Matched Filters for Noisy Induced Subgraph Detection
The problem of finding the vertex correspondence between two noisy graphs with different number of vertices where the smaller graph is still large has many applications in social networks, neuroscience, and computer vision. We propose a solution to this problem via a graph matching matched filter: c...
Saved in:
| Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 42; no. 11; pp. 2887 - 2900 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0162-8828 1939-3539 2160-9292 2160-9292 1939-3539 |
| DOI | 10.1109/TPAMI.2019.2914651 |
Cover
| Abstract | The problem of finding the vertex correspondence between two noisy graphs with different number of vertices where the smaller graph is still large has many applications in social networks, neuroscience, and computer vision. We propose a solution to this problem via a graph matching matched filter: centering and padding the smaller adjacency matrix and applying graph matching methods to align it to the larger network. The centering and padding schemes can be incorporated into any algorithm that matches using adjacency matrices. Under a statistical model for correlated pairs of graphs, which yields a noisy copy of the small graph within the larger graph, the resulting optimization problem can be guaranteed to recover the true vertex correspondence between the networks. However, there are currently no efficient algorithms for solving this problem. To illustrate the possibilities and challenges of such problems, we use an algorithm that can exploit a partially known correspondence and show via varied simulations and applications to Drosophila and human connectomes that this approach can achieve good performance. |
|---|---|
| AbstractList | The problem of finding the vertex correspondence between two noisy graphs with different number of vertices where the smaller graph is still large has many applications in social networks, neuroscience, and computer vision. We propose a solution to this problem via a graph matching matched filter: centering and padding the smaller adjacency matrix and applying graph matching methods to align it to the larger network. The centering and padding schemes can be incorporated into any algorithm that matches using adjacency matrices. Under a statistical model for correlated pairs of graphs, which yields a noisy copy of the small graph within the larger graph, the resulting optimization problem can be guaranteed to recover the true vertex correspondence between the networks. However, there are currently no efficient algorithms for solving this problem. To illustrate the possibilities and challenges of such problems, we use an algorithm that can exploit a partially known correspondence and show via varied simulations and applications to Drosophila and human connectomes that this approach can achieve good performance. The problem of finding the vertex correspondence between two noisy graphs with different number of vertices where the smaller graph is still large has many applications in social networks, neuroscience, and computer vision. We propose a solution to this problem via a graph matching matched filter: centering and padding the smaller adjacency matrix and applying graph matching methods to align it to the larger network. The centering and padding schemes can be incorporated into any algorithm that matches using adjacency matrices. Under a statistical model for correlated pairs of graphs, which yields a noisy copy of the small graph within the larger graph, the resulting optimization problem can be guaranteed to recover the true vertex correspondence between the networks. However, there are currently no efficient algorithms for solving this problem. To illustrate the possibilities and challenges of such problems, we use an algorithm that can exploit a partially known correspondence and show via varied simulations and applications to Drosophila and human connectomes that this approach can achieve good performance.The problem of finding the vertex correspondence between two noisy graphs with different number of vertices where the smaller graph is still large has many applications in social networks, neuroscience, and computer vision. We propose a solution to this problem via a graph matching matched filter: centering and padding the smaller adjacency matrix and applying graph matching methods to align it to the larger network. The centering and padding schemes can be incorporated into any algorithm that matches using adjacency matrices. Under a statistical model for correlated pairs of graphs, which yields a noisy copy of the small graph within the larger graph, the resulting optimization problem can be guaranteed to recover the true vertex correspondence between the networks. However, there are currently no efficient algorithms for solving this problem. To illustrate the possibilities and challenges of such problems, we use an algorithm that can exploit a partially known correspondence and show via varied simulations and applications to Drosophila and human connectomes that this approach can achieve good performance. |
| Author | Sussman, Daniel L. Park, Youngser Priebe, Carey E. Lyzinski, Vince |
| Author_xml | – sequence: 1 givenname: Daniel L. orcidid: 0000-0002-8307-2610 surname: Sussman fullname: Sussman, Daniel L. email: sussman@bu.edu organization: Department of Mathematics & Statistics, Boston University, Boston, MA, USA – sequence: 2 givenname: Youngser orcidid: 0000-0002-3978-5533 surname: Park fullname: Park, Youngser email: youngser@jhu.edu organization: Department of Applied Math & Statistics, Johns Hopkins University, Baltimore, MD, USA – sequence: 3 givenname: Carey E. orcidid: 0000-0002-0139-7201 surname: Priebe fullname: Priebe, Carey E. email: cep@jhu.edu organization: Department of Applied Math & Statistics, Johns Hopkins University, Baltimore, MD, USA – sequence: 4 givenname: Vince surname: Lyzinski fullname: Lyzinski, Vince email: vlyzinski@umass.edu organization: Department of Mathematics, University of Massachusetts, Amherst, MA, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31059426$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UV1rFDEUDdJit1v_gIIM-NKXWfO9yYtQqrULrRaszyEzyXRTZpMxySj775t1t7WuIHm4kHvOveeecwwOfPAWgNcIzhCC8v3tzdn1YoYhkjMsEeUMvQATjDisJZb4AEwg4rgWAosjcJzSPYSIMkhegiOCIJMU8wmg1zq3S2uqC9dnG1PVhVh9CS6tq4U3Y1s638bmLuphWX202bbZBX8CDjvdJ_tqV6fg-8Wn2_PL-urr58X52VXdlj25RqjjTYOFbDBnBlqJy0_DYEeKJEjlvOOM8E5aTiCDTacNMaihRggkhTGGTAHZzh39oNe_dN-rIbqVjmuFoNp4oPKgV05tPFA7Dwrrw5Y1jM3Kmtb6HPUfZtBO_d3xbqnuwk81Z1JIQsqA092AGH6MNmW1cqm1fa-9DWNSGBOMCJHlTcG7Peh9GKMvpihMqaBzXJIoqLfPFT1JeYyhAPAW0MaQUrTdP3f-znr_TrFHal3Wm3zKVa7_P_XNluqstU-7xBwyQgR5AMkws-g |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_1007_s41109_022_00464_0 crossref_primary_10_1016_j_patcog_2024_110797 crossref_primary_10_1007_s41109_021_00398_z crossref_primary_10_1109_TSIPN_2024_3467921 crossref_primary_10_1109_TSMC_2024_3407948 crossref_primary_10_1109_ACCESS_2024_3458050 crossref_primary_10_1109_TNSE_2021_3056329 crossref_primary_10_1162_netn_a_00287 crossref_primary_10_1093_imaiai_iaz031 |
| Cites_doi | 10.1016/j.ins.2016.01.074 10.1137/0105003 10.1007/s10618-014-0365-y 10.1016/j.artint.2010.05.002 10.1016/j.jpdc.2009.01.003 10.1007/978-3-540-77004-6_11 10.1109/TPAMI.2017.2696940 10.1007/s10588-008-9040-4 10.1093/imaiai/iau006 10.1214/14-AOS1272 10.1016/S0167-8655(97)00060-3 10.1109/ICPP.2013.30 10.1186/1471-2105-14-S7-S13 10.1142/S0218001404003228 10.1145/210332.210337 10.1142/S0218001414500013 10.1109/TPAMI.2004.75 10.1109/TPAMI.2012.51 10.1109/HPEC.2017.8091039 10.1145/321921.321925 10.1007/978-1-4757-3023-4_2 10.1016/j.patcog.2017.12.003 10.1109/TPAMI.2015.2424894 10.1007/978-1-4757-3023-4_1 10.1145/2512938.2512952 10.1073/pnas.1401651112 10.1109/TPAMI.2004.1265866 10.1103/PhysRevE.83.016107 10.1198/016214502388618906 10.1109/TPAMI.2008.245 10.1016/S0304-0208(08)73232-8 10.1016/j.parco.2015.03.004 10.1109/ICDM.2001.989534 10.1109/TSMC.1980.4308468 10.1371/journal.pone.0121002 10.1038/nature23455 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 5PM ADTOC UNPAY |
| DOI | 10.1109/TPAMI.2019.2914651 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | Technology Research Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2160-9292 1939-3539 |
| EndPage | 2900 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:7598933 PMC7598933 31059426 10_1109_TPAMI_2019_2914651 8705338 |
| Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: Air Force Research Laboratory and DARPA grantid: FA8750-18-2-0066 – fundername: MIT Lincoln Labs – fundername: National Institutes of Health grantid: BRAIN U01-NS108637 funderid: 10.13039/100000002 – fundername: NINDS NIH HHS grantid: U01 NS108637 |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 5VS 9M8 AAYXX ABFSI ADRHT AETEA AETIX AGSQL AI. AIBXA ALLEH CITATION FA8 H~9 IBMZZ ICLAB IFJZH RNI RZB VH1 XJT CGR CUY CVF ECM EIF NPM RIG 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c450t-11f6bb289b265d0e9211fb50f38280497f6536f9e63050bfad3d1b4d88198ddd3 |
| IEDL.DBID | UNPAY |
| ISSN | 0162-8828 1939-3539 2160-9292 |
| IngestDate | Wed Aug 20 00:14:30 EDT 2025 Tue Sep 30 16:35:03 EDT 2025 Wed Oct 01 13:34:10 EDT 2025 Mon Jun 30 04:18:41 EDT 2025 Mon Jul 21 06:00:16 EDT 2025 Wed Oct 01 03:57:33 EDT 2025 Thu Apr 24 23:09:54 EDT 2025 Wed Aug 27 02:30:43 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c450t-11f6bb289b265d0e9211fb50f38280497f6536f9e63050bfad3d1b4d88198ddd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-8307-2610 0000-0002-0139-7201 0000-0002-3978-5533 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/7598933 |
| PMID | 31059426 |
| PQID | 2448472292 |
| PQPubID | 85458 |
| PageCount | 14 |
| ParticipantIDs | pubmed_primary_31059426 crossref_primary_10_1109_TPAMI_2019_2914651 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7598933 proquest_journals_2448472292 unpaywall_primary_10_1109_tpami_2019_2914651 proquest_miscellaneous_2232133939 crossref_citationtrail_10_1109_TPAMI_2019_2914651 ieee_primary_8705338 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-11-01 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref11 ref10 kiar (ref41) 2018 ref17 ref16 ref19 ref18 fishkind (ref45) 2018 ref46 ref47 ref44 ref43 fang (ref27) 2018 ref49 kiar (ref42) 2018 ref8 ref7 ref9 ref4 ref3 ref6 ref5 lovász (ref35) 2012; 60 fiori (ref23) 2013 ref40 fishkind (ref14) 2018 nickel (ref39) 2006 lyzinski (ref34) 2017 ref37 ref36 ref31 ref33 ref32 ref2 ref1 ref38 carletti (ref20) 2016 ref24 ref25 ref22 ref21 ref28 airoldi (ref48) 2008; 9 ref29 lyzinski (ref26) 2014; 15 durante (ref30) 2016; 112 athreya (ref50) 2018; 18 |
| References_xml | – ident: ref10 doi: 10.1016/j.ins.2016.01.074 – year: 2016 ident: ref20 article-title: Exact and inexact methods for graph similarity in structural pattern recognition PhD thesis of Vincenzo Carletti – ident: ref37 doi: 10.1137/0105003 – ident: ref13 doi: 10.1007/s10618-014-0365-y – ident: ref46 doi: 10.1016/j.artint.2010.05.002 – year: 2018 ident: ref14 article-title: Seeded graph matching publication-title: arXiv 1209 0367 – ident: ref5 doi: 10.1016/j.jpdc.2009.01.003 – ident: ref38 doi: 10.1007/978-3-540-77004-6_11 – ident: ref1 doi: 10.1109/TPAMI.2017.2696940 – volume: 18 start-page: 1 year: 2018 ident: ref50 article-title: Statistical inference on random dot product graphs: a survey publication-title: J Mach Learning Research – ident: ref28 doi: 10.1007/s10588-008-9040-4 – ident: ref32 doi: 10.1093/imaiai/iau006 – volume: 9 start-page: 1981 year: 2008 ident: ref48 article-title: Mixed membership stochastic blockmodels publication-title: J Mach Learning Research – ident: ref31 doi: 10.1214/14-AOS1272 – ident: ref33 doi: 10.1016/S0167-8655(97)00060-3 – year: 2006 ident: ref39 article-title: Random dot product graphs: A model for social networks – ident: ref3 doi: 10.1109/ICPP.2013.30 – ident: ref47 doi: 10.1186/1471-2105-14-S7-S13 – ident: ref8 doi: 10.1142/S0218001404003228 – year: 2018 ident: ref27 article-title: Tractable graph matching via soft seeding publication-title: arXiv 1807 09299 – ident: ref36 doi: 10.1145/210332.210337 – year: 2018 ident: ref45 article-title: Alignment strength and correlation for graphs publication-title: arXiv [math CO] 1808 08502 – ident: ref9 doi: 10.1142/S0218001414500013 – start-page: 188706 year: 2018 ident: ref42 article-title: A High-Throughput pipeline identifies robust connectomes but troublesome variability publication-title: BioRxiv – ident: ref4 doi: 10.1109/TPAMI.2004.75 – ident: ref24 doi: 10.1109/TPAMI.2012.51 – ident: ref17 doi: 10.1109/HPEC.2017.8091039 – ident: ref7 doi: 10.1145/321921.321925 – volume: 60 year: 2012 ident: ref35 publication-title: Large Networks and Graph Limits – ident: ref44 doi: 10.1007/978-1-4757-3023-4_2 – start-page: 127 year: 2013 ident: ref23 article-title: Robust multimodal graph matching: Sparse coding meets graph matching publication-title: Proc Int Conf Neural Inf Process – volume: 15 start-page: 3513 year: 2014 ident: ref26 article-title: Seeded graph matching for correlated Erdos-Renyi graphs publication-title: J Mach Learn Res – ident: ref19 doi: 10.1016/j.patcog.2017.12.003 – year: 2018 ident: ref41 article-title: neurodata/ndmg: Stable ndmg-DWI pipeline release (Version v0.1.0) – ident: ref16 doi: 10.1109/TPAMI.2015.2424894 – ident: ref6 doi: 10.1007/978-1-4757-3023-4_1 – ident: ref12 doi: 10.1145/2512938.2512952 – ident: ref25 doi: 10.1073/pnas.1401651112 – ident: ref18 doi: 10.1109/TPAMI.2004.1265866 – year: 2017 ident: ref34 article-title: Matchability of heterogeneous networks pairs publication-title: arXiv 1705 02294 – ident: ref49 doi: 10.1103/PhysRevE.83.016107 – ident: ref29 doi: 10.1198/016214502388618906 – ident: ref22 doi: 10.1109/TPAMI.2008.245 – ident: ref43 doi: 10.1016/S0304-0208(08)73232-8 – ident: ref11 doi: 10.1016/j.parco.2015.03.004 – ident: ref2 doi: 10.1109/ICDM.2001.989534 – volume: 112 start-page: 1 year: 2016 ident: ref30 article-title: Nonparametric bayes modeling of populations of networks publication-title: J Amer Statistical Assoc – ident: ref21 doi: 10.1109/TSMC.1980.4308468 – ident: ref15 doi: 10.1371/journal.pone.0121002 – ident: ref40 doi: 10.1038/nature23455 |
| SSID | ssj0014503 |
| Score | 2.4707935 |
| Snippet | The problem of finding the vertex correspondence between two noisy graphs with different number of vertices where the smaller graph is still large has many... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2887 |
| SubjectTerms | Algorithms Animals Apexes Approximation algorithms Brain - diagnostic imaging Computer simulation Computer vision Connectome Correlation Diffusion Tensor Imaging Drosophila Graph matching Graph theory Graphs Humans Image Processing, Computer-Assisted - methods Matched filters Models, Statistical Multiple graph inference Noise measurement Optimization Social networking (online) Social networks Statistical models Stochastic processes subgraph detection Symmetric matrices |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PUA5UGh5hBYUJG50t0kcO_GxKqwK0lYcWqm3yI7H6oolu2ITofbXd-w8tEsrxC2RnUjjmXG-iWe-AfgUpaXEVBja_WQySmMkl-J0a0qUypYZCu6Kk6cX4vwq_X7Nr7fgeKiFQUSffIZjd-nP8s2ibNyvshOyLUIn-TZsZ7loa7WGE4OU-y7IhGDIwymM6AtkInly-eN0-s1lcclxImPX_HsXnjAHLFLHqbD2PfINVh7Dmg9TJp821VLd_lHz-dr3aLIH016SNg3l57ip9bi8-4vk8X9FfQHPO2AanraW9BK2sNqHvb7pQ9jtAfvwbI3B8ADSqXJqN-Fk5o7dVyFh4PBiMVvdhq4pSEkjtDV5VuzwC9Y-76t6BVeTr5dn56OuEcOopGWtR3FshdYUmulEcBOhpKjRah5ZRgtNIUZmBWfCShS0e0TaKsNMrFOTE9zIjTHsNexUiwrfQqgwRi0xi-gtaSa4QmYVt1Fijcg1UwHEvTqKsmMpd80y5oWPViJZeG0WTptFp80APg_PLFuOjn_OPnDLPczsVjqAo17rRefGq4KwT-7YNGUSwMdhmBzQnaqoChcNzSFMSoG-ZDKAN62RDO_ujSyAbMN8hgmO3HtzpJrdeJLvjEuCkiyA48HQHghXL9Wv2YZw7x4X7hB2E_efwNdQHsFO_bvB9wSmav3Be9E9NUoX3Q priority: 102 providerName: IEEE |
| Title | Matched Filters for Noisy Induced Subgraph Detection |
| URI | https://ieeexplore.ieee.org/document/8705338 https://www.ncbi.nlm.nih.gov/pubmed/31059426 https://www.proquest.com/docview/2448472292 https://www.proquest.com/docview/2232133939 https://pubmed.ncbi.nlm.nih.gov/PMC7598933 https://www.ncbi.nlm.nih.gov/pmc/articles/7598933 |
| UnpaywallVersion | submittedVersion |
| Volume | 42 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-N7gH2sMEGIzCmIPEGSZ0PO_FjBVQDqdWEVmk8RXZsi2pdWq2p0PbXc3Y-tDKEtMfIl0jOffh3yd39AD6QtOQ6ZQqjH4-DNNLoUhQvVam5MGWmGbXNyZMpO5ul3y_p5Q5EXS-MK9ov5TysFtdhNf_laitX1-WwqxMbZpRbivgnsMsowu8B7M6m56OfzQxv9O7c8akiLuFBQh2TWBwxEiAMiLumGcKH9cry6-Dpx8OYR5YQfOtgckwr_wKdD2snn26qlbj9LRaLewfT-AB-dFtq6lGuwk0tw_Lur2mPj9rzc9hvYao_apZewI6uDuGgo4Dw24hwCHv35hkeQToR1giUP57bn_BrHxGxP13O17e-pQgpcQUDlZuR7X_RtasCq17CbPz14vNZ0NIyBGVKSR1EkWFSYqImY0YV0RxzSCMpMQm-ekw4MsNowgzXDGMJkUaoREUyVTmCj1wplbyCQbWs9GvwhY605Doj-JQ0Y1ToxAhqSGwUy2UiPIg6nRRlO7PcUmcsCpe7EF5cnI8m3wqrx6LVowcf-3tWzcSO_0ofWVX3khi-EADnHpx0qi9ap14XiIRyO1uTxx6875fRHe0_FlHp5QZlEKFi2o_W58FxYyn9sxOLZREReZBt2VAvYEd9b6-gNbiR360BePCpt7YHm3MmvbW5N48TfwvPYvs1wXVansCgvtnodwi5annq-iJPW1f7Aw7tJaQ |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NIbHxsME2IGxAkHhj7fJhO_HjNKg6WCoeOmlvkR3boqKkFU2Exl_P2flQu02It0R2Ip3vzvldfPc7gA8BKbgmTOHux6MBCTW6FMVbVWguTJFoRm1xcjZh42vy5YbebMFpXwujtXbJZ3poL91ZvloUtf1Vdoa2hegkfQSPKSGENtVa_ZkBoa4PMmIY9HEMJLoSmYCfTb-dZ5c2j4sPIx7a9t-78CS20IJYVoW1L5JrsfIQ2ryfNLlTl0tx-1vM52tfpNE-ZJ0sTSLKj2FdyWHx5w7N4_8K-wz2Wmjqnze29By2dHkA-13bB7_dBQ7g6RqH4SGQTFjFK380swfvKx9RsD9ZzFa3vm0LUuAIbk6OF9v_pCuX-VUewfXo8_RiPGhbMQwKXNZqEIaGSYnBmYwYVYHmGDcaSQMT40JjkJEYRmNmuGa4fwTSCBWrUBKVIuBIlVLxC9guF6V-Bb7QoZZcJwG-hSSMCh0bQU0QGcVSGQsPwk4dedHylNt2GfPcxSsBz502c6vNvNWmBx_7Z5YNS8c_Zx_a5e5ntivtwUmn9bx15FWO6Ce1fJo88uB9P4wuaM9VRKkXNc5BVIqhPo-5By8bI-nf3RmZB8mG-fQTLL335kg5--5ovhPKEUzGHpz2hnZPuGopfs42hHv9sHDvYGc8za7yq8vJ12PYjexfA1dReQLb1a9av0FoVcm3zqP-AvphGyo |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD4a3QPwwGADFhgoSLxBUudiJ36sGNVAajWhVRpPkR3bWkWXVmsqtP36HTsXrWxC2mPl00juufg7zfH3AXwmacl1yhRWPx4HaaQxpSh-VKXmwpSZZtReTp5M2cks_XlOz3cg6u7CuKH9Us7DanEZVvMLN1u5uiyH3ZzYMKPcSsQ_gV1GEX4PYHc2PR39bji8Mbtzp6eKuIQHCXVKYnHESIAwIO4uzRA-rFdWXwdPPx7GPLKC4FsHk1NaeQh03p-dfLqpVuL6r1gs7hxM4z341W2pmUf5E25qGZY3_7A9PmrPL-FFC1P9UbP0CnZ0tQ97nQSE31aEfXh-h8_wANKJsEGg_PHcvoRf-4iI_elyvr72rURIiStYqBxHtn-sazcFVr2G2fj72beToJVlCMqUkjqIIsOkxEZNxowqojn2kEZSYhL86bHhyAyjCTNcM6wlRBqhEhXJVOUIPnKlVPIGBtWy0ofgCx1pyXVG8ClpxqjQiRHUkNgolstEeBB1PinKlrPcSmcsCte7EF6cnY4mPwrrx6L1owdf-u-sGsaO_1ofWFf3lli-EADnHhx1ri_apF4XiIRyy63JYw8-9cuYjvYdi6j0coM2iFCx7cfo8-BtEyn9sxOLZREReZBtxVBvYKm-t1cwGhzldxsAHnzto-3e5lxIb23u3ePM38Oz2P6b4G5aHsGgvtroDwi5avmxTbJbMpckow |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Matched+Filters+for+Noisy+Induced+Subgraph+Detection&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Sussman%2C+Daniel+L.&rft.au=Lyzinski%2C+Vince&rft.au=Park%2C+Youngser&rft.au=Priebe%2C+Carey+E.&rft.date=2020-11-01&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=42&rft.issue=11&rft.spage=2887&rft.epage=2900&rft_id=info:doi/10.1109%2FTPAMI.2019.2914651&rft_id=info%3Apmid%2F31059426&rft.externalDocID=PMC7598933 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |