A self-learned decomposition and classification model for schizophrenia diagnosis

•Investigate the detailed analysis of the SZ and HC with different conditions.•Selection of dominant channel by Fisher score to reduce the burden of computation.•F-TQWT for automatic and meaningful extraction of sub-bands from EEG signals.•Accurate selection of decomposition levels for uniform decom...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine Vol. 211; p. 106450
Main Authors Khare, Smith K., Bajaj, Varun
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2021
Subjects
Online AccessGet full text
ISSN0169-2607
1872-7565
1872-7565
DOI10.1016/j.cmpb.2021.106450

Cover

Abstract •Investigate the detailed analysis of the SZ and HC with different conditions.•Selection of dominant channel by Fisher score to reduce the burden of computation.•F-TQWT for automatic and meaningful extraction of sub-bands from EEG signals.•Accurate selection of decomposition levels for uniform decomposition.•F-LSSVM for tuning of hyperparameters to improve the separability of SZ and HC. Background: Schizophrenia (SZ) is a type of neurological disorder that is diagnosed by professional psychiatrists based on interviews and manual screening of patients. The procedures are time-consuming, burdensome, and prone to human error. This urgently necessitates the development of an effective and precise computer-aided design for the detection of SZ. One such efficient source for SZ detection is the electroencephalogram (EEG) signals. Because EEG signals are non-stationary, it is challenging to find representative information in its raw form. Decomposing the signals into multi-modes can provide detailed insight information from it. But the choice of uniform decomposition and hyper-parameters leads to information loss affecting system performance drastically. Method: In this paper, automatic signal decomposition and classification methods are proposed for the detection of SZ and healthy control EEG signals. The Fisher score method is used for the selection of the most discriminant channel. Flexible tunable Q wavelet transform (F-TQWT) is developed for efficient decomposition of EEG signals by reducing root mean square error with grey wolf optimization (GWO) algorithm. Five features are extracted from the adaptively generated subbands and selected by the Kruskal Wallis test. The feature matrix is given as an input to the flexible least square support vector machine (F-LSSVM) classifier. The hyper-parameters and kernel of classifier are selected such that the accuracy of each subband is maximized using GWO algorithm. Results: The effectiveness and superiority of the proposed method is tested by evaluating seven performance parameters. An accuracy of 91.39%, sensitivity, specificity, precision, F-1 measure, false positive rate and error of 92.65%, 93.22%, 95.57%, 0.9306, 6.78% and 8.61% is achieved. The results prove superiority of the developed F-TQWT decomposition and F-LSSVM classifier over existing methodologies. Conclusion: The EEG signals of healthy control and SZ subjects performing motor and auditory tasks simultaneously provide higher discrimination ability over the subjects performing auditory and motory tasks separately. The developed model is accurate, robust, and effective as it is developed on a relatively larger data-set, obtained maximum performance, and tested using ten-fold cross-validation technique. This proposed model is ready to be put to test for real-time SZ detection.
AbstractList •Investigate the detailed analysis of the SZ and HC with different conditions.•Selection of dominant channel by Fisher score to reduce the burden of computation.•F-TQWT for automatic and meaningful extraction of sub-bands from EEG signals.•Accurate selection of decomposition levels for uniform decomposition.•F-LSSVM for tuning of hyperparameters to improve the separability of SZ and HC. Background: Schizophrenia (SZ) is a type of neurological disorder that is diagnosed by professional psychiatrists based on interviews and manual screening of patients. The procedures are time-consuming, burdensome, and prone to human error. This urgently necessitates the development of an effective and precise computer-aided design for the detection of SZ. One such efficient source for SZ detection is the electroencephalogram (EEG) signals. Because EEG signals are non-stationary, it is challenging to find representative information in its raw form. Decomposing the signals into multi-modes can provide detailed insight information from it. But the choice of uniform decomposition and hyper-parameters leads to information loss affecting system performance drastically. Method: In this paper, automatic signal decomposition and classification methods are proposed for the detection of SZ and healthy control EEG signals. The Fisher score method is used for the selection of the most discriminant channel. Flexible tunable Q wavelet transform (F-TQWT) is developed for efficient decomposition of EEG signals by reducing root mean square error with grey wolf optimization (GWO) algorithm. Five features are extracted from the adaptively generated subbands and selected by the Kruskal Wallis test. The feature matrix is given as an input to the flexible least square support vector machine (F-LSSVM) classifier. The hyper-parameters and kernel of classifier are selected such that the accuracy of each subband is maximized using GWO algorithm. Results: The effectiveness and superiority of the proposed method is tested by evaluating seven performance parameters. An accuracy of 91.39%, sensitivity, specificity, precision, F-1 measure, false positive rate and error of 92.65%, 93.22%, 95.57%, 0.9306, 6.78% and 8.61% is achieved. The results prove superiority of the developed F-TQWT decomposition and F-LSSVM classifier over existing methodologies. Conclusion: The EEG signals of healthy control and SZ subjects performing motor and auditory tasks simultaneously provide higher discrimination ability over the subjects performing auditory and motory tasks separately. The developed model is accurate, robust, and effective as it is developed on a relatively larger data-set, obtained maximum performance, and tested using ten-fold cross-validation technique. This proposed model is ready to be put to test for real-time SZ detection.
Schizophrenia (SZ) is a type of neurological disorder that is diagnosed by professional psychiatrists based on interviews and manual screening of patients. The procedures are time-consuming, burdensome, and prone to human error. This urgently necessitates the development of an effective and precise computer-aided design for the detection of SZ. One such efficient source for SZ detection is the electroencephalogram (EEG) signals. Because EEG signals are non-stationary, it is challenging to find representative information in its raw form. Decomposing the signals into multi-modes can provide detailed insight information from it. But the choice of uniform decomposition and hyper-parameters leads to information loss affecting system performance drastically.BACKGROUNDSchizophrenia (SZ) is a type of neurological disorder that is diagnosed by professional psychiatrists based on interviews and manual screening of patients. The procedures are time-consuming, burdensome, and prone to human error. This urgently necessitates the development of an effective and precise computer-aided design for the detection of SZ. One such efficient source for SZ detection is the electroencephalogram (EEG) signals. Because EEG signals are non-stationary, it is challenging to find representative information in its raw form. Decomposing the signals into multi-modes can provide detailed insight information from it. But the choice of uniform decomposition and hyper-parameters leads to information loss affecting system performance drastically.In this paper, automatic signal decomposition and classification methods are proposed for the detection of SZ and healthy control EEG signals. The Fisher score method is used for the selection of the most discriminant channel. Flexible tunable Q wavelet transform (F-TQWT) is developed for efficient decomposition of EEG signals by reducing root mean square error with grey wolf optimization (GWO) algorithm. Five features are extracted from the adaptively generated subbands and selected by the Kruskal Wallis test. The feature matrix is given as an input to the flexible least square support vector machine (F-LSSVM) classifier. The hyper-parameters and kernel of classifier are selected such that the accuracy of each subband is maximized using GWO algorithm.METHODIn this paper, automatic signal decomposition and classification methods are proposed for the detection of SZ and healthy control EEG signals. The Fisher score method is used for the selection of the most discriminant channel. Flexible tunable Q wavelet transform (F-TQWT) is developed for efficient decomposition of EEG signals by reducing root mean square error with grey wolf optimization (GWO) algorithm. Five features are extracted from the adaptively generated subbands and selected by the Kruskal Wallis test. The feature matrix is given as an input to the flexible least square support vector machine (F-LSSVM) classifier. The hyper-parameters and kernel of classifier are selected such that the accuracy of each subband is maximized using GWO algorithm.The effectiveness and superiority of the proposed method is tested by evaluating seven performance parameters. An accuracy of 91.39%, sensitivity, specificity, precision, F-1 measure, false positive rate and error of 92.65%, 93.22%, 95.57%, 0.9306, 6.78% and 8.61% is achieved. The results prove superiority of the developed F-TQWT decomposition and F-LSSVM classifier over existing methodologies.RESULTSThe effectiveness and superiority of the proposed method is tested by evaluating seven performance parameters. An accuracy of 91.39%, sensitivity, specificity, precision, F-1 measure, false positive rate and error of 92.65%, 93.22%, 95.57%, 0.9306, 6.78% and 8.61% is achieved. The results prove superiority of the developed F-TQWT decomposition and F-LSSVM classifier over existing methodologies.The EEG signals of healthy control and SZ subjects performing motor and auditory tasks simultaneously provide higher discrimination ability over the subjects performing auditory and motory tasks separately. The developed model is accurate, robust, and effective as it is developed on a relatively larger data-set, obtained maximum performance, and tested using ten-fold cross-validation technique. This proposed model is ready to be put to test for real-time SZ detection.CONCLUSIONThe EEG signals of healthy control and SZ subjects performing motor and auditory tasks simultaneously provide higher discrimination ability over the subjects performing auditory and motory tasks separately. The developed model is accurate, robust, and effective as it is developed on a relatively larger data-set, obtained maximum performance, and tested using ten-fold cross-validation technique. This proposed model is ready to be put to test for real-time SZ detection.
ArticleNumber 106450
Author Khare, Smith K.
Bajaj, Varun
Author_xml – sequence: 1
  givenname: Smith K.
  orcidid: 0000-0001-8365-1092
  surname: Khare
  fullname: Khare, Smith K.
  email: smith7khare@gmail.com
– sequence: 2
  givenname: Varun
  surname: Bajaj
  fullname: Bajaj, Varun
BookMark eNqFkU9LAzEQxYMoWKtfwNMevWxNsptsV7yU4j8oiKDnkM5ObGo2WZNVqJ_ebevJg54GHu83zHtzQg598EjIOaMTRpm8XE-g7ZYTTjkbBFkKekBGbFrxvBJSHJLRYKpzLml1TE5SWlNKuRByRJ5mWUJncoc6emyyBiG0XUi2t8Fn2jcZOJ2SNRb0TmpDgy4zIWYJVvYrdKuI3uqssfrVD1w6JUdGu4RnP3NMXm5vnuf3-eLx7mE-W-QwXNfnUvCaoWiKEqolryshjABkAIXQDEsGRWGkkawoWSGMZsBKLU1NhabVUqIuxuRiv7eL4f0DU69amwCd0x7DR1JcTKmsJaVysE73VoghpYhGge13cfqorVOMqm2Laq22Lapti2rf4oDyX2gXbavj5m_oeg_hkP_TYlQJLHrAxkaEXjXB_o1f_cLBWT88wL3h5j_4GzTToUQ
CitedBy_id crossref_primary_10_1007_s11571_023_10011_x
crossref_primary_10_1016_j_compbiomed_2024_108862
crossref_primary_10_1155_2022_1581958
crossref_primary_10_1007_s10489_024_05669_7
crossref_primary_10_1001_jamanetworkopen_2023_1671
crossref_primary_10_1007_s13246_023_01225_8
crossref_primary_10_3390_app14125048
crossref_primary_10_1016_j_cmpb_2024_108105
crossref_primary_10_1088_1361_6579_acbc06
crossref_primary_10_1016_j_compbiomed_2023_106676
crossref_primary_10_4015_S1016237223500394
crossref_primary_10_1007_s40998_024_00738_6
crossref_primary_10_1016_j_inffus_2023_101898
crossref_primary_10_1002_widm_1550
crossref_primary_10_1007_s13246_024_01512_y
crossref_primary_10_1007_s11571_024_10120_1
crossref_primary_10_1088_1361_6579_ad00ff
crossref_primary_10_4015_S1016237223500138
crossref_primary_10_3389_fnhum_2024_1347082
crossref_primary_10_1016_j_inffus_2023_102023
crossref_primary_10_3390_s22218128
crossref_primary_10_3389_fnins_2024_1340528
crossref_primary_10_1007_s10044_022_01107_x
crossref_primary_10_3389_fnhum_2024_1463819
crossref_primary_10_1007_s10489_023_05155_6
crossref_primary_10_3934_biophy_2023021
crossref_primary_10_1007_s00034_023_02540_x
crossref_primary_10_1016_j_cmpb_2022_107277
crossref_primary_10_2139_ssrn_4999642
crossref_primary_10_2174_1574362418666221212105053
crossref_primary_10_1016_j_medengphy_2023_103949
crossref_primary_10_3390_math12131989
crossref_primary_10_1016_j_inffus_2023_102019
crossref_primary_10_1155_2022_1992596
Cites_doi 10.1109/TSP.2011.2143711
10.1109/TNSRE.2020.3022715
10.1093/schbul/sbm145
10.1109/TIM.2021.3070608
10.1016/j.cmpb.2020.105722
10.1016/j.jksuci.2013.01.001
10.1176/ajp.98.3.374
10.1142/S0129065716500088
10.1016/j.neulet.2014.12.064
10.1016/j.eswa.2008.07.037
10.1016/j.cmpb.2017.09.001
10.1016/j.artmed.2019.07.006
10.1146/annurev-clinpsy-032813-153657
10.1016/j.cmpb.2020.105325
10.3233/THC-181497
10.1016/j.cmpb.2019.03.015
10.1023/A:1018628609742
10.1016/j.future.2018.08.008
10.1016/j.bspc.2016.08.013
10.1016/j.artmed.2009.03.003
10.1016/j.artmed.2021.102039
10.1016/j.clinph.2008.01.104
10.1111/j.1469-8986.1994.tb01023.x
10.1016/j.cogsys.2011.05.001
10.3390/app9142870
10.1371/journal.pone.0116820
10.1016/j.bspc.2021.102777
10.1007/s10439-009-9795-x
10.1016/j.advengsoft.2013.12.007
10.12720/ijeee.2.2.106-110
10.1176/ajp.152.8.1228
10.1034/j.1600-0447.2000.101004307.x
10.1109/TNSRE.2019.2913799
10.1109/ACCESS.2018.2854555
10.1109/TIM.2020.3006611
10.1016/j.cmpb.2021.105941
10.1016/j.apacoust.2020.107234
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright © 2021 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright © 2021 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.cmpb.2021.106450
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
ExternalDocumentID 10_1016_j_cmpb_2021_106450
S0169260721005241
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
~HD
AACTN
AAIAV
ABLVK
ABTAH
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
RIG
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c450t-65291e5d34c7b29755f5ce1cc35a1e41c33f6f6134135fa1c14a6f905a07b6ea3
IEDL.DBID .~1
ISSN 0169-2607
1872-7565
IngestDate Sat Sep 27 16:49:49 EDT 2025
Thu Oct 02 04:28:43 EDT 2025
Thu Apr 24 22:59:24 EDT 2025
Fri Feb 23 02:41:33 EST 2024
Tue Oct 14 19:32:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Electroencephalogram signals
Flexible tunable Q wavelet transform
Channel selection
Schizophrenia detection
Flexible least square support vector machine classifier
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-65291e5d34c7b29755f5ce1cc35a1e41c33f6f6134135fa1c14a6f905a07b6ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8365-1092
PQID 2580696006
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2580696006
crossref_citationtrail_10_1016_j_cmpb_2021_106450
crossref_primary_10_1016_j_cmpb_2021_106450
elsevier_sciencedirect_doi_10_1016_j_cmpb_2021_106450
elsevier_clinicalkey_doi_10_1016_j_cmpb_2021_106450
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
20211101
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationTitle Computer methods and programs in biomedicine
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Boostani, Sadatnezhad, Sabeti (bib0025) 2009; 36
Oh, Vicnesh, Ciaccio, Yuvaraj, Acharya (bib0022) 2019; 9
Khare, Bajaj, Siuly, Sinha (bib0033) 2020
Jahmunah, Lih Oh, Rajinikanth, Ciaccio, Hao Cheong, Arunkumar, Acharya (bib0032) 2019; 100
Green, Penn, Bentall, Carpenter, Gaebel, Gur, Kring, Park, Silverstein, Heinssen (bib0003) 2008; 34
Baygin (bib0006) 2021; 68
Sabeti, Katebi, Boostani (bib0018) 2009; 47
Li, Tong, Liu, Gai, Wang, Wang, Qiu, Zhu (bib0017) 2008; 119
Sharma, Acharya (bib0023) 2020
Khare, Bajaj (bib0041) 2020; 163
Ying-jie Li, Fei-yan Fan (bib0016) 2005
Finley, Campbell (bib0010) 1941; 98
WHO
Piryatinska, Darkhovsky, Kaplan (bib0028) 2017; 152
.
Gudigar, Raghavendra, San, Ciaccio, Acharya (bib0009) 2019; 90
Suykens, Vandewalle (bib0047) 1999; 9
Guze (bib0002) 1995; 152
Whiteford, Ferrari, Degenhardt, Feigin, Vos (bib0007) 2015; 10
Khare, Bajaj, Sinha (bib0039) 2020; 69
Bob (bib0029) 2012; 13
Selesnick (bib0042) 2011; 59
Zhang (bib0034) 2019
Aydın, Saraoğlu, Kara (bib0045) 2009; 37
Parvinnia, Sabeti, Jahromi, Boostani (bib0019) 2014; 26
Devia, Mayol-Troncoso, Parrini, Orellana, Ruiz, Maldonado, Egaña (bib0008) 2019; 27
Namazi, Aghasian, Ala (bib0035) 2019; 27
Yin, Li, Zhang, Ren, Meneen, Huang (bib0027) 2017; 31
Access 22 March 2020.
Hiesh, Lam Andy, Shen, Chen, Lin, Sung, Lin, Chiu, Lai (bib0026) 2013
Khare, Bajaj, Acharya (bib0011) 2021; 70
Khare, Bajaj (bib0014) 2020; 197
Laursen, Nordentoft, Mortensen (bib0005) 2014; 10
Taran, Bajaj (bib0046) 2019; 173
Tor, Ooi, Lim-Ashworth, Wei, Jahmunah, Oh, Acharya, Fung (bib0012) 2021; 200
Sponheim, Clementz, Iacono, Beiser (bib0015) 1994; 31
Barros, Silva, Pinheiro (bib0004) 2021; 114
Alimardani, Cho, Boostani, Hwang (bib0030) 2018; 6
Ford, Palzes, Roach, Mathalon (bib0036) 2013; 40
Suykens, Lukas, Vandewalle (bib0048) 2000; 2
Akar, Kara, Latifog̃lu, Bilgic̃ (bib0021) 2016; 26
Siuly, Khare, Bajaj, Wang, Zhang (bib0031) 2020; 28
Kim, Lee, Han, Min, Lee, Lee (bib0024) 2015; 589
Gu, Li, Han (bib0038) 2012
Khare, Bajaj (bib0040) 2020
Chaudhary, Taran, Bajaj, Siuly (bib0013) 2020; 187
Begić, Hotujac, Jokić-Begić (bib0020) 2000; 101
Mirjalili, Mirjalili, Lewis (bib0043) 2014; 69
Oh, Lee, Kim (bib0044) 2014; 2
Gudigar (10.1016/j.cmpb.2021.106450_bib0009) 2019; 90
Devia (10.1016/j.cmpb.2021.106450_bib0008) 2019; 27
Tor (10.1016/j.cmpb.2021.106450_bib0012) 2021; 200
Sharma (10.1016/j.cmpb.2021.106450_bib0023) 2020
Hiesh (10.1016/j.cmpb.2021.106450_bib0026) 2013
Sponheim (10.1016/j.cmpb.2021.106450_bib0015) 1994; 31
Aydın (10.1016/j.cmpb.2021.106450_bib0045) 2009; 37
Whiteford (10.1016/j.cmpb.2021.106450_bib0007) 2015; 10
Piryatinska (10.1016/j.cmpb.2021.106450_bib0028) 2017; 152
Khare (10.1016/j.cmpb.2021.106450_bib0040) 2020
Laursen (10.1016/j.cmpb.2021.106450_bib0005) 2014; 10
Akar (10.1016/j.cmpb.2021.106450_sbref0021) 2016; 26
Khare (10.1016/j.cmpb.2021.106450_bib0011) 2021; 70
Mirjalili (10.1016/j.cmpb.2021.106450_bib0043) 2014; 69
Khare (10.1016/j.cmpb.2021.106450_bib0041) 2020; 163
Zhang (10.1016/j.cmpb.2021.106450_bib0034) 2019
Sabeti (10.1016/j.cmpb.2021.106450_bib0018) 2009; 47
Parvinnia (10.1016/j.cmpb.2021.106450_bib0019) 2014; 26
10.1016/j.cmpb.2021.106450_bib0037
Khare (10.1016/j.cmpb.2021.106450_bib0014) 2020; 197
Gu (10.1016/j.cmpb.2021.106450_bib0038) 2012
Selesnick (10.1016/j.cmpb.2021.106450_bib0042) 2011; 59
Barros (10.1016/j.cmpb.2021.106450_bib0004) 2021; 114
Ying-jie Li (10.1016/j.cmpb.2021.106450_bib0016) 2005
Suykens (10.1016/j.cmpb.2021.106450_bib0048) 2000; 2
Green (10.1016/j.cmpb.2021.106450_bib0003) 2008; 34
Ford (10.1016/j.cmpb.2021.106450_bib0036) 2013; 40
Bob (10.1016/j.cmpb.2021.106450_bib0029) 2012; 13
Oh (10.1016/j.cmpb.2021.106450_bib0044) 2014; 2
Suykens (10.1016/j.cmpb.2021.106450_bib0047) 1999; 9
Guze (10.1016/j.cmpb.2021.106450_sbref0002) 1995; 152
Chaudhary (10.1016/j.cmpb.2021.106450_bib0013) 2020; 187
Yin (10.1016/j.cmpb.2021.106450_bib0027) 2017; 31
Li (10.1016/j.cmpb.2021.106450_bib0017) 2008; 119
Namazi (10.1016/j.cmpb.2021.106450_bib0035) 2019; 27
Taran (10.1016/j.cmpb.2021.106450_bib0046) 2019; 173
Finley (10.1016/j.cmpb.2021.106450_bib0010) 1941; 98
Oh (10.1016/j.cmpb.2021.106450_bib0022) 2019; 9
Siuly (10.1016/j.cmpb.2021.106450_bib0031) 2020; 28
Begić (10.1016/j.cmpb.2021.106450_bib0020) 2000; 101
Alimardani (10.1016/j.cmpb.2021.106450_bib0030) 2018; 6
Khare (10.1016/j.cmpb.2021.106450_bib0033) 2020
Khare (10.1016/j.cmpb.2021.106450_bib0039) 2020; 69
10.1016/j.cmpb.2021.106450_bib0001
Baygin (10.1016/j.cmpb.2021.106450_bib0006) 2021; 68
Kim (10.1016/j.cmpb.2021.106450_bib0024) 2015; 589
Boostani (10.1016/j.cmpb.2021.106450_bib0025) 2009; 36
Jahmunah (10.1016/j.cmpb.2021.106450_bib0032) 2019; 100
References_xml – volume: 27
  start-page: 233
  year: 2019
  end-page: 241
  ident: bib0035
  article-title: Fractal-based classification of electroencephalography (EEG) signals in healthy adolescents and adolescents with symptoms of schizophrenia
  publication-title: Technol. Health Care
– start-page: 2679
  year: 2005
  end-page: 2682
  ident: bib0016
  article-title: Classification of schizophrenia and depression by EEG with ANNs*
  publication-title: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference
– volume: 100
  start-page: 101698
  year: 2019
  ident: bib0032
  article-title: Automated detection of schizophrenia using nonlinear signal processing methods
  publication-title: Artif Intell Med
– volume: 9
  start-page: 293
  year: 1999
  end-page: 300
  ident: bib0047
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Processing Letters
– volume: 589
  start-page: 126
  year: 2015
  end-page: 131
  ident: bib0024
  article-title: Diagnostic utility of quantitative EEG in un-medicated schizophrenia
  publication-title: Neurosci. Lett.
– volume: 69
  start-page: 9609
  year: 2020
  end-page: 9617
  ident: bib0039
  article-title: Adaptive tunable Q wavelet transform-based emotion identification
  publication-title: IEEE Trans Instrum Meas
– volume: 40
  year: 2013
  ident: bib0036
  article-title: Did i do that? abnormal predictive processes in schizophrenia when button pressing to deliver a tone
  publication-title: Schizophr Bull
– volume: 37
  start-page: 2626
  year: 2009
  ident: bib0045
  article-title: Log energy entropy-based EEG classification with multilayer neural networks in seizure
  publication-title: Ann Biomed Eng
– volume: 173
  start-page: 157
  year: 2019
  end-page: 165
  ident: bib0046
  article-title: Emotion recognition from single-channel EEG signals using a two-stage correlation and instantaneous frequency-based filtering method
  publication-title: Comput Methods Programs Biomed
– volume: 26
  start-page: 1
  year: 2014
  end-page: 6
  ident: bib0019
  article-title: Classification of EEG signals using adaptive weighted distance nearest neighbor algorithm
  publication-title: Journal of King Saud University - Computer and Information Sciences
– volume: 163
  start-page: 107234
  year: 2020
  ident: bib0041
  article-title: Constrained based tunable Q wavelet transform for efficient decomposition of EEG signals
  publication-title: Applied Acoustics
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: bib0043
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Software
– volume: 152
  start-page: 131
  year: 2017
  end-page: 139
  ident: bib0028
  article-title: Binary classification of multichannel-EEG records based on the
  publication-title: Comput Methods Programs Biomed
– volume: 10
  start-page: 1
  year: 2015
  end-page: 14
  ident: bib0007
  article-title: The global burden of mental, neurological and substance use disorders: an analysis from the global burden of disease study 2010
  publication-title: PLoS ONE
– volume: 114
  start-page: 102039
  year: 2021
  ident: bib0004
  article-title: Advanced EEG-based learning approaches to predict schizophrenia: promises and pitfalls
  publication-title: Artif Intell Med
– year: 2020
  ident: bib0023
  article-title: Automated detection of schizophrenia using optimal wavelet-based l1 norm features extracted from single-channel EEG
  publication-title: Cogn Neurodyn
– volume: 187
  start-page: 105325
  year: 2020
  ident: bib0013
  article-title: A flexible analytic wavelet transform based approach for motor-imagery tasks classification in BCI applications
  publication-title: Comput Methods Programs Biomed
– volume: 101
  start-page: 307
  year: 2000
  end-page: 311
  ident: bib0020
  article-title: Quantitative EEG in positive and negative schizophrenia
  publication-title: Acta Psychiatr Scand
– volume: 6
  start-page: 40379
  year: 2018
  end-page: 40388
  ident: bib0030
  article-title: Classification of bipolar disorder and schizophrenia using steady-state visual evoked potential based features
  publication-title: IEEE Access
– reference: , Access 22 March 2020.
– volume: 27
  start-page: 1193
  year: 2019
  end-page: 1199
  ident: bib0008
  article-title: EEG classification during scene free-viewing for schizophrenia detection
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 152
  year: 1995
  ident: bib0002
  article-title: Diagnostic and statistical manual of mental disorders, 4th ed. (DSM-IV)
  publication-title: American Journal of Psychiatry
– volume: 70
  start-page: 1
  year: 2021
  end-page: 9
  ident: bib0011
  article-title: SPWVD-CNN for automated detection of schizophrenia patients using EEG signals
  publication-title: IEEE Trans Instrum Meas
– volume: 200
  start-page: 105941
  year: 2021
  ident: bib0012
  article-title: Automated detection of conduct disorder and attention deficit hyperactivity disorder using decomposition and nonlinear techniques with EEG signals
  publication-title: Comput Methods Programs Biomed
– volume: 47
  start-page: 263
  year: 2009
  end-page: 274
  ident: bib0018
  article-title: Entropy and complexity measures for EEG signal classification of schizophrenic and control participants
  publication-title: Artif Intell Med
– year: 2020
  ident: bib0033
  article-title: Classification of schizophrenia patients through empirical wavelet transformation using electroencephalogram signals
  publication-title: Modelling and Analysis of Active Biopotential Signals in Healthcare, Volume 1
– volume: 31
  start-page: 331
  year: 2017
  end-page: 338
  ident: bib0027
  article-title: Functional brain network analysis of schizophrenic patients with positive and negative syndrome based on mutual information of EEG time series
  publication-title: Biomed Signal Process Control
– volume: 28
  start-page: 2390
  year: 2020
  end-page: 2400
  ident: bib0031
  article-title: A computerized method for automatic detection of schizophrenia using EEG signals
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 119
  start-page: 1232
  year: 2008
  end-page: 1241
  ident: bib0017
  article-title: Abnormal EEG complexity in patients with schizophrenia and depression
  publication-title: Clinical Neurophysiology
– volume: 68
  start-page: 102777
  year: 2021
  ident: bib0006
  article-title: An accurate automated schizophrenia detection using TQWT and statistical moment based feature extraction
  publication-title: Biomed Signal Process Control
– volume: 197
  start-page: 1057
  year: 2020
  ident: bib0014
  article-title: A facile and flexible motor imagery classification using electroencephalogram signals
  publication-title: Comput Methods Programs Biomed
– volume: 2
  start-page: 757
  year: 2000
  end-page: 760 vol.2
  ident: bib0048
  article-title: Sparse approximation using least squares support vector machines
  publication-title: 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)
– volume: 59
  start-page: 3560
  year: 2011
  end-page: 3575
  ident: bib0042
  article-title: Wavelet transform with tunable Q-factor
  publication-title: IEEE Trans. Signal Process.
– volume: 10
  start-page: 425
  year: 2014
  end-page: 448
  ident: bib0005
  article-title: Excess early mortality in schizophrenia
  publication-title: Annu Rev Clin Psychol
– volume: 34
  start-page: 1211
  year: 2008
  end-page: 1220
  ident: bib0003
  article-title: Social cognition in schizophrenia: an nimh workshop on definitions, assessment, and research opportunities
  publication-title: Schizophr Bull
– volume: 36
  start-page: 6492
  year: 2009
  end-page: 6499
  ident: bib0025
  article-title: An efficient classifier to diagnose of schizophrenia based on the EEG signals
  publication-title: Expert Syst Appl
– reference: WHO,
– start-page: 6047
  year: 2013
  end-page: 6050
  ident: bib0026
  article-title: Classification of schizophrenia using genetic algorithm-support vector machine (GA-SVM)
  publication-title: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– volume: 13
  start-page: 87
  year: 2012
  end-page: 94
  ident: bib0029
  article-title: Consciousness, schizophrenia and complexity
  publication-title: Cogn Syst Res
– reference: .
– volume: 2
  start-page: 106
  year: 2014
  end-page: 110
  ident: bib0044
  article-title: A novel EEG feature extraction method using hjorth parameter
  publication-title: International Journal of Electronics and Electrical Engineering
– start-page: 4521
  year: 2019
  end-page: 4524
  ident: bib0034
  article-title: EEG signals classification using machine learning for the identification and diagnosis of schizophrenia
  publication-title: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– volume: 31
  start-page: 37
  year: 1994
  end-page: 43
  ident: bib0015
  article-title: Resting EEG in first-episode and chronic schizophrenia
  publication-title: Psychophysiology
– volume: 9
  year: 2019
  ident: bib0022
  article-title: Deep convolutional neural network model for automated diagnosis of schizophrenia using EEG signals
  publication-title: Applied Sciences
– year: 2012
  ident: bib0038
  article-title: Generalized fisher score for feature selection
  publication-title: Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence, UAI 2011
– volume: 26
  start-page: 1650008
  year: 2016
  ident: bib0021
  article-title: Analysis of the complexity measures in the EEG of schizophrenia patients
  publication-title: Int J Neural Syst
– year: 2020
  ident: bib0040
  article-title: Optimized tunable Q wavelet transform based drowsiness detection from electroencephalogram signals
  publication-title: IRBM
– volume: 98
  start-page: 374
  year: 1941
  end-page: 381
  ident: bib0010
  article-title: Electroencephalography in schizophrenia
  publication-title: American Journal of Psychiatry
– volume: 90
  start-page: 359
  year: 2019
  end-page: 367
  ident: bib0009
  article-title: Application of multiresolution analysis for automated detection of brain abnormality using MR images: a comparative study
  publication-title: Future Generation Computer Systems
– start-page: 2679
  year: 2005
  ident: 10.1016/j.cmpb.2021.106450_bib0016
  article-title: Classification of schizophrenia and depression by EEG with ANNs*
– volume: 59
  start-page: 3560
  issue: 8
  year: 2011
  ident: 10.1016/j.cmpb.2021.106450_bib0042
  article-title: Wavelet transform with tunable Q-factor
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2011.2143711
– volume: 28
  start-page: 2390
  issue: 11
  year: 2020
  ident: 10.1016/j.cmpb.2021.106450_bib0031
  article-title: A computerized method for automatic detection of schizophrenia using EEG signals
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2020.3022715
– volume: 34
  start-page: 1211
  issue: 6
  year: 2008
  ident: 10.1016/j.cmpb.2021.106450_bib0003
  article-title: Social cognition in schizophrenia: an nimh workshop on definitions, assessment, and research opportunities
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbm145
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.cmpb.2021.106450_bib0011
  article-title: SPWVD-CNN for automated detection of schizophrenia patients using EEG signals
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2021.3070608
– volume: 197
  start-page: 1057
  year: 2020
  ident: 10.1016/j.cmpb.2021.106450_bib0014
  article-title: A facile and flexible motor imagery classification using electroencephalogram signals
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2020.105722
– volume: 26
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.cmpb.2021.106450_bib0019
  article-title: Classification of EEG signals using adaptive weighted distance nearest neighbor algorithm
  publication-title: Journal of King Saud University - Computer and Information Sciences
  doi: 10.1016/j.jksuci.2013.01.001
– volume: 98
  start-page: 374
  issue: 3
  year: 1941
  ident: 10.1016/j.cmpb.2021.106450_bib0010
  article-title: Electroencephalography in schizophrenia
  publication-title: American Journal of Psychiatry
  doi: 10.1176/ajp.98.3.374
– volume: 26
  start-page: 1650008
  issue: 02
  year: 2016
  ident: 10.1016/j.cmpb.2021.106450_sbref0021
  article-title: Analysis of the complexity measures in the EEG of schizophrenia patients
  publication-title: Int J Neural Syst
  doi: 10.1142/S0129065716500088
– year: 2020
  ident: 10.1016/j.cmpb.2021.106450_bib0023
  article-title: Automated detection of schizophrenia using optimal wavelet-based l1 norm features extracted from single-channel EEG
  publication-title: Cogn Neurodyn
– volume: 589
  start-page: 126
  year: 2015
  ident: 10.1016/j.cmpb.2021.106450_bib0024
  article-title: Diagnostic utility of quantitative EEG in un-medicated schizophrenia
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2014.12.064
– volume: 36
  start-page: 6492
  issue: 3, Part 2
  year: 2009
  ident: 10.1016/j.cmpb.2021.106450_bib0025
  article-title: An efficient classifier to diagnose of schizophrenia based on the EEG signals
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.07.037
– volume: 152
  start-page: 131
  year: 2017
  ident: 10.1016/j.cmpb.2021.106450_bib0028
  article-title: Binary classification of multichannel-EEG records based on the ϵ-complexity of continuous vector functions
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2017.09.001
– volume: 100
  start-page: 101698
  year: 2019
  ident: 10.1016/j.cmpb.2021.106450_bib0032
  article-title: Automated detection of schizophrenia using nonlinear signal processing methods
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2019.07.006
– volume: 10
  start-page: 425
  year: 2014
  ident: 10.1016/j.cmpb.2021.106450_bib0005
  article-title: Excess early mortality in schizophrenia
  publication-title: Annu Rev Clin Psychol
  doi: 10.1146/annurev-clinpsy-032813-153657
– year: 2012
  ident: 10.1016/j.cmpb.2021.106450_bib0038
  article-title: Generalized fisher score for feature selection
  publication-title: Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence, UAI 2011
– start-page: 4521
  year: 2019
  ident: 10.1016/j.cmpb.2021.106450_bib0034
  article-title: EEG signals classification using machine learning for the identification and diagnosis of schizophrenia
– volume: 187
  start-page: 105325
  year: 2020
  ident: 10.1016/j.cmpb.2021.106450_bib0013
  article-title: A flexible analytic wavelet transform based approach for motor-imagery tasks classification in BCI applications
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2020.105325
– year: 2020
  ident: 10.1016/j.cmpb.2021.106450_bib0033
  article-title: Classification of schizophrenia patients through empirical wavelet transformation using electroencephalogram signals
– volume: 27
  start-page: 233
  issue: 3
  year: 2019
  ident: 10.1016/j.cmpb.2021.106450_bib0035
  article-title: Fractal-based classification of electroencephalography (EEG) signals in healthy adolescents and adolescents with symptoms of schizophrenia
  publication-title: Technol. Health Care
  doi: 10.3233/THC-181497
– volume: 173
  start-page: 157
  year: 2019
  ident: 10.1016/j.cmpb.2021.106450_bib0046
  article-title: Emotion recognition from single-channel EEG signals using a two-stage correlation and instantaneous frequency-based filtering method
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2019.03.015
– ident: 10.1016/j.cmpb.2021.106450_bib0037
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  ident: 10.1016/j.cmpb.2021.106450_bib0047
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Processing Letters
  doi: 10.1023/A:1018628609742
– volume: 90
  start-page: 359
  year: 2019
  ident: 10.1016/j.cmpb.2021.106450_bib0009
  article-title: Application of multiresolution analysis for automated detection of brain abnormality using MR images: a comparative study
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2018.08.008
– volume: 31
  start-page: 331
  year: 2017
  ident: 10.1016/j.cmpb.2021.106450_bib0027
  article-title: Functional brain network analysis of schizophrenic patients with positive and negative syndrome based on mutual information of EEG time series
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2016.08.013
– volume: 47
  start-page: 263
  issue: 3
  year: 2009
  ident: 10.1016/j.cmpb.2021.106450_bib0018
  article-title: Entropy and complexity measures for EEG signal classification of schizophrenic and control participants
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2009.03.003
– volume: 114
  start-page: 102039
  year: 2021
  ident: 10.1016/j.cmpb.2021.106450_bib0004
  article-title: Advanced EEG-based learning approaches to predict schizophrenia: promises and pitfalls
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2021.102039
– volume: 119
  start-page: 1232
  issue: 6
  year: 2008
  ident: 10.1016/j.cmpb.2021.106450_bib0017
  article-title: Abnormal EEG complexity in patients with schizophrenia and depression
  publication-title: Clinical Neurophysiology
  doi: 10.1016/j.clinph.2008.01.104
– volume: 31
  start-page: 37
  issue: 1
  year: 1994
  ident: 10.1016/j.cmpb.2021.106450_bib0015
  article-title: Resting EEG in first-episode and chronic schizophrenia
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.1994.tb01023.x
– volume: 13
  start-page: 87
  issue: 1
  year: 2012
  ident: 10.1016/j.cmpb.2021.106450_bib0029
  article-title: Consciousness, schizophrenia and complexity
  publication-title: Cogn Syst Res
  doi: 10.1016/j.cogsys.2011.05.001
– volume: 9
  issue: 14
  year: 2019
  ident: 10.1016/j.cmpb.2021.106450_bib0022
  article-title: Deep convolutional neural network model for automated diagnosis of schizophrenia using EEG signals
  publication-title: Applied Sciences
  doi: 10.3390/app9142870
– volume: 10
  start-page: 1
  issue: 2
  year: 2015
  ident: 10.1016/j.cmpb.2021.106450_bib0007
  article-title: The global burden of mental, neurological and substance use disorders: an analysis from the global burden of disease study 2010
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0116820
– volume: 68
  start-page: 102777
  year: 2021
  ident: 10.1016/j.cmpb.2021.106450_bib0006
  article-title: An accurate automated schizophrenia detection using TQWT and statistical moment based feature extraction
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.102777
– start-page: 6047
  year: 2013
  ident: 10.1016/j.cmpb.2021.106450_bib0026
  article-title: Classification of schizophrenia using genetic algorithm-support vector machine (GA-SVM)
– volume: 37
  start-page: 2626
  issue: 12
  year: 2009
  ident: 10.1016/j.cmpb.2021.106450_bib0045
  article-title: Log energy entropy-based EEG classification with multilayer neural networks in seizure
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-009-9795-x
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.cmpb.2021.106450_bib0043
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Software
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 2
  start-page: 106
  year: 2014
  ident: 10.1016/j.cmpb.2021.106450_bib0044
  article-title: A novel EEG feature extraction method using hjorth parameter
  publication-title: International Journal of Electronics and Electrical Engineering
  doi: 10.12720/ijeee.2.2.106-110
– volume: 152
  issue: 8
  year: 1995
  ident: 10.1016/j.cmpb.2021.106450_sbref0002
  article-title: Diagnostic and statistical manual of mental disorders, 4th ed. (DSM-IV)
  publication-title: American Journal of Psychiatry
  doi: 10.1176/ajp.152.8.1228
– volume: 2
  start-page: 757
  year: 2000
  ident: 10.1016/j.cmpb.2021.106450_bib0048
  article-title: Sparse approximation using least squares support vector machines
– volume: 101
  start-page: 307
  issue: 4
  year: 2000
  ident: 10.1016/j.cmpb.2021.106450_bib0020
  article-title: Quantitative EEG in positive and negative schizophrenia
  publication-title: Acta Psychiatr Scand
  doi: 10.1034/j.1600-0447.2000.101004307.x
– volume: 27
  start-page: 1193
  issue: 6
  year: 2019
  ident: 10.1016/j.cmpb.2021.106450_bib0008
  article-title: EEG classification during scene free-viewing for schizophrenia detection
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2019.2913799
– year: 2020
  ident: 10.1016/j.cmpb.2021.106450_bib0040
  article-title: Optimized tunable Q wavelet transform based drowsiness detection from electroencephalogram signals
  publication-title: IRBM
– volume: 6
  start-page: 40379
  year: 2018
  ident: 10.1016/j.cmpb.2021.106450_bib0030
  article-title: Classification of bipolar disorder and schizophrenia using steady-state visual evoked potential based features
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2854555
– ident: 10.1016/j.cmpb.2021.106450_bib0001
– volume: 69
  start-page: 9609
  issue: 12
  year: 2020
  ident: 10.1016/j.cmpb.2021.106450_bib0039
  article-title: Adaptive tunable Q wavelet transform-based emotion identification
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2020.3006611
– volume: 200
  start-page: 105941
  year: 2021
  ident: 10.1016/j.cmpb.2021.106450_bib0012
  article-title: Automated detection of conduct disorder and attention deficit hyperactivity disorder using decomposition and nonlinear techniques with EEG signals
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2021.105941
– volume: 40
  year: 2013
  ident: 10.1016/j.cmpb.2021.106450_bib0036
  article-title: Did i do that? abnormal predictive processes in schizophrenia when button pressing to deliver a tone
  publication-title: Schizophr Bull
– volume: 163
  start-page: 107234
  year: 2020
  ident: 10.1016/j.cmpb.2021.106450_bib0041
  article-title: Constrained based tunable Q wavelet transform for efficient decomposition of EEG signals
  publication-title: Applied Acoustics
  doi: 10.1016/j.apacoust.2020.107234
SSID ssj0002556
Score 2.4764817
Snippet •Investigate the detailed analysis of the SZ and HC with different conditions.•Selection of dominant channel by Fisher score to reduce the burden of...
Schizophrenia (SZ) is a type of neurological disorder that is diagnosed by professional psychiatrists based on interviews and manual screening of patients. The...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106450
SubjectTerms Channel selection
Electroencephalogram signals
Flexible least square support vector machine classifier
Flexible tunable Q wavelet transform
Schizophrenia detection
Title A self-learned decomposition and classification model for schizophrenia diagnosis
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260721005241
https://dx.doi.org/10.1016/j.cmpb.2021.106450
https://www.proquest.com/docview/2580696006
Volume 211
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AKRWK
  dateStart: 19850501
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lgngRn_gsEbzJ2k3zqDmWYqmKBdGCt5DNAyq6LW579beb2c3WB6LgcUMmhEkymdl83wxCpyYjjrqMJ1wyGQIUohNtuybxlukQQGtBfInyHYnhmF0_8scG6tdcGIBVRttf2fTSWseWdtRmezaZtO8hj0jwxkMIA_82S_I6Y12oYnD-9gHzgBRbVX5vmUDvSJypMF7mZZaFGLFDQoNgwL3_-XL6ZqbLu2ewgdaj04h71bw2UcPlW2j1Nj6Lb6O7Hi7cs0_KEhDOYusAKR7hWFjnFhtwkgEVVC4ELuvf4OCv4uIz6A7bCng3KXbQeHD50B8msVZCYsK854ngHUkct5SZbgZsWe65ccQYyjVxjBhKvfAC0rdR7jUxhGnhZcp12s2E03QXNfNp7vYQ1oZ5mglrw1CMMSN1JlPpjDRey7Dk-4jUSlImJhKHehbPqkaMPSlQrALFqkqx--hsKTOr0mj82pvWulc1QTSYNBWs_K9SfCn1ZQv9KXdSL68KZwseTHTupotCdfhFKkKIl4qDf459iNbgqyIvHqHm_HXhjoMXM89a5TZtoZXe1c1w9A6vcPFi
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FQb2IT3wbwZus3TSPmmMRS9UqiC14C9k8oKLbYturv93MbrY-kApes5kQJslkZvN9Mwidmow46jKecMlkCFCITrRtmsRbpkMArQXxBcr3XnT67OaJP9XQZcWFAVhltP2lTS-sdWypR23WR4NB_RHyiARvPIQw8G8TyOuLjDeaEIGdv3_iPCDHVpngWybQPTJnSpCXeR1lIUhskNAgGJDvf7-dftjp4vJpr6HV6DXiVjmxdVRz-QZauovv4pvooYXH7sUnRQ0IZ7F1ABWPeCysc4sNeMkACypWAhcFcHBwWPH4K-oO2xJ5NxhvoX77qnfZSWKxhMSEeU8SwRuSOG4pM80M6LLcc-OIMZRr4hgxlHrhBeRvo9xrYgjTwsuU67SZCafpNlrIh7nbQVgb5mkmrA1DMcaM1JlMpTPSeC3Dmu8iUilJmZhJHApavKgKMvasQLEKFKtKxe6is5nMqMyjMbc3rXSvKoZosGkqmPm5Unwm9W0P_Sl3Ui2vCocLXkx07obTsWrwi1SEGC8Ve_8c-xgtd3p3XdW9vr_dRyvwpWQyHqCFydvUHQaXZpIdFVv2A0qv8vc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+self-learned+decomposition+and+classification+model+for+schizophrenia+diagnosis&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Khare%2C+Smith+K.&rft.au=Bajaj%2C+Varun&rft.date=2021-11-01&rft.pub=Elsevier+B.V&rft.issn=0169-2607&rft.eissn=1872-7565&rft.volume=211&rft_id=info:doi/10.1016%2Fj.cmpb.2021.106450&rft.externalDocID=S0169260721005241
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon