A Pheromone-Rate-Based Analysis on the Convergence Time of ACO Algorithm

Ant colony optimization (ACO) has widely been applied to solve combinatorial optimization problems in recent years. There are few studies, however, on its convergence time, which reflects how many iteration times ACO algorithms spend in converging to the optimal solution. Based on the absorbing Mark...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on systems, man and cybernetics. Part B, Cybernetics Vol. 39; no. 4; pp. 910 - 923
Main Authors Huang, Han, Wu, Chun-Guo, Hao, Zhi-Feng
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2009
Subjects
Online AccessGet full text
ISSN1083-4419
1941-0492
1941-0492
DOI10.1109/TSMCB.2009.2012867

Cover

Abstract Ant colony optimization (ACO) has widely been applied to solve combinatorial optimization problems in recent years. There are few studies, however, on its convergence time, which reflects how many iteration times ACO algorithms spend in converging to the optimal solution. Based on the absorbing Markov chain model, we analyze the ACO convergence time in this paper. First, we present a general result for the estimation of convergence time to reveal the relationship between convergence time and pheromone rate. This general result is then extended to a two-step analysis of the convergence time, which includes the following: 1) the iteration time that the pheromone rate spends on reaching the objective value and 2) the convergence time that is calculated with the objective pheromone rate in expectation. Furthermore, four brief ACO algorithms are investigated by using the proposed theoretical results as case studies. Finally, the conclusions of the case studies that the pheromone rate and its deviation determine the expected convergence time are numerically verified with the experiment results of four one-ant ACO algorithms and four ten-ant ACO algorithms.
AbstractList Ant colony optimization (ACO) has widely been applied to solve combinatorial optimization problems in recent years. There are few studies, however, on its convergence time, which reflects how many iteration times ACO algorithms spend in converging to the optimal solution. Based on the absorbing Markov chain model, we analyze the ACO convergence time in this paper. First, we present a general result for the estimation of convergence time to reveal the relationship between convergence time and pheromone rate. This general result is then extended to a two-step analysis of the convergence time, which includes the following: 1) the iteration time that the pheromone rate spends on reaching the objective value and 2) the convergence time that is calculated with the objective pheromone rate in expectation. Furthermore, four brief ACO algorithms are investigated by using the proposed theoretical results as case studies. Finally, the conclusions of the case studies that the pheromone rate and its deviation determine the expected convergence time are numerically verified with the experiment results of four one-ant ACO algorithms and four ten-ant ACO algorithms.
Ant colony optimization (ACO) has widely been applied to solve combinatorial optimization problems in recent years. There are few studies, however, on its convergence time, which reflects how many iteration times ACO algorithms spend in converging to the optimal solution. Based on the absorbing Markov chain model, we analyze the ACO convergence time in this paper. First, we present a general result for the estimation of convergence time to reveal the relationship between convergence time and pheromone rate. This general result is then extended to a two-step analysis of the convergence time, which includes the following: 1) the iteration time that the pheromone rate spends on reaching the objective value and 2) the convergence time that is calculated with the objective pheromone rate in expectation. Furthermore, four brief ACO algorithms are investigated by using the proposed theoretical results as case studies. Finally, the conclusions of the case studies that the pheromone rate and its deviation determine the expected convergence time are numerically verified with the experiment results of four one-ant ACO algorithms and four ten-ant ACO algorithms.Ant colony optimization (ACO) has widely been applied to solve combinatorial optimization problems in recent years. There are few studies, however, on its convergence time, which reflects how many iteration times ACO algorithms spend in converging to the optimal solution. Based on the absorbing Markov chain model, we analyze the ACO convergence time in this paper. First, we present a general result for the estimation of convergence time to reveal the relationship between convergence time and pheromone rate. This general result is then extended to a two-step analysis of the convergence time, which includes the following: 1) the iteration time that the pheromone rate spends on reaching the objective value and 2) the convergence time that is calculated with the objective pheromone rate in expectation. Furthermore, four brief ACO algorithms are investigated by using the proposed theoretical results as case studies. Finally, the conclusions of the case studies that the pheromone rate and its deviation determine the expected convergence time are numerically verified with the experiment results of four one-ant ACO algorithms and four ten-ant ACO algorithms.
Author Chun-Guo Wu
Han Huang
Zhi-Feng Hao
Author_xml – sequence: 1
  givenname: Han
  surname: Huang
  fullname: Huang, Han
  email: hhan@scut.edu.cn
  organization: School of Software Engineering, South China University of Technology, Guangzhou 510006, China. hhan@scut.edu.cn
– sequence: 2
  givenname: Chun-Guo
  surname: Wu
  fullname: Wu, Chun-Guo
– sequence: 3
  givenname: Zhi-Feng
  surname: Hao
  fullname: Hao, Zhi-Feng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19380276$$D View this record in MEDLINE/PubMed
BookMark eNp90ctq3DAUBmARUppL-wIpFK2SldOjmy0tHZMbpKS007WR5DMZFdtKJU8gbx9PZtpCF9lIWnz_EZz_iOyPcURCThicMwbmy-LH1-binAOY-WBcl9UeOWRGsgKk4fvzG7QopGTmgBzl_AtmCaZ6Tw6YERp4VR6Sm5p-W2GKwzy6-G4nLC5sxo7Wo-2fc8g0jnRaIW3i-ITpAUePdBEGpHFJ6-ae1v1DTGFaDR_Iu6XtM37c3cfk59Xlorkp7u6vb5v6rvBSwVQoB9wr5irjrRPadsaJEjprulKBc53SzjsBypXYsVJIrtAiQFUJL7UxWhyTs-3cxxR_rzFP7RCyx763I8Z1bnVp9EaKWZ6-KctKAFOCz_DzDq7dgF37mMJg03P7Z0sz4FvgU8w54fIfgXZTRftaRbupot1VMYf0fyEfJjuFOE7Jhv7t6KdtNCDi37-kZkpxKV4AGJyUOw
CODEN ITSCFI
CitedBy_id crossref_primary_10_1080_00207543_2022_2077671
crossref_primary_10_3724_SP_J_1016_2011_00801
crossref_primary_10_1016_j_jnca_2011_08_009
crossref_primary_10_1016_j_dsp_2012_12_011
crossref_primary_10_1007_s11721_012_0074_3
crossref_primary_10_1016_j_compeleceng_2015_10_007
crossref_primary_10_1109_TEVC_2012_2227973
crossref_primary_10_1155_2020_8451639
crossref_primary_10_1109_LCOMM_2020_3039846
crossref_primary_10_1109_TCYB_2021_3049607
crossref_primary_10_1016_j_swevo_2021_100875
crossref_primary_10_1080_21642583_2022_2071778
crossref_primary_10_1007_s11277_020_07306_1
crossref_primary_10_4018_IJSIR_2017100101
crossref_primary_10_1109_TSMCB_2009_2035630
Cites_doi 10.1162/evco.1999.7.2.173
10.1109/TSMCC.2004.841903
10.1016/S0304-3975(01)00182-7
10.1016/S0167-739X(00)00044-3
10.1109/TEVC.2002.802444
10.1109/CEC.2003.1299918
10.1109/4235.843492
10.1016/S0167-739X(00)00043-1
10.1109/TEVC.2002.800886
10.1162/evco.2007.15.4.435
10.1109/72.265964
10.1109/3477.484436
10.1109/CEC.2004.1330957
10.1016/j.ins.2003.08.018
10.1287/ijoc.3.4.376
10.1109/TSMCC.2006.871151
10.1023/B:NACO.0000023417.31393.c7
10.1162/evco.1996.4.2.195
10.1162/evco.1998.6.2.185
10.1109/TEVC.2006.888929
10.1007/s11047-006-9004-x
10.7551/mitpress/1290.001.0001
10.1109/COGINF.2006.365579
10.1162/106454699568728
10.1016/S0020-0190(01)00258-7
10.1016/j.tcs.2005.05.020
10.1109/4235.585892
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TSMCB.2009.2012867
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList MEDLINE

Technology Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
Computer Science
EISSN 1941-0492
EndPage 923
ExternalDocumentID 19380276
10_1109_TSMCB_2009_2012867
4815524
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5VS
6IK
85S
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
F5P
HZ~
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
PZZ
RIA
RIE
RNS
RXW
TAE
TAF
VH1
VJK
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c450t-5b02c51b79cab38ad9b360da9d650bbd58bcb305b6ed163425eae00773c489983
IEDL.DBID RIE
ISSN 1083-4419
1941-0492
IngestDate Fri Jul 11 16:07:09 EDT 2025
Fri Jul 11 08:51:49 EDT 2025
Wed Feb 19 01:44:50 EST 2025
Tue Jul 01 02:00:42 EDT 2025
Thu Apr 24 23:01:54 EDT 2025
Tue Aug 26 16:47:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-5b02c51b79cab38ad9b360da9d650bbd58bcb305b6ed163425eae00773c489983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 19380276
PQID 67301532
PQPubID 23479
PageCount 14
ParticipantIDs crossref_primary_10_1109_TSMCB_2009_2012867
proquest_miscellaneous_67301532
proquest_miscellaneous_869848993
crossref_citationtrail_10_1109_TSMCB_2009_2012867
pubmed_primary_19380276
ieee_primary_4815524
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-08-01
PublicationDateYYYYMMDD 2009-08-01
PublicationDate_xml – month: 08
  year: 2009
  text: 2009-08-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on systems, man and cybernetics. Part B, Cybernetics
PublicationTitleAbbrev TSMCB
PublicationTitleAlternate IEEE Trans Syst Man Cybern B Cybern
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
References Dorigo (5) 2004
Hao (15) 2006; 4247, Lecture
Witt (31) 2005; 3404, Lecture
23
Huang (37) 2008
25
26
27
28
Zhang (1) 2006; 2
Gutjahr (8) 1999
30
10
32
11
33
12
Neumann (34) 2004; 3102, Lecture
Huang (16) 2007; 30
Droste (19) 1998; 6
17
18
Neumann (14) 2006; 4288, Lecture
He (24) 1999; 21
Reinelt (36) 1991; 3
2
3
4
6
7
Witt (29) 2006
9
Rudolph (22) 1996; 4
Badr (13) 2004; 160
20
21
Yu (35) 2006
References_xml – ident: 18
  doi: 10.1162/evco.1999.7.2.173
– ident: 26
  doi: 10.1109/TSMCC.2004.841903
– year: 2008
  ident: 37
  publication-title: A relation-and-ordering-based analysis for convergence and convergence time of evolutionary algorithm
– ident: 20
  doi: 10.1016/S0304-3975(01)00182-7
– ident: 9
  doi: 10.1016/S0167-739X(00)00044-3
– ident: 11
  doi: 10.1109/TEVC.2002.802444
– ident: 30
  doi: 10.1109/CEC.2003.1299918
– ident: 21
  doi: 10.1109/4235.843492
– volume: 21
  start-page: 999
  year: 1999
  ident: 24
  article-title: The computational time of genetic algorithms for fully deceptive problem
  publication-title: Chin. J. Comput.
– start-page: 651
  year: 2006
  ident: 29
  article-title: Runtime analysis of the (u
  publication-title: Proc. 8th Annu. Conf. Genetic Evol. Comput.
– ident: 7
  doi: 10.1016/S0167-739X(00)00043-1
– ident: 23
  doi: 10.1109/TEVC.2002.800886
– ident: 27
  doi: 10.1162/evco.2007.15.4.435
– start-page: 555
  year: 2006
  ident: 35
  article-title: A new approach to estimating the expected first hitting time of evolutionary algorithms
  publication-title: Proc. 21st Nat. Conf. Artif. Intell. AAAI
– ident: 17
  doi: 10.1109/72.265964
– ident: 3
  doi: 10.1109/3477.484436
– ident: 32
  doi: 10.1109/CEC.2004.1330957
– volume: 160
  start-page: 267
  year: 2004
  ident: 13
  article-title: A proof of convergence for ant algorithms
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2003.08.018
– volume: 3
  start-page: 376
  year: 1991
  ident: 36
  article-title: TSPLIB—A traveling salesman problem library
  publication-title: ORSA J. Comput.
  doi: 10.1287/ijoc.3.4.376
– ident: 2
  doi: 10.1109/TSMCC.2006.871151
– ident: 25
  doi: 10.1023/B:NACO.0000023417.31393.c7
– volume: 4
  start-page: 194
  year: 1996
  ident: 22
  article-title: How mutation and selection solve long-path problems in polynomial expected time
  publication-title: Evol. Comput.
  doi: 10.1162/evco.1996.4.2.195
– volume: 6
  start-page: 185
  year: 1998
  ident: 19
  article-title: A rigorous complexity analysis of the (1
  publication-title: Evol. Comput.
  doi: 10.1162/evco.1998.6.2.185
– volume: 3404, Lecture
  start-page: 44
  year: 2005
  ident: 31
  article-title: Worse-case and average-case approximations by simple randomized search heuristics
  publication-title: Proc. 22nd Annu. Symp. Theor. Aspects Comput. Sci.
– volume: 4247, Lecture
  start-page: 513
  year: 2006
  ident: 15
  publication-title: A Time Complexity Analysis of ACO for Linear Functions
– ident: 28
  doi: 10.1109/TEVC.2006.888929
– volume: 30
  start-page: 1343
  year: 2007
  ident: 16
  article-title: The convergence speed of Ant Colony Optimization
  publication-title: Chin. J. Comput.
– ident: 33
  doi: 10.1007/s11047-006-9004-x
– volume: 4288, Lecture
  start-page: 618
  year: 2006
  ident: 14
  publication-title: Runtime Analysis of a Simple Ant Colony Optimization Algorithm
– year: 2004
  ident: 5
  publication-title: Ant Colony Optimization
  doi: 10.7551/mitpress/1290.001.0001
– start-page: 99
  year: 1999
  ident: 8
  publication-title: A generalized convergence result for the graph-based ant system metaheuristic
– volume: 2
  start-page: 726
  year: 2006
  ident: 1
  article-title: The improved ant colony algorithm based on immunity system genetic algorithm and application
  publication-title: Proc. 5th IEEE Int. Conf. Cognitive Inform.
  doi: 10.1109/COGINF.2006.365579
– ident: 4
  doi: 10.1162/106454699568728
– ident: 10
  doi: 10.1016/S0020-0190(01)00258-7
– ident: 12
  doi: 10.1016/j.tcs.2005.05.020
– ident: 6
  doi: 10.1109/4235.585892
– volume: 3102, Lecture
  start-page: 713
  year: 2004
  ident: 34
  article-title: Randomized local search, evolutionary algorithms and the minimum spanning tree problem
  publication-title: Proc. Genetic Evol. Comput. Conf.
SSID ssj0009097
Score 2.0356324
Snippet Ant colony optimization (ACO) has widely been applied to solve combinatorial optimization problems in recent years. There are few studies, however, on its...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 910
SubjectTerms Algorithm design and analysis
Algorithms
Animals
Ant colony optimization
Ant colony optimization (ACO)
Ants - physiology
Artificial intelligence
Biological system modeling
Combinatorial analysis
Computer science
Convergence
Convergence of numerical methods
convergence time
Cybernetics
Cybernetics - methods
Deviation
Iterative methods
Laboratories
Markov Chains
Mathematical models
Models, Biological
Models, Statistical
nature-inspired cybernetic mechanisms
Optimization
pheromone rate
Pheromones - physiology
Runtime
runtime analysis
Title A Pheromone-Rate-Based Analysis on the Convergence Time of ACO Algorithm
URI https://ieeexplore.ieee.org/document/4815524
https://www.ncbi.nlm.nih.gov/pubmed/19380276
https://www.proquest.com/docview/67301532
https://www.proquest.com/docview/869848993
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0492
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0009097
  issn: 1083-4419
  databaseCode: RIE
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0Bp_ZQytKW9IP6wKFV6yVZJ459XFagFdJC1YLELfJXAAGbCrKX_vqOHWdpq4K4RZGjOJqx50088x7AjlA8c9Jaasvc0bzOMipyK6mquXZFVqfS-ERxdsSnp_nhWXG2Al-XvTDOuVB85ob-Mpzl28Ys_K-yXU8sUozyVVgtBe96te4JdtNOSAUhBcUQL_sGmVTunvyYTfY6asqR3495UN6TTGBKxv-KR0Fg5WGsGWLOwTrM-tl2pSZXw0Wrh-bXP0SOT_2cl_Aigk8y7rxlA1bcfADrvbADiet8AM__YCkcwEa8f0c-RZLqz5swHZNvaO4GvdjR7whY6R7GQ0t6khPSzAliSzLxVe2hwdMR325CmpqMJ8dkfH3e3F62Fzev4PRg_2QypVGVgZq8SFta6HRkikyX0ijNhLJSM55aJS2CPa1tIbTRuIto7iyCPdwTnHKeNYiZ3Cd37DWszXFuW0DKWiJ6KJkztcoFS6VDeGYypkwpZKltAllvm8pEynKvnHFdhdQllVUwrZfSlFU0bQJfls_87Ag7Hh296e2yHBlNksDH3gUqXG7-DEXNXbO482VwCKDYKAHywAjBpfAfyhJ40znP_Tyiz739_1vfwbPurMqXF76HtfZ24T4g5Gn1dvD13yFW-Ck
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcgAOlG4pDRTqAwcQeJus7SQ-bldUC3QLgq3UW-SvAKLdoDZ74dczdpxtQRRxiyJHcTRjz5t45j2A56XKMyetpbbgjvI6y2jJraSqzrUTWZ1K4xPF2XE-PeHvTsXpGrxe9cI450LxmRv6y3CWbxuz9L_K9j2xiBjxW3BbcM5F1611RbGbdlIqCCooBnnZt8ikcn_-eTY56MgpR35HzoP2nmQlJmX5bxEpSKzcjDZD1DncgFk_367Y5Ptw2eqh-fkHleP_ftADuB_hJxl3_rIJa24xgI1e2oHElT6Ae9d4CgewGe9fkheRpvrlFkzH5CMavEE_dvQTQlZ6gBHRkp7mhDQLguiSTHxde2jxdMQ3nJCmJuPJBzI--9JcfGu_nj-Ek8M388mURl0GarhIWyp0OjIi04U0SrNSWalZnlolLcI9ra0otdG4j-jcWYR7uCs45TxvEDPcp3dsG9YXOLcdIEUtET8UzJla8ZKl0iFAMxlTpihloW0CWW-bykTScq-dcVaF5CWVVTCtF9OUVTRtAq9Wz_zoKDv-OXrL22U1Mpokgb3eBSpccP4URS1cs7z0hXAIodgoAXLDiDKXpf9QlsCjznmu5hF97vHf37oHd6bz2VF19Pb4_RO4251c-WLDXVhvL5buKQKgVj8Lfv8LR3T7dg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Pheromone-Rate-Based+Analysis+on+the+Convergence+Time+of+ACO+Algorithm&rft.jtitle=IEEE+transactions+on+systems%2C+man+and+cybernetics.+Part+B%2C+Cybernetics&rft.au=Han+Huang&rft.au=Chun-Guo+Wu&rft.au=Zhi-Feng+Hao&rft.date=2009-08-01&rft.pub=IEEE&rft.issn=1083-4419&rft.volume=39&rft.issue=4&rft.spage=910&rft.epage=923&rft_id=info:doi/10.1109%2FTSMCB.2009.2012867&rft_id=info%3Apmid%2F19380276&rft.externalDocID=4815524
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4419&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4419&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4419&client=summon