A self-learned decomposition and classification model for schizophrenia diagnosis
•Investigate the detailed analysis of the SZ and HC with different conditions.•Selection of dominant channel by Fisher score to reduce the burden of computation.•F-TQWT for automatic and meaningful extraction of sub-bands from EEG signals.•Accurate selection of decomposition levels for uniform decom...
Saved in:
| Published in | Computer methods and programs in biomedicine Vol. 211; p. 106450 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.11.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0169-2607 1872-7565 1872-7565 |
| DOI | 10.1016/j.cmpb.2021.106450 |
Cover
| Abstract | •Investigate the detailed analysis of the SZ and HC with different conditions.•Selection of dominant channel by Fisher score to reduce the burden of computation.•F-TQWT for automatic and meaningful extraction of sub-bands from EEG signals.•Accurate selection of decomposition levels for uniform decomposition.•F-LSSVM for tuning of hyperparameters to improve the separability of SZ and HC.
Background: Schizophrenia (SZ) is a type of neurological disorder that is diagnosed by professional psychiatrists based on interviews and manual screening of patients. The procedures are time-consuming, burdensome, and prone to human error. This urgently necessitates the development of an effective and precise computer-aided design for the detection of SZ. One such efficient source for SZ detection is the electroencephalogram (EEG) signals. Because EEG signals are non-stationary, it is challenging to find representative information in its raw form. Decomposing the signals into multi-modes can provide detailed insight information from it. But the choice of uniform decomposition and hyper-parameters leads to information loss affecting system performance drastically. Method: In this paper, automatic signal decomposition and classification methods are proposed for the detection of SZ and healthy control EEG signals. The Fisher score method is used for the selection of the most discriminant channel. Flexible tunable Q wavelet transform (F-TQWT) is developed for efficient decomposition of EEG signals by reducing root mean square error with grey wolf optimization (GWO) algorithm. Five features are extracted from the adaptively generated subbands and selected by the Kruskal Wallis test. The feature matrix is given as an input to the flexible least square support vector machine (F-LSSVM) classifier. The hyper-parameters and kernel of classifier are selected such that the accuracy of each subband is maximized using GWO algorithm. Results: The effectiveness and superiority of the proposed method is tested by evaluating seven performance parameters. An accuracy of 91.39%, sensitivity, specificity, precision, F-1 measure, false positive rate and error of 92.65%, 93.22%, 95.57%, 0.9306, 6.78% and 8.61% is achieved. The results prove superiority of the developed F-TQWT decomposition and F-LSSVM classifier over existing methodologies. Conclusion: The EEG signals of healthy control and SZ subjects performing motor and auditory tasks simultaneously provide higher discrimination ability over the subjects performing auditory and motory tasks separately. The developed model is accurate, robust, and effective as it is developed on a relatively larger data-set, obtained maximum performance, and tested using ten-fold cross-validation technique. This proposed model is ready to be put to test for real-time SZ detection. |
|---|---|
| AbstractList | •Investigate the detailed analysis of the SZ and HC with different conditions.•Selection of dominant channel by Fisher score to reduce the burden of computation.•F-TQWT for automatic and meaningful extraction of sub-bands from EEG signals.•Accurate selection of decomposition levels for uniform decomposition.•F-LSSVM for tuning of hyperparameters to improve the separability of SZ and HC.
Background: Schizophrenia (SZ) is a type of neurological disorder that is diagnosed by professional psychiatrists based on interviews and manual screening of patients. The procedures are time-consuming, burdensome, and prone to human error. This urgently necessitates the development of an effective and precise computer-aided design for the detection of SZ. One such efficient source for SZ detection is the electroencephalogram (EEG) signals. Because EEG signals are non-stationary, it is challenging to find representative information in its raw form. Decomposing the signals into multi-modes can provide detailed insight information from it. But the choice of uniform decomposition and hyper-parameters leads to information loss affecting system performance drastically. Method: In this paper, automatic signal decomposition and classification methods are proposed for the detection of SZ and healthy control EEG signals. The Fisher score method is used for the selection of the most discriminant channel. Flexible tunable Q wavelet transform (F-TQWT) is developed for efficient decomposition of EEG signals by reducing root mean square error with grey wolf optimization (GWO) algorithm. Five features are extracted from the adaptively generated subbands and selected by the Kruskal Wallis test. The feature matrix is given as an input to the flexible least square support vector machine (F-LSSVM) classifier. The hyper-parameters and kernel of classifier are selected such that the accuracy of each subband is maximized using GWO algorithm. Results: The effectiveness and superiority of the proposed method is tested by evaluating seven performance parameters. An accuracy of 91.39%, sensitivity, specificity, precision, F-1 measure, false positive rate and error of 92.65%, 93.22%, 95.57%, 0.9306, 6.78% and 8.61% is achieved. The results prove superiority of the developed F-TQWT decomposition and F-LSSVM classifier over existing methodologies. Conclusion: The EEG signals of healthy control and SZ subjects performing motor and auditory tasks simultaneously provide higher discrimination ability over the subjects performing auditory and motory tasks separately. The developed model is accurate, robust, and effective as it is developed on a relatively larger data-set, obtained maximum performance, and tested using ten-fold cross-validation technique. This proposed model is ready to be put to test for real-time SZ detection. Schizophrenia (SZ) is a type of neurological disorder that is diagnosed by professional psychiatrists based on interviews and manual screening of patients. The procedures are time-consuming, burdensome, and prone to human error. This urgently necessitates the development of an effective and precise computer-aided design for the detection of SZ. One such efficient source for SZ detection is the electroencephalogram (EEG) signals. Because EEG signals are non-stationary, it is challenging to find representative information in its raw form. Decomposing the signals into multi-modes can provide detailed insight information from it. But the choice of uniform decomposition and hyper-parameters leads to information loss affecting system performance drastically.BACKGROUNDSchizophrenia (SZ) is a type of neurological disorder that is diagnosed by professional psychiatrists based on interviews and manual screening of patients. The procedures are time-consuming, burdensome, and prone to human error. This urgently necessitates the development of an effective and precise computer-aided design for the detection of SZ. One such efficient source for SZ detection is the electroencephalogram (EEG) signals. Because EEG signals are non-stationary, it is challenging to find representative information in its raw form. Decomposing the signals into multi-modes can provide detailed insight information from it. But the choice of uniform decomposition and hyper-parameters leads to information loss affecting system performance drastically.In this paper, automatic signal decomposition and classification methods are proposed for the detection of SZ and healthy control EEG signals. The Fisher score method is used for the selection of the most discriminant channel. Flexible tunable Q wavelet transform (F-TQWT) is developed for efficient decomposition of EEG signals by reducing root mean square error with grey wolf optimization (GWO) algorithm. Five features are extracted from the adaptively generated subbands and selected by the Kruskal Wallis test. The feature matrix is given as an input to the flexible least square support vector machine (F-LSSVM) classifier. The hyper-parameters and kernel of classifier are selected such that the accuracy of each subband is maximized using GWO algorithm.METHODIn this paper, automatic signal decomposition and classification methods are proposed for the detection of SZ and healthy control EEG signals. The Fisher score method is used for the selection of the most discriminant channel. Flexible tunable Q wavelet transform (F-TQWT) is developed for efficient decomposition of EEG signals by reducing root mean square error with grey wolf optimization (GWO) algorithm. Five features are extracted from the adaptively generated subbands and selected by the Kruskal Wallis test. The feature matrix is given as an input to the flexible least square support vector machine (F-LSSVM) classifier. The hyper-parameters and kernel of classifier are selected such that the accuracy of each subband is maximized using GWO algorithm.The effectiveness and superiority of the proposed method is tested by evaluating seven performance parameters. An accuracy of 91.39%, sensitivity, specificity, precision, F-1 measure, false positive rate and error of 92.65%, 93.22%, 95.57%, 0.9306, 6.78% and 8.61% is achieved. The results prove superiority of the developed F-TQWT decomposition and F-LSSVM classifier over existing methodologies.RESULTSThe effectiveness and superiority of the proposed method is tested by evaluating seven performance parameters. An accuracy of 91.39%, sensitivity, specificity, precision, F-1 measure, false positive rate and error of 92.65%, 93.22%, 95.57%, 0.9306, 6.78% and 8.61% is achieved. The results prove superiority of the developed F-TQWT decomposition and F-LSSVM classifier over existing methodologies.The EEG signals of healthy control and SZ subjects performing motor and auditory tasks simultaneously provide higher discrimination ability over the subjects performing auditory and motory tasks separately. The developed model is accurate, robust, and effective as it is developed on a relatively larger data-set, obtained maximum performance, and tested using ten-fold cross-validation technique. This proposed model is ready to be put to test for real-time SZ detection.CONCLUSIONThe EEG signals of healthy control and SZ subjects performing motor and auditory tasks simultaneously provide higher discrimination ability over the subjects performing auditory and motory tasks separately. The developed model is accurate, robust, and effective as it is developed on a relatively larger data-set, obtained maximum performance, and tested using ten-fold cross-validation technique. This proposed model is ready to be put to test for real-time SZ detection. |
| ArticleNumber | 106450 |
| Author | Khare, Smith K. Bajaj, Varun |
| Author_xml | – sequence: 1 givenname: Smith K. orcidid: 0000-0001-8365-1092 surname: Khare fullname: Khare, Smith K. email: smith7khare@gmail.com – sequence: 2 givenname: Varun surname: Bajaj fullname: Bajaj, Varun |
| BookMark | eNqFkU9LAzEQxYMoWKtfwNMevWxNsptsV7yU4j8oiKDnkM5ObGo2WZNVqJ_ebevJg54GHu83zHtzQg598EjIOaMTRpm8XE-g7ZYTTjkbBFkKekBGbFrxvBJSHJLRYKpzLml1TE5SWlNKuRByRJ5mWUJncoc6emyyBiG0XUi2t8Fn2jcZOJ2SNRb0TmpDgy4zIWYJVvYrdKuI3uqssfrVD1w6JUdGu4RnP3NMXm5vnuf3-eLx7mE-W-QwXNfnUvCaoWiKEqolryshjABkAIXQDEsGRWGkkawoWSGMZsBKLU1NhabVUqIuxuRiv7eL4f0DU69amwCd0x7DR1JcTKmsJaVysE73VoghpYhGge13cfqorVOMqm2Laq22Lapti2rf4oDyX2gXbavj5m_oeg_hkP_TYlQJLHrAxkaEXjXB_o1f_cLBWT88wL3h5j_4GzTToUQ |
| CitedBy_id | crossref_primary_10_1007_s11571_023_10011_x crossref_primary_10_1016_j_compbiomed_2024_108862 crossref_primary_10_1155_2022_1581958 crossref_primary_10_1007_s10489_024_05669_7 crossref_primary_10_1001_jamanetworkopen_2023_1671 crossref_primary_10_1007_s13246_023_01225_8 crossref_primary_10_3390_app14125048 crossref_primary_10_1016_j_cmpb_2024_108105 crossref_primary_10_1088_1361_6579_acbc06 crossref_primary_10_1016_j_compbiomed_2023_106676 crossref_primary_10_4015_S1016237223500394 crossref_primary_10_1007_s40998_024_00738_6 crossref_primary_10_1016_j_inffus_2023_101898 crossref_primary_10_1002_widm_1550 crossref_primary_10_1007_s13246_024_01512_y crossref_primary_10_1007_s11571_024_10120_1 crossref_primary_10_1088_1361_6579_ad00ff crossref_primary_10_4015_S1016237223500138 crossref_primary_10_3389_fnhum_2024_1347082 crossref_primary_10_1016_j_inffus_2023_102023 crossref_primary_10_3390_s22218128 crossref_primary_10_3389_fnins_2024_1340528 crossref_primary_10_1007_s10044_022_01107_x crossref_primary_10_3389_fnhum_2024_1463819 crossref_primary_10_1007_s10489_023_05155_6 crossref_primary_10_3934_biophy_2023021 crossref_primary_10_1007_s00034_023_02540_x crossref_primary_10_1016_j_cmpb_2022_107277 crossref_primary_10_2139_ssrn_4999642 crossref_primary_10_2174_1574362418666221212105053 crossref_primary_10_1016_j_medengphy_2023_103949 crossref_primary_10_3390_math12131989 crossref_primary_10_1016_j_inffus_2023_102019 crossref_primary_10_1155_2022_1992596 |
| Cites_doi | 10.1109/TSP.2011.2143711 10.1109/TNSRE.2020.3022715 10.1093/schbul/sbm145 10.1109/TIM.2021.3070608 10.1016/j.cmpb.2020.105722 10.1016/j.jksuci.2013.01.001 10.1176/ajp.98.3.374 10.1142/S0129065716500088 10.1016/j.neulet.2014.12.064 10.1016/j.eswa.2008.07.037 10.1016/j.cmpb.2017.09.001 10.1016/j.artmed.2019.07.006 10.1146/annurev-clinpsy-032813-153657 10.1016/j.cmpb.2020.105325 10.3233/THC-181497 10.1016/j.cmpb.2019.03.015 10.1023/A:1018628609742 10.1016/j.future.2018.08.008 10.1016/j.bspc.2016.08.013 10.1016/j.artmed.2009.03.003 10.1016/j.artmed.2021.102039 10.1016/j.clinph.2008.01.104 10.1111/j.1469-8986.1994.tb01023.x 10.1016/j.cogsys.2011.05.001 10.3390/app9142870 10.1371/journal.pone.0116820 10.1016/j.bspc.2021.102777 10.1007/s10439-009-9795-x 10.1016/j.advengsoft.2013.12.007 10.12720/ijeee.2.2.106-110 10.1176/ajp.152.8.1228 10.1034/j.1600-0447.2000.101004307.x 10.1109/TNSRE.2019.2913799 10.1109/ACCESS.2018.2854555 10.1109/TIM.2020.3006611 10.1016/j.cmpb.2021.105941 10.1016/j.apacoust.2020.107234 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. Copyright © 2021 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright © 2021 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION 7X8 |
| DOI | 10.1016/j.cmpb.2021.106450 |
| DatabaseName | CrossRef MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1872-7565 |
| ExternalDocumentID | 10_1016_j_cmpb_2021_106450 S0169260721005241 |
| GroupedDBID | --- --K --M -~X .1- .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMK HMO HVGLF HZ~ IHE J1W KOM LG9 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SBC SDF SDG SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WUQ XPP Z5R ZGI ZY4 ~G- ~HD AACTN AAIAV ABLVK ABTAH ABYKQ AFKWA AJBFU AJOXV AMFUW LCYCR RIG AAYXX CITATION 7X8 |
| ID | FETCH-LOGICAL-c450t-65291e5d34c7b29755f5ce1cc35a1e41c33f6f6134135fa1c14a6f905a07b6ea3 |
| IEDL.DBID | .~1 |
| ISSN | 0169-2607 1872-7565 |
| IngestDate | Sat Sep 27 16:49:49 EDT 2025 Thu Oct 02 04:28:43 EDT 2025 Thu Apr 24 22:59:24 EDT 2025 Fri Feb 23 02:41:33 EST 2024 Tue Oct 14 19:32:55 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Electroencephalogram signals Flexible tunable Q wavelet transform Channel selection Schizophrenia detection Flexible least square support vector machine classifier |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c450t-65291e5d34c7b29755f5ce1cc35a1e41c33f6f6134135fa1c14a6f905a07b6ea3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-8365-1092 |
| PQID | 2580696006 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2580696006 crossref_citationtrail_10_1016_j_cmpb_2021_106450 crossref_primary_10_1016_j_cmpb_2021_106450 elsevier_sciencedirect_doi_10_1016_j_cmpb_2021_106450 elsevier_clinicalkey_doi_10_1016_j_cmpb_2021_106450 |
| PublicationCentury | 2000 |
| PublicationDate | November 2021 2021-11-00 20211101 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Computer methods and programs in biomedicine |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Boostani, Sadatnezhad, Sabeti (bib0025) 2009; 36 Oh, Vicnesh, Ciaccio, Yuvaraj, Acharya (bib0022) 2019; 9 Khare, Bajaj, Siuly, Sinha (bib0033) 2020 Jahmunah, Lih Oh, Rajinikanth, Ciaccio, Hao Cheong, Arunkumar, Acharya (bib0032) 2019; 100 Green, Penn, Bentall, Carpenter, Gaebel, Gur, Kring, Park, Silverstein, Heinssen (bib0003) 2008; 34 Baygin (bib0006) 2021; 68 Sabeti, Katebi, Boostani (bib0018) 2009; 47 Li, Tong, Liu, Gai, Wang, Wang, Qiu, Zhu (bib0017) 2008; 119 Sharma, Acharya (bib0023) 2020 Khare, Bajaj (bib0041) 2020; 163 Ying-jie Li, Fei-yan Fan (bib0016) 2005 Finley, Campbell (bib0010) 1941; 98 WHO Piryatinska, Darkhovsky, Kaplan (bib0028) 2017; 152 . Gudigar, Raghavendra, San, Ciaccio, Acharya (bib0009) 2019; 90 Suykens, Vandewalle (bib0047) 1999; 9 Guze (bib0002) 1995; 152 Whiteford, Ferrari, Degenhardt, Feigin, Vos (bib0007) 2015; 10 Khare, Bajaj, Sinha (bib0039) 2020; 69 Bob (bib0029) 2012; 13 Selesnick (bib0042) 2011; 59 Zhang (bib0034) 2019 Aydın, Saraoğlu, Kara (bib0045) 2009; 37 Parvinnia, Sabeti, Jahromi, Boostani (bib0019) 2014; 26 Devia, Mayol-Troncoso, Parrini, Orellana, Ruiz, Maldonado, Egaña (bib0008) 2019; 27 Namazi, Aghasian, Ala (bib0035) 2019; 27 Yin, Li, Zhang, Ren, Meneen, Huang (bib0027) 2017; 31 Access 22 March 2020. Hiesh, Lam Andy, Shen, Chen, Lin, Sung, Lin, Chiu, Lai (bib0026) 2013 Khare, Bajaj, Acharya (bib0011) 2021; 70 Khare, Bajaj (bib0014) 2020; 197 Laursen, Nordentoft, Mortensen (bib0005) 2014; 10 Taran, Bajaj (bib0046) 2019; 173 Tor, Ooi, Lim-Ashworth, Wei, Jahmunah, Oh, Acharya, Fung (bib0012) 2021; 200 Sponheim, Clementz, Iacono, Beiser (bib0015) 1994; 31 Barros, Silva, Pinheiro (bib0004) 2021; 114 Alimardani, Cho, Boostani, Hwang (bib0030) 2018; 6 Ford, Palzes, Roach, Mathalon (bib0036) 2013; 40 Suykens, Lukas, Vandewalle (bib0048) 2000; 2 Akar, Kara, Latifog̃lu, Bilgic̃ (bib0021) 2016; 26 Siuly, Khare, Bajaj, Wang, Zhang (bib0031) 2020; 28 Kim, Lee, Han, Min, Lee, Lee (bib0024) 2015; 589 Gu, Li, Han (bib0038) 2012 Khare, Bajaj (bib0040) 2020 Chaudhary, Taran, Bajaj, Siuly (bib0013) 2020; 187 Begić, Hotujac, Jokić-Begić (bib0020) 2000; 101 Mirjalili, Mirjalili, Lewis (bib0043) 2014; 69 Oh, Lee, Kim (bib0044) 2014; 2 Gudigar (10.1016/j.cmpb.2021.106450_bib0009) 2019; 90 Devia (10.1016/j.cmpb.2021.106450_bib0008) 2019; 27 Tor (10.1016/j.cmpb.2021.106450_bib0012) 2021; 200 Sharma (10.1016/j.cmpb.2021.106450_bib0023) 2020 Hiesh (10.1016/j.cmpb.2021.106450_bib0026) 2013 Sponheim (10.1016/j.cmpb.2021.106450_bib0015) 1994; 31 Aydın (10.1016/j.cmpb.2021.106450_bib0045) 2009; 37 Whiteford (10.1016/j.cmpb.2021.106450_bib0007) 2015; 10 Piryatinska (10.1016/j.cmpb.2021.106450_bib0028) 2017; 152 Khare (10.1016/j.cmpb.2021.106450_bib0040) 2020 Laursen (10.1016/j.cmpb.2021.106450_bib0005) 2014; 10 Akar (10.1016/j.cmpb.2021.106450_sbref0021) 2016; 26 Khare (10.1016/j.cmpb.2021.106450_bib0011) 2021; 70 Mirjalili (10.1016/j.cmpb.2021.106450_bib0043) 2014; 69 Khare (10.1016/j.cmpb.2021.106450_bib0041) 2020; 163 Zhang (10.1016/j.cmpb.2021.106450_bib0034) 2019 Sabeti (10.1016/j.cmpb.2021.106450_bib0018) 2009; 47 Parvinnia (10.1016/j.cmpb.2021.106450_bib0019) 2014; 26 10.1016/j.cmpb.2021.106450_bib0037 Khare (10.1016/j.cmpb.2021.106450_bib0014) 2020; 197 Gu (10.1016/j.cmpb.2021.106450_bib0038) 2012 Selesnick (10.1016/j.cmpb.2021.106450_bib0042) 2011; 59 Barros (10.1016/j.cmpb.2021.106450_bib0004) 2021; 114 Ying-jie Li (10.1016/j.cmpb.2021.106450_bib0016) 2005 Suykens (10.1016/j.cmpb.2021.106450_bib0048) 2000; 2 Green (10.1016/j.cmpb.2021.106450_bib0003) 2008; 34 Ford (10.1016/j.cmpb.2021.106450_bib0036) 2013; 40 Bob (10.1016/j.cmpb.2021.106450_bib0029) 2012; 13 Oh (10.1016/j.cmpb.2021.106450_bib0044) 2014; 2 Suykens (10.1016/j.cmpb.2021.106450_bib0047) 1999; 9 Guze (10.1016/j.cmpb.2021.106450_sbref0002) 1995; 152 Chaudhary (10.1016/j.cmpb.2021.106450_bib0013) 2020; 187 Yin (10.1016/j.cmpb.2021.106450_bib0027) 2017; 31 Li (10.1016/j.cmpb.2021.106450_bib0017) 2008; 119 Namazi (10.1016/j.cmpb.2021.106450_bib0035) 2019; 27 Taran (10.1016/j.cmpb.2021.106450_bib0046) 2019; 173 Finley (10.1016/j.cmpb.2021.106450_bib0010) 1941; 98 Oh (10.1016/j.cmpb.2021.106450_bib0022) 2019; 9 Siuly (10.1016/j.cmpb.2021.106450_bib0031) 2020; 28 Begić (10.1016/j.cmpb.2021.106450_bib0020) 2000; 101 Alimardani (10.1016/j.cmpb.2021.106450_bib0030) 2018; 6 Khare (10.1016/j.cmpb.2021.106450_bib0033) 2020 Khare (10.1016/j.cmpb.2021.106450_bib0039) 2020; 69 10.1016/j.cmpb.2021.106450_bib0001 Baygin (10.1016/j.cmpb.2021.106450_bib0006) 2021; 68 Kim (10.1016/j.cmpb.2021.106450_bib0024) 2015; 589 Boostani (10.1016/j.cmpb.2021.106450_bib0025) 2009; 36 Jahmunah (10.1016/j.cmpb.2021.106450_bib0032) 2019; 100 |
| References_xml | – volume: 27 start-page: 233 year: 2019 end-page: 241 ident: bib0035 article-title: Fractal-based classification of electroencephalography (EEG) signals in healthy adolescents and adolescents with symptoms of schizophrenia publication-title: Technol. Health Care – start-page: 2679 year: 2005 end-page: 2682 ident: bib0016 article-title: Classification of schizophrenia and depression by EEG with ANNs* publication-title: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference – volume: 100 start-page: 101698 year: 2019 ident: bib0032 article-title: Automated detection of schizophrenia using nonlinear signal processing methods publication-title: Artif Intell Med – volume: 9 start-page: 293 year: 1999 end-page: 300 ident: bib0047 article-title: Least squares support vector machine classifiers publication-title: Neural Processing Letters – volume: 589 start-page: 126 year: 2015 end-page: 131 ident: bib0024 article-title: Diagnostic utility of quantitative EEG in un-medicated schizophrenia publication-title: Neurosci. Lett. – volume: 69 start-page: 9609 year: 2020 end-page: 9617 ident: bib0039 article-title: Adaptive tunable Q wavelet transform-based emotion identification publication-title: IEEE Trans Instrum Meas – volume: 40 year: 2013 ident: bib0036 article-title: Did i do that? abnormal predictive processes in schizophrenia when button pressing to deliver a tone publication-title: Schizophr Bull – volume: 37 start-page: 2626 year: 2009 ident: bib0045 article-title: Log energy entropy-based EEG classification with multilayer neural networks in seizure publication-title: Ann Biomed Eng – volume: 173 start-page: 157 year: 2019 end-page: 165 ident: bib0046 article-title: Emotion recognition from single-channel EEG signals using a two-stage correlation and instantaneous frequency-based filtering method publication-title: Comput Methods Programs Biomed – volume: 26 start-page: 1 year: 2014 end-page: 6 ident: bib0019 article-title: Classification of EEG signals using adaptive weighted distance nearest neighbor algorithm publication-title: Journal of King Saud University - Computer and Information Sciences – volume: 163 start-page: 107234 year: 2020 ident: bib0041 article-title: Constrained based tunable Q wavelet transform for efficient decomposition of EEG signals publication-title: Applied Acoustics – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: bib0043 article-title: Grey wolf optimizer publication-title: Adv. Eng. Software – volume: 152 start-page: 131 year: 2017 end-page: 139 ident: bib0028 article-title: Binary classification of multichannel-EEG records based on the publication-title: Comput Methods Programs Biomed – volume: 10 start-page: 1 year: 2015 end-page: 14 ident: bib0007 article-title: The global burden of mental, neurological and substance use disorders: an analysis from the global burden of disease study 2010 publication-title: PLoS ONE – volume: 114 start-page: 102039 year: 2021 ident: bib0004 article-title: Advanced EEG-based learning approaches to predict schizophrenia: promises and pitfalls publication-title: Artif Intell Med – year: 2020 ident: bib0023 article-title: Automated detection of schizophrenia using optimal wavelet-based l1 norm features extracted from single-channel EEG publication-title: Cogn Neurodyn – volume: 187 start-page: 105325 year: 2020 ident: bib0013 article-title: A flexible analytic wavelet transform based approach for motor-imagery tasks classification in BCI applications publication-title: Comput Methods Programs Biomed – volume: 101 start-page: 307 year: 2000 end-page: 311 ident: bib0020 article-title: Quantitative EEG in positive and negative schizophrenia publication-title: Acta Psychiatr Scand – volume: 6 start-page: 40379 year: 2018 end-page: 40388 ident: bib0030 article-title: Classification of bipolar disorder and schizophrenia using steady-state visual evoked potential based features publication-title: IEEE Access – reference: , Access 22 March 2020. – volume: 27 start-page: 1193 year: 2019 end-page: 1199 ident: bib0008 article-title: EEG classification during scene free-viewing for schizophrenia detection publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 152 year: 1995 ident: bib0002 article-title: Diagnostic and statistical manual of mental disorders, 4th ed. (DSM-IV) publication-title: American Journal of Psychiatry – volume: 70 start-page: 1 year: 2021 end-page: 9 ident: bib0011 article-title: SPWVD-CNN for automated detection of schizophrenia patients using EEG signals publication-title: IEEE Trans Instrum Meas – volume: 200 start-page: 105941 year: 2021 ident: bib0012 article-title: Automated detection of conduct disorder and attention deficit hyperactivity disorder using decomposition and nonlinear techniques with EEG signals publication-title: Comput Methods Programs Biomed – volume: 47 start-page: 263 year: 2009 end-page: 274 ident: bib0018 article-title: Entropy and complexity measures for EEG signal classification of schizophrenic and control participants publication-title: Artif Intell Med – year: 2020 ident: bib0033 article-title: Classification of schizophrenia patients through empirical wavelet transformation using electroencephalogram signals publication-title: Modelling and Analysis of Active Biopotential Signals in Healthcare, Volume 1 – volume: 31 start-page: 331 year: 2017 end-page: 338 ident: bib0027 article-title: Functional brain network analysis of schizophrenic patients with positive and negative syndrome based on mutual information of EEG time series publication-title: Biomed Signal Process Control – volume: 28 start-page: 2390 year: 2020 end-page: 2400 ident: bib0031 article-title: A computerized method for automatic detection of schizophrenia using EEG signals publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 119 start-page: 1232 year: 2008 end-page: 1241 ident: bib0017 article-title: Abnormal EEG complexity in patients with schizophrenia and depression publication-title: Clinical Neurophysiology – volume: 68 start-page: 102777 year: 2021 ident: bib0006 article-title: An accurate automated schizophrenia detection using TQWT and statistical moment based feature extraction publication-title: Biomed Signal Process Control – volume: 197 start-page: 1057 year: 2020 ident: bib0014 article-title: A facile and flexible motor imagery classification using electroencephalogram signals publication-title: Comput Methods Programs Biomed – volume: 2 start-page: 757 year: 2000 end-page: 760 vol.2 ident: bib0048 article-title: Sparse approximation using least squares support vector machines publication-title: 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353) – volume: 59 start-page: 3560 year: 2011 end-page: 3575 ident: bib0042 article-title: Wavelet transform with tunable Q-factor publication-title: IEEE Trans. Signal Process. – volume: 10 start-page: 425 year: 2014 end-page: 448 ident: bib0005 article-title: Excess early mortality in schizophrenia publication-title: Annu Rev Clin Psychol – volume: 34 start-page: 1211 year: 2008 end-page: 1220 ident: bib0003 article-title: Social cognition in schizophrenia: an nimh workshop on definitions, assessment, and research opportunities publication-title: Schizophr Bull – volume: 36 start-page: 6492 year: 2009 end-page: 6499 ident: bib0025 article-title: An efficient classifier to diagnose of schizophrenia based on the EEG signals publication-title: Expert Syst Appl – reference: WHO, – start-page: 6047 year: 2013 end-page: 6050 ident: bib0026 article-title: Classification of schizophrenia using genetic algorithm-support vector machine (GA-SVM) publication-title: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) – volume: 13 start-page: 87 year: 2012 end-page: 94 ident: bib0029 article-title: Consciousness, schizophrenia and complexity publication-title: Cogn Syst Res – reference: . – volume: 2 start-page: 106 year: 2014 end-page: 110 ident: bib0044 article-title: A novel EEG feature extraction method using hjorth parameter publication-title: International Journal of Electronics and Electrical Engineering – start-page: 4521 year: 2019 end-page: 4524 ident: bib0034 article-title: EEG signals classification using machine learning for the identification and diagnosis of schizophrenia publication-title: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) – volume: 31 start-page: 37 year: 1994 end-page: 43 ident: bib0015 article-title: Resting EEG in first-episode and chronic schizophrenia publication-title: Psychophysiology – volume: 9 year: 2019 ident: bib0022 article-title: Deep convolutional neural network model for automated diagnosis of schizophrenia using EEG signals publication-title: Applied Sciences – year: 2012 ident: bib0038 article-title: Generalized fisher score for feature selection publication-title: Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence, UAI 2011 – volume: 26 start-page: 1650008 year: 2016 ident: bib0021 article-title: Analysis of the complexity measures in the EEG of schizophrenia patients publication-title: Int J Neural Syst – year: 2020 ident: bib0040 article-title: Optimized tunable Q wavelet transform based drowsiness detection from electroencephalogram signals publication-title: IRBM – volume: 98 start-page: 374 year: 1941 end-page: 381 ident: bib0010 article-title: Electroencephalography in schizophrenia publication-title: American Journal of Psychiatry – volume: 90 start-page: 359 year: 2019 end-page: 367 ident: bib0009 article-title: Application of multiresolution analysis for automated detection of brain abnormality using MR images: a comparative study publication-title: Future Generation Computer Systems – start-page: 2679 year: 2005 ident: 10.1016/j.cmpb.2021.106450_bib0016 article-title: Classification of schizophrenia and depression by EEG with ANNs* – volume: 59 start-page: 3560 issue: 8 year: 2011 ident: 10.1016/j.cmpb.2021.106450_bib0042 article-title: Wavelet transform with tunable Q-factor publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2011.2143711 – volume: 28 start-page: 2390 issue: 11 year: 2020 ident: 10.1016/j.cmpb.2021.106450_bib0031 article-title: A computerized method for automatic detection of schizophrenia using EEG signals publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2020.3022715 – volume: 34 start-page: 1211 issue: 6 year: 2008 ident: 10.1016/j.cmpb.2021.106450_bib0003 article-title: Social cognition in schizophrenia: an nimh workshop on definitions, assessment, and research opportunities publication-title: Schizophr Bull doi: 10.1093/schbul/sbm145 – volume: 70 start-page: 1 year: 2021 ident: 10.1016/j.cmpb.2021.106450_bib0011 article-title: SPWVD-CNN for automated detection of schizophrenia patients using EEG signals publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2021.3070608 – volume: 197 start-page: 1057 year: 2020 ident: 10.1016/j.cmpb.2021.106450_bib0014 article-title: A facile and flexible motor imagery classification using electroencephalogram signals publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2020.105722 – volume: 26 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.cmpb.2021.106450_bib0019 article-title: Classification of EEG signals using adaptive weighted distance nearest neighbor algorithm publication-title: Journal of King Saud University - Computer and Information Sciences doi: 10.1016/j.jksuci.2013.01.001 – volume: 98 start-page: 374 issue: 3 year: 1941 ident: 10.1016/j.cmpb.2021.106450_bib0010 article-title: Electroencephalography in schizophrenia publication-title: American Journal of Psychiatry doi: 10.1176/ajp.98.3.374 – volume: 26 start-page: 1650008 issue: 02 year: 2016 ident: 10.1016/j.cmpb.2021.106450_sbref0021 article-title: Analysis of the complexity measures in the EEG of schizophrenia patients publication-title: Int J Neural Syst doi: 10.1142/S0129065716500088 – year: 2020 ident: 10.1016/j.cmpb.2021.106450_bib0023 article-title: Automated detection of schizophrenia using optimal wavelet-based l1 norm features extracted from single-channel EEG publication-title: Cogn Neurodyn – volume: 589 start-page: 126 year: 2015 ident: 10.1016/j.cmpb.2021.106450_bib0024 article-title: Diagnostic utility of quantitative EEG in un-medicated schizophrenia publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2014.12.064 – volume: 36 start-page: 6492 issue: 3, Part 2 year: 2009 ident: 10.1016/j.cmpb.2021.106450_bib0025 article-title: An efficient classifier to diagnose of schizophrenia based on the EEG signals publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2008.07.037 – volume: 152 start-page: 131 year: 2017 ident: 10.1016/j.cmpb.2021.106450_bib0028 article-title: Binary classification of multichannel-EEG records based on the ϵ-complexity of continuous vector functions publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2017.09.001 – volume: 100 start-page: 101698 year: 2019 ident: 10.1016/j.cmpb.2021.106450_bib0032 article-title: Automated detection of schizophrenia using nonlinear signal processing methods publication-title: Artif Intell Med doi: 10.1016/j.artmed.2019.07.006 – volume: 10 start-page: 425 year: 2014 ident: 10.1016/j.cmpb.2021.106450_bib0005 article-title: Excess early mortality in schizophrenia publication-title: Annu Rev Clin Psychol doi: 10.1146/annurev-clinpsy-032813-153657 – year: 2012 ident: 10.1016/j.cmpb.2021.106450_bib0038 article-title: Generalized fisher score for feature selection publication-title: Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence, UAI 2011 – start-page: 4521 year: 2019 ident: 10.1016/j.cmpb.2021.106450_bib0034 article-title: EEG signals classification using machine learning for the identification and diagnosis of schizophrenia – volume: 187 start-page: 105325 year: 2020 ident: 10.1016/j.cmpb.2021.106450_bib0013 article-title: A flexible analytic wavelet transform based approach for motor-imagery tasks classification in BCI applications publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2020.105325 – year: 2020 ident: 10.1016/j.cmpb.2021.106450_bib0033 article-title: Classification of schizophrenia patients through empirical wavelet transformation using electroencephalogram signals – volume: 27 start-page: 233 issue: 3 year: 2019 ident: 10.1016/j.cmpb.2021.106450_bib0035 article-title: Fractal-based classification of electroencephalography (EEG) signals in healthy adolescents and adolescents with symptoms of schizophrenia publication-title: Technol. Health Care doi: 10.3233/THC-181497 – volume: 173 start-page: 157 year: 2019 ident: 10.1016/j.cmpb.2021.106450_bib0046 article-title: Emotion recognition from single-channel EEG signals using a two-stage correlation and instantaneous frequency-based filtering method publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2019.03.015 – ident: 10.1016/j.cmpb.2021.106450_bib0037 – volume: 9 start-page: 293 issue: 3 year: 1999 ident: 10.1016/j.cmpb.2021.106450_bib0047 article-title: Least squares support vector machine classifiers publication-title: Neural Processing Letters doi: 10.1023/A:1018628609742 – volume: 90 start-page: 359 year: 2019 ident: 10.1016/j.cmpb.2021.106450_bib0009 article-title: Application of multiresolution analysis for automated detection of brain abnormality using MR images: a comparative study publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2018.08.008 – volume: 31 start-page: 331 year: 2017 ident: 10.1016/j.cmpb.2021.106450_bib0027 article-title: Functional brain network analysis of schizophrenic patients with positive and negative syndrome based on mutual information of EEG time series publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2016.08.013 – volume: 47 start-page: 263 issue: 3 year: 2009 ident: 10.1016/j.cmpb.2021.106450_bib0018 article-title: Entropy and complexity measures for EEG signal classification of schizophrenic and control participants publication-title: Artif Intell Med doi: 10.1016/j.artmed.2009.03.003 – volume: 114 start-page: 102039 year: 2021 ident: 10.1016/j.cmpb.2021.106450_bib0004 article-title: Advanced EEG-based learning approaches to predict schizophrenia: promises and pitfalls publication-title: Artif Intell Med doi: 10.1016/j.artmed.2021.102039 – volume: 119 start-page: 1232 issue: 6 year: 2008 ident: 10.1016/j.cmpb.2021.106450_bib0017 article-title: Abnormal EEG complexity in patients with schizophrenia and depression publication-title: Clinical Neurophysiology doi: 10.1016/j.clinph.2008.01.104 – volume: 31 start-page: 37 issue: 1 year: 1994 ident: 10.1016/j.cmpb.2021.106450_bib0015 article-title: Resting EEG in first-episode and chronic schizophrenia publication-title: Psychophysiology doi: 10.1111/j.1469-8986.1994.tb01023.x – volume: 13 start-page: 87 issue: 1 year: 2012 ident: 10.1016/j.cmpb.2021.106450_bib0029 article-title: Consciousness, schizophrenia and complexity publication-title: Cogn Syst Res doi: 10.1016/j.cogsys.2011.05.001 – volume: 9 issue: 14 year: 2019 ident: 10.1016/j.cmpb.2021.106450_bib0022 article-title: Deep convolutional neural network model for automated diagnosis of schizophrenia using EEG signals publication-title: Applied Sciences doi: 10.3390/app9142870 – volume: 10 start-page: 1 issue: 2 year: 2015 ident: 10.1016/j.cmpb.2021.106450_bib0007 article-title: The global burden of mental, neurological and substance use disorders: an analysis from the global burden of disease study 2010 publication-title: PLoS ONE doi: 10.1371/journal.pone.0116820 – volume: 68 start-page: 102777 year: 2021 ident: 10.1016/j.cmpb.2021.106450_bib0006 article-title: An accurate automated schizophrenia detection using TQWT and statistical moment based feature extraction publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.102777 – start-page: 6047 year: 2013 ident: 10.1016/j.cmpb.2021.106450_bib0026 article-title: Classification of schizophrenia using genetic algorithm-support vector machine (GA-SVM) – volume: 37 start-page: 2626 issue: 12 year: 2009 ident: 10.1016/j.cmpb.2021.106450_bib0045 article-title: Log energy entropy-based EEG classification with multilayer neural networks in seizure publication-title: Ann Biomed Eng doi: 10.1007/s10439-009-9795-x – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.cmpb.2021.106450_bib0043 article-title: Grey wolf optimizer publication-title: Adv. Eng. Software doi: 10.1016/j.advengsoft.2013.12.007 – volume: 2 start-page: 106 year: 2014 ident: 10.1016/j.cmpb.2021.106450_bib0044 article-title: A novel EEG feature extraction method using hjorth parameter publication-title: International Journal of Electronics and Electrical Engineering doi: 10.12720/ijeee.2.2.106-110 – volume: 152 issue: 8 year: 1995 ident: 10.1016/j.cmpb.2021.106450_sbref0002 article-title: Diagnostic and statistical manual of mental disorders, 4th ed. (DSM-IV) publication-title: American Journal of Psychiatry doi: 10.1176/ajp.152.8.1228 – volume: 2 start-page: 757 year: 2000 ident: 10.1016/j.cmpb.2021.106450_bib0048 article-title: Sparse approximation using least squares support vector machines – volume: 101 start-page: 307 issue: 4 year: 2000 ident: 10.1016/j.cmpb.2021.106450_bib0020 article-title: Quantitative EEG in positive and negative schizophrenia publication-title: Acta Psychiatr Scand doi: 10.1034/j.1600-0447.2000.101004307.x – volume: 27 start-page: 1193 issue: 6 year: 2019 ident: 10.1016/j.cmpb.2021.106450_bib0008 article-title: EEG classification during scene free-viewing for schizophrenia detection publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2019.2913799 – year: 2020 ident: 10.1016/j.cmpb.2021.106450_bib0040 article-title: Optimized tunable Q wavelet transform based drowsiness detection from electroencephalogram signals publication-title: IRBM – volume: 6 start-page: 40379 year: 2018 ident: 10.1016/j.cmpb.2021.106450_bib0030 article-title: Classification of bipolar disorder and schizophrenia using steady-state visual evoked potential based features publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2854555 – ident: 10.1016/j.cmpb.2021.106450_bib0001 – volume: 69 start-page: 9609 issue: 12 year: 2020 ident: 10.1016/j.cmpb.2021.106450_bib0039 article-title: Adaptive tunable Q wavelet transform-based emotion identification publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2020.3006611 – volume: 200 start-page: 105941 year: 2021 ident: 10.1016/j.cmpb.2021.106450_bib0012 article-title: Automated detection of conduct disorder and attention deficit hyperactivity disorder using decomposition and nonlinear techniques with EEG signals publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2021.105941 – volume: 40 year: 2013 ident: 10.1016/j.cmpb.2021.106450_bib0036 article-title: Did i do that? abnormal predictive processes in schizophrenia when button pressing to deliver a tone publication-title: Schizophr Bull – volume: 163 start-page: 107234 year: 2020 ident: 10.1016/j.cmpb.2021.106450_bib0041 article-title: Constrained based tunable Q wavelet transform for efficient decomposition of EEG signals publication-title: Applied Acoustics doi: 10.1016/j.apacoust.2020.107234 |
| SSID | ssj0002556 |
| Score | 2.4764817 |
| Snippet | •Investigate the detailed analysis of the SZ and HC with different conditions.•Selection of dominant channel by Fisher score to reduce the burden of... Schizophrenia (SZ) is a type of neurological disorder that is diagnosed by professional psychiatrists based on interviews and manual screening of patients. The... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 106450 |
| SubjectTerms | Channel selection Electroencephalogram signals Flexible least square support vector machine classifier Flexible tunable Q wavelet transform Schizophrenia detection |
| Title | A self-learned decomposition and classification model for schizophrenia diagnosis |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0169260721005241 https://dx.doi.org/10.1016/j.cmpb.2021.106450 https://www.proquest.com/docview/2580696006 |
| Volume | 211 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: AKRWK dateStart: 19850501 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lgngRn_gsEbzJ2k3zqDmWYqmKBdGCt5DNAyq6LW579beb2c3WB6LgcUMmhEkymdl83wxCpyYjjrqMJ1wyGQIUohNtuybxlukQQGtBfInyHYnhmF0_8scG6tdcGIBVRttf2fTSWseWdtRmezaZtO8hj0jwxkMIA_82S_I6Y12oYnD-9gHzgBRbVX5vmUDvSJypMF7mZZaFGLFDQoNgwL3_-XL6ZqbLu2ewgdaj04h71bw2UcPlW2j1Nj6Lb6O7Hi7cs0_KEhDOYusAKR7hWFjnFhtwkgEVVC4ELuvf4OCv4uIz6A7bCng3KXbQeHD50B8msVZCYsK854ngHUkct5SZbgZsWe65ccQYyjVxjBhKvfAC0rdR7jUxhGnhZcp12s2E03QXNfNp7vYQ1oZ5mglrw1CMMSN1JlPpjDRey7Dk-4jUSlImJhKHehbPqkaMPSlQrALFqkqx--hsKTOr0mj82pvWulc1QTSYNBWs_K9SfCn1ZQv9KXdSL68KZwseTHTupotCdfhFKkKIl4qDf459iNbgqyIvHqHm_HXhjoMXM89a5TZtoZXe1c1w9A6vcPFi |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FQb2IT3wbwZus3TSPmmMRS9UqiC14C9k8oKLbYturv93MbrY-kApes5kQJslkZvN9Mwidmow46jKecMlkCFCITrRtmsRbpkMArQXxBcr3XnT67OaJP9XQZcWFAVhltP2lTS-sdWypR23WR4NB_RHyiARvPIQw8G8TyOuLjDeaEIGdv3_iPCDHVpngWybQPTJnSpCXeR1lIUhskNAgGJDvf7-dftjp4vJpr6HV6DXiVjmxdVRz-QZauovv4pvooYXH7sUnRQ0IZ7F1ABWPeCysc4sNeMkACypWAhcFcHBwWPH4K-oO2xJ5NxhvoX77qnfZSWKxhMSEeU8SwRuSOG4pM80M6LLcc-OIMZRr4hgxlHrhBeRvo9xrYgjTwsuU67SZCafpNlrIh7nbQVgb5mkmrA1DMcaM1JlMpTPSeC3Dmu8iUilJmZhJHApavKgKMvasQLEKFKtKxe6is5nMqMyjMbc3rXSvKoZosGkqmPm5Unwm9W0P_Sl3Ui2vCocLXkx07obTsWrwi1SEGC8Ve_8c-xgtd3p3XdW9vr_dRyvwpWQyHqCFydvUHQaXZpIdFVv2A0qv8vc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+self-learned+decomposition+and+classification+model+for+schizophrenia+diagnosis&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Khare%2C+Smith+K.&rft.au=Bajaj%2C+Varun&rft.date=2021-11-01&rft.pub=Elsevier+B.V&rft.issn=0169-2607&rft.eissn=1872-7565&rft.volume=211&rft_id=info:doi/10.1016%2Fj.cmpb.2021.106450&rft.externalDocID=S0169260721005241 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon |