi: 10.1016/j.ccell.2020.02.008 – volume: 567 start-page: 249 year: 2019 ident: 2023072716042475500_bib32 article-title: Hepatocytes direct the formation of a pro-metastatic niche in the liver publication-title: Nature doi: 10.1038/s41586-019-1004-y – volume: 37 start-page: 193 year: 2016 ident: 2023072716042475500_bib46 article-title: IDO in the tumor microenvironment: inflammation, counter-regulation, and tolerance publication-title: Trends Immunol doi: 10.1016/j.it.2016.01.002 – volume: 44 start-page: 924 year: 2016 ident: 2023072716042475500_bib53 article-title: Expansion and activation of CD103+ dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition publication-title: Immunity doi: 10.1016/j.immuni.2016.03.012 – volume: 331 start-page: 1565 year: 2011 ident: 2023072716042475500_bib57 article-title: Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion publication-title: Science doi: 10.1126/science.1203486 – volume: 1 start-page: 88328 year: 2016 ident: 2023072716042475500_bib17 article-title: Lack of immunoediting in murine pancreatic cancer reversed with neoantigen publication-title: JCI Insight doi: 10.1172/jci.insight.88328 – volume: 67 start-page: 2 year: 2000 ident: 2023072716042475500_bib63 article-title: CD40-CD40 ligand publication-title: J. Leukoc. Biol doi: 10.1002/jlb.67.1.2 – volume: 25 start-page: 621 year: 2014 ident: 2023072716042475500_bib41 article-title: Oncogenic Kras activates a hematopoietic-to-epithelial IL-17 signaling axis in preinvasive pancreatic neoplasia publication-title: Cancer Cell doi: 10.1016/j.ccr.2014.03.014 – volume: 32 start-page: 185 year: 2017 ident: 2023072716042475500_bib50 article-title: Integrated genomic characterization of pancreatic ductal adenocarcinoma publication-title: Cancer Cell doi: 10.1016/j.ccell.2017.07.007 – volume: 11 start-page: 5802 year: 2005 ident: 2023072716042475500_bib40 article-title: Role of mononuclear cells and inflammatory cytokines in pancreatic cancer-related cachexia publication-title: Clin. Cancer Res doi: 10.1158/1078-0432.CCR-05-0185 – volume: 214 start-page: 579 year: 2017 ident: 2023072716042475500_bib48 article-title: Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer publication-title: J. Exp. Med doi: 10.1084/jem.20162024 – volume: 4 start-page: 968 year: 2016 ident: 2023072716042475500_bib9 article-title: CXCR2-dependent accumulation of tumor-associated neutrophils regulates T cell immunity in pancreatic ductal adenocarcinoma publication-title: Cancer Immunol. Res doi: 10.1158/2326-6066.CIR-16-0188 – volume: 15 start-page: 550 year: 2014 ident: 2023072716042475500_bib37 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol doi: 10.1186/s13059-014-0550-8 – volume: 33 start-page: 1104 year: 2014 ident: 2023072716042475500_bib11 article-title: Dendritic cell maturation: functional specialization through signaling specificity and transcriptional programming publication-title: EMBO J doi: 10.1002/embj.201488027 – volume: 31 start-page: 711 year: 2017 ident: 2023072716042475500_bib59 article-title: Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy publication-title: Cancer Cell doi: 10.1016/j.ccell.2017.04.003 – volume: 16 start-page: 718 year: 2015 ident: 2023072716042475500_bib55 article-title: Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow publication-title: Nat. Immunol doi: 10.1038/ni.3200 – volume: 33 start-page: 563 year: 2018 ident: 2023072716042475500_bib64 article-title: The immune revolution: A case for priming, not checkpoint publication-title: Cancer Cell doi: 10.1016/j.ccell.2018.03.008 – volume: 15 start-page: 3243 year: 2001 ident: 2023072716042475500_bib28 article-title: Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras publication-title: Genes Dev doi: 10.1101/gad.943001 – volume: 198 start-page: 305 year: 2003 ident: 2023072716042475500_bib31 article-title: Flt3 ligand regulates dendritic cell development from Flt3+ lymphoid and myeloid-committed progenitors to Flt3+ dendritic cells in vivo publication-title: J. Exp. Med doi: 10.1084/jem.20030323 – volume: 7 start-page: 469 year: 2005 ident: 2023072716042475500_bib25 article-title: Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice publication-title: Cancer Cell doi: 10.1016/j.ccr.2005.04.023 – volume: 65 start-page: 10280 year: 2005 ident: 2023072716042475500_bib29 article-title: The differential effects of mutant p53 alleles on advanced murine lung cancer publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-05-2193 – volume: 15 start-page: 2719 year: 2016 ident: 2023072716042475500_bib8 article-title: CD40 stimulation obviates innate sensors and drives T cell immunity in cancer publication-title: Cell Rep doi: 10.1016/j.celrep.2016.05.058 – volume: 67 start-page: 9518 year: 2007 ident: 2023072716042475500_bib10 article-title: Dynamics of the immune reaction to pancreatic cancer from inception to invasion publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-07-0175 – volume: 13 start-page: 2851 year: 2015 ident: 2023072716042475500_bib60 article-title: Toll-like receptor 2 activation promotes tumor dendritic cell dysfunction by regulating IL-6 and IL- 10 receptor signaling publication-title: Cell Rep doi: 10.1016/j.celrep.2015.11.053 – volume: 20 start-page: 7 year: 2020 ident: 2023072716042475500_bib65 article-title: Dendritic cells in cancer immunology and immunotherapy publication-title: Nat. Rev. Immunol doi: 10.1038/s41577-019-0210-z – volume: 140 start-page: 310 year: 2011 ident: 2023072716042475500_bib26 article-title: CXCL17 and ICAM2 are associated with a potential anti-tumor immune response in early intraepithelial stages of human pancreatic carcinogenesis publication-title: Gastroenterology doi: 10.1053/j.gastro.2010.10.009 – volume: 101 start-page: 2727 year: 2004 ident: 2023072716042475500_bib14 article-title: Cytokines in pancreatic carcinoma: correlation with phenotypic characteristics and prognosis publication-title: Cancer doi: 10.1002/cncr.20672 – volume: 30 start-page: 923 year: 2014 ident: 2023072716042475500_bib35 article-title: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt656 – volume: 6 start-page: 71 year: 2016 ident: 2023072716042475500_bib54 article-title: Cancer immunotherapy with immunomodulatory anti-CD137 and anti-PD-1 monoclonal antibodies requires BATF3-dependent dendritic cells publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-15-0510 – volume: 116 start-page: 1643 year: 2017 ident: 2023072716042475500_bib22 article-title: Herpes zoster risk after 21 specific cancers: population-based case-control study publication-title: Br. J. Cancer doi: 10.1038/bjc.2017.124 – volume: 207 start-page: 1247 year: 2010 ident: 2023072716042475500_bib30 article-title: Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens publication-title: J. Exp. Med doi: 10.1084/jem.20092140 – volume: 31 start-page: 563 year: 2013 ident: 2023072716042475500_bib42 article-title: The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting publication-title: Annu. Rev. Immunol doi: 10.1146/annurev-immunol-020711-074950 – volume: 8 start-page: 1787 year: 2002 ident: 2023072716042475500_bib27 article-title: Alterations in the frequency of dendritic cell subsets in the peripheral circulation of patients with squamous cell carcinomas of the head and neck publication-title: Clin. Cancer Res – volume: 7 start-page: A123 year: 2019 ident: 2023072716042475500_bib1 article-title: Abstract A123: Skewed CD4 and CD8 T-cell differentiation in pancreatic cancer patients publication-title: Cancer Immunol. Res doi: 10.1158/2326-6074.CRICIMTEATIAACR18-A123 – volume: 160 start-page: 48 year: 2015 ident: 2023072716042475500_bib52 article-title: Molecular and genetic properties of tumors associated with local immune cytolytic activity publication-title: Cell doi: 10.1016/j.cell.2014.12.033 – volume: 45 start-page: 669 year: 2016 ident: 2023072716042475500_bib21 article-title: Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species publication-title: Immunity doi: 10.1016/j.immuni.2016.08.015 – volume: 91 start-page: 1101 year: 1998 ident: 2023072716042475500_bib38 article-title: c-kit ligand and Flt3 ligand: stem/progenitor cell factors with overlapping yet distinct activities publication-title: Blood doi: 10.1182/blood.V91.4.1101 – volume: 16 start-page: 59 year: 1997 ident: 2023072716042475500_bib20 article-title: The CD40 ligand. At the center of the immune universe? publication-title: Immunol. Res doi: 10.1007/BF02786323 – volume: 117 start-page: 8022 year: 2020 ident: 2023072716042475500_bib45 article-title: Sufficiency of CD40 activation and immune checkpoint blockade for T cell priming and tumor immunity publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1918971117 – year: 2015 ident: 2023072716042475500_bib4 – volume: 5 year: 2010 ident: 2023072716042475500_bib61 article-title: Semi mature blood dendritic cells exist in patients with ductal pancreatic adenocarcinoma owing to inflammatory factors released from the tumor publication-title: PLoS One doi: 10.1371/journal.pone.0013441 – volume: 4 start-page: 1064 year: 2009 ident: 2023072716042475500_bib13 article-title: Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase publication-title: Nat. Protoc doi: 10.1038/nprot.2009.95 – volume: 26 start-page: 638 year: 2014 ident: 2023072716042475500_bib7 article-title: Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity publication-title: Cancer Cell doi: 10.1016/j.ccell.2014.09.007 – volume: 3 start-page: 399 year: 2015 ident: 2023072716042475500_bib66 article-title: Induction of T cell immunity overcomes complete resistance to PD-1 and CTLA-4 blockade and improves survival in pancreatic carcinoma publication-title: Cancer Immunol. Res doi: 10.1158/2326-6066.CIR-14-0215 – volume: 173 start-page: 3844 year: 2004 ident: 2023072716042475500_bib49 article-title: IL-6 regulates in vivo dendritic cell differentiation through STAT3 activation publication-title: J. Immunol doi: 10.4049/jimmunol.173.6.3844 – volume: 7 start-page: 385 year: 1992 ident: 2023072716042475500_bib15 article-title: Repetitive cerulein-induced pancreatitis and pancreatic fibrosis in the rat publication-title: Pancreas doi: 10.1097/00006676-199205000-00017 – volume: 9 start-page: 1250 year: 2018 ident: 2023072716042475500_bib43 article-title: Breast and pancreatic cancer interrupt IRF8-dependent dendritic cell development to overcome immune surveillance publication-title: Nat. Commun doi: 10.1038/s41467-018-03600-6 – volume: 520 start-page: 373 year: 2015 ident: 2023072716042475500_bib62 article-title: Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer publication-title: Nature doi: 10.1038/nature14292 – volume: 110 start-page: 20212 year: 2013 ident: 2023072716042475500_bib18 article-title: Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1320318110 – volume: 551 start-page: 512 year: 2017 ident: 2023072716042475500_bib3 article-title: Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer publication-title: Nature doi: 10.1038/nature24462 – volume: 393 start-page: 480 year: 1998 ident: 2023072716042475500_bib56 article-title: T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions publication-title: Nature doi: 10.1038/31002 – volume: 523 start-page: 231 year: 2015 ident: 2023072716042475500_bib58 article-title: Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity publication-title: Nature doi: 10.1038/nature14404 – volume: 19 start-page: 456 year: 2011 ident: 2023072716042475500_bib33 article-title: Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer publication-title: Cancer Cell doi: 10.1016/j.ccr.2011.03.009 – volume: 21 start-page: 822 year: 2012 ident: 2023072716042475500_bib5 article-title: Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer publication-title: Cancer Cell doi: 10.1016/j.ccr.2012.04.025 – volume: 34 start-page: 267 year: 2003 ident: 2023072716042475500_bib44 article-title: PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes publication-title: Nat. Genet doi: 10.1038/ng1180 – volume: 3 start-page: 483 year: 1997 ident: 2023072716042475500_bib19 article-title: Decreased antigen presentation by dendritic cells in patients with breast cancer publication-title: Clin. Cancer Res – volume: 30 start-page: 324 year: 2016 ident: 2023072716042475500_bib51 article-title: Critical role for CD103+/CD141+ dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.06.003 – volume: 6 start-page: 1755 year: 2000 ident: 2023072716042475500_bib2 article-title: Clinical significance of defective dendritic cell differentiation in cancer publication-title: Clin. Cancer Res – volume: 4 start-page: 438 year: 2013 ident: 2023072716042475500_bib12 article-title: Immature, semi-mature, and fully mature dendritic cells: Toward a DC-cancer cells interface that augments anticancer immunity publication-title: Front. Immunol doi: 10.3389/fimmu.2013.00438 – volume: 16 start-page: 1898 year: 2017 ident: 2023072716042475500_bib36 article-title: IL6 receptor blockade enhances chemotherapy efficacy in pancreatic ductal adenocarcinoma publication-title: Mol. Cancer Ther doi: 10.1158/1535-7163.MCT-16-0899 – volume: 67 start-page: 320 year: 2018 ident: 2023072716042475500_bib39 article-title: IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer publication-title: Gut doi: 10.1136/gutjnl-2016-311585 – reference: 32697286 - J Exp Med. 2020 Aug 3;217(8): |
SSID | ssj0014456 |
Score | 2.6432946 |
Snippet | Type 1 conventional dendritic cells (cDC1s) are typically thought to be dysregulated secondarily to invasive cancer. Here, we report that cDC1 dysfunction... Type 1 conventional dendritic cells are progressively and systemically dysregulated during pancreatic carcinogenesis, subject to semimaturation and IL-6–driven... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Aged Animals Carcinogenesis - genetics Carcinogenesis - immunology Carcinogenesis - pathology CD8-Positive T-Lymphocytes - immunology CD8-Positive T-Lymphocytes - pathology Dendritic Cells - immunology Dendritic Cells - pathology Female Humans Male Mice Middle Aged Neoplasm Proteins - genetics Neoplasm Proteins - immunology Neoplasms, Experimental - genetics Neoplasms, Experimental - immunology Neoplasms, Experimental - pathology Pancreatic Neoplasms - genetics Pancreatic Neoplasms - immunology Pancreatic Neoplasms - pathology Tumor Immunology |
Title | Type 1 conventional dendritic cells are systemically dysregulated early in pancreatic carcinogenesis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32453421 https://www.proquest.com/docview/2406942778 https://pubmed.ncbi.nlm.nih.gov/PMC7398166 |
Volume | 217 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA66wrIv4t3xRgR9Gqptmrbpo4iyiOPTLjtvJVcdWDuLMwOuv95zkvQ27oL6UkqTaeB8X8-cnJwLIa-qQpXcCZXIGvYmnOP5rlQskakxihmnhUQ_5OJLeXzKPy2L5XAU47NLtuqN_nVlXsn_oArPAFfMkv0HZPuXwgO4B3zhCgjD9e8wRv9pNo0cBz1ifPuCOfrkN3OM7ArlmhGO88u5uYR_Rd-AHmxN6-sb-_qqbbAfNRar1qt2_RW14Goztl6HPDJvwU66A-wf0n-Obb5CptgoB2LnXPS6op8Flu4zzM6w1mcfcLaQPwdX7Vk41e-C8ONA9FawECsXNJiNGpaneGYsxiqYhfzNyDVxpWpPBUfVbrF8AFgxZeiAMkL54ruHGSzEIuch7XqvlHY3dJPcYhWYWpgbvuwjgmBrWZQxNwIWezte6ogcdj-eGjB_7Er2g2tH1srJHXI7gkTfBc7cJTdse48cLiJG94lB6tCMjqlDe-pQTx0K1KFj6tAxdainDl21dKAOnVLnATn9-OHk_XESG24kmhfpNqnTWquidi5TmdVGikqClJjIZKnh07VGVsphtSCQg1Q6LZwrVFqporAgMJblD8lBu27tY0KVY0xxJXNnUl6aEuYw54TNjdVCpWJG5p0UGx2r0WNTlPPGR0UI3oD4m078M_K6n30RqrBcM-9lB0gDahKFJVu73m2akOHNqgpWfhQA6t_UITsj1QS6fgKWYJ-OtKtvvhR7ldd48P7k2nc-JUfDZ_CMHGx_7OxzMGO36oUn328FyaVd |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Type+1+conventional+dendritic+cells+are+systemically+dysregulated+early+in+pancreatic+carcinogenesis&rft.jtitle=The+Journal+of+experimental+medicine&rft.au=Lin%2C+Jeffrey+H&rft.au=Huffman%2C+Austin+P&rft.au=Wattenberg%2C+Max+M&rft.au=Walter%2C+David+M&rft.date=2020-08-03&rft.eissn=1540-9538&rft.volume=217&rft.issue=8&rft_id=info:doi/10.1084%2Fjem.20190673&rft_id=info%3Apmid%2F32453421&rft.externalDocID=32453421 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1007&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1007&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1007&client=summon |