A Pheromone-Rate-Based Analysis on the Convergence Time of ACO Algorithm
Ant colony optimization (ACO) has widely been applied to solve combinatorial optimization problems in recent years. There are few studies, however, on its convergence time, which reflects how many iteration times ACO algorithms spend in converging to the optimal solution. Based on the absorbing Mark...
Saved in:
| Published in | IEEE transactions on systems, man and cybernetics. Part B, Cybernetics Vol. 39; no. 4; pp. 910 - 923 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.08.2009
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1083-4419 1941-0492 1941-0492 |
| DOI | 10.1109/TSMCB.2009.2012867 |
Cover
| Abstract | Ant colony optimization (ACO) has widely been applied to solve combinatorial optimization problems in recent years. There are few studies, however, on its convergence time, which reflects how many iteration times ACO algorithms spend in converging to the optimal solution. Based on the absorbing Markov chain model, we analyze the ACO convergence time in this paper. First, we present a general result for the estimation of convergence time to reveal the relationship between convergence time and pheromone rate. This general result is then extended to a two-step analysis of the convergence time, which includes the following: 1) the iteration time that the pheromone rate spends on reaching the objective value and 2) the convergence time that is calculated with the objective pheromone rate in expectation. Furthermore, four brief ACO algorithms are investigated by using the proposed theoretical results as case studies. Finally, the conclusions of the case studies that the pheromone rate and its deviation determine the expected convergence time are numerically verified with the experiment results of four one-ant ACO algorithms and four ten-ant ACO algorithms. |
|---|---|
| AbstractList | Ant colony optimization (ACO) has widely been applied to solve combinatorial optimization problems in recent years. There are few studies, however, on its convergence time, which reflects how many iteration times ACO algorithms spend in converging to the optimal solution. Based on the absorbing Markov chain model, we analyze the ACO convergence time in this paper. First, we present a general result for the estimation of convergence time to reveal the relationship between convergence time and pheromone rate. This general result is then extended to a two-step analysis of the convergence time, which includes the following: 1) the iteration time that the pheromone rate spends on reaching the objective value and 2) the convergence time that is calculated with the objective pheromone rate in expectation. Furthermore, four brief ACO algorithms are investigated by using the proposed theoretical results as case studies. Finally, the conclusions of the case studies that the pheromone rate and its deviation determine the expected convergence time are numerically verified with the experiment results of four one-ant ACO algorithms and four ten-ant ACO algorithms. Ant colony optimization (ACO) has widely been applied to solve combinatorial optimization problems in recent years. There are few studies, however, on its convergence time, which reflects how many iteration times ACO algorithms spend in converging to the optimal solution. Based on the absorbing Markov chain model, we analyze the ACO convergence time in this paper. First, we present a general result for the estimation of convergence time to reveal the relationship between convergence time and pheromone rate. This general result is then extended to a two-step analysis of the convergence time, which includes the following: 1) the iteration time that the pheromone rate spends on reaching the objective value and 2) the convergence time that is calculated with the objective pheromone rate in expectation. Furthermore, four brief ACO algorithms are investigated by using the proposed theoretical results as case studies. Finally, the conclusions of the case studies that the pheromone rate and its deviation determine the expected convergence time are numerically verified with the experiment results of four one-ant ACO algorithms and four ten-ant ACO algorithms.Ant colony optimization (ACO) has widely been applied to solve combinatorial optimization problems in recent years. There are few studies, however, on its convergence time, which reflects how many iteration times ACO algorithms spend in converging to the optimal solution. Based on the absorbing Markov chain model, we analyze the ACO convergence time in this paper. First, we present a general result for the estimation of convergence time to reveal the relationship between convergence time and pheromone rate. This general result is then extended to a two-step analysis of the convergence time, which includes the following: 1) the iteration time that the pheromone rate spends on reaching the objective value and 2) the convergence time that is calculated with the objective pheromone rate in expectation. Furthermore, four brief ACO algorithms are investigated by using the proposed theoretical results as case studies. Finally, the conclusions of the case studies that the pheromone rate and its deviation determine the expected convergence time are numerically verified with the experiment results of four one-ant ACO algorithms and four ten-ant ACO algorithms. |
| Author | Chun-Guo Wu Han Huang Zhi-Feng Hao |
| Author_xml | – sequence: 1 givenname: Han surname: Huang fullname: Huang, Han email: hhan@scut.edu.cn organization: School of Software Engineering, South China University of Technology, Guangzhou 510006, China. hhan@scut.edu.cn – sequence: 2 givenname: Chun-Guo surname: Wu fullname: Wu, Chun-Guo – sequence: 3 givenname: Zhi-Feng surname: Hao fullname: Hao, Zhi-Feng |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19380276$$D View this record in MEDLINE/PubMed |
| BookMark | eNp90ctq3DAUBmARUppL-wIpFK2SldOjmy0tHZMbpKS007WR5DMZFdtKJU8gbx9PZtpCF9lIWnz_EZz_iOyPcURCThicMwbmy-LH1-binAOY-WBcl9UeOWRGsgKk4fvzG7QopGTmgBzl_AtmCaZ6Tw6YERp4VR6Sm5p-W2GKwzy6-G4nLC5sxo7Wo-2fc8g0jnRaIW3i-ITpAUePdBEGpHFJ6-ae1v1DTGFaDR_Iu6XtM37c3cfk59Xlorkp7u6vb5v6rvBSwVQoB9wr5irjrRPadsaJEjprulKBc53SzjsBypXYsVJIrtAiQFUJL7UxWhyTs-3cxxR_rzFP7RCyx763I8Z1bnVp9EaKWZ6-KctKAFOCz_DzDq7dgF37mMJg03P7Z0sz4FvgU8w54fIfgXZTRftaRbupot1VMYf0fyEfJjuFOE7Jhv7t6KdtNCDi37-kZkpxKV4AGJyUOw |
| CODEN | ITSCFI |
| CitedBy_id | crossref_primary_10_1080_00207543_2022_2077671 crossref_primary_10_3724_SP_J_1016_2011_00801 crossref_primary_10_1016_j_jnca_2011_08_009 crossref_primary_10_1016_j_dsp_2012_12_011 crossref_primary_10_1007_s11721_012_0074_3 crossref_primary_10_1016_j_compeleceng_2015_10_007 crossref_primary_10_1109_TEVC_2012_2227973 crossref_primary_10_1155_2020_8451639 crossref_primary_10_1109_LCOMM_2020_3039846 crossref_primary_10_1109_TCYB_2021_3049607 crossref_primary_10_1016_j_swevo_2021_100875 crossref_primary_10_1080_21642583_2022_2071778 crossref_primary_10_1007_s11277_020_07306_1 crossref_primary_10_4018_IJSIR_2017100101 crossref_primary_10_1109_TSMCB_2009_2035630 |
| Cites_doi | 10.1162/evco.1999.7.2.173 10.1109/TSMCC.2004.841903 10.1016/S0304-3975(01)00182-7 10.1016/S0167-739X(00)00044-3 10.1109/TEVC.2002.802444 10.1109/CEC.2003.1299918 10.1109/4235.843492 10.1016/S0167-739X(00)00043-1 10.1109/TEVC.2002.800886 10.1162/evco.2007.15.4.435 10.1109/72.265964 10.1109/3477.484436 10.1109/CEC.2004.1330957 10.1016/j.ins.2003.08.018 10.1287/ijoc.3.4.376 10.1109/TSMCC.2006.871151 10.1023/B:NACO.0000023417.31393.c7 10.1162/evco.1996.4.2.195 10.1162/evco.1998.6.2.185 10.1109/TEVC.2006.888929 10.1007/s11047-006-9004-x 10.7551/mitpress/1290.001.0001 10.1109/COGINF.2006.365579 10.1162/106454699568728 10.1016/S0020-0190(01)00258-7 10.1016/j.tcs.2005.05.020 10.1109/4235.585892 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7SC 7SP 7TB 8FD F28 FR3 JQ2 L7M L~C L~D |
| DOI | 10.1109/TSMCB.2009.2012867 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | MEDLINE Technology Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) Computer Science |
| EISSN | 1941-0492 |
| EndPage | 923 |
| ExternalDocumentID | 19380276 10_1109_TSMCB_2009_2012867 4815524 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5VS 6IK 85S 97E AAJGR AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS AETIX AGQYO AGSQL AHBIQ AI. AIBXA ALLEH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD F5P HZ~ IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL PZZ RIA RIE RNS RXW TAE TAF VH1 VJK AAYXX CITATION CGR CUY CVF ECM EIF NPM PKN 7X8 7SC 7SP 7TB 8FD F28 FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c450t-5b02c51b79cab38ad9b360da9d650bbd58bcb305b6ed163425eae00773c489983 |
| IEDL.DBID | RIE |
| ISSN | 1083-4419 1941-0492 |
| IngestDate | Fri Jul 11 16:07:09 EDT 2025 Fri Jul 11 08:51:49 EDT 2025 Wed Feb 19 01:44:50 EST 2025 Tue Jul 01 02:00:42 EDT 2025 Thu Apr 24 23:01:54 EDT 2025 Tue Aug 26 16:47:39 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c450t-5b02c51b79cab38ad9b360da9d650bbd58bcb305b6ed163425eae00773c489983 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| PMID | 19380276 |
| PQID | 67301532 |
| PQPubID | 23479 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1109_TSMCB_2009_2012867 proquest_miscellaneous_67301532 proquest_miscellaneous_869848993 crossref_citationtrail_10_1109_TSMCB_2009_2012867 pubmed_primary_19380276 ieee_primary_4815524 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2009-08-01 |
| PublicationDateYYYYMMDD | 2009-08-01 |
| PublicationDate_xml | – month: 08 year: 2009 text: 2009-08-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transactions on systems, man and cybernetics. Part B, Cybernetics |
| PublicationTitleAbbrev | TSMCB |
| PublicationTitleAlternate | IEEE Trans Syst Man Cybern B Cybern |
| PublicationYear | 2009 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | Dorigo (5) 2004 Hao (15) 2006; 4247, Lecture Witt (31) 2005; 3404, Lecture 23 Huang (37) 2008 25 26 27 28 Zhang (1) 2006; 2 Gutjahr (8) 1999 30 10 32 11 33 12 Neumann (34) 2004; 3102, Lecture Huang (16) 2007; 30 Droste (19) 1998; 6 17 18 Neumann (14) 2006; 4288, Lecture He (24) 1999; 21 Reinelt (36) 1991; 3 2 3 4 6 7 Witt (29) 2006 9 Rudolph (22) 1996; 4 Badr (13) 2004; 160 20 21 Yu (35) 2006 |
| References_xml | – ident: 18 doi: 10.1162/evco.1999.7.2.173 – ident: 26 doi: 10.1109/TSMCC.2004.841903 – year: 2008 ident: 37 publication-title: A relation-and-ordering-based analysis for convergence and convergence time of evolutionary algorithm – ident: 20 doi: 10.1016/S0304-3975(01)00182-7 – ident: 9 doi: 10.1016/S0167-739X(00)00044-3 – ident: 11 doi: 10.1109/TEVC.2002.802444 – ident: 30 doi: 10.1109/CEC.2003.1299918 – ident: 21 doi: 10.1109/4235.843492 – volume: 21 start-page: 999 year: 1999 ident: 24 article-title: The computational time of genetic algorithms for fully deceptive problem publication-title: Chin. J. Comput. – start-page: 651 year: 2006 ident: 29 article-title: Runtime analysis of the (u publication-title: Proc. 8th Annu. Conf. Genetic Evol. Comput. – ident: 7 doi: 10.1016/S0167-739X(00)00043-1 – ident: 23 doi: 10.1109/TEVC.2002.800886 – ident: 27 doi: 10.1162/evco.2007.15.4.435 – start-page: 555 year: 2006 ident: 35 article-title: A new approach to estimating the expected first hitting time of evolutionary algorithms publication-title: Proc. 21st Nat. Conf. Artif. Intell. AAAI – ident: 17 doi: 10.1109/72.265964 – ident: 3 doi: 10.1109/3477.484436 – ident: 32 doi: 10.1109/CEC.2004.1330957 – volume: 160 start-page: 267 year: 2004 ident: 13 article-title: A proof of convergence for ant algorithms publication-title: Inform. Sci. doi: 10.1016/j.ins.2003.08.018 – volume: 3 start-page: 376 year: 1991 ident: 36 article-title: TSPLIB—A traveling salesman problem library publication-title: ORSA J. Comput. doi: 10.1287/ijoc.3.4.376 – ident: 2 doi: 10.1109/TSMCC.2006.871151 – ident: 25 doi: 10.1023/B:NACO.0000023417.31393.c7 – volume: 4 start-page: 194 year: 1996 ident: 22 article-title: How mutation and selection solve long-path problems in polynomial expected time publication-title: Evol. Comput. doi: 10.1162/evco.1996.4.2.195 – volume: 6 start-page: 185 year: 1998 ident: 19 article-title: A rigorous complexity analysis of the (1 publication-title: Evol. Comput. doi: 10.1162/evco.1998.6.2.185 – volume: 3404, Lecture start-page: 44 year: 2005 ident: 31 article-title: Worse-case and average-case approximations by simple randomized search heuristics publication-title: Proc. 22nd Annu. Symp. Theor. Aspects Comput. Sci. – volume: 4247, Lecture start-page: 513 year: 2006 ident: 15 publication-title: A Time Complexity Analysis of ACO for Linear Functions – ident: 28 doi: 10.1109/TEVC.2006.888929 – volume: 30 start-page: 1343 year: 2007 ident: 16 article-title: The convergence speed of Ant Colony Optimization publication-title: Chin. J. Comput. – ident: 33 doi: 10.1007/s11047-006-9004-x – volume: 4288, Lecture start-page: 618 year: 2006 ident: 14 publication-title: Runtime Analysis of a Simple Ant Colony Optimization Algorithm – year: 2004 ident: 5 publication-title: Ant Colony Optimization doi: 10.7551/mitpress/1290.001.0001 – start-page: 99 year: 1999 ident: 8 publication-title: A generalized convergence result for the graph-based ant system metaheuristic – volume: 2 start-page: 726 year: 2006 ident: 1 article-title: The improved ant colony algorithm based on immunity system genetic algorithm and application publication-title: Proc. 5th IEEE Int. Conf. Cognitive Inform. doi: 10.1109/COGINF.2006.365579 – ident: 4 doi: 10.1162/106454699568728 – ident: 10 doi: 10.1016/S0020-0190(01)00258-7 – ident: 12 doi: 10.1016/j.tcs.2005.05.020 – ident: 6 doi: 10.1109/4235.585892 – volume: 3102, Lecture start-page: 713 year: 2004 ident: 34 article-title: Randomized local search, evolutionary algorithms and the minimum spanning tree problem publication-title: Proc. Genetic Evol. Comput. Conf. |
| SSID | ssj0009097 |
| Score | 2.0356324 |
| Snippet | Ant colony optimization (ACO) has widely been applied to solve combinatorial optimization problems in recent years. There are few studies, however, on its... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 910 |
| SubjectTerms | Algorithm design and analysis Algorithms Animals Ant colony optimization Ant colony optimization (ACO) Ants - physiology Artificial intelligence Biological system modeling Combinatorial analysis Computer science Convergence Convergence of numerical methods convergence time Cybernetics Cybernetics - methods Deviation Iterative methods Laboratories Markov Chains Mathematical models Models, Biological Models, Statistical nature-inspired cybernetic mechanisms Optimization pheromone rate Pheromones - physiology Runtime runtime analysis |
| Title | A Pheromone-Rate-Based Analysis on the Convergence Time of ACO Algorithm |
| URI | https://ieeexplore.ieee.org/document/4815524 https://www.ncbi.nlm.nih.gov/pubmed/19380276 https://www.proquest.com/docview/67301532 https://www.proquest.com/docview/869848993 |
| Volume | 39 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0492 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0009097 issn: 1083-4419 databaseCode: RIE dateStart: 19960101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0Bp_ZQytKW9IP6wKFV6yVZJ459XFagFdJC1YLELfJXAAGbCrKX_vqOHWdpq4K4RZGjOJqx50088x7AjlA8c9Jaasvc0bzOMipyK6mquXZFVqfS-ERxdsSnp_nhWXG2Al-XvTDOuVB85ob-Mpzl28Ys_K-yXU8sUozyVVgtBe96te4JdtNOSAUhBcUQL_sGmVTunvyYTfY6asqR3495UN6TTGBKxv-KR0Fg5WGsGWLOwTrM-tl2pSZXw0Wrh-bXP0SOT_2cl_Aigk8y7rxlA1bcfADrvbADiet8AM__YCkcwEa8f0c-RZLqz5swHZNvaO4GvdjR7whY6R7GQ0t6khPSzAliSzLxVe2hwdMR325CmpqMJ8dkfH3e3F62Fzev4PRg_2QypVGVgZq8SFta6HRkikyX0ijNhLJSM55aJS2CPa1tIbTRuIto7iyCPdwTnHKeNYiZ3Cd37DWszXFuW0DKWiJ6KJkztcoFS6VDeGYypkwpZKltAllvm8pEynKvnHFdhdQllVUwrZfSlFU0bQJfls_87Ag7Hh296e2yHBlNksDH3gUqXG7-DEXNXbO482VwCKDYKAHywAjBpfAfyhJ40znP_Tyiz739_1vfwbPurMqXF76HtfZ24T4g5Gn1dvD13yFW-Ck |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcgAOlG4pDRTqAwcQeJus7SQ-bldUC3QLgq3UW-SvAKLdoDZ74dczdpxtQRRxiyJHcTRjz5t45j2A56XKMyetpbbgjvI6y2jJraSqzrUTWZ1K4xPF2XE-PeHvTsXpGrxe9cI450LxmRv6y3CWbxuz9L_K9j2xiBjxW3BbcM5F1611RbGbdlIqCCooBnnZt8ikcn_-eTY56MgpR35HzoP2nmQlJmX5bxEpSKzcjDZD1DncgFk_367Y5Ptw2eqh-fkHleP_ftADuB_hJxl3_rIJa24xgI1e2oHElT6Ae9d4CgewGe9fkheRpvrlFkzH5CMavEE_dvQTQlZ6gBHRkp7mhDQLguiSTHxde2jxdMQ3nJCmJuPJBzI--9JcfGu_nj-Ek8M388mURl0GarhIWyp0OjIi04U0SrNSWalZnlolLcI9ra0otdG4j-jcWYR7uCs45TxvEDPcp3dsG9YXOLcdIEUtET8UzJla8ZKl0iFAMxlTpihloW0CWW-bykTScq-dcVaF5CWVVTCtF9OUVTRtAq9Wz_zoKDv-OXrL22U1Mpokgb3eBSpccP4URS1cs7z0hXAIodgoAXLDiDKXpf9QlsCjznmu5hF97vHf37oHd6bz2VF19Pb4_RO4251c-WLDXVhvL5buKQKgVj8Lfv8LR3T7dg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Pheromone-Rate-Based+Analysis+on+the+Convergence+Time+of+ACO+Algorithm&rft.jtitle=IEEE+transactions+on+systems%2C+man+and+cybernetics.+Part+B%2C+Cybernetics&rft.au=Han+Huang&rft.au=Chun-Guo+Wu&rft.au=Zhi-Feng+Hao&rft.date=2009-08-01&rft.pub=IEEE&rft.issn=1083-4419&rft.volume=39&rft.issue=4&rft.spage=910&rft.epage=923&rft_id=info:doi/10.1109%2FTSMCB.2009.2012867&rft_id=info%3Apmid%2F19380276&rft.externalDocID=4815524 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4419&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4419&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4419&client=summon |