An Unsupervised Fuzzy Clustering Approach for Early Screening of COVID-19 From Radiological Images

A global pandemic scenario is witnessed worldwide owing to the menace of the rapid outbreak of the deadly COVID-19 virus. To save mankind from this apocalyptic onslaught, it is essential to curb the fast spreading of this dreadful virus. Moreover, the absence of specialized drugs has made the scenar...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on fuzzy systems Vol. 30; no. 8; pp. 2902 - 2914
Main Authors Ding, Weiping, Chakraborty, Shouvik, Mali, Kalyani, Chatterjee, Sankhadeep, Nayak, Janmenjoy, Das, Asit Kumar, Banerjee, Soumen
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1063-6706
1941-0034
1941-0034
DOI10.1109/TFUZZ.2021.3097806

Cover

Abstract A global pandemic scenario is witnessed worldwide owing to the menace of the rapid outbreak of the deadly COVID-19 virus. To save mankind from this apocalyptic onslaught, it is essential to curb the fast spreading of this dreadful virus. Moreover, the absence of specialized drugs has made the scenario even more badly and thus an early-stage adoption of necessary precautionary measures would provide requisite supportive treatment for its prevention. The prime objective of this article is to use radiological images as a tool to help in early diagnosis. The interval type 2 fuzzy clustering is blended with the concept of superpixels, and metaheuristics to efficiently segment the radiological images. Despite noise sensitivity of watershed-based approach, it is adopted for superpixel computation owing to its simplicity where the noise problem is handled by the important edge information of the gradient image is preserved with the help of morphological opening and closing based reconstruction operations. The traditional objective function of the fuzzy c-means clustering algorithm is modified to incorporate the spatial information from the neighboring superpixel-based local window. The computational overhead associated with the processing of a huge amount of spatial information is reduced by incorporating the concept of superpixels and the optimal clusters are determined by a modified version of the flower pollination algorithm. Although the proposed approach performs well but should not be considered as an alternative to gold standard detection tests of COVID-19. Experimental results are found to be promising enough to deploy this approach for real-life applications.
AbstractList A global pandemic scenario is witnessed worldwide owing to the menace of the rapid outbreak of the deadly COVID-19 virus. To save mankind from this apocalyptic onslaught, it is essential to curb the fast spreading of this dreadful virus. Moreover, the absence of specialized drugs has made the scenario even more badly and thus an early-stage adoption of necessary precautionary measures would provide requisite supportive treatment for its prevention. The prime objective of this article is to use radiological images as a tool to help in early diagnosis. The interval type 2 fuzzy clustering is blended with the concept of superpixels, and metaheuristics to efficiently segment the radiological images. Despite noise sensitivity of watershed-based approach, it is adopted for superpixel computation owing to its simplicity where the noise problem is handled by the important edge information of the gradient image is preserved with the help of morphological opening and closing based reconstruction operations. The traditional objective function of the fuzzy c-means clustering algorithm is modified to incorporate the spatial information from the neighboring superpixel-based local window. The computational overhead associated with the processing of a huge amount of spatial information is reduced by incorporating the concept of superpixels and the optimal clusters are determined by a modified version of the flower pollination algorithm. Although the proposed approach performs well but should not be considered as an alternative to gold standard detection tests of COVID-19. Experimental results are found to be promising enough to deploy this approach for real-life applications.
A global pandemic scenario is witnessed worldwide owing to the menace of the rapid outbreak of the deadly COVID-19 virus. To save mankind from this apocalyptic onslaught, it is essential to curb the fast spreading of this dreadful virus. Moreover, the absence of specialized drugs has made the scenario even more badly and thus an early-stage adoption of necessary precautionary measures would provide requisite supportive treatment for its prevention. The prime objective of this article is to use radiological images as a tool to help in early diagnosis. The interval type 2 fuzzy clustering is blended with the concept of superpixels, and metaheuristics to efficiently segment the radiological images. Despite noise sensitivity of watershed-based approach, it is adopted for superpixel computation owing to its simplicity where the noise problem is handled by the important edge information of the gradient image is preserved with the help of morphological opening and closing based reconstruction operations. The traditional objective function of the fuzzy c-means clustering algorithm is modified to incorporate the spatial information from the neighboring superpixel-based local window. The computational overhead associated with the processing of a huge amount of spatial information is reduced by incorporating the concept of superpixels and the optimal clusters are determined by a modified version of the flower pollination algorithm. Although the proposed approach performs well but should not be considered as an alternative to gold standard detection tests of COVID-19. Experimental results are found to be promising enough to deploy this approach for real-life applications.A global pandemic scenario is witnessed worldwide owing to the menace of the rapid outbreak of the deadly COVID-19 virus. To save mankind from this apocalyptic onslaught, it is essential to curb the fast spreading of this dreadful virus. Moreover, the absence of specialized drugs has made the scenario even more badly and thus an early-stage adoption of necessary precautionary measures would provide requisite supportive treatment for its prevention. The prime objective of this article is to use radiological images as a tool to help in early diagnosis. The interval type 2 fuzzy clustering is blended with the concept of superpixels, and metaheuristics to efficiently segment the radiological images. Despite noise sensitivity of watershed-based approach, it is adopted for superpixel computation owing to its simplicity where the noise problem is handled by the important edge information of the gradient image is preserved with the help of morphological opening and closing based reconstruction operations. The traditional objective function of the fuzzy c-means clustering algorithm is modified to incorporate the spatial information from the neighboring superpixel-based local window. The computational overhead associated with the processing of a huge amount of spatial information is reduced by incorporating the concept of superpixels and the optimal clusters are determined by a modified version of the flower pollination algorithm. Although the proposed approach performs well but should not be considered as an alternative to gold standard detection tests of COVID-19. Experimental results are found to be promising enough to deploy this approach for real-life applications.
Author Ding, Weiping
Chatterjee, Sankhadeep
Nayak, Janmenjoy
Chakraborty, Shouvik
Mali, Kalyani
Das, Asit Kumar
Banerjee, Soumen
AuthorAffiliation Department of Computer Science and Engineering Aditya Institute of Technology and Management 470169 Srikakulam 532201 India
Department of Computer Science and Engineering University of Kalyani 30132 Kalyani 741235 India
School of Information Science and Technology Nantong University 66479 Nantong 226019 China
Department of Computer Science and Engineering University of Engineering and Management 121690 Kolkata 700160 India
Department of Computer Science and Technology Indian Institute of Engineering Science and Technology 30130 Howrah 711103 India
Department of Electronics and Communication Engineering University of Engineering and Management 121690 Kolkata 700160 India
AuthorAffiliation_xml – name: School of Information Science and Technology Nantong University 66479 Nantong 226019 China
– name: Department of Computer Science and Engineering Aditya Institute of Technology and Management 470169 Srikakulam 532201 India
– name: Department of Computer Science and Engineering University of Kalyani 30132 Kalyani 741235 India
– name: Department of Computer Science and Technology Indian Institute of Engineering Science and Technology 30130 Howrah 711103 India
– name: Department of Computer Science and Engineering University of Engineering and Management 121690 Kolkata 700160 India
– name: Department of Electronics and Communication Engineering University of Engineering and Management 121690 Kolkata 700160 India
Author_xml – sequence: 1
  givenname: Weiping
  orcidid: 0000-0002-3180-7347
  surname: Ding
  fullname: Ding, Weiping
  organization: School of Information Science and Technology, Nantong University, Nantong, China
– sequence: 2
  givenname: Shouvik
  orcidid: 0000-0002-3427-7492
  surname: Chakraborty
  fullname: Chakraborty, Shouvik
  organization: Department of Computer Science and Engineering, University of Kalyani, Kalyani, India
– sequence: 3
  givenname: Kalyani
  surname: Mali
  fullname: Mali, Kalyani
  organization: Department of Computer Science and Engineering, University of Kalyani, Kalyani, India
– sequence: 4
  givenname: Sankhadeep
  orcidid: 0000-0002-3930-4699
  surname: Chatterjee
  fullname: Chatterjee, Sankhadeep
  email: chatterjeesankhadeep.cu@gmail.com
  organization: Department of Computer Science and Engineering, University of Engineering and Management, Kolkata, India
– sequence: 5
  givenname: Janmenjoy
  orcidid: 0000-0002-9746-6557
  surname: Nayak
  fullname: Nayak, Janmenjoy
  organization: Department of Computer Science and Engineering, Aditya Institute of Technology and Management, Srikakulam, India
– sequence: 6
  givenname: Asit Kumar
  orcidid: 0000-0002-9886-1735
  surname: Das
  fullname: Das, Asit Kumar
  email: akdas@cs.iiests.ac.in
  organization: Department of Computer Science and Technology, Indian Institute of Engineering Science and Technology, Howrah, India
– sequence: 7
  givenname: Soumen
  orcidid: 0000-0003-3918-1892
  surname: Banerjee
  fullname: Banerjee, Soumen
  organization: Department of Electronics and Communication Engineering, University of Engineering and Management, Kolkata, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36345371$$D View this record in MEDLINE/PubMed
BookMark eNp9kktvEzEUhUeoiD7gD4CELLFhM8FvjzdIUWggUqVK0LDoxnJn7qSuJvZgzxSlvx6HhAJBYmVL93zX9xzf0-LIBw9F8ZLgCSFYv7uaL6-vJxRTMmFYqwrLJ8UJ0ZyUGDN-lO9YslIqLI-L05TuMCZckOpZccwk44IpclLcTD1a-jT2EO9dggbNx4eHDZp1YxogOr9C076Pwda3qA0RndvYbdCXOgL4bTG0aHb5dfGhJBrNY1ijz7ZxoQsrV9sOLdZ2Bel58bS1XYIX-_OsWM7Pr2afyovLj4vZ9KKsucBDyRvF25a1UGPOKKsw1azRHIQQwFtZWQqqFarRghPZYMpZzQm-AarBSpXJs4Lt-o6-t5vvtutMH93axo0h2GwTM0Ob3ZltYmafWKbe76h-vFlDU4Mfov1NBuvM3xXvbs0q3BvNBadK5wZv9w1i-DZCGszapRq6znoIYzJUsTyw4BXL0jcH0rswRp9DMVRqJaQkRGXV6z8nehzl16dlAd0J6hhSitD-4_PnZhz6rA6g2g12cGHrynX_R1_tUAcAj29prjHLi_YDe-nEmw
CODEN IEFSEV
CitedBy_id crossref_primary_10_1007_s00500_024_09905_7
crossref_primary_10_1016_j_inffus_2024_102323
crossref_primary_10_1109_TFUZZ_2024_3373509
crossref_primary_10_1109_TFUZZ_2024_3410929
crossref_primary_10_18038_estubtda_1258361
crossref_primary_10_1007_s00354_022_00194_y
crossref_primary_10_1007_s11517_024_03107_x
crossref_primary_10_1016_j_ijar_2025_109422
crossref_primary_10_4018_IJAMC_318642
crossref_primary_10_1109_TNNLS_2022_3208418
crossref_primary_10_1016_j_asoc_2023_111131
crossref_primary_10_1016_j_bspc_2021_103324
crossref_primary_10_3390_axioms12040345
crossref_primary_10_1007_s12559_024_10379_w
crossref_primary_10_1016_j_ijar_2022_12_002
crossref_primary_10_1016_j_asoc_2024_111657
crossref_primary_10_1109_TFUZZ_2023_3333571
crossref_primary_10_1007_s11063_022_11088_x
crossref_primary_10_1109_TETCI_2023_3336537
crossref_primary_10_1007_s42600_024_00366_3
crossref_primary_10_1016_j_ins_2023_119061
crossref_primary_10_1016_j_ins_2022_12_026
Cites_doi 10.1109/TPAMI.2012.120
10.3390/ijerph17186933
10.1016/j.eng.2020.04.010
10.1109/TMI.2020.2993291
10.3390/app10134640
10.1016/j.bspc.2021.102800
10.1109/91.995115
10.1016/j.scs.2020.102589
10.1016/j.engappai.2020.103916
10.1007/978-3-642-32894-7_27
10.11591/ijece.v6i6.11801
10.1016/B978-0-12-820604-1.00003-0
10.1109/34.1000236
10.1016/j.media.2020.101836
10.1080/01431160050029567
10.1016/j.eswa.2021.115069
10.1109/TFUZZ.2018.2889018
10.1016/j.patcog.2005.02.014
10.1016/j.compeleceng.2020.106960
10.1016/j.asoc.2020.106800
10.1016/j.media.2020.101794
10.1109/ICIP.2015.7350818
10.1016/j.media.2020.101860
10.1109/34.85677
10.1109/ICRCICN.2017.8234511
10.14257/ijhit.2015.8.11.23
10.1007/978-981-15-9433-5_29
10.1109/TMI.2020.2995965
10.1007/s00330-021-07715-1
10.1080/01969727408546059
10.5152/dir.2020.20205
10.1016/j.artmed.2004.01.012
10.4018/978-1-5225-4151-6.ch006
10.1007/s10489-020-01714-3
10.1109/TFUZZ.2018.2814591
10.1109/TMI.2020.2994459
10.1109/ACCESS.2020.3027685
10.1016/j.media.2020.101913
10.1002/jemt.22900
10.1016/j.eswa.2021.114677
10.7717/peerj-cs.303
10.1007/s10462-018-9624-4
10.1109/RBME.2020.2987975
10.1007/978-981-13-1471-1_8
10.1109/TPAMI.1979.4766909
10.1109/TMI.2020.2996645
10.1117/12.2580641
10.1109/91.873578
10.1016/j.compbiomed.2020.104037
10.1109/TFUZZ.2014.2362149
10.1155/2018/3052852
10.1016/j.eswa.2020.114142
10.4018/978-1-7998-2736-8.ch008
10.4018/978-1-7998-2736-8.ch004
10.1016/j.media.2020.101844
10.1166/jamr.2015.1245
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
2021 IEEE
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
– notice: 2021 IEEE
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
ADTOC
UNPAY
DOI 10.1109/TFUZZ.2021.3097806
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
Computer and Information Systems Abstracts

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 2914
ExternalDocumentID 10.1109/tfuzz.2021.3097806
PMC9454279
36345371
10_1109_TFUZZ_2021_3097806
9490300
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20191445
  funderid: 10.13039/501100004608
– fundername: National Natural Science Foundation of China
  grantid: 61300167; 61976120
  funderid: 10.13039/501100001809
– fundername: Qinglan Project of Jiangsu Province of China
  funderid: 10.13039/501100013088
– fundername: Natural Science Key Foundation of Jiangsu Education Department
  grantid: 21KJA510004
– fundername: ;
– fundername: ;
  grantid: BK20191445
– fundername: ;
  grantid: 21KJA510004
– fundername: ;
  grantid: 61300167; 61976120
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
NPM
PKN
RIG
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c450t-4d74ff3fec0432380293d94e555e4f68a2e7f57d95416d0243c410be29ea67ff3
IEDL.DBID RIE
ISSN 1063-6706
1941-0034
IngestDate Sun Oct 26 03:28:59 EDT 2025
Tue Sep 30 17:19:03 EDT 2025
Thu Oct 02 13:04:40 EDT 2025
Sun Jun 29 16:01:00 EDT 2025
Wed Feb 19 02:08:57 EST 2025
Wed Oct 01 02:37:28 EDT 2025
Thu Apr 24 23:07:41 EDT 2025
Wed Aug 27 02:23:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords COVID-19
interval type-2 fuzzy system
unsupervised fuzzy clustering
radiological image segmentation
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-009
https://doi.org/10.15223/policy-001
This article is free to access and download, along with rights for full text and data mining, re-use and analysis.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-4d74ff3fec0432380293d94e555e4f68a2e7f57d95416d0243c410be29ea67ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9746-6557
0000-0002-3180-7347
0000-0002-9886-1735
0000-0002-3930-4699
0000-0002-3427-7492
0000-0003-3918-1892
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/91/9849079/09490300.pdf
PMID 36345371
PQID 2697566117
PQPubID 85428
PageCount 13
ParticipantIDs pubmed_primary_36345371
crossref_primary_10_1109_TFUZZ_2021_3097806
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9454279
proquest_miscellaneous_2734165483
proquest_journals_2697566117
unpaywall_primary_10_1109_tfuzz_2021_3097806
crossref_citationtrail_10_1109_TFUZZ_2021_3097806
ieee_primary_9490300
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationTitleAlternate IEEE Trans Fuzzy Syst
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Chen (ref11) 2020
ref24
ref23
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Ulhaq (ref26) 2020
ref60
ref61
References_xml – ident: ref45
  doi: 10.1109/TPAMI.2012.120
– ident: ref27
  doi: 10.3390/ijerph17186933
– ident: ref10
  doi: 10.1016/j.eng.2020.04.010
– ident: ref5
  doi: 10.1109/TMI.2020.2993291
– ident: ref7
  doi: 10.3390/app10134640
– ident: ref24
  doi: 10.1016/j.bspc.2021.102800
– ident: ref42
  doi: 10.1109/91.995115
– ident: ref3
  doi: 10.1016/j.scs.2020.102589
– ident: ref35
  doi: 10.1016/j.engappai.2020.103916
– ident: ref39
  doi: 10.1007/978-3-642-32894-7_27
– ident: ref30
  doi: 10.11591/ijece.v6i6.11801
– ident: ref55
  doi: 10.1016/B978-0-12-820604-1.00003-0
– ident: ref47
  doi: 10.1109/34.1000236
– ident: ref13
  doi: 10.1016/j.media.2020.101836
– ident: ref54
  doi: 10.1080/01431160050029567
– ident: ref23
  doi: 10.1016/j.eswa.2021.115069
– ident: ref48
  doi: 10.1109/TFUZZ.2018.2889018
– ident: ref37
  doi: 10.1016/j.patcog.2005.02.014
– ident: ref4
  doi: 10.1016/j.compeleceng.2020.106960
– ident: ref58
  doi: 10.1016/j.asoc.2020.106800
– ident: ref14
  doi: 10.1016/j.media.2020.101794
– ident: ref46
  doi: 10.1109/ICIP.2015.7350818
– ident: ref1
  doi: 10.1016/j.media.2020.101860
– ident: ref52
  doi: 10.1109/34.85677
– ident: ref38
  doi: 10.1109/ICRCICN.2017.8234511
– ident: ref41
  doi: 10.14257/ijhit.2015.8.11.23
– ident: ref31
  doi: 10.1007/978-981-15-9433-5_29
– ident: ref33
  doi: 10.1109/TMI.2020.2995965
– ident: ref9
  doi: 10.1007/s00330-021-07715-1
– ident: ref53
  doi: 10.1080/01969727408546059
– ident: ref20
  doi: 10.5152/dir.2020.20205
– ident: ref61
  article-title: COVID-19 pneumonia radiology case Radiopaedia.org
– ident: ref50
  doi: 10.1016/j.artmed.2004.01.012
– ident: ref16
  doi: 10.4018/978-1-5225-4151-6.ch006
– ident: ref8
  doi: 10.1007/s10489-020-01714-3
– ident: ref49
  doi: 10.1109/TFUZZ.2018.2814591
– ident: ref6
  doi: 10.1109/TMI.2020.2994459
– ident: ref28
  doi: 10.1109/ACCESS.2020.3027685
– ident: ref2
  doi: 10.1016/j.media.2020.101913
– ident: ref57
  doi: 10.1002/jemt.22900
– ident: ref18
  doi: 10.1016/j.eswa.2021.114677
– ident: ref19
  doi: 10.7717/peerj-cs.303
– ident: ref40
  doi: 10.1007/s10462-018-9624-4
– ident: ref25
  doi: 10.1109/RBME.2020.2987975
– ident: ref34
  doi: 10.1007/978-981-13-1471-1_8
– ident: ref51
  doi: 10.1109/TPAMI.1979.4766909
– year: 2020
  ident: ref11
  article-title: A survey on applications of artificial intelligence in fighting against COVID-19
– ident: ref60
  article-title: COVID-19 pneumonia radiology case Radiopaedia.org
– ident: ref21
  doi: 10.1109/TMI.2020.2996645
– ident: ref22
  doi: 10.1117/12.2580641
– ident: ref36
  doi: 10.1109/91.873578
– ident: ref17
  doi: 10.1016/j.compbiomed.2020.104037
– ident: ref43
  doi: 10.1109/TFUZZ.2014.2362149
– ident: ref56
  doi: 10.1155/2018/3052852
– ident: ref44
  doi: 10.1016/j.eswa.2020.114142
– ident: ref15
  doi: 10.4018/978-1-7998-2736-8.ch008
– ident: ref32
  doi: 10.4018/978-1-7998-2736-8.ch004
– ident: ref59
  article-title: COVID-19 pneumonia radiology case Radiopaedia.org
– ident: ref12
  doi: 10.1016/j.media.2020.101844
– year: 2020
  ident: ref26
  article-title: Computer vision for COVID-19 control: A survey
  doi: 10.1109/ACCESS.2020.3027685
– ident: ref29
  doi: 10.1166/jamr.2015.1245
SSID ssj0014518
Score 2.5234928
Snippet A global pandemic scenario is witnessed worldwide owing to the menace of the rapid outbreak of the deadly COVID-19 virus. To save mankind from this apocalyptic...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2902
SubjectTerms Algorithms
Clustering
Computed tomography
Coronaviruses
COVID-19
Disease transmission
Fuzzy logic
Fuzzy sets
Heuristic methods
Image segmentation
interval type-2 fuzzy system
Lung
Noise sensitivity
radiological image segmentation
Spatial data
unsupervised fuzzy clustering
Viral diseases
Viruses
X-rays
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5B9wA8MNgYBAYyEm-QNk4cu36sCtGGxEBoQaMvUX7YoiJLqzURrH89ZzeJWoaQ4C2KL5GcO1--Tz5_B_BKYJAoaYRuObMEhbupP_ZcxBIcGZEKuD0e_eGMn8Ts_UV4sdXqy3Q4scVnamgu7V7-XJU_xUjSkRwz5HJyhJREYnB6w2Whb8MeDxGGD2AvPvs0-Wp3N3ngcmH7aiJHR7rsBaw7MOPJUa2b9RqpoU-HgTnGYLodbf2UbJeVPwHOm3WTd5pqmV7_SMty66cU7cOsm86mFuX7sKmzYb7-Tenxv-b7AO63UJVMNrH1EG6p6gD2uzYQpM0KB3BvS9PwELJJReJq1SxNElqpgkT4Ga7JtGyMJAOakEkrY04QLxMrsIzvMuU_ZnChyfTjl9O3LpUkulpcks9pMe8SNDm9xPS3egRx9O58euK2jRzcnIVe7bJCMK0DrXIjABiMPcQYhWQqDEPFNB-nvhI6FIUMER4WRiMxZ9TLlC9VygU-eQSDalGpJ0AEp9rHO7QICpYxKrUnuDHL8kB6uXaAdp5M8lbl3DTbKBPLdjyZnEfxbJYY7yet9x143T-z3Gh8_NX60Hiqt2x948BxFzBJmwZWic-lQLxMqXDgZT-MC9jsyqSVWjRoIxBIcCSOgQOPN_HVvxvXCwsDQR0QO5HXGxhx8N2Rav7NioRLFjJfSAfe9DF6Y3J2IexM7um_mT-Du745DmILIo9hUF816jmCtDp70S7HX4I0MwE
  priority: 102
  providerName: Unpaywall
Title An Unsupervised Fuzzy Clustering Approach for Early Screening of COVID-19 From Radiological Images
URI https://ieeexplore.ieee.org/document/9490300
https://www.ncbi.nlm.nih.gov/pubmed/36345371
https://www.proquest.com/docview/2697566117
https://www.proquest.com/docview/2734165483
https://pubmed.ncbi.nlm.nih.gov/PMC9454279
https://ieeexplore.ieee.org/ielx7/91/9849079/09490300.pdf
UnpaywallVersion publishedVersion
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014518
  issn: 1941-0034
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOFFoKKaUyEjeabZw49vq4WohapBaEGlR6ifKwRcU2WXUTVd1fz9h5aJdWiFsUj6NYM-N8E898A_BBoJEoaYhuObMBCndTf-y5iCU4RkQq4LY8-vSMH8fsy0V4sQGHQy2MUsomn6mRubRn-UWVN-ZX2ZFkEm0SA_RHYszbWq3hxICFtC1744HLhcf7AhlPHp1H8eUlhoI-HQWmbMF0N1r5CNmuKg8BzPt5kk-acp7e3aaz2cpHKNqC0_7129yT36Omzkb58i9mx_9d3wt43qFRMmnN5yVsqHIbtvpOD6Rz_G14tkJbuAPZpCRxuWjmZp9ZqIJEzXJ5R6azxrAuoAiZdEzlBCExsRzK-CyT4WMGK02mX3-cfHKpJNFNdU2-p8VVvweTk2vc4RavII4-n0-P3a5Xg5uz0KtdVgimdaBVbjj-grGHMKKQTIVhqJjm49RXQoeikCEiwMLQIOaMepnypUq5wJm7sFlWpXoDRHCqfbxDi6BgGaNSe4IbsSwPpJdrB2ivvCTviMxNP41ZYgMaTyZW4YlReNIp3IGPw5x5S-PxT-kdo5xBstOLA_u9jSSdpy8Sn0uBkJhS4cD7YRh91By8pKWqGpQRiBU4xoaBA69bkxqejS7BwkBQB8SasQ0Chv97faS8-mV5wCULmS-kA4eDWd5bXK3RAtYWt_fw4t7CU99Udtjcxn3YrG8a9Q7xVp0dWEc7gMfx2bfJzz-cHiY9
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5V5VA4tNDycCmwSNyoU6-9j-wxClgJNEVCCap6sfxYi4rUjppYqPn1zK4fSmiFuFnesaXRzKy_8c58A_BBopNoZYhuBbMJinBjv--5iCUEZkQ6ELY9enIhRjP25ZJf7sBp1wujtbbFZ7pnLu1ZflamlflVdqaYQp_EBP0RZ4zxulurOzNgnNaNbyJwhfRE2yLjqbNpOLu6wmTQp73ANC6Y-UYbnyE7V-UhiHm_UnKvKhbx3e94Pt_4DIUHMGkVqKtPfvWqVdJL139xO_6vhk9hv8GjZFA70DPY0cUhHLSzHkgT-ofwZIO48AiSQUFmxbJamJ1mqTMSVuv1HRnOK8O7gCJk0HCVEwTFxLIo47tMjY9ZLHMy_PZj_MmlioS35Q35HmfX7S5Mxje4xy2fwyz8PB2O3GZag5sy7q1clkmW50GuU8PyF_Q9BBKZYppzrlku-rGvZc5lpjhiwMwQIaaMeon2lY6FxCdfwG5RFvoVEClo7uMdmgUZSxhVuSeFEUvSQHlp7gBtjRelDZW5magxj2xK46nIGjwyBo8agzvwsXtmURN5_FP6yBink2zs4sBJ6yNRE-vLyBdKIiimVDrwvlvGKDVHL3GhywplJKIFgdlh4MDL2qW6d2NQMB5I6oDccrZOwDCAb68U1z8tE7hinPlSOXDaueU95VY5esCWcscPK_cO9kbTyXl0Pr74-hoe-6bPw1Y6nsDu6rbSbxB9rZK3Nuj-ANiSJ9o
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5B9wA8MNgYBAYyEm-QNk4cu36sCtGGxEBoQaMvUX7YoiJLqzURrH89ZzeJWoaQ4C2KL5GcO1--Tz5_B_BKYJAoaYRuObMEhbupP_ZcxBIcGZEKuD0e_eGMn8Ts_UV4sdXqy3Q4scVnamgu7V7-XJU_xUjSkRwz5HJyhJREYnB6w2Whb8MeDxGGD2AvPvs0-Wp3N3ngcmH7aiJHR7rsBaw7MOPJUa2b9RqpoU-HgTnGYLodbf2UbJeVPwHOm3WTd5pqmV7_SMty66cU7cOsm86mFuX7sKmzYb7-Tenxv-b7AO63UJVMNrH1EG6p6gD2uzYQpM0KB3BvS9PwELJJReJq1SxNElqpgkT4Ga7JtGyMJAOakEkrY04QLxMrsIzvMuU_ZnChyfTjl9O3LpUkulpcks9pMe8SNDm9xPS3egRx9O58euK2jRzcnIVe7bJCMK0DrXIjABiMPcQYhWQqDEPFNB-nvhI6FIUMER4WRiMxZ9TLlC9VygU-eQSDalGpJ0AEp9rHO7QICpYxKrUnuDHL8kB6uXaAdp5M8lbl3DTbKBPLdjyZnEfxbJYY7yet9x143T-z3Gh8_NX60Hiqt2x948BxFzBJmwZWic-lQLxMqXDgZT-MC9jsyqSVWjRoIxBIcCSOgQOPN_HVvxvXCwsDQR0QO5HXGxhx8N2Rav7NioRLFjJfSAfe9DF6Y3J2IexM7um_mT-Du745DmILIo9hUF816jmCtDp70S7HX4I0MwE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Unsupervised+Fuzzy+Clustering+Approach+for+Early+Screening+of+COVID-19+From+Radiological+Images&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Ding%2C+Weiping&rft.au=Chakraborty%2C+Shouvik&rft.au=Mali%2C+Kalyani&rft.au=Chatterjee%2C+Sankhadeep&rft.date=2022-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=30&rft.issue=8&rft.spage=2902&rft_id=info:doi/10.1109%2FTFUZZ.2021.3097806&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon