Using the bootstrap to improve estimation and confidence intervals for regression coefficients selected using backwards variable elimination
Applied researchers frequently use automated model selection methods, such as backwards variable elimination, to develop parsimonious regression models. Statisticians have criticized the use of these methods for several reasons, amongst them are the facts that the estimated regression coefficients a...
Saved in:
Published in | Statistics in medicine Vol. 27; no. 17; pp. 3286 - 3300 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
30.07.2008
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0277-6715 1097-0258 |
DOI | 10.1002/sim.3104 |
Cover
Abstract | Applied researchers frequently use automated model selection methods, such as backwards variable elimination, to develop parsimonious regression models. Statisticians have criticized the use of these methods for several reasons, amongst them are the facts that the estimated regression coefficients are biased and that the derived confidence intervals do not have the advertised coverage rates. We developed a method to improve estimation of regression coefficients and confidence intervals which employs backwards variable elimination in multiple bootstrap samples. In a given bootstrap sample, predictor variables that are not selected for inclusion in the final regression model have their regression coefficient set to zero. Regression coefficients are averaged across the bootstrap samples, and non‐parametric percentile bootstrap confidence intervals are then constructed for each regression coefficient. We conducted a series of Monte Carlo simulations to examine the performance of this method for estimating regression coefficients and constructing confidence intervals for variables selected using backwards variable elimination. We demonstrated that this method results in confidence intervals with superior coverage compared with those developed from conventional backwards variable elimination. We illustrate the utility of our method by applying it to a large sample of subjects hospitalized with a heart attack. Copyright © 2007 John Wiley & Sons, Ltd. |
---|---|
AbstractList | Applied researchers frequently use automated model selection methods, such as backwards variable elimination, to develop parsimonious regression models. Statisticians have criticized the use of these methods for several reasons, amongst them are the facts that the estimated regression coefficients are biased and that the derived confidence intervals do not have the advertised coverage rates. We developed a method to improve estimation of regression coefficients and confidence intervals which employs backwards variable elimination in multiple bootstrap samples. In a given bootstrap sample, predictor variables that are not selected for inclusion in the final regression model have their regression coefficient set to zero. Regression coefficients are averaged across the bootstrap samples, and non-parametric percentile bootstrap confidence intervals are then constructed for each regression coefficient. We conducted a series of Monte Carlo simulations to examine the performance of this method for estimating regression coefficients and constructing confidence intervals for variables selected using backwards variable elimination. We demonstrated that this method results in confidence intervals with superior coverage compared with those developed from conventional backwards variable elimination. We illustrate the utility of our method by applying it to a large sample of subjects hospitalized with a heart attack. [PUBLICATION ABSTRACT] Applied researchers frequently use automated model selection methods, such as backwards variable elimination, to develop parsimonious regression models. Statisticians have criticized the use of these methods for several reasons, amongst them are the facts that the estimated regression coefficients are biased and that the derived confidence intervals do not have the advertised coverage rates. We developed a method to improve estimation of regression coefficients and confidence intervals which employs backwards variable elimination in multiple bootstrap samples. In a given bootstrap sample, predictor variables that are not selected for inclusion in the final regression model have their regression coefficient set to zero. Regression coefficients are averaged across the bootstrap samples, and non‐parametric percentile bootstrap confidence intervals are then constructed for each regression coefficient. We conducted a series of Monte Carlo simulations to examine the performance of this method for estimating regression coefficients and constructing confidence intervals for variables selected using backwards variable elimination. We demonstrated that this method results in confidence intervals with superior coverage compared with those developed from conventional backwards variable elimination. We illustrate the utility of our method by applying it to a large sample of subjects hospitalized with a heart attack. Copyright © 2007 John Wiley & Sons, Ltd. Applied researchers frequently use automated model selection methods, such as backwards variable elimination, to develop parsimonious regression models. Statisticians have criticized the use of these methods for several reasons, amongst them are the facts that the estimated regression coefficients are biased and that the derived confidence intervals do not have the advertised coverage rates. We developed a method to improve estimation of regression coefficients and confidence intervals which employs backwards variable elimination in multiple bootstrap samples. In a given bootstrap sample, predictor variables that are not selected for inclusion in the final regression model have their regression coefficient set to zero. Regression coefficients are averaged across the bootstrap samples, and non-parametric percentile bootstrap confidence intervals are then constructed for each regression coefficient. We conducted a series of Monte Carlo simulations to examine the performance of this method for estimating regression coefficients and constructing confidence intervals for variables selected using backwards variable elimination. We demonstrated that this method results in confidence intervals with superior coverage compared with those developed from conventional backwards variable elimination. We illustrate the utility of our method by applying it to a large sample of subjects hospitalized with a heart attack.Applied researchers frequently use automated model selection methods, such as backwards variable elimination, to develop parsimonious regression models. Statisticians have criticized the use of these methods for several reasons, amongst them are the facts that the estimated regression coefficients are biased and that the derived confidence intervals do not have the advertised coverage rates. We developed a method to improve estimation of regression coefficients and confidence intervals which employs backwards variable elimination in multiple bootstrap samples. In a given bootstrap sample, predictor variables that are not selected for inclusion in the final regression model have their regression coefficient set to zero. Regression coefficients are averaged across the bootstrap samples, and non-parametric percentile bootstrap confidence intervals are then constructed for each regression coefficient. We conducted a series of Monte Carlo simulations to examine the performance of this method for estimating regression coefficients and constructing confidence intervals for variables selected using backwards variable elimination. We demonstrated that this method results in confidence intervals with superior coverage compared with those developed from conventional backwards variable elimination. We illustrate the utility of our method by applying it to a large sample of subjects hospitalized with a heart attack. Applied researchers frequently use automated model selection methods, such as backwards variable elimination, to develop parsimonious regression models. Statisticians have criticized the use of these methods for several reasons, amongst them are the facts that the estimated regression coefficients are biased and that the derived confidence intervals do not have the advertised coverage rates. We developed a method to improve estimation of regression coefficients and confidence intervals which employs backwards variable elimination in multiple bootstrap samples. In a given bootstrap sample, predictor variables that are not selected for inclusion in the final regression model have their regression coefficient set to zero. Regression coefficients are averaged across the bootstrap samples, and non-parametric percentile bootstrap confidence intervals are then constructed for each regression coefficient. We conducted a series of Monte Carlo simulations to examine the performance of this method for estimating regression coefficients and constructing confidence intervals for variables selected using backwards variable elimination. We demonstrated that this method results in confidence intervals with superior coverage compared with those developed from conventional backwards variable elimination. We illustrate the utility of our method by applying it to a large sample of subjects hospitalized with a heart attack. |
Author | Austin, Peter C. |
Author_xml | – sequence: 1 givenname: Peter C. surname: Austin fullname: Austin, Peter C. email: peter.austin@ices.on.ca organization: Institute for Clinical Evaluative Sciences, Toronto, Ont., Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17940997$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUFv1DAQhS1URLcFiV-ALA6olyzjOIk3R9RCqdSFAxSOlmNPitvEXmxn2_4HfjTe3QKigpOl0Tfved47IHvOOyTkOYM5AyhfRzvOOYPqEZkxaEUBZb3YIzMohSgawep9chDjFQBjdSmekH0m2graVszIj4to3SVN35B23qeYglrR5KkdV8GvkWJMdlTJekeVM1R711uDTiO1LmFYqyHS3gca8DJgjBtOe-x7qy26FGnEAXVCQ6etT6f09Y0KJtK1ClZ1Q3YY7Gjd1uIpedxnQXx2_x6Si3dvPx-_L84_np4dvzkvdFVDVRjNORhdM2DAjcCea9VwQNBcYCsWvKtEnjZGd8w0ChTjutOIi1b3pgTOD8mrnW6-8fuUT5SjjRqHQTn0U5RNW9ZQthvw5QPwyk_B5b_JsuSMC87rDL24h6ZuRCNXIScW7uSvkDNwtAN08DEG7P8gIDf9ydyf3PSX0fkDVNu0zSYXY4d_LRS7hRs74N1_heWns-XfvI0Jb3_zKlzLRnBRy68fTmW7PDmpvyyWsuE_AcUdvcs |
CODEN | SMEDDA |
CitedBy_id | crossref_primary_10_1016_j_metabol_2009_04_009 crossref_primary_10_1177_0312896214534150 crossref_primary_10_1007_s11818_017_0137_1 crossref_primary_10_1111_trf_12752 crossref_primary_10_1111_j_1365_2788_2010_01333_x crossref_primary_10_1007_s10994_015_5502_3 crossref_primary_10_1111_head_13767 crossref_primary_10_1002_sim_5344 crossref_primary_10_1016_j_jpain_2013_08_009 crossref_primary_10_1161_CIRCULATIONAHA_109_925214 crossref_primary_10_1016_j_amjcard_2009_07_013 crossref_primary_10_3928_08910162_20100526_03 crossref_primary_10_1097_FPC_0b013e3283540286 crossref_primary_10_1111_resp_12519 crossref_primary_10_1080_07317107_2024_2408238 crossref_primary_10_1186_s12911_022_01859_w crossref_primary_10_1016_j_jclinepi_2016_05_010 crossref_primary_10_1016_j_clinbiochem_2010_08_010 crossref_primary_10_1016_j_jht_2012_03_001 crossref_primary_10_1111_bju_12677 crossref_primary_10_1111_acem_14756 crossref_primary_10_1016_S1836_9553_10_70042_4 crossref_primary_10_1177_216507991005800605 crossref_primary_10_1186_s12955_015_0392_4 crossref_primary_10_1016_j_psychres_2020_113149 crossref_primary_10_1002_sim_7451 crossref_primary_10_1053_j_jvca_2016_11_022 crossref_primary_10_1016_j_ejso_2016_09_007 crossref_primary_10_1016_j_jtcvs_2016_11_028 crossref_primary_10_1016_j_jvssci_2021_08_003 crossref_primary_10_1016_j_amjmed_2017_03_008 crossref_primary_10_1002_pds_3539 crossref_primary_10_1016_j_amjcard_2009_12_062 crossref_primary_10_1016_j_chest_2021_06_048 crossref_primary_10_1016_j_jphys_2014_07_005 crossref_primary_10_1016_j_jclinepi_2010_09_015 crossref_primary_10_1016_S1836_9553_12_70071_1 crossref_primary_10_2139_ssrn_2079341 crossref_primary_10_2139_ssrn_2079348 crossref_primary_10_1016_S1836_9553_13_70183_8 crossref_primary_10_1097_EDE_0b013e31825fa528 crossref_primary_10_1002_pds_5386 crossref_primary_10_1016_j_jss_2016_07_042 crossref_primary_10_1371_journal_pone_0250671 crossref_primary_10_1111_j_1741_3737_2011_00832_x crossref_primary_10_1038_sc_2012_25 crossref_primary_10_1371_journal_pone_0131932 crossref_primary_10_1016_j_socscimed_2019_04_045 crossref_primary_10_1002_for_2440 crossref_primary_10_1053_j_ajkd_2019_03_429 crossref_primary_10_1007_s12144_024_07037_7 crossref_primary_10_1007_s00520_020_05831_0 crossref_primary_10_1093_rheumatology_kep447 |
Cites_doi | 10.1111/j.2044-8317.1992.tb00992.x 10.1016/j.ahj.2005.06.034 10.1080/03610919808813505 10.2307/2348223 10.1016/j.athoracsur.2006.06.089 10.1016/j.athoracsur.2004.04.063 10.1002/sim.2770 10.1201/9781420035933 10.1067/mtc.2002.121975 10.1016/j.athoracsur.2006.02.050 10.1016/j.jclinepi.2004.04.003 10.1111/j.1467-985X.2005.00380.x 10.1002/sim.2053 10.1002/sim.2328 10.2307/2529336 10.1016/j.athoracsur.2003.08.056 10.1198/0003130043277 10.1016/j.amjcard.2005.06.089 10.1007/978-1-4757-3462-1 10.1002/(SICI)1097-0258(20000430)19:8<1059::AID-SIM412>3.0.CO;2-0 10.1016/S0895-4356(96)00236-3 10.2307/2685338 10.1007/978-1-4899-4541-9 10.1016/S0022-5223(03)00950-4 10.1002/sim.4780111607 10.2307/2981576 10.2307/2684336 |
ContentType | Journal Article |
Copyright | Copyright © 2007 John Wiley & Sons, Ltd. Copyright John Wiley and Sons, Limited Jul 30, 2008 |
Copyright_xml | – notice: Copyright © 2007 John Wiley & Sons, Ltd. – notice: Copyright John Wiley and Sons, Limited Jul 30, 2008 |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
DOI | 10.1002/sim.3104 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 3300 |
ExternalDocumentID | 1499695871 17940997 10_1002_sim_3104 SIM3104 ark_67375_WNG_9MDD5V8M_6 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council (NSERC) – fundername: Ontario Ministry of Health and Long Term Care – fundername: CIHR (Institute of Health Services and Policy Research) |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AHMBA AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD EX3 F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WOW WQJ WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWI WRC WUP WWH AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
ID | FETCH-LOGICAL-c4504-dc330dc510103d7ef3ca630e0c37e9783b477ef6dcb1d6a0a13cbcee89cfd2033 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 |
IngestDate | Thu Jul 10 22:59:27 EDT 2025 Fri Jul 25 06:23:24 EDT 2025 Mon Jul 21 06:03:25 EDT 2025 Tue Jul 01 04:33:17 EDT 2025 Thu Apr 24 22:52:16 EDT 2025 Wed Jan 22 16:27:54 EST 2025 Sun Sep 21 06:20:07 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4504-dc330dc510103d7ef3ca630e0c37e9783b477ef6dcb1d6a0a13cbcee89cfd2033 |
Notes | Ontario Ministry of Health and Long Term Care ArticleID:SIM3104 istex:1FFB0CF22D7B0EEB18DF9119734A5A5A8AE66D27 ark:/67375/WNG-9MDD5V8M-6 CIHR (Institute of Health Services and Policy Research) Natural Sciences and Engineering Research Council (NSERC) SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 17940997 |
PQID | 223137335 |
PQPubID | 48361 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_69250293 proquest_journals_223137335 pubmed_primary_17940997 crossref_primary_10_1002_sim_3104 crossref_citationtrail_10_1002_sim_3104 wiley_primary_10_1002_sim_3104_SIM3104 istex_primary_ark_67375_WNG_9MDD5V8M_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 30 July 2008 |
PublicationDateYYYYMMDD | 2008-07-30 |
PublicationDate_xml | – month: 07 year: 2008 text: 30 July 2008 day: 30 |
PublicationDecade | 2000 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: England – name: New York |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Statist. Med |
PublicationYear | 2008 |
Publisher | John Wiley & Sons, Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley Subscription Services, Inc |
References | Flack VF, Chang PC. Frequency of selecting noise variables in subset regression analysis: a simulation study. The American Statistician 1987; 14:84-86. Austin PC, Tu JV. Comparing clinical data with administrative data for producing AMI report cards. Journal of the Royal Statistical Society, Series A (Statistics in Society) 2006; 169:115-126. Austin PC, Mamdani MM, Juurlink DN, Alter DA, Tu JV. Missed opportunities in the secondary prevention of myocardial infarction: an assessment of the effects of statin underprescribing on mortality. American Heart Journal 2006; 151:969-975. Miller A. Subset Selection in Regression (2nd edn). Chapman & Hall/CRC: Boca Raton, FL, 2002. Efron B, Tibshirani R. An Introduction to the Bootstrap. Chapman & Hall: London, 1993. Austin PC, Tu JV. Bootstrap methods for developing predictive models in cardiovascular research. The American Statistician 2004; 58:131-137. Sauerbrei W, Schumacher M. A bootstrap resampling procedure for model building: application to the Cox regression model. Statistics in Medicine 1992; 11:2093-2109. Koch CG, Khandwala F, Nussmeier N, Blackstone EH. Gender and outcomes after coronary artery bypass grafting: a propensity matched comparison. Journal of Thoracic and Cardiovascular Surgery 2003; 126:2032-2043. Miller AJ. Selection of subsets of regression variables. Journal of the Royal Statistical Society, Series A 1984; 147:389-425. Derkson S, Keselman HJ. Backward, forward and stepwise automated subset selection algorithms: frequency of obtaining authentic and noise variables. British Journal of Mathematical and Statistical Psychology 1992; 45:265-282. Murtaugh PA. Methods of variable selection in regression modeling. Communications in Statistics-Simulation and Computation 1998; 27:711-734. Steyerberg EW, Eijkemans MJC, Harrell Jr FE, Habbema JDF. Prognostic modeling with logistic regression analysis: a comparison of selection and estimation methods in small datasets. Statistics in Medicine 2000; 19:1059-1079. Rice TW, Khuntia D, Rybicki LA, Adelstein DJ, Vogelbaum MA, Mason DP, Murthy SC, Blackstone EH. Brain metastases from esophageal cancer: a phenomenon of adjuvant therapy? Annals of Thoracic Surgery 2006; 82(6):2042-2049, 2049, e1-e2. Svensson LG, Blackstone EH, Rajeswaran J, Sabik 3rd JF, Lytle BW, Gonzalez-Stawinski G, Varvitsiotis P, Banbury MK, McCarthy PM, Pettersson GB, Cosgrove DM. Does the arterial cannulation site for circulatory arrest influence stroke risk? Annals of Thoracic Surgery 2004; 78(4):1274-1284. Hocking RR. The analysis and selection of variables in linear regression. Biometrics 1976; 32:1-49. Sabik JF, Gillinov AM, Blackstone EH et al. Does off-pump coronary surgery reduce morbidity and mortality? Journal of Thoracic and Cardiovascular Surgery 2002; 124:698-707. Harrell Jr FE. Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis. Springer: New York, NY, 2001. DeCamp MM, Blackstone EH, Naunheim KS, Krasna MJ, Wood DE, Meli YM, McKenna Jr RJ. NETT Research Group. Patient and surgical factors influencing air leak after lung volume reduction surgery: lessons learned from the National Emphysema Treatment Trial. Annals of Thoracic Surgery 2006; 82(1):197-206. Austin PC. A comparison of classification and regression trees, logistic regression, generalized additive models, and multivariate adaptive regression splines for predicting AMI mortality. Statistics in Medicine 2007; 26:2937-2957. Austin PC, Tu JV. Automated variable selection methods for logistic regression result in unstable models for predicting AMI mortality. Journal of Clinical Epidemiology 2004; 57:1138-1146. Austin PC, Mamdani MM. A comparison of propensity score methods: a case-study estimating the effectiveness of post-AMI statin use. Statistics in Medicine 2006; 25:2084-2106. R Core Development Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, 2005. Austin PC, Mamdani MM, Stukel TA, Anderson GM, Tu JV. The use of the propensity score for estimating treatment effects: administrative versus clinical data. Statistics in Medicine 2005; 24:1563-1578. Sabik JF, Nemeh H, Lytle BW, Blackstone EH, Gillinov AM, Rajeswaran J, Cosgrove DM. Cannulation of the axillary artery with a side graft reduces morbidity. Annals of Thoracic Surgery 2004; 77(4):1315-1320. Copas JB, Long T. Estimating the residual variance in orthogonal regression with variable selection. The Statistician 1991; 40:51-59. Hurvich CM, Tsai C-L. The impact of model selection on inference in linear regression. The American Statistician 1990; 44:214-217. Tu JV, Donovan LR, Lee DS, Austin PC, Ko DT, Wang JT, Newman AM. Quality of Cardiac Care in Ontario. Institute for Clinical Evaluative Sciences: Toronto, Ont., 2004. Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. Journal of Clinical Epidemiology 1996; 49:1373-1379. Shishehbor MH, Seshadri N, Aktas M, Acharya N, Gillinov AM, Blackstone EH, Houghtaling PL, Migrino RQ, Ghaffari S. Comparison of outcomes in patients undergoing coronary bypass of patent versus restenosed bare metal stented coronary arteries. American Journal of Cardiology 2005; 96:1416-1419. 1998; 27 1987; 14 1984; 147 2006; 151 2005 2004 1993 2002 1992; 11 2005; 24 1976; 32 2006; 82 2004; 77 1990; 44 2000; 19 2001 2004; 58 2002; 124 2006; 25 2004; 78 1991; 40 2004; 57 2005; 96 2003; 126 1996; 49 1992; 45 2007; 26 2006; 169 e_1_2_1_22_2 e_1_2_1_23_2 e_1_2_1_21_2 e_1_2_1_26_2 e_1_2_1_27_2 e_1_2_1_24_2 e_1_2_1_25_2 e_1_2_1_28_2 e_1_2_1_29_2 Tu JV (e_1_2_1_12_2) 2004 e_1_2_1_6_2 e_1_2_1_30_2 e_1_2_1_7_2 e_1_2_1_4_2 e_1_2_1_5_2 e_1_2_1_2_2 e_1_2_1_11_2 e_1_2_1_3_2 e_1_2_1_10_2 R Core Development Team (e_1_2_1_20_2) 2005 e_1_2_1_15_2 e_1_2_1_16_2 e_1_2_1_13_2 e_1_2_1_14_2 e_1_2_1_19_2 e_1_2_1_8_2 e_1_2_1_17_2 e_1_2_1_9_2 e_1_2_1_18_2 |
References_xml | – reference: Shishehbor MH, Seshadri N, Aktas M, Acharya N, Gillinov AM, Blackstone EH, Houghtaling PL, Migrino RQ, Ghaffari S. Comparison of outcomes in patients undergoing coronary bypass of patent versus restenosed bare metal stented coronary arteries. American Journal of Cardiology 2005; 96:1416-1419. – reference: Rice TW, Khuntia D, Rybicki LA, Adelstein DJ, Vogelbaum MA, Mason DP, Murthy SC, Blackstone EH. Brain metastases from esophageal cancer: a phenomenon of adjuvant therapy? Annals of Thoracic Surgery 2006; 82(6):2042-2049, 2049, e1-e2. – reference: Koch CG, Khandwala F, Nussmeier N, Blackstone EH. Gender and outcomes after coronary artery bypass grafting: a propensity matched comparison. Journal of Thoracic and Cardiovascular Surgery 2003; 126:2032-2043. – reference: DeCamp MM, Blackstone EH, Naunheim KS, Krasna MJ, Wood DE, Meli YM, McKenna Jr RJ. NETT Research Group. Patient and surgical factors influencing air leak after lung volume reduction surgery: lessons learned from the National Emphysema Treatment Trial. Annals of Thoracic Surgery 2006; 82(1):197-206. – reference: Tu JV, Donovan LR, Lee DS, Austin PC, Ko DT, Wang JT, Newman AM. Quality of Cardiac Care in Ontario. Institute for Clinical Evaluative Sciences: Toronto, Ont., 2004. – reference: Steyerberg EW, Eijkemans MJC, Harrell Jr FE, Habbema JDF. Prognostic modeling with logistic regression analysis: a comparison of selection and estimation methods in small datasets. Statistics in Medicine 2000; 19:1059-1079. – reference: Hurvich CM, Tsai C-L. The impact of model selection on inference in linear regression. The American Statistician 1990; 44:214-217. – reference: Copas JB, Long T. Estimating the residual variance in orthogonal regression with variable selection. The Statistician 1991; 40:51-59. – reference: Austin PC, Tu JV. Comparing clinical data with administrative data for producing AMI report cards. Journal of the Royal Statistical Society, Series A (Statistics in Society) 2006; 169:115-126. – reference: Sabik JF, Gillinov AM, Blackstone EH et al. Does off-pump coronary surgery reduce morbidity and mortality? Journal of Thoracic and Cardiovascular Surgery 2002; 124:698-707. – reference: Sabik JF, Nemeh H, Lytle BW, Blackstone EH, Gillinov AM, Rajeswaran J, Cosgrove DM. Cannulation of the axillary artery with a side graft reduces morbidity. Annals of Thoracic Surgery 2004; 77(4):1315-1320. – reference: Derkson S, Keselman HJ. Backward, forward and stepwise automated subset selection algorithms: frequency of obtaining authentic and noise variables. British Journal of Mathematical and Statistical Psychology 1992; 45:265-282. – reference: Hocking RR. The analysis and selection of variables in linear regression. Biometrics 1976; 32:1-49. – reference: Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. Journal of Clinical Epidemiology 1996; 49:1373-1379. – reference: Miller AJ. Selection of subsets of regression variables. Journal of the Royal Statistical Society, Series A 1984; 147:389-425. – reference: Harrell Jr FE. Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis. Springer: New York, NY, 2001. – reference: Austin PC. A comparison of classification and regression trees, logistic regression, generalized additive models, and multivariate adaptive regression splines for predicting AMI mortality. Statistics in Medicine 2007; 26:2937-2957. – reference: Flack VF, Chang PC. Frequency of selecting noise variables in subset regression analysis: a simulation study. The American Statistician 1987; 14:84-86. – reference: Austin PC, Tu JV. Automated variable selection methods for logistic regression result in unstable models for predicting AMI mortality. Journal of Clinical Epidemiology 2004; 57:1138-1146. – reference: Miller A. Subset Selection in Regression (2nd edn). Chapman & Hall/CRC: Boca Raton, FL, 2002. – reference: Austin PC, Tu JV. Bootstrap methods for developing predictive models in cardiovascular research. The American Statistician 2004; 58:131-137. – reference: Sauerbrei W, Schumacher M. A bootstrap resampling procedure for model building: application to the Cox regression model. Statistics in Medicine 1992; 11:2093-2109. – reference: Svensson LG, Blackstone EH, Rajeswaran J, Sabik 3rd JF, Lytle BW, Gonzalez-Stawinski G, Varvitsiotis P, Banbury MK, McCarthy PM, Pettersson GB, Cosgrove DM. Does the arterial cannulation site for circulatory arrest influence stroke risk? Annals of Thoracic Surgery 2004; 78(4):1274-1284. – reference: Austin PC, Mamdani MM. A comparison of propensity score methods: a case-study estimating the effectiveness of post-AMI statin use. Statistics in Medicine 2006; 25:2084-2106. – reference: Murtaugh PA. Methods of variable selection in regression modeling. Communications in Statistics-Simulation and Computation 1998; 27:711-734. – reference: Efron B, Tibshirani R. An Introduction to the Bootstrap. Chapman & Hall: London, 1993. – reference: Austin PC, Mamdani MM, Stukel TA, Anderson GM, Tu JV. The use of the propensity score for estimating treatment effects: administrative versus clinical data. Statistics in Medicine 2005; 24:1563-1578. – reference: Austin PC, Mamdani MM, Juurlink DN, Alter DA, Tu JV. Missed opportunities in the secondary prevention of myocardial infarction: an assessment of the effects of statin underprescribing on mortality. American Heart Journal 2006; 151:969-975. – reference: R Core Development Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, 2005. – volume: 124 start-page: 698 year: 2002 end-page: 707 article-title: Does off‐pump coronary surgery reduce morbidity and mortality? publication-title: Journal of Thoracic and Cardiovascular Surgery – volume: 147 start-page: 389 year: 1984 end-page: 425 article-title: Selection of subsets of regression variables publication-title: Journal of the Royal Statistical Society, Series A – year: 2005 – volume: 57 start-page: 1138 year: 2004 end-page: 1146 article-title: Automated variable selection methods for logistic regression result in unstable models for predicting AMI mortality publication-title: Journal of Clinical Epidemiology – volume: 49 start-page: 1373 year: 1996 end-page: 1379 article-title: A simulation study of the number of events per variable in logistic regression analysis publication-title: Journal of Clinical Epidemiology – volume: 45 start-page: 265 year: 1992 end-page: 282 article-title: Backward, forward and stepwise automated subset selection algorithms: frequency of obtaining authentic and noise variables publication-title: British Journal of Mathematical and Statistical Psychology – year: 2001 – volume: 58 start-page: 131 year: 2004 end-page: 137 article-title: Bootstrap methods for developing predictive models in cardiovascular research publication-title: The American Statistician – volume: 40 start-page: 51 year: 1991 end-page: 59 article-title: Estimating the residual variance in orthogonal regression with variable selection publication-title: The Statistician – volume: 14 start-page: 84 year: 1987 end-page: 86 article-title: Frequency of selecting noise variables in subset regression analysis: a simulation study publication-title: The American Statistician – volume: 44 start-page: 214 year: 1990 end-page: 217 article-title: The impact of model selection on inference in linear regression publication-title: The American Statistician – volume: 151 start-page: 969 year: 2006 end-page: 975 article-title: Missed opportunities in the secondary prevention of myocardial infarction: an assessment of the effects of statin underprescribing on mortality publication-title: American Heart Journal – volume: 26 start-page: 2937 year: 2007 end-page: 2957 article-title: A comparison of classification and regression trees, logistic regression, generalized additive models, and multivariate adaptive regression splines for predicting AMI mortality publication-title: Statistics in Medicine – volume: 11 start-page: 2093 year: 1992 end-page: 2109 article-title: A bootstrap resampling procedure for model building: application to the Cox regression model publication-title: Statistics in Medicine – volume: 78 start-page: 1274 issue: 4 year: 2004 end-page: 1284 article-title: Does the arterial cannulation site for circulatory arrest influence stroke risk? publication-title: Annals of Thoracic Surgery – volume: 25 start-page: 2084 year: 2006 end-page: 2106 article-title: A comparison of propensity score methods: a case‐study estimating the effectiveness of post‐AMI statin use publication-title: Statistics in Medicine – volume: 126 start-page: 2032 year: 2003 end-page: 2043 article-title: Gender and outcomes after coronary artery bypass grafting: a propensity matched comparison publication-title: Journal of Thoracic and Cardiovascular Surgery – volume: 77 start-page: 1315 issue: 4 year: 2004 end-page: 1320 article-title: Cannulation of the axillary artery with a side graft reduces morbidity publication-title: Annals of Thoracic Surgery – volume: 27 start-page: 711 year: 1998 end-page: 734 article-title: Methods of variable selection in regression modeling publication-title: Communications in Statistics—Simulation and Computation – year: 2002 – volume: 32 start-page: 1 year: 1976 end-page: 49 article-title: The analysis and selection of variables in linear regression publication-title: Biometrics – volume: 24 start-page: 1563 year: 2005 end-page: 1578 article-title: The use of the propensity score for estimating treatment effects: administrative versus clinical data publication-title: Statistics in Medicine – year: 2004 – volume: 82 start-page: 2042 issue: 6 year: 2006 end-page: 2049 article-title: Brain metastases from esophageal cancer: a phenomenon of adjuvant therapy? publication-title: Annals of Thoracic Surgery – volume: 19 start-page: 1059 year: 2000 end-page: 1079 article-title: Prognostic modeling with logistic regression analysis: a comparison of selection and estimation methods in small datasets publication-title: Statistics in Medicine – year: 1993 – volume: 96 start-page: 1416 year: 2005 end-page: 1419 article-title: Comparison of outcomes in patients undergoing coronary bypass of patent versus restenosed bare metal stented coronary arteries publication-title: American Journal of Cardiology – volume: 82 start-page: 197 issue: 1 year: 2006 end-page: 206 article-title: Patient and surgical factors influencing air leak after lung volume reduction surgery: lessons learned from the National Emphysema Treatment Trial publication-title: Annals of Thoracic Surgery – volume: 169 start-page: 115 year: 2006 end-page: 126 article-title: Comparing clinical data with administrative data for producing AMI report cards publication-title: Journal of the Royal Statistical Society, Series A (Statistics in Society) – volume-title: Quality of Cardiac Care in Ontario year: 2004 ident: e_1_2_1_12_2 – ident: e_1_2_1_5_2 doi: 10.1111/j.2044-8317.1992.tb00992.x – ident: e_1_2_1_16_2 doi: 10.1016/j.ahj.2005.06.034 – ident: e_1_2_1_7_2 doi: 10.1080/03610919808813505 – ident: e_1_2_1_8_2 doi: 10.2307/2348223 – ident: e_1_2_1_26_2 doi: 10.1016/j.athoracsur.2006.06.089 – ident: e_1_2_1_28_2 doi: 10.1016/j.athoracsur.2004.04.063 – ident: e_1_2_1_13_2 doi: 10.1002/sim.2770 – ident: e_1_2_1_3_2 doi: 10.1201/9781420035933 – volume-title: R: A Language and Environment for Statistical Computing year: 2005 ident: e_1_2_1_20_2 – ident: e_1_2_1_24_2 doi: 10.1067/mtc.2002.121975 – ident: e_1_2_1_27_2 doi: 10.1016/j.athoracsur.2006.02.050 – ident: e_1_2_1_9_2 doi: 10.1016/j.jclinepi.2004.04.003 – ident: e_1_2_1_15_2 doi: 10.1111/j.1467-985X.2005.00380.x – ident: e_1_2_1_17_2 doi: 10.1002/sim.2053 – ident: e_1_2_1_14_2 doi: 10.1002/sim.2328 – ident: e_1_2_1_4_2 doi: 10.2307/2529336 – ident: e_1_2_1_29_2 doi: 10.1016/j.athoracsur.2003.08.056 – ident: e_1_2_1_23_2 doi: 10.1198/0003130043277 – ident: e_1_2_1_30_2 doi: 10.1016/j.amjcard.2005.06.089 – ident: e_1_2_1_10_2 doi: 10.1007/978-1-4757-3462-1 – ident: e_1_2_1_19_2 doi: 10.1002/(SICI)1097-0258(20000430)19:8<1059::AID-SIM412>3.0.CO;2-0 – ident: e_1_2_1_21_2 doi: 10.1016/S0895-4356(96)00236-3 – ident: e_1_2_1_11_2 doi: 10.2307/2685338 – ident: e_1_2_1_18_2 doi: 10.1007/978-1-4899-4541-9 – ident: e_1_2_1_25_2 doi: 10.1016/S0022-5223(03)00950-4 – ident: e_1_2_1_22_2 doi: 10.1002/sim.4780111607 – ident: e_1_2_1_2_2 doi: 10.2307/2981576 – ident: e_1_2_1_6_2 doi: 10.2307/2684336 |
SSID | ssj0011527 |
Score | 2.1499777 |
Snippet | Applied researchers frequently use automated model selection methods, such as backwards variable elimination, to develop parsimonious regression models.... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3286 |
SubjectTerms | automated variable selection backwards variable elimination bootstrap Bootstrap method Computer Simulation Confidence Intervals Data Interpretation, Statistical Estimating techniques Female Heart attacks Humans Logistic Models Male Medical statistics Monte Carlo Method Monte Carlo simulation Monte Carlo simulations Myocardial Infarction - therapy Quality of Health Care regression models Research Design |
Title | Using the bootstrap to improve estimation and confidence intervals for regression coefficients selected using backwards variable elimination |
URI | https://api.istex.fr/ark:/67375/WNG-9MDD5V8M-6/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.3104 https://www.ncbi.nlm.nih.gov/pubmed/17940997 https://www.proquest.com/docview/223137335 https://www.proquest.com/docview/69250293 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0277-6715 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-0258 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011527 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB6kghTEy3qL9TKC6FPayU4yyTyKtVYhfVCrBR-GuUWWttmyyYr4G_zRnjOTpFQqiE8L2RMymZyZ-ebMd75DyHNhBat0UaWwuvI0FxVLTeWbVM-d1rIyUgfKf30g9g_z90fF0cCqxFyYqA8xBdxwZIT5Gge4Nt3OuWhotziFDWeQAs14EU5oP0zKUdlYrRVPKEWZFaPuLJvvjDdeWImuYqf-uAxmXkStYdnZu0m-jg2ObJPj7XVvtu3PP7Qc_--NbpEbAxqlr6L73CZXfDsj1-rhvH1GrseoHo3JSjOyidg0SjvfIb8C3YACgqQA1XuMmZzRfkkXIU7hKep3xMRIqltHYePdxAqmdBGIluD4FCAzXflvkYzbgo0PkhbI7qBdKNHjHV2H5xiMNGKKGP0O-3vM-KLwvsjkwUfcJYd7bz693k-H4g6pzQuWp85yzpzFKYFxV_qGWy0488zy0mM8yuQlXBXOmswJzXTGrYEVvZK2cXPG-T2y0S5b_4BQ2TQyl0Yb4XQuMzBzhc0bVzGXOS9ZQl6OH1rZQfkcC3CcqKjZPFfQ8wp7PiHPJsuzqPZxic2L4CuTgV4dIzuuLNSXg7dK1ru7xeeqViIhW6MzqWFi6BSgsYyXnBcJeTr9CyMaj2l065frTgkJsBRQWELuRw88bwpMnpjpDE0IfvTXNqqP72r8ffivhltkMxJhYMVhj8hGv1r7x4C2evMkjKvf73sqFg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9NmwSTEB_lY2XAjITgKZtTJ04inhBldLD0ATbYA5Ll2M5UDdKpTRHib-CP5s5uOg0NCfFUKb0ojnPn-_l89zuAZ9JInus0j9C7iiiROY-q3NWRHliti7wqtE_5L8dydJy8O0lP1uBlVwsT-CFWATeyDL9ek4FTQHrvgjV0PvmGO07iAt2g4zmyyuGHFXdU3PVrpTNKmcVpxzzLB3vdnZd80QZN64-rgOZl3Oodz_4t-NINOeSbnO0u2mrX_PyDzfE_3-k23FwCUvYqaNAdWHNND66VyyP3HtwIgT0W6pV6sEnwNLA734VfPuOAIYhkiNZbCpucs3bKJj5U4RhReITaSKYby3DvXYcmpmzicy1R9xmiZjZzpyEft0EZ51ktKMGDzX2XHmfZwj-nomAjVYmx77jFp6Ivhi9MyTz0iHtwvP_m6PUoWvZ3iEyS8iSyRghuDa0KXNjM1cJoKbjjRmSOQlJVkuFVaU0VW6m5joWp0KnnhantgAtxH9abaeO2gBV1XSRFpStpdVLEKGZTk9Q25za2ruB9eNF9aWWW5OfUg-OrCrTNA4Uzr2jm-_B0JXkeCD-ukHnulWUloGdnlCCXperz-K0qyuEw_ZSXSvZhu9MmtVwb5goBWSwyIdI-7Kz-RaOmkxrduOlirmSByBSBWB8eBBW8GAqun1TsjEPwivTXMaqPByX9PvxXwR24PjoqD9Xhwfj9NmyGvBh0QPwRrLezhXuM4Kutnngj-w1lBy4y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbQJk2TEJdyCwNmJARP2Zw6cZJHRCkb0AoBg0l7sHwLqralVZsixG_gR3OOnWQaGhLiqVJ6ojjOsf35-DvfIeSZMIIVKitiWF15nIqCxbpwVayGVqmy0KXylP_JVBwcpW-Ps-OWVYm5MEEfog-44cjw8zUO8IWt9i9EQ1ezc9hwohToZipgc4WA6GMvHZV05VrxiFLkSdYJz7LhfnfnpaVoE3v1x1U48zJs9evO-CY56Voc6Cane-tG75mff4g5_t8r3SI3WjhKXwb_uU2uuXpAtibtgfuAXA9hPRqylQZkG8Fp0Ha-Q355vgEFCEkBqzcYNFnQZk5nPlDhKAp4hMxIqmpLYeddhRKmdOaZluD5FDAzXbpvgY1bg43zmhZI76ArX6PHWbr2z9EYasQcMfodNviY8kXhfZHKg4-4S47Grz-_Oojb6g6xSTOWxtZwzqzBOYFxm7uKGyU4c8zw3GFASqc5XBXW6MQKxVTCjYYlvShNZYeM83tko57X7gGhZVWVaamVFlalZQJmNjNpZQtmE-tKFpEX3YeWppU-xwocZzKINg8l9LzEno_I095yEeQ-rrB57n2lN1DLU6TH5Zn8On0jy8lolH0pJlJEZKdzJtnODCsJcCzhOedZRHb7f2FI4zmNqt18vZKiBFwKMCwi94MHXjQFZk9MdYYmeD_6axvlp8MJ_j78V8NdsvVhNJbvD6fvdsh2IMXA6sMekY1muXaPAXk1-okfYr8Bxmws4Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+the+bootstrap+to+improve+estimation+and+confidence+intervals+for+regression+coefficients+selected+using+backwards+variable+elimination&rft.jtitle=Statistics+in+medicine&rft.au=Austin%2C+Peter+C&rft.date=2008-07-30&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=27&rft.issue=17&rft.spage=3286&rft_id=info:doi/10.1002%2Fsim.3104&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=1499695871 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |