Type 1 conventional dendritic cells are systemically dysregulated early in pancreatic carcinogenesis

Type 1 conventional dendritic cells (cDC1s) are typically thought to be dysregulated secondarily to invasive cancer. Here, we report that cDC1 dysfunction instead develops in the earliest stages of preinvasive pancreatic intraepithelial neoplasia (PanIN) in the KrasLSL-G12D/+ Trp53LSL-R172H/+ Pdx1-C...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of experimental medicine Vol. 217; no. 8
Main Authors Lin, Jeffrey H., Huffman, Austin P., Wattenberg, Max M., Walter, David M., Carpenter, Erica L., Feldser, David M., Beatty, Gregory L., Furth, Emma E., Vonderheide, Robert H.
Format Journal Article
LanguageEnglish
Published United States Rockefeller University Press 03.08.2020
Subjects
Online AccessGet full text
ISSN0022-1007
1540-9538
1540-9538
DOI10.1084/jem.20190673

Cover

Abstract Type 1 conventional dendritic cells (cDC1s) are typically thought to be dysregulated secondarily to invasive cancer. Here, we report that cDC1 dysfunction instead develops in the earliest stages of preinvasive pancreatic intraepithelial neoplasia (PanIN) in the KrasLSL-G12D/+ Trp53LSL-R172H/+ Pdx1-Cre–driven (KPC) mouse model of pancreatic cancer. cDC1 dysfunction is systemic and progressive, driven by increased apoptosis, and results in suboptimal up-regulation of T cell–polarizing cytokines during cDC1 maturation. The underlying mechanism is linked to elevated IL-6 concomitant with neoplasia. Neutralization of IL-6 in vivo ameliorates cDC1 apoptosis, rescuing cDC1 abundance in tumor-bearing mice. CD8+ T cell response to vaccination is impaired as a result of cDC1 dysregulation. Yet, combination therapy with CD40 agonist and Flt3 ligand restores cDC1 abundance to normal levels, decreases cDC1 apoptosis, and repairs cDC1 maturation to drive superior control of tumor outgrowth. Our study therefore reveals the unexpectedly early and systemic onset of cDC1 dysregulation during pancreatic carcinogenesis and suggests therapeutically tractable strategies toward cDC1 repair.
AbstractList Type 1 conventional dendritic cells (cDC1s) are typically thought to be dysregulated secondarily to invasive cancer. Here, we report that cDC1 dysfunction instead develops in the earliest stages of preinvasive pancreatic intraepithelial neoplasia (PanIN) in the KrasLSL-G12D/+ Trp53LSL-R172H/+ Pdx1-Cre-driven (KPC) mouse model of pancreatic cancer. cDC1 dysfunction is systemic and progressive, driven by increased apoptosis, and results in suboptimal up-regulation of T cell-polarizing cytokines during cDC1 maturation. The underlying mechanism is linked to elevated IL-6 concomitant with neoplasia. Neutralization of IL-6 in vivo ameliorates cDC1 apoptosis, rescuing cDC1 abundance in tumor-bearing mice. CD8+ T cell response to vaccination is impaired as a result of cDC1 dysregulation. Yet, combination therapy with CD40 agonist and Flt3 ligand restores cDC1 abundance to normal levels, decreases cDC1 apoptosis, and repairs cDC1 maturation to drive superior control of tumor outgrowth. Our study therefore reveals the unexpectedly early and systemic onset of cDC1 dysregulation during pancreatic carcinogenesis and suggests therapeutically tractable strategies toward cDC1 repair.
Type 1 conventional dendritic cells are progressively and systemically dysregulated during pancreatic carcinogenesis, subject to semimaturation and IL-6–driven apoptosis. Yet, CD40 agonist synergizes with Flt3L to rescue cDC1 abundance and maturation, enabling a return to full CD8 + T cell priming. Type 1 conventional dendritic cells (cDC1s) are typically thought to be dysregulated secondarily to invasive cancer. Here, we report that cDC1 dysfunction instead develops in the earliest stages of preinvasive pancreatic intraepithelial neoplasia (PanIN) in the Kras LSL- G12D/+ Trp53 LSL- R172H/+ Pdx1-Cre –driven (KPC) mouse model of pancreatic cancer. cDC1 dysfunction is systemic and progressive, driven by increased apoptosis, and results in suboptimal up-regulation of T cell–polarizing cytokines during cDC1 maturation. The underlying mechanism is linked to elevated IL-6 concomitant with neoplasia. Neutralization of IL-6 in vivo ameliorates cDC1 apoptosis, rescuing cDC1 abundance in tumor-bearing mice. CD8 + T cell response to vaccination is impaired as a result of cDC1 dysregulation. Yet, combination therapy with CD40 agonist and Flt3 ligand restores cDC1 abundance to normal levels, decreases cDC1 apoptosis, and repairs cDC1 maturation to drive superior control of tumor outgrowth. Our study therefore reveals the unexpectedly early and systemic onset of cDC1 dysregulation during pancreatic carcinogenesis and suggests therapeutically tractable strategies toward cDC1 repair.
Type 1 conventional dendritic cells (cDC1s) are typically thought to be dysregulated secondarily to invasive cancer. Here, we report that cDC1 dysfunction instead develops in the earliest stages of preinvasive pancreatic intraepithelial neoplasia (PanIN) in the KrasLSL-G12D/+ Trp53LSL-R172H/+ Pdx1-Cre-driven (KPC) mouse model of pancreatic cancer. cDC1 dysfunction is systemic and progressive, driven by increased apoptosis, and results in suboptimal up-regulation of T cell-polarizing cytokines during cDC1 maturation. The underlying mechanism is linked to elevated IL-6 concomitant with neoplasia. Neutralization of IL-6 in vivo ameliorates cDC1 apoptosis, rescuing cDC1 abundance in tumor-bearing mice. CD8+ T cell response to vaccination is impaired as a result of cDC1 dysregulation. Yet, combination therapy with CD40 agonist and Flt3 ligand restores cDC1 abundance to normal levels, decreases cDC1 apoptosis, and repairs cDC1 maturation to drive superior control of tumor outgrowth. Our study therefore reveals the unexpectedly early and systemic onset of cDC1 dysregulation during pancreatic carcinogenesis and suggests therapeutically tractable strategies toward cDC1 repair.Type 1 conventional dendritic cells (cDC1s) are typically thought to be dysregulated secondarily to invasive cancer. Here, we report that cDC1 dysfunction instead develops in the earliest stages of preinvasive pancreatic intraepithelial neoplasia (PanIN) in the KrasLSL-G12D/+ Trp53LSL-R172H/+ Pdx1-Cre-driven (KPC) mouse model of pancreatic cancer. cDC1 dysfunction is systemic and progressive, driven by increased apoptosis, and results in suboptimal up-regulation of T cell-polarizing cytokines during cDC1 maturation. The underlying mechanism is linked to elevated IL-6 concomitant with neoplasia. Neutralization of IL-6 in vivo ameliorates cDC1 apoptosis, rescuing cDC1 abundance in tumor-bearing mice. CD8+ T cell response to vaccination is impaired as a result of cDC1 dysregulation. Yet, combination therapy with CD40 agonist and Flt3 ligand restores cDC1 abundance to normal levels, decreases cDC1 apoptosis, and repairs cDC1 maturation to drive superior control of tumor outgrowth. Our study therefore reveals the unexpectedly early and systemic onset of cDC1 dysregulation during pancreatic carcinogenesis and suggests therapeutically tractable strategies toward cDC1 repair.
Author Vonderheide, Robert H.
Lin, Jeffrey H.
Wattenberg, Max M.
Carpenter, Erica L.
Feldser, David M.
Huffman, Austin P.
Walter, David M.
Beatty, Gregory L.
Furth, Emma E.
AuthorAffiliation 6 Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
5 Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
4 Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
1 Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
2 Cell and Molecular Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
3 Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
AuthorAffiliation_xml – name: 2 Cell and Molecular Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
– name: 5 Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
– name: 4 Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
– name: 1 Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
– name: 3 Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
– name: 6 Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
Author_xml – sequence: 1
  givenname: Jeffrey H.
  orcidid: 0000-0002-2518-6863
  surname: Lin
  fullname: Lin, Jeffrey H.
– sequence: 2
  givenname: Austin P.
  surname: Huffman
  fullname: Huffman, Austin P.
– sequence: 3
  givenname: Max M.
  surname: Wattenberg
  fullname: Wattenberg, Max M.
– sequence: 4
  givenname: David M.
  surname: Walter
  fullname: Walter, David M.
– sequence: 5
  givenname: Erica L.
  orcidid: 0000-0002-0735-3605
  surname: Carpenter
  fullname: Carpenter, Erica L.
– sequence: 6
  givenname: David M.
  orcidid: 0000-0001-5975-864X
  surname: Feldser
  fullname: Feldser, David M.
– sequence: 7
  givenname: Gregory L.
  orcidid: 0000-0001-7165-5993
  surname: Beatty
  fullname: Beatty, Gregory L.
– sequence: 8
  givenname: Emma E.
  surname: Furth
  fullname: Furth, Emma E.
– sequence: 9
  givenname: Robert H.
  orcidid: 0000-0002-7252-954X
  surname: Vonderheide
  fullname: Vonderheide, Robert H.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32453421$$D View this record in MEDLINE/PubMed
BookMark eNptUUtr3DAQFiWl2Wx767nomEOdSrLkx6UQQl4Q6CU9i7E03irI0lbyBvzvo22ypQ05DWi-x-j7TshRiAEJ-czZGWed_PaA05lgvGdNW78jK64kq3pVd0dkxZgQFWesPSYnOT8wxqVUzQdyXAupain4itj7ZYuUUxPDI4bZxQCeWgw2udkZatD7TCEhzUuecXIGvF-oXXLCzc7DjJYipPLkAt1CMAnhDw-ScSFuMGB2-SN5P4LP-OllrsnPq8v7i5vq7sf17cX5XWWkYnPVs94Mqh9HPnA0FroWmqYWHYfGWDughXYY-0Z15XQYDFPjqAbWDkphCULwek2-P-tud8OE1pQPJfB6m9wEadERnP5_E9wvvYmPuq37jhevNTl9EUjx9w7zrCeX9xlAwLjLWkjW9FK0bVegX_71-mtyiLYAxDPApJhLXKM2boZ9wsXaec2Z3venS3_60F8hfX1FOui-CX8CB7yfkg
CitedBy_id crossref_primary_10_3390_cancers16162876
crossref_primary_10_1016_j_it_2021_10_004
crossref_primary_10_1016_j_csbj_2023_03_037
crossref_primary_10_1038_s41568_024_00785_5
crossref_primary_10_1093_carcin_bgae065
crossref_primary_10_4103_jcrt_jcrt_2383_23
crossref_primary_10_1158_2326_6066_CIR_22_0927
crossref_primary_10_1038_s43018_023_00703_y
crossref_primary_10_1007_s00262_023_03433_3
crossref_primary_10_1016_j_bbcan_2025_189302
crossref_primary_10_32948_ajo_2024_12_10
crossref_primary_10_1126_sciimmunol_add4817
crossref_primary_10_3389_fimmu_2021_724883
crossref_primary_10_3389_fimmu_2024_1393451
crossref_primary_10_1038_s41568_022_00546_2
crossref_primary_10_1084_jem_20221757
crossref_primary_10_3389_fimmu_2022_823842
crossref_primary_10_1084_jem_20200816
crossref_primary_10_1053_j_gastro_2023_05_036
crossref_primary_10_1016_j_intimp_2024_111548
crossref_primary_10_3390_cancers14174209
crossref_primary_10_1146_annurev_pathmechdis_031621_024600
crossref_primary_10_3390_cancers13164138
crossref_primary_10_3389_fimmu_2023_1258538
crossref_primary_10_1136_jitc_2020_001963
crossref_primary_10_1002_cyto_a_24788
crossref_primary_10_1016_j_xcrm_2022_100878
crossref_primary_10_1084_jem_20200264
crossref_primary_10_3389_fimmu_2022_802690
crossref_primary_10_1158_1078_0432_CCR_21_1047
crossref_primary_10_1172_jci_insight_145389
crossref_primary_10_1016_j_it_2022_04_010
crossref_primary_10_3389_fimmu_2020_605619
crossref_primary_10_3389_fimmu_2022_1041010
crossref_primary_10_1007_s00262_023_03535_y
crossref_primary_10_1111_imcb_12575
crossref_primary_10_1038_s41577_023_00884_8
crossref_primary_10_3389_fonc_2021_666340
crossref_primary_10_1038_s41467_024_46048_7
crossref_primary_10_3390_cancers13133179
crossref_primary_10_1016_j_csbj_2024_04_054
crossref_primary_10_1038_s41467_023_41768_8
crossref_primary_10_3390_life13071482
crossref_primary_10_1016_j_tips_2024_10_009
crossref_primary_10_1038_s41467_023_39759_w
crossref_primary_10_1158_2326_6066_CIR_21_0946
crossref_primary_10_3389_fimmu_2022_1081919
crossref_primary_10_3389_fimmu_2020_613815
crossref_primary_10_1136_gutjnl_2024_333492
crossref_primary_10_3390_cells13151267
crossref_primary_10_1038_s41577_024_01091_9
crossref_primary_10_3390_biomedicines10051181
crossref_primary_10_1038_s41568_021_00347_z
crossref_primary_10_1155_2024_4468145
crossref_primary_10_1038_s41590_024_01820_1
crossref_primary_10_3389_fimmu_2022_1012673
crossref_primary_10_1016_j_smim_2021_101481
crossref_primary_10_1016_j_celrep_2023_112501
crossref_primary_10_1038_s41467_021_22535_z
crossref_primary_10_1038_s41698_023_00459_9
crossref_primary_10_1101_gad_348523_121
crossref_primary_10_1016_j_smim_2023_101848
crossref_primary_10_1038_s41568_022_00503_z
crossref_primary_10_3390_cancers12113340
crossref_primary_10_1007_s00251_024_01335_x
crossref_primary_10_1038_s41698_024_00681_z
crossref_primary_10_1186_s12967_024_05205_8
crossref_primary_10_1186_s40779_023_00496_2
crossref_primary_10_1158_2326_6066_CIR_20_0785
crossref_primary_10_1038_s41392_023_01376_w
crossref_primary_10_1158_1078_0432_CCR_22_2181
crossref_primary_10_1158_1078_0432_CCR_21_2585
crossref_primary_10_3389_fonc_2021_682217
crossref_primary_10_1186_s13046_023_02935_3
crossref_primary_10_1038_s41577_024_01111_8
crossref_primary_10_1016_j_ccell_2022_05_006
crossref_primary_10_1021_acsami_4c02528
crossref_primary_10_3389_fimmu_2020_629722
crossref_primary_10_3389_froh_2022_902160
crossref_primary_10_1016_j_imlet_2021_04_002
crossref_primary_10_1016_j_biopha_2022_113541
crossref_primary_10_1016_j_jare_2025_02_036
crossref_primary_10_1186_s10020_024_01059_4
crossref_primary_10_3390_cancers13010146
crossref_primary_10_3389_fonc_2021_653625
crossref_primary_10_1080_2162402X_2023_2204015
crossref_primary_10_1186_s13045_024_01561_6
crossref_primary_10_1007_s11605_021_05087_x
crossref_primary_10_1158_2767_9764_CRC_24_0172
crossref_primary_10_26508_lsa_202101337
crossref_primary_10_1016_j_bbcan_2020_188387
crossref_primary_10_1158_1078_0432_CCR_23_1444
crossref_primary_10_1038_s41392_024_01979_x
crossref_primary_10_3389_fimmu_2024_1341079
crossref_primary_10_1038_s41467_021_23832_3
crossref_primary_10_1038_s41590_023_01598_8
crossref_primary_10_1016_j_ccell_2021_07_007
crossref_primary_10_1158_1078_0432_CCR_22_1630
crossref_primary_10_1136_jitc_2021_003809
crossref_primary_10_1002_path_6199
crossref_primary_10_1042_CS20191211
crossref_primary_10_1038_s41571_024_00859_1
crossref_primary_10_1053_j_gastro_2021_09_066
crossref_primary_10_3390_cancers14051216
crossref_primary_10_1186_s12943_022_01515_x
crossref_primary_10_3389_fcell_2021_783617
crossref_primary_10_1016_j_ccell_2020_08_004
crossref_primary_10_1016_j_trecan_2023_07_004
crossref_primary_10_1172_jci_insight_151593
crossref_primary_10_1038_s43018_022_00349_2
crossref_primary_10_1016_j_jbc_2024_107752
crossref_primary_10_1038_s41416_020_01160_5
crossref_primary_10_1038_s41467_023_41792_8
crossref_primary_10_3390_cancers15061776
crossref_primary_10_1016_j_pharmthera_2020_107709
crossref_primary_10_1016_j_cpt_2024_07_004
crossref_primary_10_1186_s13046_021_02237_6
crossref_primary_10_1002_eji_202149487
crossref_primary_10_1158_0008_5472_CAN_24_0830
crossref_primary_10_1080_17474124_2024_2322648
crossref_primary_10_1200_JCO_21_02616
crossref_primary_10_1016_j_celrep_2022_111201
crossref_primary_10_2174_1568009623666230712095021
crossref_primary_10_1158_0008_5472_CAN_22_0094
Cites_doi 10.1016/j.ccr.2012.01.008
10.1016/j.immuni.2018.06.006
10.1016/j.trecan.2018.09.001
10.1126/science.1164206
10.1016/j.ccell.2020.02.008
10.1038/s41586-019-1004-y
10.1016/j.it.2016.01.002
10.1016/j.immuni.2016.03.012
10.1126/science.1203486
10.1172/jci.insight.88328
10.1002/jlb.67.1.2
10.1016/j.ccr.2014.03.014
10.1016/j.ccell.2017.07.007
10.1158/1078-0432.CCR-05-0185
10.1084/jem.20162024
10.1158/2326-6066.CIR-16-0188
10.1186/s13059-014-0550-8
10.1002/embj.201488027
10.1016/j.ccell.2017.04.003
10.1038/ni.3200
10.1016/j.ccell.2018.03.008
10.1101/gad.943001
10.1084/jem.20030323
10.1016/j.ccr.2005.04.023
10.1158/0008-5472.CAN-05-2193
10.1016/j.celrep.2016.05.058
10.1158/0008-5472.CAN-07-0175
10.1016/j.celrep.2015.11.053
10.1038/s41577-019-0210-z
10.1053/j.gastro.2010.10.009
10.1002/cncr.20672
10.1093/bioinformatics/btt656
10.1158/2159-8290.CD-15-0510
10.1038/bjc.2017.124
10.1084/jem.20092140
10.1146/annurev-immunol-020711-074950
10.1158/2326-6074.CRICIMTEATIAACR18-A123
10.1016/j.cell.2014.12.033
10.1016/j.immuni.2016.08.015
10.1182/blood.V91.4.1101
10.1007/BF02786323
10.1073/pnas.1918971117
10.1371/journal.pone.0013441
10.1038/nprot.2009.95
10.1016/j.ccell.2014.09.007
10.1158/2326-6066.CIR-14-0215
10.4049/jimmunol.173.6.3844
10.1097/00006676-199205000-00017
10.1038/s41467-018-03600-6
10.1038/nature14292
10.1073/pnas.1320318110
10.1038/nature24462
10.1038/31002
10.1038/nature14404
10.1016/j.ccr.2011.03.009
10.1016/j.ccr.2012.04.025
10.1038/ng1180
10.1016/j.ccell.2016.06.003
10.3389/fimmu.2013.00438
10.1158/1535-7163.MCT-16-0899
10.1136/gutjnl-2016-311585
ContentType Journal Article
Copyright 2020 Lin et al.
2020 Lin et al. 2020
Copyright_xml – notice: 2020 Lin et al.
– notice: 2020 Lin et al. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1084/jem.20190673
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Early and systemic dysregulation of dendritic cells during pancreatic carcinogenesis
EISSN 1540-9538
ExternalDocumentID PMC7398166
32453421
10_1084_jem_20190673
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: T32 HL007439
– fundername: NCI NIH HHS
  grantid: P01 CA210944
– fundername: NCI NIH HHS
  grantid: R01 CA229803
– fundername: NCI NIH HHS
  grantid: K12 CA076931
– fundername: NIEHS NIH HHS
  grantid: P30 ES013508
– fundername: NCI NIH HHS
  grantid: P30 CA016520
– fundername: NCI NIH HHS
  grantid: R01 CA197916
– fundername: ;
– fundername: ;
  grantid: R01 CA229803; P30 CA016520; P01 CA210944; T32 HL007439-41; R01 CA197916
GroupedDBID ---
-~X
18M
29K
2WC
36B
4.4
53G
5GY
5RE
5VS
AAYXX
ABOCM
ABZEH
ACGFO
ACNCT
ACPRK
ADBBV
AENEX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C45
CITATION
CS3
D-I
DIK
DU5
E3Z
EBS
EMB
F5P
F9R
GX1
H13
HYE
IH2
KQ8
L7B
N9A
O5R
O5S
OK1
P2P
P6G
R.V
RHI
SJN
TR2
TRP
UHB
W8F
WOQ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c450t-909cb59ff1b1ecda87a663281a6cddbeda7bf9658342abc05ff5b07b55e084213
ISSN 0022-1007
1540-9538
IngestDate Thu Aug 21 17:25:47 EDT 2025
Fri Sep 05 03:48:55 EDT 2025
Mon Jul 21 05:14:48 EDT 2025
Tue Jul 01 00:41:14 EDT 2025
Thu Apr 24 22:55:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License 2020 Lin et al.
This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c450t-909cb59ff1b1ecda87a663281a6cddbeda7bf9658342abc05ff5b07b55e084213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Disclosures: E.L. Carpenter reported personal fees from Imedex, personal fees from AstraZeneca, grants from Janssen, grants from Merck, and grants from Becton Dickinson outside the submitted work. G.L. Beatty reported personal fees from Seattle Genetics, personal fees from Aduro Biotech, personal fees from AstraZeneca, personal fees from Bristol-Myers Squibb, personal fees from Genmab, personal fees from Merck, personal fees from Shattuck Labs, personal fees from Boehinger Ingelheim, personal fees from BiolineRx, personal fees from Incyte, grants from Arcus Biosciences, grants from Verastem, grants from Halozyme, grants from Biothera, grants from Newlink, grants from Janssen, grants from Bristol-Myers Squibb, and grants from Incyte outside the submitted work; in addition, G.L. Beatty had a patent to 10577417 with royalties paid "Novartis, U of Pennsylvania." R.H. Vonderheide reported personal fees from Celgene, personal fees from Celldex, personal fees from Janssen, personal fees from Lilly, personal fees from Medimmune, personal fees from Verastem, grants from Apexigen, grants from Fibrogen, grants from Inovio, grants from Janssen, and grants from Lilly outside the submitted work; in addition, R.H. Vonderheide had a patent to cellular immunotherapy licensed "Novartis" and a patent to VLA-4 research antibody licensed "BD Pharmigen." No other disclosures were reported.
ORCID 0000-0001-5975-864X
0000-0002-7252-954X
0000-0002-2518-6863
0000-0001-7165-5993
0000-0002-0735-3605
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7398166
PMID 32453421
PQID 2406942778
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7398166
proquest_miscellaneous_2406942778
pubmed_primary_32453421
crossref_citationtrail_10_1084_jem_20190673
crossref_primary_10_1084_jem_20190673
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-03
PublicationDateYYYYMMDD 2020-08-03
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-03
  day: 03
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of experimental medicine
PublicationTitleAlternate J Exp Med
PublicationYear 2020
Publisher Rockefeller University Press
Publisher_xml – name: Rockefeller University Press
References Mace (2023072716042475500_bib39) 2018; 67
Dalod (2023072716042475500_bib11) 2014; 33
Liao (2023072716042475500_bib35) 2014; 30
Jackson (2023072716042475500_bib29) 2005; 65
Hiraoka (2023072716042475500_bib26) 2011; 140
Clark (2023072716042475500_bib10) 2007; 67
Hildner (2023072716042475500_bib24) 2008; 322
Spranger (2023072716042475500_bib59) 2017; 31
Jongbloed (2023072716042475500_bib30) 2010; 207
McAllister (2023072716042475500_bib41) 2014; 25
Böttcher (2023072716042475500_bib6) 2018; 4
Schlitzer (2023072716042475500_bib55) 2015; 16
Ebrahimi (2023072716042475500_bib14) 2004; 101
Long (2023072716042475500_bib36) 2017; 16
Park (2023072716042475500_bib49) 2004; 173
Merad (2023072716042475500_bib42) 2013; 31
Schreiber (2023072716042475500_bib57) 2011; 331
Mootha (2023072716042475500_bib44) 2003; 34
Schoenberger (2023072716042475500_bib56) 1998; 393
Rooney (2023072716042475500_bib52) 2015; 160
Broz (2023072716042475500_bib7) 2014; 26
Dudek (2023072716042475500_bib12) 2013; 4
Li (2023072716042475500_bib34) 2018; 49
Chao (2023072716042475500_bib9) 2016; 4
Raphael (2023072716042475500_bib50) 2017; 32
Spranger (2023072716042475500_bib58) 2015; 523
Morrison (2023072716042475500_bib45) 2020; 117
Love (2023072716042475500_bib37) 2014; 15
Vonderheide (2023072716042475500_bib64) 2018; 33
van Kooten (2023072716042475500_bib63) 2000; 67
Twyman-Saint Victor (2023072716042475500_bib62) 2015; 520
Balachandran (2023072716042475500_bib3) 2017; 551
Hoffmann (2023072716042475500_bib27) 2002; 8
Evans (2023072716042475500_bib17) 2016; 1
Lesina (2023072716042475500_bib33) 2011; 19
Hansson (2023072716042475500_bib22) 2017; 116
Jackson (2023072716042475500_bib28) 2001; 15
O’Hara (2023072716042475500_bib47) 2019
Hegde (2023072716042475500_bib23) 2020; 37
Almand (2023072716042475500_bib2) 2000; 6
Öhlund (2023072716042475500_bib48) 2017; 214
Winograd (2023072716042475500_bib66) 2015; 3
Bares (2023072716042475500_bib4) 2015
Gabrilovich (2023072716042475500_bib19) 1997; 3
Martignoni (2023072716042475500_bib40) 2005; 11
Byrne (2023072716042475500_bib8) 2016; 15
Bayne (2023072716042475500_bib5) 2012; 21
Engelhardt (2023072716042475500_bib16) 2012; 21
Feig (2023072716042475500_bib18) 2013; 110
Karsunky (2023072716042475500_bib31) 2003; 198
Munn (2023072716042475500_bib46) 2016; 37
Sánchez-Paulete (2023072716042475500_bib54) 2016; 6
Lee (2023072716042475500_bib32) 2019; 567
Hingorani (2023072716042475500_bib25) 2005; 7
Elsässer (2023072716042475500_bib15) 1992; 7
Wculek (2023072716042475500_bib65) 2020; 20
Roberts (2023072716042475500_bib51) 2016; 30
Guilliams (2023072716042475500_bib21) 2016; 45
Meyer (2023072716042475500_bib43) 2018; 9
Grewal (2023072716042475500_bib20) 1997; 16
Lyman (2023072716042475500_bib38) 1998; 91
DuPage (2023072716042475500_bib13) 2009; 4
Salmon (2023072716042475500_bib53) 2016; 44
Alanio (2023072716042475500_bib1) 2019; 7
Tang (2023072716042475500_bib60) 2015; 13
Tjomsland (2023072716042475500_bib61) 2010; 5
32697286 - J Exp Med. 2020 Aug 3;217(8)
References_xml – volume: 21
  start-page: 402
  year: 2012
  ident: 2023072716042475500_bib16
  article-title: Marginating dendritic cells of the tumor microenvironment cross-present tumor antigens and stably engage tumor-specific T cells
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2012.01.008
– volume: 49
  start-page: 178
  year: 2018
  ident: 2023072716042475500_bib34
  article-title: Tumor cell-intrinsic factors underlie heterogeneity of immune cell infiltration and response to immunotherapy
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.06.006
– volume: 4
  start-page: 784
  year: 2018
  ident: 2023072716042475500_bib6
  article-title: The role of type 1 conventional dendritic cells in cancer immunity
  publication-title: Trends Cancer
  doi: 10.1016/j.trecan.2018.09.001
– volume: 322
  start-page: 1097
  year: 2008
  ident: 2023072716042475500_bib24
  article-title: Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity
  publication-title: Science
  doi: 10.1126/science.1164206
– year: 2019
  ident: 2023072716042475500_bib47
– volume: 37
  start-page: 289
  year: 2020
  ident: 2023072716042475500_bib23
  article-title: Dendritic cell paucity leads to dysfunctional immune surveillance in pancreatic cancer
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2020.02.008
– volume: 567
  start-page: 249
  year: 2019
  ident: 2023072716042475500_bib32
  article-title: Hepatocytes direct the formation of a pro-metastatic niche in the liver
  publication-title: Nature
  doi: 10.1038/s41586-019-1004-y
– volume: 37
  start-page: 193
  year: 2016
  ident: 2023072716042475500_bib46
  article-title: IDO in the tumor microenvironment: inflammation, counter-regulation, and tolerance
  publication-title: Trends Immunol
  doi: 10.1016/j.it.2016.01.002
– volume: 44
  start-page: 924
  year: 2016
  ident: 2023072716042475500_bib53
  article-title: Expansion and activation of CD103+ dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.03.012
– volume: 331
  start-page: 1565
  year: 2011
  ident: 2023072716042475500_bib57
  article-title: Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion
  publication-title: Science
  doi: 10.1126/science.1203486
– volume: 1
  start-page: 88328
  year: 2016
  ident: 2023072716042475500_bib17
  article-title: Lack of immunoediting in murine pancreatic cancer reversed with neoantigen
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.88328
– volume: 67
  start-page: 2
  year: 2000
  ident: 2023072716042475500_bib63
  article-title: CD40-CD40 ligand
  publication-title: J. Leukoc. Biol
  doi: 10.1002/jlb.67.1.2
– volume: 25
  start-page: 621
  year: 2014
  ident: 2023072716042475500_bib41
  article-title: Oncogenic Kras activates a hematopoietic-to-epithelial IL-17 signaling axis in preinvasive pancreatic neoplasia
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2014.03.014
– volume: 32
  start-page: 185
  year: 2017
  ident: 2023072716042475500_bib50
  article-title: Integrated genomic characterization of pancreatic ductal adenocarcinoma
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2017.07.007
– volume: 11
  start-page: 5802
  year: 2005
  ident: 2023072716042475500_bib40
  article-title: Role of mononuclear cells and inflammatory cytokines in pancreatic cancer-related cachexia
  publication-title: Clin. Cancer Res
  doi: 10.1158/1078-0432.CCR-05-0185
– volume: 214
  start-page: 579
  year: 2017
  ident: 2023072716042475500_bib48
  article-title: Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer
  publication-title: J. Exp. Med
  doi: 10.1084/jem.20162024
– volume: 4
  start-page: 968
  year: 2016
  ident: 2023072716042475500_bib9
  article-title: CXCR2-dependent accumulation of tumor-associated neutrophils regulates T cell immunity in pancreatic ductal adenocarcinoma
  publication-title: Cancer Immunol. Res
  doi: 10.1158/2326-6066.CIR-16-0188
– volume: 15
  start-page: 550
  year: 2014
  ident: 2023072716042475500_bib37
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0550-8
– volume: 33
  start-page: 1104
  year: 2014
  ident: 2023072716042475500_bib11
  article-title: Dendritic cell maturation: functional specialization through signaling specificity and transcriptional programming
  publication-title: EMBO J
  doi: 10.1002/embj.201488027
– volume: 31
  start-page: 711
  year: 2017
  ident: 2023072716042475500_bib59
  article-title: Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2017.04.003
– volume: 16
  start-page: 718
  year: 2015
  ident: 2023072716042475500_bib55
  article-title: Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow
  publication-title: Nat. Immunol
  doi: 10.1038/ni.3200
– volume: 33
  start-page: 563
  year: 2018
  ident: 2023072716042475500_bib64
  article-title: The immune revolution: A case for priming, not checkpoint
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2018.03.008
– volume: 15
  start-page: 3243
  year: 2001
  ident: 2023072716042475500_bib28
  article-title: Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras
  publication-title: Genes Dev
  doi: 10.1101/gad.943001
– volume: 198
  start-page: 305
  year: 2003
  ident: 2023072716042475500_bib31
  article-title: Flt3 ligand regulates dendritic cell development from Flt3+ lymphoid and myeloid-committed progenitors to Flt3+ dendritic cells in vivo
  publication-title: J. Exp. Med
  doi: 10.1084/jem.20030323
– volume: 7
  start-page: 469
  year: 2005
  ident: 2023072716042475500_bib25
  article-title: Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2005.04.023
– volume: 65
  start-page: 10280
  year: 2005
  ident: 2023072716042475500_bib29
  article-title: The differential effects of mutant p53 alleles on advanced murine lung cancer
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-05-2193
– volume: 15
  start-page: 2719
  year: 2016
  ident: 2023072716042475500_bib8
  article-title: CD40 stimulation obviates innate sensors and drives T cell immunity in cancer
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2016.05.058
– volume: 67
  start-page: 9518
  year: 2007
  ident: 2023072716042475500_bib10
  article-title: Dynamics of the immune reaction to pancreatic cancer from inception to invasion
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-07-0175
– volume: 13
  start-page: 2851
  year: 2015
  ident: 2023072716042475500_bib60
  article-title: Toll-like receptor 2 activation promotes tumor dendritic cell dysfunction by regulating IL-6 and IL- 10 receptor signaling
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2015.11.053
– volume: 20
  start-page: 7
  year: 2020
  ident: 2023072716042475500_bib65
  article-title: Dendritic cells in cancer immunology and immunotherapy
  publication-title: Nat. Rev. Immunol
  doi: 10.1038/s41577-019-0210-z
– volume: 140
  start-page: 310
  year: 2011
  ident: 2023072716042475500_bib26
  article-title: CXCL17 and ICAM2 are associated with a potential anti-tumor immune response in early intraepithelial stages of human pancreatic carcinogenesis
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2010.10.009
– volume: 101
  start-page: 2727
  year: 2004
  ident: 2023072716042475500_bib14
  article-title: Cytokines in pancreatic carcinoma: correlation with phenotypic characteristics and prognosis
  publication-title: Cancer
  doi: 10.1002/cncr.20672
– volume: 30
  start-page: 923
  year: 2014
  ident: 2023072716042475500_bib35
  article-title: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt656
– volume: 6
  start-page: 71
  year: 2016
  ident: 2023072716042475500_bib54
  article-title: Cancer immunotherapy with immunomodulatory anti-CD137 and anti-PD-1 monoclonal antibodies requires BATF3-dependent dendritic cells
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-15-0510
– volume: 116
  start-page: 1643
  year: 2017
  ident: 2023072716042475500_bib22
  article-title: Herpes zoster risk after 21 specific cancers: population-based case-control study
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.2017.124
– volume: 207
  start-page: 1247
  year: 2010
  ident: 2023072716042475500_bib30
  article-title: Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens
  publication-title: J. Exp. Med
  doi: 10.1084/jem.20092140
– volume: 31
  start-page: 563
  year: 2013
  ident: 2023072716042475500_bib42
  article-title: The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting
  publication-title: Annu. Rev. Immunol
  doi: 10.1146/annurev-immunol-020711-074950
– volume: 8
  start-page: 1787
  year: 2002
  ident: 2023072716042475500_bib27
  article-title: Alterations in the frequency of dendritic cell subsets in the peripheral circulation of patients with squamous cell carcinomas of the head and neck
  publication-title: Clin. Cancer Res
– volume: 7
  start-page: A123
  year: 2019
  ident: 2023072716042475500_bib1
  article-title: Abstract A123: Skewed CD4 and CD8 T-cell differentiation in pancreatic cancer patients
  publication-title: Cancer Immunol. Res
  doi: 10.1158/2326-6074.CRICIMTEATIAACR18-A123
– volume: 160
  start-page: 48
  year: 2015
  ident: 2023072716042475500_bib52
  article-title: Molecular and genetic properties of tumors associated with local immune cytolytic activity
  publication-title: Cell
  doi: 10.1016/j.cell.2014.12.033
– volume: 45
  start-page: 669
  year: 2016
  ident: 2023072716042475500_bib21
  article-title: Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.08.015
– volume: 91
  start-page: 1101
  year: 1998
  ident: 2023072716042475500_bib38
  article-title: c-kit ligand and Flt3 ligand: stem/progenitor cell factors with overlapping yet distinct activities
  publication-title: Blood
  doi: 10.1182/blood.V91.4.1101
– volume: 16
  start-page: 59
  year: 1997
  ident: 2023072716042475500_bib20
  article-title: The CD40 ligand. At the center of the immune universe?
  publication-title: Immunol. Res
  doi: 10.1007/BF02786323
– volume: 117
  start-page: 8022
  year: 2020
  ident: 2023072716042475500_bib45
  article-title: Sufficiency of CD40 activation and immune checkpoint blockade for T cell priming and tumor immunity
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1918971117
– year: 2015
  ident: 2023072716042475500_bib4
– volume: 5
  year: 2010
  ident: 2023072716042475500_bib61
  article-title: Semi mature blood dendritic cells exist in patients with ductal pancreatic adenocarcinoma owing to inflammatory factors released from the tumor
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0013441
– volume: 4
  start-page: 1064
  year: 2009
  ident: 2023072716042475500_bib13
  article-title: Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase
  publication-title: Nat. Protoc
  doi: 10.1038/nprot.2009.95
– volume: 26
  start-page: 638
  year: 2014
  ident: 2023072716042475500_bib7
  article-title: Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2014.09.007
– volume: 3
  start-page: 399
  year: 2015
  ident: 2023072716042475500_bib66
  article-title: Induction of T cell immunity overcomes complete resistance to PD-1 and CTLA-4 blockade and improves survival in pancreatic carcinoma
  publication-title: Cancer Immunol. Res
  doi: 10.1158/2326-6066.CIR-14-0215
– volume: 173
  start-page: 3844
  year: 2004
  ident: 2023072716042475500_bib49
  article-title: IL-6 regulates in vivo dendritic cell differentiation through STAT3 activation
  publication-title: J. Immunol
  doi: 10.4049/jimmunol.173.6.3844
– volume: 7
  start-page: 385
  year: 1992
  ident: 2023072716042475500_bib15
  article-title: Repetitive cerulein-induced pancreatitis and pancreatic fibrosis in the rat
  publication-title: Pancreas
  doi: 10.1097/00006676-199205000-00017
– volume: 9
  start-page: 1250
  year: 2018
  ident: 2023072716042475500_bib43
  article-title: Breast and pancreatic cancer interrupt IRF8-dependent dendritic cell development to overcome immune surveillance
  publication-title: Nat. Commun
  doi: 10.1038/s41467-018-03600-6
– volume: 520
  start-page: 373
  year: 2015
  ident: 2023072716042475500_bib62
  article-title: Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer
  publication-title: Nature
  doi: 10.1038/nature14292
– volume: 110
  start-page: 20212
  year: 2013
  ident: 2023072716042475500_bib18
  article-title: Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1320318110
– volume: 551
  start-page: 512
  year: 2017
  ident: 2023072716042475500_bib3
  article-title: Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer
  publication-title: Nature
  doi: 10.1038/nature24462
– volume: 393
  start-page: 480
  year: 1998
  ident: 2023072716042475500_bib56
  article-title: T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions
  publication-title: Nature
  doi: 10.1038/31002
– volume: 523
  start-page: 231
  year: 2015
  ident: 2023072716042475500_bib58
  article-title: Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity
  publication-title: Nature
  doi: 10.1038/nature14404
– volume: 19
  start-page: 456
  year: 2011
  ident: 2023072716042475500_bib33
  article-title: Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2011.03.009
– volume: 21
  start-page: 822
  year: 2012
  ident: 2023072716042475500_bib5
  article-title: Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2012.04.025
– volume: 34
  start-page: 267
  year: 2003
  ident: 2023072716042475500_bib44
  article-title: PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes
  publication-title: Nat. Genet
  doi: 10.1038/ng1180
– volume: 3
  start-page: 483
  year: 1997
  ident: 2023072716042475500_bib19
  article-title: Decreased antigen presentation by dendritic cells in patients with breast cancer
  publication-title: Clin. Cancer Res
– volume: 30
  start-page: 324
  year: 2016
  ident: 2023072716042475500_bib51
  article-title: Critical role for CD103+/CD141+ dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.06.003
– volume: 6
  start-page: 1755
  year: 2000
  ident: 2023072716042475500_bib2
  article-title: Clinical significance of defective dendritic cell differentiation in cancer
  publication-title: Clin. Cancer Res
– volume: 4
  start-page: 438
  year: 2013
  ident: 2023072716042475500_bib12
  article-title: Immature, semi-mature, and fully mature dendritic cells: Toward a DC-cancer cells interface that augments anticancer immunity
  publication-title: Front. Immunol
  doi: 10.3389/fimmu.2013.00438
– volume: 16
  start-page: 1898
  year: 2017
  ident: 2023072716042475500_bib36
  article-title: IL6 receptor blockade enhances chemotherapy efficacy in pancreatic ductal adenocarcinoma
  publication-title: Mol. Cancer Ther
  doi: 10.1158/1535-7163.MCT-16-0899
– volume: 67
  start-page: 320
  year: 2018
  ident: 2023072716042475500_bib39
  article-title: IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer
  publication-title: Gut
  doi: 10.1136/gutjnl-2016-311585
– reference: 32697286 - J Exp Med. 2020 Aug 3;217(8):
SSID ssj0014456
Score 2.6432946
Snippet Type 1 conventional dendritic cells (cDC1s) are typically thought to be dysregulated secondarily to invasive cancer. Here, we report that cDC1 dysfunction...
Type 1 conventional dendritic cells are progressively and systemically dysregulated during pancreatic carcinogenesis, subject to semimaturation and IL-6–driven...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Aged
Animals
Carcinogenesis - genetics
Carcinogenesis - immunology
Carcinogenesis - pathology
CD8-Positive T-Lymphocytes - immunology
CD8-Positive T-Lymphocytes - pathology
Dendritic Cells - immunology
Dendritic Cells - pathology
Female
Humans
Male
Mice
Middle Aged
Neoplasm Proteins - genetics
Neoplasm Proteins - immunology
Neoplasms, Experimental - genetics
Neoplasms, Experimental - immunology
Neoplasms, Experimental - pathology
Pancreatic Neoplasms - genetics
Pancreatic Neoplasms - immunology
Pancreatic Neoplasms - pathology
Tumor Immunology
Title Type 1 conventional dendritic cells are systemically dysregulated early in pancreatic carcinogenesis
URI https://www.ncbi.nlm.nih.gov/pubmed/32453421
https://www.proquest.com/docview/2406942778
https://pubmed.ncbi.nlm.nih.gov/PMC7398166
Volume 217
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA66wrIv4t3xRgR9Gqptmrbpo4iyiOPTLjtvJVcdWDuLMwOuv95zkvQ27oL6UkqTaeB8X8-cnJwLIa-qQpXcCZXIGvYmnOP5rlQskakxihmnhUQ_5OJLeXzKPy2L5XAU47NLtuqN_nVlXsn_oArPAFfMkv0HZPuXwgO4B3zhCgjD9e8wRv9pNo0cBz1ifPuCOfrkN3OM7ArlmhGO88u5uYR_Rd-AHmxN6-sb-_qqbbAfNRar1qt2_RW14Goztl6HPDJvwU66A-wf0n-Obb5CptgoB2LnXPS6op8Flu4zzM6w1mcfcLaQPwdX7Vk41e-C8ONA9FawECsXNJiNGpaneGYsxiqYhfzNyDVxpWpPBUfVbrF8AFgxZeiAMkL54ruHGSzEIuch7XqvlHY3dJPcYhWYWpgbvuwjgmBrWZQxNwIWezte6ogcdj-eGjB_7Er2g2tH1srJHXI7gkTfBc7cJTdse48cLiJG94lB6tCMjqlDe-pQTx0K1KFj6tAxdainDl21dKAOnVLnATn9-OHk_XESG24kmhfpNqnTWquidi5TmdVGikqClJjIZKnh07VGVsphtSCQg1Q6LZwrVFqporAgMJblD8lBu27tY0KVY0xxJXNnUl6aEuYw54TNjdVCpWJG5p0UGx2r0WNTlPPGR0UI3oD4m078M_K6n30RqrBcM-9lB0gDahKFJVu73m2akOHNqgpWfhQA6t_UITsj1QS6fgKWYJ-OtKtvvhR7ldd48P7k2nc-JUfDZ_CMHGx_7OxzMGO36oUn328FyaVd
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Type+1+conventional+dendritic+cells+are+systemically+dysregulated+early+in+pancreatic+carcinogenesis&rft.jtitle=The+Journal+of+experimental+medicine&rft.au=Lin%2C+Jeffrey+H&rft.au=Huffman%2C+Austin+P&rft.au=Wattenberg%2C+Max+M&rft.au=Walter%2C+David+M&rft.date=2020-08-03&rft.eissn=1540-9538&rft.volume=217&rft.issue=8&rft_id=info:doi/10.1084%2Fjem.20190673&rft_id=info%3Apmid%2F32453421&rft.externalDocID=32453421
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1007&client=summon