Machine Learning-Enabled Quantitative Analysis of Optically Obscure Scratches on Nickel-Plated Additively Manufactured (AM) Samples

Additively manufactured metal components often have rough and uneven surfaces, necessitating post-processing and surface polishing. Hardness is a critical characteristic that affects overall component properties, including wear. This study employed K-means unsupervised machine learning to explore th...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 16; no. 18; p. 6301
Main Authors Mengesha, Betelhiem N., Grizzle, Andrew C., Demisse, Wondwosen, Klein, Kate L., Elliott, Amy, Tyagi, Pawan
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 20.09.2023
MDPI
Subjects
Online AccessGet full text
ISSN1996-1944
1996-1944
DOI10.3390/ma16186301

Cover

Abstract Additively manufactured metal components often have rough and uneven surfaces, necessitating post-processing and surface polishing. Hardness is a critical characteristic that affects overall component properties, including wear. This study employed K-means unsupervised machine learning to explore the relationship between the relative surface hardness and scratch width of electroless nickel plating on additively manufactured composite components. The Taguchi design of experiment (TDOE) L9 orthogonal array facilitated experimentation with various factors and levels. Initially, a digital light microscope was used for 3D surface mapping and scratch width quantification. However, the microscope struggled with the reflections from the shiny Ni-plating and scatter from small scratches. To overcome this, a scanning electron microscope (SEM) generated grayscale images and 3D height maps of the scratched Ni-plating, thus enabling the precise characterization of scratch widths. Optical identification of the scratch regions and quantification were accomplished using Python code with a K-means machine-learning clustering algorithm. The TDOE yielded distinct Ni-plating hardness levels for the nine samples, while an increased scratch force showed a non-linear impact on scratch widths. The enhanced surface quality resulting from Ni coatings will have significant implications in various industrial applications, and it will play a pivotal role in future metal and alloy surface engineering.
AbstractList Additively manufactured metal components often have rough and uneven surfaces, necessitating post-processing and surface polishing. Hardness is a critical characteristic that affects overall component properties, including wear. This study employed K-means unsupervised machine learning to explore the relationship between the relative surface hardness and scratch width of electroless nickel plating on additively manufactured composite components. The Taguchi design of experiment (TDOE) L9 orthogonal array facilitated experimentation with various factors and levels. Initially, a digital light microscope was used for 3D surface mapping and scratch width quantification. However, the microscope struggled with the reflections from the shiny Ni-plating and scatter from small scratches. To overcome this, a scanning electron microscope (SEM) generated grayscale images and 3D height maps of the scratched Ni-plating, thus enabling the precise characterization of scratch widths. Optical identification of the scratch regions and quantification were accomplished using Python code with a K-means machine-learning clustering algorithm. The TDOE yielded distinct Ni-plating hardness levels for the nine samples, while an increased scratch force showed a non-linear impact on scratch widths. The enhanced surface quality resulting from Ni coatings will have significant implications in various industrial applications, and it will play a pivotal role in future metal and alloy surface engineering.
Additively manufactured metal components often have rough and uneven surfaces, necessitating post-processing and surface polishing. Hardness is a critical characteristic that affects overall component properties, including wear. This study employed K-means unsupervised machine learning to explore the relationship between the relative surface hardness and scratch width of electroless nickel plating on additively manufactured composite components. The Taguchi design of experiment (TDOE) L9 orthogonal array facilitated experimentation with various factors and levels. Initially, a digital light microscope was used for 3D surface mapping and scratch width quantification. However, the microscope struggled with the reflections from the shiny Ni-plating and scatter from small scratches. To overcome this, a scanning electron microscope (SEM) generated grayscale images and 3D height maps of the scratched Ni-plating, thus enabling the precise characterization of scratch widths. Optical identification of the scratch regions and quantification were accomplished using Python code with a K-means machine-learning clustering algorithm. The TDOE yielded distinct Ni-plating hardness levels for the nine samples, while an increased scratch force showed a non-linear impact on scratch widths. The enhanced surface quality resulting from Ni coatings will have significant implications in various industrial applications, and it will play a pivotal role in future metal and alloy surface engineering.Additively manufactured metal components often have rough and uneven surfaces, necessitating post-processing and surface polishing. Hardness is a critical characteristic that affects overall component properties, including wear. This study employed K-means unsupervised machine learning to explore the relationship between the relative surface hardness and scratch width of electroless nickel plating on additively manufactured composite components. The Taguchi design of experiment (TDOE) L9 orthogonal array facilitated experimentation with various factors and levels. Initially, a digital light microscope was used for 3D surface mapping and scratch width quantification. However, the microscope struggled with the reflections from the shiny Ni-plating and scatter from small scratches. To overcome this, a scanning electron microscope (SEM) generated grayscale images and 3D height maps of the scratched Ni-plating, thus enabling the precise characterization of scratch widths. Optical identification of the scratch regions and quantification were accomplished using Python code with a K-means machine-learning clustering algorithm. The TDOE yielded distinct Ni-plating hardness levels for the nine samples, while an increased scratch force showed a non-linear impact on scratch widths. The enhanced surface quality resulting from Ni coatings will have significant implications in various industrial applications, and it will play a pivotal role in future metal and alloy surface engineering.
Audience Academic
Author Klein, Kate L.
Grizzle, Andrew C.
Elliott, Amy
Demisse, Wondwosen
Tyagi, Pawan
Mengesha, Betelhiem N.
AuthorAffiliation 2 Manufacturing Demonstration Facility, 2350 Cherahala Boulevard, Knoxville, TN 37932, USA; elliottam@ornl.gov
1 Mechanical Engineering, University of the District of Columbia, Washington, DC 20008, USA andrew.grizzle@udc.edu (A.C.G.); wondwosen.demisse@udc.edu (W.D.); kate.klein@udc.edu (K.L.K.)
AuthorAffiliation_xml – name: 1 Mechanical Engineering, University of the District of Columbia, Washington, DC 20008, USA andrew.grizzle@udc.edu (A.C.G.); wondwosen.demisse@udc.edu (W.D.); kate.klein@udc.edu (K.L.K.)
– name: 2 Manufacturing Demonstration Facility, 2350 Cherahala Boulevard, Knoxville, TN 37932, USA; elliottam@ornl.gov
Author_xml – sequence: 1
  givenname: Betelhiem N.
  surname: Mengesha
  fullname: Mengesha, Betelhiem N.
– sequence: 2
  givenname: Andrew C.
  surname: Grizzle
  fullname: Grizzle, Andrew C.
– sequence: 3
  givenname: Wondwosen
  surname: Demisse
  fullname: Demisse, Wondwosen
– sequence: 4
  givenname: Kate L.
  orcidid: 0009-0008-8834-4081
  surname: Klein
  fullname: Klein, Kate L.
– sequence: 5
  givenname: Amy
  orcidid: 0000-0003-4575-4730
  surname: Elliott
  fullname: Elliott, Amy
– sequence: 6
  givenname: Pawan
  orcidid: 0000-0002-7541-1344
  surname: Tyagi
  fullname: Tyagi, Pawan
BackLink https://www.osti.gov/biblio/2001346$$D View this record in Osti.gov
BookMark eNp9kk1v1DAQhiNUJErphV8QwaWAUuz4I5sTWlXlQ9plQYVzNDuZ7Lo49hI7RXvmj-OwlQoVwj7Y8jzvO-OxH2dHzjvKsqecnQtRs9c9cM1nWjD-IDvmda0LXkt59Mf-UXYawjVLQwg-K-vj7OcScGsc5QuCwRm3KS4drC21-ecRXDQRormhfO7A7oMJue_y1S4aBGv3-WodcBwov8IBIm4phV3-0eA3ssUnCzG5zNvWTA6JXoIbO8CYFG1-Nl--yK-g31kKT7KHHdhAp7frSfb17eWXi_fFYvXuw8V8UaBULBaq01quVQeSt-uSqhnrkEqSnLAWWiIpqVARJkiomkrAVmKtqkrrknAmxEn26uA7uh3sf6QrNLvB9DDsG86aqYXNXQsT_eZA78Z1Ty2SiwPcKTyY5u-IM9tm42-SlxKlKieHZwcHH6JpAppIuEXvHGFsSpZySJ2gs9s0g_8-UohNbwKSteDIj6EpZxXjUnEx-T2_h177cUgvM1E6Pa-WvEzU-YHagKXGuM6n6jDNlnqTslNn0vm8qupKsopNFbw8CHDwIQzU_b8r7B6Mv_-In3pg7L8kvwBPM9FO
CitedBy_id crossref_primary_10_3390_ma17010121
crossref_primary_10_3390_lubricants12050172
crossref_primary_10_3390_ma18051177
crossref_primary_10_1007_s00170_024_14543_2
Cites_doi 10.1016/j.precisioneng.2016.06.001
10.1080/0951192X.2023.2177740
10.1016/j.pmatsci.2023.101102
10.1007/s10853-015-9479-x
10.1016/j.actamat.2021.117612
10.1016/j.patrec.2009.09.011
10.1007/s40192-021-00205-8
10.1023/A:1025572410205
10.1007/s10845-022-01957-6
10.1021/acs.oprd.3c00126
10.1016/j.matpr.2020.11.026
10.1111/jpim.12673
10.1016/j.triboint.2005.04.011
10.1145/1015330.1015408
10.1007/s00170-021-08183-z
10.1007/s12633-015-9367-7
10.1109/ACCESS.2020.2988796
10.1007/s11665-023-07897-3
10.1016/j.matdes.2023.111699
10.1016/j.zemedi.2018.11.002
10.1007/s00170-022-09857-y
10.1016/S0043-1648(00)00382-3
10.1007/s40964-023-00412-z
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
OTOTI
5PM
ADTOC
UNPAY
DOI 10.3390/ma16186301
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection (Proquest)
Materials Research Database
Materials Science Database (Proquest)
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Materials Science Collection
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

Publicly Available Content Database


Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID 10.3390/ma16186301
PMC10532521
2001346
A779740706
10_3390_ma16186301
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: NASA
  grantid: 80NSSC19M0196
– fundername: National Science Foundation-CREST Award
  grantid: 1914751
– fundername: Department of Energy/National Nuclear Security Agency
  grantid: DE-FOA-0003945
– fundername: US Department of Energy
  grantid: DE-AC05-00OR22725
GroupedDBID 29M
2WC
2XV
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
E3Z
EBS
ESX
FRP
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
MK~
MODMG
M~E
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RPM
TR2
TUS
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQQKQ
PQUKI
7X8
PUEGO
AAPBV
ABPTK
AFPKN
GROUPED_DOAJ
OTOTI
5PM
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c450t-5f664b5fa41db2e780fce2e41ec9364ce545c5ec64b359e2acd4c9577662ec833
IEDL.DBID BENPR
ISSN 1996-1944
IngestDate Sun Oct 26 01:56:26 EDT 2025
Tue Sep 30 17:11:03 EDT 2025
Mon Oct 02 04:05:07 EDT 2023
Fri Sep 05 10:20:09 EDT 2025
Fri Jul 25 11:55:07 EDT 2025
Mon Oct 20 17:06:38 EDT 2025
Thu Oct 16 04:35:29 EDT 2025
Thu Apr 24 22:55:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-5f664b5fa41db2e780fce2e41ec9364ce545c5ec64b359e2acd4c9577662ec833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
FOA-0003945
USDOE National Nuclear Security Administration (NNSA)
ORCID 0000-0003-4575-4730
0009-0008-8834-4081
0000-0002-7541-1344
0009000888344081
0000000275411344
0000000345754730
OpenAccessLink https://www.proquest.com/docview/2869446412?pq-origsite=%requestingapplication%&accountid=15518
PQID 2869446412
PQPubID 2032366
ParticipantIDs unpaywall_primary_10_3390_ma16186301
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10532521
osti_scitechconnect_2001346
proquest_miscellaneous_2870145131
proquest_journals_2869446412
gale_infotracacademiconefile_A779740706
crossref_primary_10_3390_ma16186301
crossref_citationtrail_10_3390_ma16186301
PublicationCentury 2000
PublicationDate 20230920
PublicationDateYYYYMMDD 2023-09-20
PublicationDate_xml – month: 9
  year: 2023
  text: 20230920
  day: 20
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
– name: Switzerland
PublicationTitle Materials
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Ilogebe (ref_10) 2019; 8
Onler (ref_11) 2022; 119
ref_14
Lundervold (ref_1) 2019; 29
Pattnaik (ref_7) 2021; 44
Jain (ref_26) 2010; 31
ref_32
Cohn (ref_31) 2021; 10
Stallard (ref_24) 2006; 39
Dillard (ref_20) 2022; 121
Mahesh (ref_2) 2020; 9
Kodinariya (ref_29) 2013; 1
Zhu (ref_12) 2020; 34
Nys (ref_15) 2023; 27
Roscoe (ref_13) 2023; 40
Venturi (ref_16) 2023; 32
Mondal (ref_6) 2022; 226
Townsend (ref_18) 2016; 46
Sinaga (ref_30) 2020; 8
Kato (ref_21) 2000; 241
Chernyavsky (ref_25) 2023; 227
Balaraju (ref_22) 2003; 33
Parsazadeh (ref_4) 2023; 135
Hebert (ref_19) 2016; 51
ref_23
Tyagi (ref_17) 2019; 25
ref_28
ref_27
Cearley (ref_8) 2016; 10
ref_9
Xames (ref_5) 2022; 34
Jiang (ref_3) 2023; 36
References_xml – volume: 9
  start-page: 381
  year: 2020
  ident: ref_2
  article-title: Machine learning algorithms—A review
  publication-title: Int. J. Sci. Res.
– volume: 46
  start-page: 34
  year: 2016
  ident: ref_18
  article-title: Surface texture metrology for metal additive manufacturing: A review
  publication-title: Precis. Eng.
  doi: 10.1016/j.precisioneng.2016.06.001
– volume: 1
  start-page: 90
  year: 2013
  ident: ref_29
  article-title: Review on determining number of Cluster in K-Means Clustering
  publication-title: Int. J.
– ident: ref_32
– volume: 25
  start-page: 32
  year: 2019
  ident: ref_17
  article-title: Reducing the roughness of internal surface of an additive manufacturing produced 316 steel component by chempolishing and electropolishing
  publication-title: Addit. Manuf.
– volume: 36
  start-page: 1258
  year: 2023
  ident: ref_3
  article-title: A survey of machine learning in additive manufacturing technologies
  publication-title: Int. J. Comput. Integr. Manuf.
  doi: 10.1080/0951192X.2023.2177740
– volume: 135
  start-page: 101102
  year: 2023
  ident: ref_4
  article-title: Towards the next generation of machine learning models in additive manufacturing: A review of process dependent material evolution
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2023.101102
– volume: 51
  start-page: 1165
  year: 2016
  ident: ref_19
  article-title: Viewpoint: Metallurgical aspects of powder bed metal additive manufacturing
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-015-9479-x
– volume: 226
  start-page: 117612
  year: 2022
  ident: ref_6
  article-title: Crack free metal printing using physics informed machine learning
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2021.117612
– volume: 31
  start-page: 651
  year: 2010
  ident: ref_26
  article-title: Data clustering: 50 years beyond K-means
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2009.09.011
– volume: 10
  start-page: 231
  year: 2021
  ident: ref_31
  article-title: Unsupervised Machine Learning Via Transfer Learning and k-Means Clustering to Classify Materials Image Data
  publication-title: Integr. Mater. Manuf. Innov.
  doi: 10.1007/s40192-021-00205-8
– ident: ref_14
– volume: 33
  start-page: 807
  year: 2003
  ident: ref_22
  article-title: Electroless Ni–P composite coatings
  publication-title: J. Appl. Electrochem.
  doi: 10.1023/A:1025572410205
– volume: 34
  start-page: 2529
  year: 2022
  ident: ref_5
  article-title: A systematic literature review on recent trends of machine learning applications in additive manufacturing
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-022-01957-6
– volume: 27
  start-page: 1455
  year: 2023
  ident: ref_15
  article-title: Additive Manufacturing as a Rapid Prototyping and Fabrication Tool for Laboratory Crystallizers—A Proof-of-Concept Study
  publication-title: Org. Process. Res. Dev.
  doi: 10.1021/acs.oprd.3c00126
– volume: 44
  start-page: 4703
  year: 2021
  ident: ref_7
  article-title: Role of machine learning in the field of Fiber reinforced polymer composites: A preliminary discussion
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2020.11.026
– volume: 40
  start-page: 554
  year: 2023
  ident: ref_13
  article-title: Transitioning additive manufacturing from rapid prototyping to high-volume production: A case study of complex final products
  publication-title: J. Prod. Innov. Manag.
  doi: 10.1111/jpim.12673
– volume: 39
  start-page: 159
  year: 2006
  ident: ref_24
  article-title: The study of the adhesion of a TiN coating on steel and titanium alloy substrates using a multi-mode scratch tester
  publication-title: Tribol. Int.
  doi: 10.1016/j.triboint.2005.04.011
– volume: 8
  start-page: 15
  year: 2019
  ident: ref_10
  article-title: Morphology of binder-jet additive manufactured structural amorphous metal matrix composites
  publication-title: Int. J. Eng. Sci.
– ident: ref_27
– volume: 10
  start-page: 1
  year: 2016
  ident: ref_8
  article-title: Top 10 strategic technology trends for 2018
  publication-title: Top
– ident: ref_28
  doi: 10.1145/1015330.1015408
– volume: 119
  start-page: 1091
  year: 2022
  ident: ref_11
  article-title: Multi-objective optimization of binder jet additive manufacturing of Co-Cr-Mo using machine learning
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-021-08183-z
– ident: ref_23
  doi: 10.1007/s12633-015-9367-7
– volume: 34
  start-page: 101183
  year: 2020
  ident: ref_12
  article-title: Unraveling pore evolution in post-processing of binder jetting materials: X-ray computed tomography, computer vision, and machine learning
  publication-title: Addit. Manuf.
– volume: 8
  start-page: 80716
  year: 2020
  ident: ref_30
  article-title: Unsupervised K-Means Clustering Algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2988796
– volume: 32
  start-page: 6589
  year: 2023
  ident: ref_16
  article-title: Additive Manufacturing in the Context of Repeatability and Reliability
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-023-07897-3
– volume: 227
  start-page: 111699
  year: 2023
  ident: ref_25
  article-title: Machine learning for additive manufacturing: Predicting materials characteristics and their uncertainty
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2023.111699
– volume: 29
  start-page: 102
  year: 2019
  ident: ref_1
  article-title: An overview of deep learning in medical imaging focusing on MRI
  publication-title: Z. Med. Phys.
  doi: 10.1016/j.zemedi.2018.11.002
– volume: 121
  start-page: 8159
  year: 2022
  ident: ref_20
  article-title: Alternating chempolishing and electropolishing for interior and exterior surface finishing of additively manufactured (AM) metal components
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-022-09857-y
– volume: 241
  start-page: 151
  year: 2000
  ident: ref_21
  article-title: Wear in relation to friction—A review
  publication-title: Wear
  doi: 10.1016/S0043-1648(00)00382-3
– ident: ref_9
  doi: 10.1007/s40964-023-00412-z
SSID ssj0000331829
Score 2.3834689
Snippet Additively manufactured metal components often have rough and uneven surfaces, necessitating post-processing and surface polishing. Hardness is a critical...
SourceID unpaywall
pubmedcentral
osti
proquest
gale
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 6301
SubjectTerms Additive manufacturing
Algorithms
Artificial intelligence
Clustering
Corrosion resistance
Deep learning
Design of experiments
Electroless nickel plating
Hardness
Industrial applications
Light levels
Machine learning
Mechanical properties
Nickel
Nickel coatings
Orthogonal arrays
Plating
Quantitative analysis
Scanning electron microscopy
Stainless steel
Surface hardness
Surface properties
Taguchi methods
Unsupervised learning
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9RAEF70-qA--FuMrbJiQfuQ5vZnkicJ0lKEayv1oD6FzWZXS2NytBelvvqPO7u3Oe-KiODzTsKGfDP7TTLzDULbmisheW1iUoE3cZ2SuBJMxZZxZeFEgjPO9Q5PDuXBlL8_FacrXfyurBJS8TMfpH2FLGTZPCEyIVkiAY3JrLZvv4VvSUTmgomU0vwm2pAC2PgIbUwPj4tP_mdyuHqhSsogu0--Ki8Qz8IMmOEcCtF41IFbrVHN64WSt_p2pq6-q6ZZOYX27yE17H9RfHK-28-rXf3jmrTj_zzgfXQ3UFRcLDD1AN0w7UN0Z0W48BH6OfE1mAYHedbP8Z7vwarxh161vm8NoigeFE9wZ_HRzH81b67wEYSq_sLgEw3oc_O6cNdiQOS5aeLjBrhvjYu69jVNYD1Rbe-6L-CKGr8pJjv4RDlF48vHaLq_9_HdQRzGOcSai_E8FlZKXgmrOKkratJsbLWhhhOjcya5NkDmtDAajJjIDVW65joXaSolNTpj7AkatV1rniIsa0GlBWYhUsKtsJXKFNyNi0wza1UWoZ3h5ZY6aJ27kRtNCTmPA0L5GwgRerW0nS0UPv5o9dphpHRuD3fSKnQvwH6cgFZZpClkZhA_ZYQ2HYxKYDBOhle7eiU9d-M-CeOwujWgqwzR4rKkmQQMSE5ohF4ul8HP3c8b1Zqudzapn6rMYCvZGiqXu3ZK4esr7dkXrxhO3PwPIGoR2l4C-C8P--zfzDbRbQqUz1XP0PEWGs0vevMcKNq8ehG88BdKazfI
  priority: 102
  providerName: Unpaywall
Title Machine Learning-Enabled Quantitative Analysis of Optically Obscure Scratches on Nickel-Plated Additively Manufactured (AM) Samples
URI https://www.proquest.com/docview/2869446412
https://www.proquest.com/docview/2870145131
https://www.osti.gov/biblio/2001346
https://pubmed.ncbi.nlm.nih.gov/PMC10532521
https://www.mdpi.com/1996-1944/16/18/6301/pdf?version=1695357229
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: HH5
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: ABDBF
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: ADMLS
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: GX1
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: RPM
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: 8FG
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF616QE4IJ5qaKkWUQl6sBrvy_YBoYCSVkhJAyVSOFnrfQDC2KGNhXrmjzPj2G6DUI_Wjq2157Gz65nvI-TQCC2VsC4IM_AmYaIwyCTXgedCe1iRYI3D3uHJVJ3OxYeFXGyRadsLg2WVbUysA7UtDZ6RH7NYJbB1ESF7u_wVIGsU_l1tKTR0Q61g39QQY9tkhyEyVo_svBtNZ5-6U5cBBxtmyRqnlMN-__inriHjecMK065MTXzuleBoG8nnv6WTd6piqa9-6zy_sS6NH5D7TUJJh2sLeEi2XPGI3LsBM_iY_JnUFZOONmCqX4NR3TFl6cdKF3WXGcQ82uKT0NLTs2V9xp1f0TMILNWFo-cGbAXZtWhZULCfHy4PZjlkqpYOra0rkEB6oosKeyXgDktfDydH9Fwj_vDlEzIfjz6_Pw0a8oXACDlYBdIrJTLptQhtxlwUD7xxzInQmYQrYRykXkY6A0JcJo5pY4VJZBQpxZyJOX9KekVZuF1ClZVMecgDZBQKL32mYw1PEzI23Hsd98lR--FT0yCTI0FGnsIOBZWUXiupT152sss1Hsd_pV6h_lJ0UniS0U2vAcwH4a7SYRTBPgqineqTPVRxCvkGguYarC4yKyTnDLmA0f1W82nj25fptSX2yYtuGLwSf7XowpUVykQ1BzKHqcQbFtPNGnG9N0eK799qfO8Q2TogreqTw864bnnZZ7dPco_cZZCYYY0LG-yT3uqics8hkVplB2Q7Hp8cND4CVyeLEK7m09nwy18FTiO9
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V6aFwQDyFaYFFFEEPVuN92T5UKECqlDZpoa3Um1mv14AwdmhiVTnzv_htzDjrtEGot553Yq0zz13PfB8hm0ZoqURm_SAFbxImDPxUcu3nXOgcMhLkOJwdHo7U4FR8PJNnK-RPOwuDbZVtTGwCdVYZvCPfZpGK4egiAvZ2_MtH1ij8utpSaGhHrZDtNBBjbrBj384u4Ag32dn7APp-xdhu_-T9wHcsA74Rsjv1Za6USGWuRZClzIZRNzeWWRFYE3MljIUaw0hrQIjL2DJtMmFiGYZKMWsivBCFFLAquIjh8Lf6rj86-ry45ely8BkWz3FROY-72z91A1HPHQtNmwldPuhU4NhLxe6_rZprdTnWswtdFFfy4O5dcscVsLQ3t7h7ZMWW98ntK7CGD8jvYdOhaakDb_3q95sJrYx-qnXZTLVBjKUtHgqtcno4bu7Uixk9hEBWn1t6bMA2kc2LViUFe_1hC_-ogMo4o70sazqeQHqoyxpnM-AXGX3TG27RY414x5OH5PRG1PCIdMqqtI8JVZlkKoe6Q4aByGWe6kjD04SMDM9zHXlkq_3jE-OQ0JGQo0jgRIRKSi6V5JGXC9nxHP_jv1KvUX8JBgV4ktFutgH2g_BaSS8M4dwG0VV5ZB1VnEB9gyC9BruZzBTJQAMuYHWj1XziYskkubR8j7xYLEMUwE87urRVjTJhw7nMYSvRksUsdo044ssr5fdvDZ54gOwgUMZ5ZHNhXNe87JPrN_mcrA1OhgfJwd5of53cYlAUYn8N626QzvS8tk-hiJumz5ynUPLlpp3zLzg6XdQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VQeJxQDyF2wKLKIIerNj7sn1AKKINLSVtUanUm1mvdynC2KGJVeXMv-LXMePYaYNQbz3vxFpnnrue-T5CNozQUonc-mEG3iRMFPqZ5Np3XGgHGQlyHM4Oj_bVzrH4eCJPVsifbhYG2yq7mNgE6rwyeEfeZ7FK4OgiQtZ3bVvE4dbw3fiXjwxS-KW1o9OYm8ienZ3D8W3ydncLdP2KseH2l_c7fssw4Bshg6kvnVIik06LMM-YjeLAGcusCK1JuBLGQn1hpDUgxGVimTa5MImMIqWYNTFehkL4vxEhijtOqQ8_LO53Ag7ewpI5IirnSdD_qRtwet7yz3Q5sM0EvQpceqnM_bdJ81ZdjvXsXBfFpQw4vEfutqUrHcxt7T5ZseUDcucSoOFD8nvU9GZa2sK2fvO3m9msnH6uddnMs0F0pR0SCq0cPRg3t-nFjB5ACKvPLD0yYJXI40WrkoKl_rCFf1hATZzTQZ43vU4gPdJljVMZ8IucvhmMNumRRqTjySNyfC1KeEx6ZVXaJ4SqXDLloOKQUSicdJmONTxNyNhw53Tskc3uj09Ni4GOVBxFCmchVFJ6oSSPvFzIjufIH_-Veo36SzEcwJOMbqcaYD8IrJUOoghObBBXlUfWUMUpVDYIz2uwj8lMkQY05AJW1zvNp20UmaQXNu-RF4tl8H_8qKNLW9UoEzVsyxy2Ei9ZzGLXiCC-vFJ-P22QxEPkBYECziMbC-O64mVXr97kc3ITXDL9tLu_t0ZuM6gGsbGGBeukNz2r7VOo3qbZs8ZNKPl63X75F7hsW24
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9RAEF70-qA--FuMrbJiQfuQ5vZnkicJ0lKEayv1oD6FzWZXS2NytBelvvqPO7u3Oe-KiODzTsKGfDP7TTLzDULbmisheW1iUoE3cZ2SuBJMxZZxZeFEgjPO9Q5PDuXBlL8_FacrXfyurBJS8TMfpH2FLGTZPCEyIVkiAY3JrLZvv4VvSUTmgomU0vwm2pAC2PgIbUwPj4tP_mdyuHqhSsogu0--Ki8Qz8IMmOEcCtF41IFbrVHN64WSt_p2pq6-q6ZZOYX27yE17H9RfHK-28-rXf3jmrTj_zzgfXQ3UFRcLDD1AN0w7UN0Z0W48BH6OfE1mAYHedbP8Z7vwarxh161vm8NoigeFE9wZ_HRzH81b67wEYSq_sLgEw3oc_O6cNdiQOS5aeLjBrhvjYu69jVNYD1Rbe-6L-CKGr8pJjv4RDlF48vHaLq_9_HdQRzGOcSai_E8FlZKXgmrOKkratJsbLWhhhOjcya5NkDmtDAajJjIDVW65joXaSolNTpj7AkatV1rniIsa0GlBWYhUsKtsJXKFNyNi0wza1UWoZ3h5ZY6aJ27kRtNCTmPA0L5GwgRerW0nS0UPv5o9dphpHRuD3fSKnQvwH6cgFZZpClkZhA_ZYQ2HYxKYDBOhle7eiU9d-M-CeOwujWgqwzR4rKkmQQMSE5ohF4ul8HP3c8b1Zqudzapn6rMYCvZGiqXu3ZK4esr7dkXrxhO3PwPIGoR2l4C-C8P--zfzDbRbQqUz1XP0PEWGs0vevMcKNq8ehG88BdKazfI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning-Enabled+Quantitative+Analysis+of+Optically+Obscure+Scratches+on+Nickel-Plated+Additively+Manufactured+%28AM%29+Samples&rft.jtitle=Materials&rft.au=Mengesha%2C+Betelhiem+N&rft.au=Grizzle%2C+Andrew+C&rft.au=Demisse%2C+Wondwosen&rft.au=Klein%2C+Kate+L&rft.date=2023-09-20&rft.pub=MDPI+AG&rft.eissn=1996-1944&rft.volume=16&rft.issue=18&rft.spage=6301&rft_id=info:doi/10.3390%2Fma16186301&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon