Machine Learning-Enabled Quantitative Analysis of Optically Obscure Scratches on Nickel-Plated Additively Manufactured (AM) Samples
Additively manufactured metal components often have rough and uneven surfaces, necessitating post-processing and surface polishing. Hardness is a critical characteristic that affects overall component properties, including wear. This study employed K-means unsupervised machine learning to explore th...
Saved in:
| Published in | Materials Vol. 16; no. 18; p. 6301 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
20.09.2023
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1996-1944 1996-1944 |
| DOI | 10.3390/ma16186301 |
Cover
| Abstract | Additively manufactured metal components often have rough and uneven surfaces, necessitating post-processing and surface polishing. Hardness is a critical characteristic that affects overall component properties, including wear. This study employed K-means unsupervised machine learning to explore the relationship between the relative surface hardness and scratch width of electroless nickel plating on additively manufactured composite components. The Taguchi design of experiment (TDOE) L9 orthogonal array facilitated experimentation with various factors and levels. Initially, a digital light microscope was used for 3D surface mapping and scratch width quantification. However, the microscope struggled with the reflections from the shiny Ni-plating and scatter from small scratches. To overcome this, a scanning electron microscope (SEM) generated grayscale images and 3D height maps of the scratched Ni-plating, thus enabling the precise characterization of scratch widths. Optical identification of the scratch regions and quantification were accomplished using Python code with a K-means machine-learning clustering algorithm. The TDOE yielded distinct Ni-plating hardness levels for the nine samples, while an increased scratch force showed a non-linear impact on scratch widths. The enhanced surface quality resulting from Ni coatings will have significant implications in various industrial applications, and it will play a pivotal role in future metal and alloy surface engineering. |
|---|---|
| AbstractList | Additively manufactured metal components often have rough and uneven surfaces, necessitating post-processing and surface polishing. Hardness is a critical characteristic that affects overall component properties, including wear. This study employed K-means unsupervised machine learning to explore the relationship between the relative surface hardness and scratch width of electroless nickel plating on additively manufactured composite components. The Taguchi design of experiment (TDOE) L9 orthogonal array facilitated experimentation with various factors and levels. Initially, a digital light microscope was used for 3D surface mapping and scratch width quantification. However, the microscope struggled with the reflections from the shiny Ni-plating and scatter from small scratches. To overcome this, a scanning electron microscope (SEM) generated grayscale images and 3D height maps of the scratched Ni-plating, thus enabling the precise characterization of scratch widths. Optical identification of the scratch regions and quantification were accomplished using Python code with a K-means machine-learning clustering algorithm. The TDOE yielded distinct Ni-plating hardness levels for the nine samples, while an increased scratch force showed a non-linear impact on scratch widths. The enhanced surface quality resulting from Ni coatings will have significant implications in various industrial applications, and it will play a pivotal role in future metal and alloy surface engineering. Additively manufactured metal components often have rough and uneven surfaces, necessitating post-processing and surface polishing. Hardness is a critical characteristic that affects overall component properties, including wear. This study employed K-means unsupervised machine learning to explore the relationship between the relative surface hardness and scratch width of electroless nickel plating on additively manufactured composite components. The Taguchi design of experiment (TDOE) L9 orthogonal array facilitated experimentation with various factors and levels. Initially, a digital light microscope was used for 3D surface mapping and scratch width quantification. However, the microscope struggled with the reflections from the shiny Ni-plating and scatter from small scratches. To overcome this, a scanning electron microscope (SEM) generated grayscale images and 3D height maps of the scratched Ni-plating, thus enabling the precise characterization of scratch widths. Optical identification of the scratch regions and quantification were accomplished using Python code with a K-means machine-learning clustering algorithm. The TDOE yielded distinct Ni-plating hardness levels for the nine samples, while an increased scratch force showed a non-linear impact on scratch widths. The enhanced surface quality resulting from Ni coatings will have significant implications in various industrial applications, and it will play a pivotal role in future metal and alloy surface engineering.Additively manufactured metal components often have rough and uneven surfaces, necessitating post-processing and surface polishing. Hardness is a critical characteristic that affects overall component properties, including wear. This study employed K-means unsupervised machine learning to explore the relationship between the relative surface hardness and scratch width of electroless nickel plating on additively manufactured composite components. The Taguchi design of experiment (TDOE) L9 orthogonal array facilitated experimentation with various factors and levels. Initially, a digital light microscope was used for 3D surface mapping and scratch width quantification. However, the microscope struggled with the reflections from the shiny Ni-plating and scatter from small scratches. To overcome this, a scanning electron microscope (SEM) generated grayscale images and 3D height maps of the scratched Ni-plating, thus enabling the precise characterization of scratch widths. Optical identification of the scratch regions and quantification were accomplished using Python code with a K-means machine-learning clustering algorithm. The TDOE yielded distinct Ni-plating hardness levels for the nine samples, while an increased scratch force showed a non-linear impact on scratch widths. The enhanced surface quality resulting from Ni coatings will have significant implications in various industrial applications, and it will play a pivotal role in future metal and alloy surface engineering. |
| Audience | Academic |
| Author | Klein, Kate L. Grizzle, Andrew C. Elliott, Amy Demisse, Wondwosen Tyagi, Pawan Mengesha, Betelhiem N. |
| AuthorAffiliation | 2 Manufacturing Demonstration Facility, 2350 Cherahala Boulevard, Knoxville, TN 37932, USA; elliottam@ornl.gov 1 Mechanical Engineering, University of the District of Columbia, Washington, DC 20008, USA andrew.grizzle@udc.edu (A.C.G.); wondwosen.demisse@udc.edu (W.D.); kate.klein@udc.edu (K.L.K.) |
| AuthorAffiliation_xml | – name: 1 Mechanical Engineering, University of the District of Columbia, Washington, DC 20008, USA andrew.grizzle@udc.edu (A.C.G.); wondwosen.demisse@udc.edu (W.D.); kate.klein@udc.edu (K.L.K.) – name: 2 Manufacturing Demonstration Facility, 2350 Cherahala Boulevard, Knoxville, TN 37932, USA; elliottam@ornl.gov |
| Author_xml | – sequence: 1 givenname: Betelhiem N. surname: Mengesha fullname: Mengesha, Betelhiem N. – sequence: 2 givenname: Andrew C. surname: Grizzle fullname: Grizzle, Andrew C. – sequence: 3 givenname: Wondwosen surname: Demisse fullname: Demisse, Wondwosen – sequence: 4 givenname: Kate L. orcidid: 0009-0008-8834-4081 surname: Klein fullname: Klein, Kate L. – sequence: 5 givenname: Amy orcidid: 0000-0003-4575-4730 surname: Elliott fullname: Elliott, Amy – sequence: 6 givenname: Pawan orcidid: 0000-0002-7541-1344 surname: Tyagi fullname: Tyagi, Pawan |
| BackLink | https://www.osti.gov/biblio/2001346$$D View this record in Osti.gov |
| BookMark | eNp9kk1v1DAQhiNUJErphV8QwaWAUuz4I5sTWlXlQ9plQYVzNDuZ7Lo49hI7RXvmj-OwlQoVwj7Y8jzvO-OxH2dHzjvKsqecnQtRs9c9cM1nWjD-IDvmda0LXkt59Mf-UXYawjVLQwg-K-vj7OcScGsc5QuCwRm3KS4drC21-ecRXDQRormhfO7A7oMJue_y1S4aBGv3-WodcBwov8IBIm4phV3-0eA3ssUnCzG5zNvWTA6JXoIbO8CYFG1-Nl--yK-g31kKT7KHHdhAp7frSfb17eWXi_fFYvXuw8V8UaBULBaq01quVQeSt-uSqhnrkEqSnLAWWiIpqVARJkiomkrAVmKtqkrrknAmxEn26uA7uh3sf6QrNLvB9DDsG86aqYXNXQsT_eZA78Z1Ty2SiwPcKTyY5u-IM9tm42-SlxKlKieHZwcHH6JpAppIuEXvHGFsSpZySJ2gs9s0g_8-UohNbwKSteDIj6EpZxXjUnEx-T2_h177cUgvM1E6Pa-WvEzU-YHagKXGuM6n6jDNlnqTslNn0vm8qupKsopNFbw8CHDwIQzU_b8r7B6Mv_-In3pg7L8kvwBPM9FO |
| CitedBy_id | crossref_primary_10_3390_ma17010121 crossref_primary_10_3390_lubricants12050172 crossref_primary_10_3390_ma18051177 crossref_primary_10_1007_s00170_024_14543_2 |
| Cites_doi | 10.1016/j.precisioneng.2016.06.001 10.1080/0951192X.2023.2177740 10.1016/j.pmatsci.2023.101102 10.1007/s10853-015-9479-x 10.1016/j.actamat.2021.117612 10.1016/j.patrec.2009.09.011 10.1007/s40192-021-00205-8 10.1023/A:1025572410205 10.1007/s10845-022-01957-6 10.1021/acs.oprd.3c00126 10.1016/j.matpr.2020.11.026 10.1111/jpim.12673 10.1016/j.triboint.2005.04.011 10.1145/1015330.1015408 10.1007/s00170-021-08183-z 10.1007/s12633-015-9367-7 10.1109/ACCESS.2020.2988796 10.1007/s11665-023-07897-3 10.1016/j.matdes.2023.111699 10.1016/j.zemedi.2018.11.002 10.1007/s00170-022-09857-y 10.1016/S0043-1648(00)00382-3 10.1007/s40964-023-00412-z |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 OTOTI 5PM ADTOC UNPAY |
| DOI | 10.3390/ma16186301 |
| DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection (Proquest) Materials Research Database Materials Science Database (Proquest) Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic OSTI.GOV PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Materials Science Collection Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1996-1944 |
| ExternalDocumentID | 10.3390/ma16186301 PMC10532521 2001346 A779740706 10_3390_ma16186301 |
| GeographicLocations | United States--US |
| GeographicLocations_xml | – name: United States--US |
| GrantInformation_xml | – fundername: NASA grantid: 80NSSC19M0196 – fundername: National Science Foundation-CREST Award grantid: 1914751 – fundername: Department of Energy/National Nuclear Security Agency grantid: DE-FOA-0003945 – fundername: US Department of Energy grantid: DE-AC05-00OR22725 |
| GroupedDBID | 29M 2WC 2XV 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I E3Z EBS ESX FRP GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 MK~ MODMG M~E OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RPM TR2 TUS 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQQKQ PQUKI 7X8 PUEGO AAPBV ABPTK AFPKN GROUPED_DOAJ OTOTI 5PM ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c450t-5f664b5fa41db2e780fce2e41ec9364ce545c5ec64b359e2acd4c9577662ec833 |
| IEDL.DBID | BENPR |
| ISSN | 1996-1944 |
| IngestDate | Sun Oct 26 01:56:26 EDT 2025 Tue Sep 30 17:11:03 EDT 2025 Mon Oct 02 04:05:07 EDT 2023 Fri Sep 05 10:20:09 EDT 2025 Fri Jul 25 11:55:07 EDT 2025 Mon Oct 20 17:06:38 EDT 2025 Thu Oct 16 04:35:29 EDT 2025 Thu Apr 24 22:55:18 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c450t-5f664b5fa41db2e780fce2e41ec9364ce545c5ec64b359e2acd4c9577662ec833 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 FOA-0003945 USDOE National Nuclear Security Administration (NNSA) |
| ORCID | 0000-0003-4575-4730 0009-0008-8834-4081 0000-0002-7541-1344 0009000888344081 0000000275411344 0000000345754730 |
| OpenAccessLink | https://www.proquest.com/docview/2869446412?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2869446412 |
| PQPubID | 2032366 |
| ParticipantIDs | unpaywall_primary_10_3390_ma16186301 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10532521 osti_scitechconnect_2001346 proquest_miscellaneous_2870145131 proquest_journals_2869446412 gale_infotracacademiconefile_A779740706 crossref_primary_10_3390_ma16186301 crossref_citationtrail_10_3390_ma16186301 |
| PublicationCentury | 2000 |
| PublicationDate | 20230920 |
| PublicationDateYYYYMMDD | 2023-09-20 |
| PublicationDate_xml | – month: 9 year: 2023 text: 20230920 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel – name: Switzerland |
| PublicationTitle | Materials |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Ilogebe (ref_10) 2019; 8 Onler (ref_11) 2022; 119 ref_14 Lundervold (ref_1) 2019; 29 Pattnaik (ref_7) 2021; 44 Jain (ref_26) 2010; 31 ref_32 Cohn (ref_31) 2021; 10 Stallard (ref_24) 2006; 39 Dillard (ref_20) 2022; 121 Mahesh (ref_2) 2020; 9 Kodinariya (ref_29) 2013; 1 Zhu (ref_12) 2020; 34 Nys (ref_15) 2023; 27 Roscoe (ref_13) 2023; 40 Venturi (ref_16) 2023; 32 Mondal (ref_6) 2022; 226 Townsend (ref_18) 2016; 46 Sinaga (ref_30) 2020; 8 Kato (ref_21) 2000; 241 Chernyavsky (ref_25) 2023; 227 Balaraju (ref_22) 2003; 33 Parsazadeh (ref_4) 2023; 135 Hebert (ref_19) 2016; 51 ref_23 Tyagi (ref_17) 2019; 25 ref_28 ref_27 Cearley (ref_8) 2016; 10 ref_9 Xames (ref_5) 2022; 34 Jiang (ref_3) 2023; 36 |
| References_xml | – volume: 9 start-page: 381 year: 2020 ident: ref_2 article-title: Machine learning algorithms—A review publication-title: Int. J. Sci. Res. – volume: 46 start-page: 34 year: 2016 ident: ref_18 article-title: Surface texture metrology for metal additive manufacturing: A review publication-title: Precis. Eng. doi: 10.1016/j.precisioneng.2016.06.001 – volume: 1 start-page: 90 year: 2013 ident: ref_29 article-title: Review on determining number of Cluster in K-Means Clustering publication-title: Int. J. – ident: ref_32 – volume: 25 start-page: 32 year: 2019 ident: ref_17 article-title: Reducing the roughness of internal surface of an additive manufacturing produced 316 steel component by chempolishing and electropolishing publication-title: Addit. Manuf. – volume: 36 start-page: 1258 year: 2023 ident: ref_3 article-title: A survey of machine learning in additive manufacturing technologies publication-title: Int. J. Comput. Integr. Manuf. doi: 10.1080/0951192X.2023.2177740 – volume: 135 start-page: 101102 year: 2023 ident: ref_4 article-title: Towards the next generation of machine learning models in additive manufacturing: A review of process dependent material evolution publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2023.101102 – volume: 51 start-page: 1165 year: 2016 ident: ref_19 article-title: Viewpoint: Metallurgical aspects of powder bed metal additive manufacturing publication-title: J. Mater. Sci. doi: 10.1007/s10853-015-9479-x – volume: 226 start-page: 117612 year: 2022 ident: ref_6 article-title: Crack free metal printing using physics informed machine learning publication-title: Acta Mater. doi: 10.1016/j.actamat.2021.117612 – volume: 31 start-page: 651 year: 2010 ident: ref_26 article-title: Data clustering: 50 years beyond K-means publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2009.09.011 – volume: 10 start-page: 231 year: 2021 ident: ref_31 article-title: Unsupervised Machine Learning Via Transfer Learning and k-Means Clustering to Classify Materials Image Data publication-title: Integr. Mater. Manuf. Innov. doi: 10.1007/s40192-021-00205-8 – ident: ref_14 – volume: 33 start-page: 807 year: 2003 ident: ref_22 article-title: Electroless Ni–P composite coatings publication-title: J. Appl. Electrochem. doi: 10.1023/A:1025572410205 – volume: 34 start-page: 2529 year: 2022 ident: ref_5 article-title: A systematic literature review on recent trends of machine learning applications in additive manufacturing publication-title: J. Intell. Manuf. doi: 10.1007/s10845-022-01957-6 – volume: 27 start-page: 1455 year: 2023 ident: ref_15 article-title: Additive Manufacturing as a Rapid Prototyping and Fabrication Tool for Laboratory Crystallizers—A Proof-of-Concept Study publication-title: Org. Process. Res. Dev. doi: 10.1021/acs.oprd.3c00126 – volume: 44 start-page: 4703 year: 2021 ident: ref_7 article-title: Role of machine learning in the field of Fiber reinforced polymer composites: A preliminary discussion publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2020.11.026 – volume: 40 start-page: 554 year: 2023 ident: ref_13 article-title: Transitioning additive manufacturing from rapid prototyping to high-volume production: A case study of complex final products publication-title: J. Prod. Innov. Manag. doi: 10.1111/jpim.12673 – volume: 39 start-page: 159 year: 2006 ident: ref_24 article-title: The study of the adhesion of a TiN coating on steel and titanium alloy substrates using a multi-mode scratch tester publication-title: Tribol. Int. doi: 10.1016/j.triboint.2005.04.011 – volume: 8 start-page: 15 year: 2019 ident: ref_10 article-title: Morphology of binder-jet additive manufactured structural amorphous metal matrix composites publication-title: Int. J. Eng. Sci. – ident: ref_27 – volume: 10 start-page: 1 year: 2016 ident: ref_8 article-title: Top 10 strategic technology trends for 2018 publication-title: Top – ident: ref_28 doi: 10.1145/1015330.1015408 – volume: 119 start-page: 1091 year: 2022 ident: ref_11 article-title: Multi-objective optimization of binder jet additive manufacturing of Co-Cr-Mo using machine learning publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-021-08183-z – ident: ref_23 doi: 10.1007/s12633-015-9367-7 – volume: 34 start-page: 101183 year: 2020 ident: ref_12 article-title: Unraveling pore evolution in post-processing of binder jetting materials: X-ray computed tomography, computer vision, and machine learning publication-title: Addit. Manuf. – volume: 8 start-page: 80716 year: 2020 ident: ref_30 article-title: Unsupervised K-Means Clustering Algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2988796 – volume: 32 start-page: 6589 year: 2023 ident: ref_16 article-title: Additive Manufacturing in the Context of Repeatability and Reliability publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-023-07897-3 – volume: 227 start-page: 111699 year: 2023 ident: ref_25 article-title: Machine learning for additive manufacturing: Predicting materials characteristics and their uncertainty publication-title: Mater. Des. doi: 10.1016/j.matdes.2023.111699 – volume: 29 start-page: 102 year: 2019 ident: ref_1 article-title: An overview of deep learning in medical imaging focusing on MRI publication-title: Z. Med. Phys. doi: 10.1016/j.zemedi.2018.11.002 – volume: 121 start-page: 8159 year: 2022 ident: ref_20 article-title: Alternating chempolishing and electropolishing for interior and exterior surface finishing of additively manufactured (AM) metal components publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-022-09857-y – volume: 241 start-page: 151 year: 2000 ident: ref_21 article-title: Wear in relation to friction—A review publication-title: Wear doi: 10.1016/S0043-1648(00)00382-3 – ident: ref_9 doi: 10.1007/s40964-023-00412-z |
| SSID | ssj0000331829 |
| Score | 2.3834689 |
| Snippet | Additively manufactured metal components often have rough and uneven surfaces, necessitating post-processing and surface polishing. Hardness is a critical... |
| SourceID | unpaywall pubmedcentral osti proquest gale crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 6301 |
| SubjectTerms | Additive manufacturing Algorithms Artificial intelligence Clustering Corrosion resistance Deep learning Design of experiments Electroless nickel plating Hardness Industrial applications Light levels Machine learning Mechanical properties Nickel Nickel coatings Orthogonal arrays Plating Quantitative analysis Scanning electron microscopy Stainless steel Surface hardness Surface properties Taguchi methods Unsupervised learning |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9RAEF70-qA--FuMrbJiQfuQ5vZnkicJ0lKEayv1oD6FzWZXS2NytBelvvqPO7u3Oe-KiODzTsKGfDP7TTLzDULbmisheW1iUoE3cZ2SuBJMxZZxZeFEgjPO9Q5PDuXBlL8_FacrXfyurBJS8TMfpH2FLGTZPCEyIVkiAY3JrLZvv4VvSUTmgomU0vwm2pAC2PgIbUwPj4tP_mdyuHqhSsogu0--Ki8Qz8IMmOEcCtF41IFbrVHN64WSt_p2pq6-q6ZZOYX27yE17H9RfHK-28-rXf3jmrTj_zzgfXQ3UFRcLDD1AN0w7UN0Z0W48BH6OfE1mAYHedbP8Z7vwarxh161vm8NoigeFE9wZ_HRzH81b67wEYSq_sLgEw3oc_O6cNdiQOS5aeLjBrhvjYu69jVNYD1Rbe-6L-CKGr8pJjv4RDlF48vHaLq_9_HdQRzGOcSai_E8FlZKXgmrOKkratJsbLWhhhOjcya5NkDmtDAajJjIDVW65joXaSolNTpj7AkatV1rniIsa0GlBWYhUsKtsJXKFNyNi0wza1UWoZ3h5ZY6aJ27kRtNCTmPA0L5GwgRerW0nS0UPv5o9dphpHRuD3fSKnQvwH6cgFZZpClkZhA_ZYQ2HYxKYDBOhle7eiU9d-M-CeOwujWgqwzR4rKkmQQMSE5ohF4ul8HP3c8b1Zqudzapn6rMYCvZGiqXu3ZK4esr7dkXrxhO3PwPIGoR2l4C-C8P--zfzDbRbQqUz1XP0PEWGs0vevMcKNq8ehG88BdKazfI priority: 102 providerName: Unpaywall |
| Title | Machine Learning-Enabled Quantitative Analysis of Optically Obscure Scratches on Nickel-Plated Additively Manufactured (AM) Samples |
| URI | https://www.proquest.com/docview/2869446412 https://www.proquest.com/docview/2870145131 https://www.osti.gov/biblio/2001346 https://pubmed.ncbi.nlm.nih.gov/PMC10532521 https://www.mdpi.com/1996-1944/16/18/6301/pdf?version=1695357229 |
| UnpaywallVersion | publishedVersion |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: HH5 dateStart: 20080101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: ADMLS dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: GX1 dateStart: 20080101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: RPM dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: 8FG dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF616QE4IJ5qaKkWUQl6sBrvy_YBoYCSVkhJAyVSOFnrfQDC2KGNhXrmjzPj2G6DUI_Wjq2157Gz65nvI-TQCC2VsC4IM_AmYaIwyCTXgedCe1iRYI3D3uHJVJ3OxYeFXGyRadsLg2WVbUysA7UtDZ6RH7NYJbB1ESF7u_wVIGsU_l1tKTR0Q61g39QQY9tkhyEyVo_svBtNZ5-6U5cBBxtmyRqnlMN-__inriHjecMK065MTXzuleBoG8nnv6WTd6piqa9-6zy_sS6NH5D7TUJJh2sLeEi2XPGI3LsBM_iY_JnUFZOONmCqX4NR3TFl6cdKF3WXGcQ82uKT0NLTs2V9xp1f0TMILNWFo-cGbAXZtWhZULCfHy4PZjlkqpYOra0rkEB6oosKeyXgDktfDydH9Fwj_vDlEzIfjz6_Pw0a8oXACDlYBdIrJTLptQhtxlwUD7xxzInQmYQrYRykXkY6A0JcJo5pY4VJZBQpxZyJOX9KekVZuF1ClZVMecgDZBQKL32mYw1PEzI23Hsd98lR--FT0yCTI0FGnsIOBZWUXiupT152sss1Hsd_pV6h_lJ0UniS0U2vAcwH4a7SYRTBPgqineqTPVRxCvkGguYarC4yKyTnDLmA0f1W82nj25fptSX2yYtuGLwSf7XowpUVykQ1BzKHqcQbFtPNGnG9N0eK799qfO8Q2TogreqTw864bnnZZ7dPco_cZZCYYY0LG-yT3uqics8hkVplB2Q7Hp8cND4CVyeLEK7m09nwy18FTiO9 |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V6aFwQDyFaYFFFEEPVuN92T5UKECqlDZpoa3Um1mv14AwdmhiVTnzv_htzDjrtEGot553Yq0zz13PfB8hm0ZoqURm_SAFbxImDPxUcu3nXOgcMhLkOJwdHo7U4FR8PJNnK-RPOwuDbZVtTGwCdVYZvCPfZpGK4egiAvZ2_MtH1ij8utpSaGhHrZDtNBBjbrBj384u4Ag32dn7APp-xdhu_-T9wHcsA74Rsjv1Za6USGWuRZClzIZRNzeWWRFYE3MljIUaw0hrQIjL2DJtMmFiGYZKMWsivBCFFLAquIjh8Lf6rj86-ry45ely8BkWz3FROY-72z91A1HPHQtNmwldPuhU4NhLxe6_rZprdTnWswtdFFfy4O5dcscVsLQ3t7h7ZMWW98ntK7CGD8jvYdOhaakDb_3q95sJrYx-qnXZTLVBjKUtHgqtcno4bu7Uixk9hEBWn1t6bMA2kc2LViUFe_1hC_-ogMo4o70sazqeQHqoyxpnM-AXGX3TG27RY414x5OH5PRG1PCIdMqqtI8JVZlkKoe6Q4aByGWe6kjD04SMDM9zHXlkq_3jE-OQ0JGQo0jgRIRKSi6V5JGXC9nxHP_jv1KvUX8JBgV4ktFutgH2g_BaSS8M4dwG0VV5ZB1VnEB9gyC9BruZzBTJQAMuYHWj1XziYskkubR8j7xYLEMUwE87urRVjTJhw7nMYSvRksUsdo044ssr5fdvDZ54gOwgUMZ5ZHNhXNe87JPrN_mcrA1OhgfJwd5of53cYlAUYn8N626QzvS8tk-hiJumz5ynUPLlpp3zLzg6XdQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VQeJxQDyF2wKLKIIerNj7sn1AKKINLSVtUanUm1mvdynC2KGJVeXMv-LXMePYaYNQbz3vxFpnnrue-T5CNozQUonc-mEG3iRMFPqZ5Np3XGgHGQlyHM4Oj_bVzrH4eCJPVsifbhYG2yq7mNgE6rwyeEfeZ7FK4OgiQtZ3bVvE4dbw3fiXjwxS-KW1o9OYm8ienZ3D8W3ydncLdP2KseH2l_c7fssw4Bshg6kvnVIik06LMM-YjeLAGcusCK1JuBLGQn1hpDUgxGVimTa5MImMIqWYNTFehkL4vxEhijtOqQ8_LO53Ag7ewpI5IirnSdD_qRtwet7yz3Q5sM0EvQpceqnM_bdJ81ZdjvXsXBfFpQw4vEfutqUrHcxt7T5ZseUDcucSoOFD8nvU9GZa2sK2fvO3m9msnH6uddnMs0F0pR0SCq0cPRg3t-nFjB5ACKvPLD0yYJXI40WrkoKl_rCFf1hATZzTQZ43vU4gPdJljVMZ8IucvhmMNumRRqTjySNyfC1KeEx6ZVXaJ4SqXDLloOKQUSicdJmONTxNyNhw53Tskc3uj09Ni4GOVBxFCmchVFJ6oSSPvFzIjufIH_-Veo36SzEcwJOMbqcaYD8IrJUOoghObBBXlUfWUMUpVDYIz2uwj8lMkQY05AJW1zvNp20UmaQXNu-RF4tl8H_8qKNLW9UoEzVsyxy2Ei9ZzGLXiCC-vFJ-P22QxEPkBYECziMbC-O64mVXr97kc3ITXDL9tLu_t0ZuM6gGsbGGBeukNz2r7VOo3qbZs8ZNKPl63X75F7hsW24 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9RAEF70-qA--FuMrbJiQfuQ5vZnkicJ0lKEayv1oD6FzWZXS2NytBelvvqPO7u3Oe-KiODzTsKGfDP7TTLzDULbmisheW1iUoE3cZ2SuBJMxZZxZeFEgjPO9Q5PDuXBlL8_FacrXfyurBJS8TMfpH2FLGTZPCEyIVkiAY3JrLZvv4VvSUTmgomU0vwm2pAC2PgIbUwPj4tP_mdyuHqhSsogu0--Ki8Qz8IMmOEcCtF41IFbrVHN64WSt_p2pq6-q6ZZOYX27yE17H9RfHK-28-rXf3jmrTj_zzgfXQ3UFRcLDD1AN0w7UN0Z0W48BH6OfE1mAYHedbP8Z7vwarxh161vm8NoigeFE9wZ_HRzH81b67wEYSq_sLgEw3oc_O6cNdiQOS5aeLjBrhvjYu69jVNYD1Rbe-6L-CKGr8pJjv4RDlF48vHaLq_9_HdQRzGOcSai_E8FlZKXgmrOKkratJsbLWhhhOjcya5NkDmtDAajJjIDVW65joXaSolNTpj7AkatV1rniIsa0GlBWYhUsKtsJXKFNyNi0wza1UWoZ3h5ZY6aJ27kRtNCTmPA0L5GwgRerW0nS0UPv5o9dphpHRuD3fSKnQvwH6cgFZZpClkZhA_ZYQ2HYxKYDBOhle7eiU9d-M-CeOwujWgqwzR4rKkmQQMSE5ohF4ul8HP3c8b1Zqudzapn6rMYCvZGiqXu3ZK4esr7dkXrxhO3PwPIGoR2l4C-C8P--zfzDbRbQqUz1XP0PEWGs0vevMcKNq8ehG88BdKazfI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning-Enabled+Quantitative+Analysis+of+Optically+Obscure+Scratches+on+Nickel-Plated+Additively+Manufactured+%28AM%29+Samples&rft.jtitle=Materials&rft.au=Mengesha%2C+Betelhiem+N&rft.au=Grizzle%2C+Andrew+C&rft.au=Demisse%2C+Wondwosen&rft.au=Klein%2C+Kate+L&rft.date=2023-09-20&rft.pub=MDPI+AG&rft.eissn=1996-1944&rft.volume=16&rft.issue=18&rft.spage=6301&rft_id=info:doi/10.3390%2Fma16186301&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |