Matched Filters for Noisy Induced Subgraph Detection

The problem of finding the vertex correspondence between two noisy graphs with different number of vertices where the smaller graph is still large has many applications in social networks, neuroscience, and computer vision. We propose a solution to this problem via a graph matching matched filter: c...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 42; no. 11; pp. 2887 - 2900
Main Authors Sussman, Daniel L., Park, Youngser, Priebe, Carey E., Lyzinski, Vince
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0162-8828
1939-3539
2160-9292
2160-9292
1939-3539
DOI10.1109/TPAMI.2019.2914651

Cover

Abstract The problem of finding the vertex correspondence between two noisy graphs with different number of vertices where the smaller graph is still large has many applications in social networks, neuroscience, and computer vision. We propose a solution to this problem via a graph matching matched filter: centering and padding the smaller adjacency matrix and applying graph matching methods to align it to the larger network. The centering and padding schemes can be incorporated into any algorithm that matches using adjacency matrices. Under a statistical model for correlated pairs of graphs, which yields a noisy copy of the small graph within the larger graph, the resulting optimization problem can be guaranteed to recover the true vertex correspondence between the networks. However, there are currently no efficient algorithms for solving this problem. To illustrate the possibilities and challenges of such problems, we use an algorithm that can exploit a partially known correspondence and show via varied simulations and applications to Drosophila and human connectomes that this approach can achieve good performance.
AbstractList The problem of finding the vertex correspondence between two noisy graphs with different number of vertices where the smaller graph is still large has many applications in social networks, neuroscience, and computer vision. We propose a solution to this problem via a graph matching matched filter: centering and padding the smaller adjacency matrix and applying graph matching methods to align it to the larger network. The centering and padding schemes can be incorporated into any algorithm that matches using adjacency matrices. Under a statistical model for correlated pairs of graphs, which yields a noisy copy of the small graph within the larger graph, the resulting optimization problem can be guaranteed to recover the true vertex correspondence between the networks. However, there are currently no efficient algorithms for solving this problem. To illustrate the possibilities and challenges of such problems, we use an algorithm that can exploit a partially known correspondence and show via varied simulations and applications to Drosophila and human connectomes that this approach can achieve good performance.
The problem of finding the vertex correspondence between two noisy graphs with different number of vertices where the smaller graph is still large has many applications in social networks, neuroscience, and computer vision. We propose a solution to this problem via a graph matching matched filter: centering and padding the smaller adjacency matrix and applying graph matching methods to align it to the larger network. The centering and padding schemes can be incorporated into any algorithm that matches using adjacency matrices. Under a statistical model for correlated pairs of graphs, which yields a noisy copy of the small graph within the larger graph, the resulting optimization problem can be guaranteed to recover the true vertex correspondence between the networks. However, there are currently no efficient algorithms for solving this problem. To illustrate the possibilities and challenges of such problems, we use an algorithm that can exploit a partially known correspondence and show via varied simulations and applications to Drosophila and human connectomes that this approach can achieve good performance.The problem of finding the vertex correspondence between two noisy graphs with different number of vertices where the smaller graph is still large has many applications in social networks, neuroscience, and computer vision. We propose a solution to this problem via a graph matching matched filter: centering and padding the smaller adjacency matrix and applying graph matching methods to align it to the larger network. The centering and padding schemes can be incorporated into any algorithm that matches using adjacency matrices. Under a statistical model for correlated pairs of graphs, which yields a noisy copy of the small graph within the larger graph, the resulting optimization problem can be guaranteed to recover the true vertex correspondence between the networks. However, there are currently no efficient algorithms for solving this problem. To illustrate the possibilities and challenges of such problems, we use an algorithm that can exploit a partially known correspondence and show via varied simulations and applications to Drosophila and human connectomes that this approach can achieve good performance.
Author Sussman, Daniel L.
Park, Youngser
Priebe, Carey E.
Lyzinski, Vince
Author_xml – sequence: 1
  givenname: Daniel L.
  orcidid: 0000-0002-8307-2610
  surname: Sussman
  fullname: Sussman, Daniel L.
  email: sussman@bu.edu
  organization: Department of Mathematics & Statistics, Boston University, Boston, MA, USA
– sequence: 2
  givenname: Youngser
  orcidid: 0000-0002-3978-5533
  surname: Park
  fullname: Park, Youngser
  email: youngser@jhu.edu
  organization: Department of Applied Math & Statistics, Johns Hopkins University, Baltimore, MD, USA
– sequence: 3
  givenname: Carey E.
  orcidid: 0000-0002-0139-7201
  surname: Priebe
  fullname: Priebe, Carey E.
  email: cep@jhu.edu
  organization: Department of Applied Math & Statistics, Johns Hopkins University, Baltimore, MD, USA
– sequence: 4
  givenname: Vince
  surname: Lyzinski
  fullname: Lyzinski, Vince
  email: vlyzinski@umass.edu
  organization: Department of Mathematics, University of Massachusetts, Amherst, MA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31059426$$D View this record in MEDLINE/PubMed
BookMark eNp9UV1rFDEUDdJit1v_gIIM-NKXWfO9yYtQqrULrRaszyEzyXRTZpMxySj775t1t7WuIHm4kHvOveeecwwOfPAWgNcIzhCC8v3tzdn1YoYhkjMsEeUMvQATjDisJZb4AEwg4rgWAosjcJzSPYSIMkhegiOCIJMU8wmg1zq3S2uqC9dnG1PVhVh9CS6tq4U3Y1s638bmLuphWX202bbZBX8CDjvdJ_tqV6fg-8Wn2_PL-urr58X52VXdlj25RqjjTYOFbDBnBlqJy0_DYEeKJEjlvOOM8E5aTiCDTacNMaihRggkhTGGTAHZzh39oNe_dN-rIbqVjmuFoNp4oPKgV05tPFA7Dwrrw5Y1jM3Kmtb6HPUfZtBO_d3xbqnuwk81Z1JIQsqA092AGH6MNmW1cqm1fa-9DWNSGBOMCJHlTcG7Peh9GKMvpihMqaBzXJIoqLfPFT1JeYyhAPAW0MaQUrTdP3f-znr_TrFHal3Wm3zKVa7_P_XNluqstU-7xBwyQgR5AMkws-g
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1007_s41109_022_00464_0
crossref_primary_10_1016_j_patcog_2024_110797
crossref_primary_10_1007_s41109_021_00398_z
crossref_primary_10_1109_TSIPN_2024_3467921
crossref_primary_10_1109_TSMC_2024_3407948
crossref_primary_10_1109_ACCESS_2024_3458050
crossref_primary_10_1109_TNSE_2021_3056329
crossref_primary_10_1162_netn_a_00287
crossref_primary_10_1093_imaiai_iaz031
Cites_doi 10.1016/j.ins.2016.01.074
10.1137/0105003
10.1007/s10618-014-0365-y
10.1016/j.artint.2010.05.002
10.1016/j.jpdc.2009.01.003
10.1007/978-3-540-77004-6_11
10.1109/TPAMI.2017.2696940
10.1007/s10588-008-9040-4
10.1093/imaiai/iau006
10.1214/14-AOS1272
10.1016/S0167-8655(97)00060-3
10.1109/ICPP.2013.30
10.1186/1471-2105-14-S7-S13
10.1142/S0218001404003228
10.1145/210332.210337
10.1142/S0218001414500013
10.1109/TPAMI.2004.75
10.1109/TPAMI.2012.51
10.1109/HPEC.2017.8091039
10.1145/321921.321925
10.1007/978-1-4757-3023-4_2
10.1016/j.patcog.2017.12.003
10.1109/TPAMI.2015.2424894
10.1007/978-1-4757-3023-4_1
10.1145/2512938.2512952
10.1073/pnas.1401651112
10.1109/TPAMI.2004.1265866
10.1103/PhysRevE.83.016107
10.1198/016214502388618906
10.1109/TPAMI.2008.245
10.1016/S0304-0208(08)73232-8
10.1016/j.parco.2015.03.004
10.1109/ICDM.2001.989534
10.1109/TSMC.1980.4308468
10.1371/journal.pone.0121002
10.1038/nature23455
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
ADTOC
UNPAY
DOI 10.1109/TPAMI.2019.2914651
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database
MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 2900
ExternalDocumentID oai:pubmedcentral.nih.gov:7598933
PMC7598933
31059426
10_1109_TPAMI_2019_2914651
8705338
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Air Force Research Laboratory and DARPA
  grantid: FA8750-18-2-0066
– fundername: MIT Lincoln Labs
– fundername: National Institutes of Health
  grantid: BRAIN U01-NS108637
  funderid: 10.13039/100000002
– fundername: NINDS NIH HHS
  grantid: U01 NS108637
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
5VS
9M8
AAYXX
ABFSI
ADRHT
AETEA
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
FA8
H~9
IBMZZ
ICLAB
IFJZH
RNI
RZB
VH1
XJT
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c450t-11f6bb289b265d0e9211fb50f38280497f6536f9e63050bfad3d1b4d88198ddd3
IEDL.DBID UNPAY
ISSN 0162-8828
1939-3539
2160-9292
IngestDate Wed Aug 20 00:14:30 EDT 2025
Tue Sep 30 16:35:03 EDT 2025
Wed Oct 01 13:34:10 EDT 2025
Mon Jun 30 04:18:41 EDT 2025
Mon Jul 21 06:00:16 EDT 2025
Wed Oct 01 03:57:33 EDT 2025
Thu Apr 24 23:09:54 EDT 2025
Wed Aug 27 02:30:43 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-11f6bb289b265d0e9211fb50f38280497f6536f9e63050bfad3d1b4d88198ddd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8307-2610
0000-0002-0139-7201
0000-0002-3978-5533
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/7598933
PMID 31059426
PQID 2448472292
PQPubID 85458
PageCount 14
ParticipantIDs pubmed_primary_31059426
crossref_primary_10_1109_TPAMI_2019_2914651
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7598933
proquest_journals_2448472292
unpaywall_primary_10_1109_tpami_2019_2914651
proquest_miscellaneous_2232133939
crossref_citationtrail_10_1109_TPAMI_2019_2914651
ieee_primary_8705338
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref11
ref10
kiar (ref41) 2018
ref17
ref16
ref19
ref18
fishkind (ref45) 2018
ref46
ref47
ref44
ref43
fang (ref27) 2018
ref49
kiar (ref42) 2018
ref8
ref7
ref9
ref4
ref3
ref6
ref5
lovász (ref35) 2012; 60
fiori (ref23) 2013
ref40
fishkind (ref14) 2018
nickel (ref39) 2006
lyzinski (ref34) 2017
ref37
ref36
ref31
ref33
ref32
ref2
ref1
ref38
carletti (ref20) 2016
ref24
ref25
ref22
ref21
ref28
airoldi (ref48) 2008; 9
ref29
lyzinski (ref26) 2014; 15
durante (ref30) 2016; 112
athreya (ref50) 2018; 18
References_xml – ident: ref10
  doi: 10.1016/j.ins.2016.01.074
– year: 2016
  ident: ref20
  article-title: Exact and inexact methods for graph similarity in structural pattern recognition PhD thesis of Vincenzo Carletti
– ident: ref37
  doi: 10.1137/0105003
– ident: ref13
  doi: 10.1007/s10618-014-0365-y
– ident: ref46
  doi: 10.1016/j.artint.2010.05.002
– year: 2018
  ident: ref14
  article-title: Seeded graph matching
  publication-title: arXiv 1209 0367
– ident: ref5
  doi: 10.1016/j.jpdc.2009.01.003
– ident: ref38
  doi: 10.1007/978-3-540-77004-6_11
– ident: ref1
  doi: 10.1109/TPAMI.2017.2696940
– volume: 18
  start-page: 1
  year: 2018
  ident: ref50
  article-title: Statistical inference on random dot product graphs: a survey
  publication-title: J Mach Learning Research
– ident: ref28
  doi: 10.1007/s10588-008-9040-4
– ident: ref32
  doi: 10.1093/imaiai/iau006
– volume: 9
  start-page: 1981
  year: 2008
  ident: ref48
  article-title: Mixed membership stochastic blockmodels
  publication-title: J Mach Learning Research
– ident: ref31
  doi: 10.1214/14-AOS1272
– ident: ref33
  doi: 10.1016/S0167-8655(97)00060-3
– year: 2006
  ident: ref39
  article-title: Random dot product graphs: A model for social networks
– ident: ref3
  doi: 10.1109/ICPP.2013.30
– ident: ref47
  doi: 10.1186/1471-2105-14-S7-S13
– ident: ref8
  doi: 10.1142/S0218001404003228
– year: 2018
  ident: ref27
  article-title: Tractable graph matching via soft seeding
  publication-title: arXiv 1807 09299
– ident: ref36
  doi: 10.1145/210332.210337
– year: 2018
  ident: ref45
  article-title: Alignment strength and correlation for graphs
  publication-title: arXiv [math CO] 1808 08502
– ident: ref9
  doi: 10.1142/S0218001414500013
– start-page: 188706
  year: 2018
  ident: ref42
  article-title: A High-Throughput pipeline identifies robust connectomes but troublesome variability
  publication-title: BioRxiv
– ident: ref4
  doi: 10.1109/TPAMI.2004.75
– ident: ref24
  doi: 10.1109/TPAMI.2012.51
– ident: ref17
  doi: 10.1109/HPEC.2017.8091039
– ident: ref7
  doi: 10.1145/321921.321925
– volume: 60
  year: 2012
  ident: ref35
  publication-title: Large Networks and Graph Limits
– ident: ref44
  doi: 10.1007/978-1-4757-3023-4_2
– start-page: 127
  year: 2013
  ident: ref23
  article-title: Robust multimodal graph matching: Sparse coding meets graph matching
  publication-title: Proc Int Conf Neural Inf Process
– volume: 15
  start-page: 3513
  year: 2014
  ident: ref26
  article-title: Seeded graph matching for correlated Erdos-Renyi graphs
  publication-title: J Mach Learn Res
– ident: ref19
  doi: 10.1016/j.patcog.2017.12.003
– year: 2018
  ident: ref41
  article-title: neurodata/ndmg: Stable ndmg-DWI pipeline release (Version v0.1.0)
– ident: ref16
  doi: 10.1109/TPAMI.2015.2424894
– ident: ref6
  doi: 10.1007/978-1-4757-3023-4_1
– ident: ref12
  doi: 10.1145/2512938.2512952
– ident: ref25
  doi: 10.1073/pnas.1401651112
– ident: ref18
  doi: 10.1109/TPAMI.2004.1265866
– year: 2017
  ident: ref34
  article-title: Matchability of heterogeneous networks pairs
  publication-title: arXiv 1705 02294
– ident: ref49
  doi: 10.1103/PhysRevE.83.016107
– ident: ref29
  doi: 10.1198/016214502388618906
– ident: ref22
  doi: 10.1109/TPAMI.2008.245
– ident: ref43
  doi: 10.1016/S0304-0208(08)73232-8
– ident: ref11
  doi: 10.1016/j.parco.2015.03.004
– ident: ref2
  doi: 10.1109/ICDM.2001.989534
– volume: 112
  start-page: 1
  year: 2016
  ident: ref30
  article-title: Nonparametric bayes modeling of populations of networks
  publication-title: J Amer Statistical Assoc
– ident: ref21
  doi: 10.1109/TSMC.1980.4308468
– ident: ref15
  doi: 10.1371/journal.pone.0121002
– ident: ref40
  doi: 10.1038/nature23455
SSID ssj0014503
Score 2.4707935
Snippet The problem of finding the vertex correspondence between two noisy graphs with different number of vertices where the smaller graph is still large has many...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2887
SubjectTerms Algorithms
Animals
Apexes
Approximation algorithms
Brain - diagnostic imaging
Computer simulation
Computer vision
Connectome
Correlation
Diffusion Tensor Imaging
Drosophila
Graph matching
Graph theory
Graphs
Humans
Image Processing, Computer-Assisted - methods
Matched filters
Models, Statistical
Multiple graph inference
Noise measurement
Optimization
Social networking (online)
Social networks
Statistical models
Stochastic processes
subgraph detection
Symmetric matrices
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PUA5UGh5hBYUJG50t0kcO_GxKqwK0lYcWqm3yI7H6oolu2ITofbXd-w8tEsrxC2RnUjjmXG-iWe-AfgUpaXEVBja_WQySmMkl-J0a0qUypYZCu6Kk6cX4vwq_X7Nr7fgeKiFQUSffIZjd-nP8s2ibNyvshOyLUIn-TZsZ7loa7WGE4OU-y7IhGDIwymM6AtkInly-eN0-s1lcclxImPX_HsXnjAHLFLHqbD2PfINVh7Dmg9TJp821VLd_lHz-dr3aLIH016SNg3l57ip9bi8-4vk8X9FfQHPO2AanraW9BK2sNqHvb7pQ9jtAfvwbI3B8ADSqXJqN-Fk5o7dVyFh4PBiMVvdhq4pSEkjtDV5VuzwC9Y-76t6BVeTr5dn56OuEcOopGWtR3FshdYUmulEcBOhpKjRah5ZRgtNIUZmBWfCShS0e0TaKsNMrFOTE9zIjTHsNexUiwrfQqgwRi0xi-gtaSa4QmYVt1Fijcg1UwHEvTqKsmMpd80y5oWPViJZeG0WTptFp80APg_PLFuOjn_OPnDLPczsVjqAo17rRefGq4KwT-7YNGUSwMdhmBzQnaqoChcNzSFMSoG-ZDKAN62RDO_ujSyAbMN8hgmO3HtzpJrdeJLvjEuCkiyA48HQHghXL9Wv2YZw7x4X7hB2E_efwNdQHsFO_bvB9wSmav3Be9E9NUoX3Q
  priority: 102
  providerName: IEEE
Title Matched Filters for Noisy Induced Subgraph Detection
URI https://ieeexplore.ieee.org/document/8705338
https://www.ncbi.nlm.nih.gov/pubmed/31059426
https://www.proquest.com/docview/2448472292
https://www.proquest.com/docview/2232133939
https://pubmed.ncbi.nlm.nih.gov/PMC7598933
https://www.ncbi.nlm.nih.gov/pmc/articles/7598933
UnpaywallVersion submittedVersion
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-N7gH2sMEGIzCmIPEGSZ0PO_FjBVQDqdWEVmk8RXZsi2pdWq2p0PbXc3Y-tDKEtMfIl0jOffh3yd39AD6QtOQ6ZQqjH4-DNNLoUhQvVam5MGWmGbXNyZMpO5ul3y_p5Q5EXS-MK9ov5TysFtdhNf_laitX1-WwqxMbZpRbivgnsMsowu8B7M6m56OfzQxv9O7c8akiLuFBQh2TWBwxEiAMiLumGcKH9cry6-Dpx8OYR5YQfOtgckwr_wKdD2snn26qlbj9LRaLewfT-AB-dFtq6lGuwk0tw_Lur2mPj9rzc9hvYao_apZewI6uDuGgo4Dw24hwCHv35hkeQToR1giUP57bn_BrHxGxP13O17e-pQgpcQUDlZuR7X_RtasCq17CbPz14vNZ0NIyBGVKSR1EkWFSYqImY0YV0RxzSCMpMQm-ekw4MsNowgzXDGMJkUaoREUyVTmCj1wplbyCQbWs9GvwhY605Doj-JQ0Y1ToxAhqSGwUy2UiPIg6nRRlO7PcUmcsCpe7EF5cnI8m3wqrx6LVowcf-3tWzcSO_0ofWVX3khi-EADnHpx0qi9ap14XiIRyO1uTxx6875fRHe0_FlHp5QZlEKFi2o_W58FxYyn9sxOLZREReZBt2VAvYEd9b6-gNbiR360BePCpt7YHm3MmvbW5N48TfwvPYvs1wXVansCgvtnodwi5annq-iJPW1f7Aw7tJaQ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NIbHxsME2IGxAkHhj7fJhO_HjNKg6WCoeOmlvkR3boqKkFU2Exl_P2flQu02It0R2Ip3vzvldfPc7gA8BKbgmTOHux6MBCTW6FMVbVWguTJFoRm1xcjZh42vy5YbebMFpXwujtXbJZ3poL91ZvloUtf1Vdoa2hegkfQSPKSGENtVa_ZkBoa4PMmIY9HEMJLoSmYCfTb-dZ5c2j4sPIx7a9t-78CS20IJYVoW1L5JrsfIQ2ryfNLlTl0tx-1vM52tfpNE-ZJ0sTSLKj2FdyWHx5w7N4_8K-wz2Wmjqnze29By2dHkA-13bB7_dBQ7g6RqH4SGQTFjFK380swfvKx9RsD9ZzFa3vm0LUuAIbk6OF9v_pCuX-VUewfXo8_RiPGhbMQwKXNZqEIaGSYnBmYwYVYHmGDcaSQMT40JjkJEYRmNmuGa4fwTSCBWrUBKVIuBIlVLxC9guF6V-Bb7QoZZcJwG-hSSMCh0bQU0QGcVSGQsPwk4dedHylNt2GfPcxSsBz502c6vNvNWmBx_7Z5YNS8c_Zx_a5e5ntivtwUmn9bx15FWO6Ce1fJo88uB9P4wuaM9VRKkXNc5BVIqhPo-5By8bI-nf3RmZB8mG-fQTLL335kg5--5ovhPKEUzGHpz2hnZPuGopfs42hHv9sHDvYGc8za7yq8vJ12PYjexfA1dReQLb1a9av0FoVcm3zqP-AvphGyo
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD4a3QPwwGADFhgoSLxBUudiJ36sGNVAajWhVRpPkR3bWkWXVmsqtP36HTsXrWxC2mPl00juufg7zfH3AXwmacl1yhRWPx4HaaQxpSh-VKXmwpSZZtReTp5M2cks_XlOz3cg6u7CuKH9Us7DanEZVvMLN1u5uiyH3ZzYMKPcSsQ_gV1GEX4PYHc2PR39bji8Mbtzp6eKuIQHCXVKYnHESIAwIO4uzRA-rFdWXwdPPx7GPLKC4FsHk1NaeQh03p-dfLqpVuL6r1gs7hxM4z341W2pmUf5E25qGZY3_7A9PmrPL-FFC1P9UbP0CnZ0tQ97nQSE31aEfXh-h8_wANKJsEGg_PHcvoRf-4iI_elyvr72rURIiStYqBxHtn-sazcFVr2G2fj72beToJVlCMqUkjqIIsOkxEZNxowqojn2kEZSYhL86bHhyAyjCTNcM6wlRBqhEhXJVOUIPnKlVPIGBtWy0ofgCx1pyXVG8ClpxqjQiRHUkNgolstEeBB1PinKlrPcSmcsCte7EF6cnY4mPwrrx6L1owdf-u-sGsaO_1ofWFf3lli-EADnHhx1ri_apF4XiIRyy63JYw8-9cuYjvYdi6j0coM2iFCx7cfo8-BtEyn9sxOLZREReZBtxVBvYKm-t1cwGhzldxsAHnzto-3e5lxIb23u3ePM38Oz2P6b4G5aHsGgvtroDwi5avmxTbJbMpckow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Matched+Filters+for+Noisy+Induced+Subgraph+Detection&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Sussman%2C+Daniel+L.&rft.au=Lyzinski%2C+Vince&rft.au=Park%2C+Youngser&rft.au=Priebe%2C+Carey+E.&rft.date=2020-11-01&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=42&rft.issue=11&rft.spage=2887&rft.epage=2900&rft_id=info:doi/10.1109%2FTPAMI.2019.2914651&rft_id=info%3Apmid%2F31059426&rft.externalDocID=PMC7598933
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon