Using the bootstrap to improve estimation and confidence intervals for regression coefficients selected using backwards variable elimination

Applied researchers frequently use automated model selection methods, such as backwards variable elimination, to develop parsimonious regression models. Statisticians have criticized the use of these methods for several reasons, amongst them are the facts that the estimated regression coefficients a...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 27; no. 17; pp. 3286 - 3300
Main Author Austin, Peter C.
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 30.07.2008
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
DOI10.1002/sim.3104

Cover

Abstract Applied researchers frequently use automated model selection methods, such as backwards variable elimination, to develop parsimonious regression models. Statisticians have criticized the use of these methods for several reasons, amongst them are the facts that the estimated regression coefficients are biased and that the derived confidence intervals do not have the advertised coverage rates. We developed a method to improve estimation of regression coefficients and confidence intervals which employs backwards variable elimination in multiple bootstrap samples. In a given bootstrap sample, predictor variables that are not selected for inclusion in the final regression model have their regression coefficient set to zero. Regression coefficients are averaged across the bootstrap samples, and non‐parametric percentile bootstrap confidence intervals are then constructed for each regression coefficient. We conducted a series of Monte Carlo simulations to examine the performance of this method for estimating regression coefficients and constructing confidence intervals for variables selected using backwards variable elimination. We demonstrated that this method results in confidence intervals with superior coverage compared with those developed from conventional backwards variable elimination. We illustrate the utility of our method by applying it to a large sample of subjects hospitalized with a heart attack. Copyright © 2007 John Wiley & Sons, Ltd.
AbstractList Applied researchers frequently use automated model selection methods, such as backwards variable elimination, to develop parsimonious regression models. Statisticians have criticized the use of these methods for several reasons, amongst them are the facts that the estimated regression coefficients are biased and that the derived confidence intervals do not have the advertised coverage rates. We developed a method to improve estimation of regression coefficients and confidence intervals which employs backwards variable elimination in multiple bootstrap samples. In a given bootstrap sample, predictor variables that are not selected for inclusion in the final regression model have their regression coefficient set to zero. Regression coefficients are averaged across the bootstrap samples, and non-parametric percentile bootstrap confidence intervals are then constructed for each regression coefficient. We conducted a series of Monte Carlo simulations to examine the performance of this method for estimating regression coefficients and constructing confidence intervals for variables selected using backwards variable elimination. We demonstrated that this method results in confidence intervals with superior coverage compared with those developed from conventional backwards variable elimination. We illustrate the utility of our method by applying it to a large sample of subjects hospitalized with a heart attack. [PUBLICATION ABSTRACT]
Applied researchers frequently use automated model selection methods, such as backwards variable elimination, to develop parsimonious regression models. Statisticians have criticized the use of these methods for several reasons, amongst them are the facts that the estimated regression coefficients are biased and that the derived confidence intervals do not have the advertised coverage rates. We developed a method to improve estimation of regression coefficients and confidence intervals which employs backwards variable elimination in multiple bootstrap samples. In a given bootstrap sample, predictor variables that are not selected for inclusion in the final regression model have their regression coefficient set to zero. Regression coefficients are averaged across the bootstrap samples, and non‐parametric percentile bootstrap confidence intervals are then constructed for each regression coefficient. We conducted a series of Monte Carlo simulations to examine the performance of this method for estimating regression coefficients and constructing confidence intervals for variables selected using backwards variable elimination. We demonstrated that this method results in confidence intervals with superior coverage compared with those developed from conventional backwards variable elimination. We illustrate the utility of our method by applying it to a large sample of subjects hospitalized with a heart attack. Copyright © 2007 John Wiley & Sons, Ltd.
Applied researchers frequently use automated model selection methods, such as backwards variable elimination, to develop parsimonious regression models. Statisticians have criticized the use of these methods for several reasons, amongst them are the facts that the estimated regression coefficients are biased and that the derived confidence intervals do not have the advertised coverage rates. We developed a method to improve estimation of regression coefficients and confidence intervals which employs backwards variable elimination in multiple bootstrap samples. In a given bootstrap sample, predictor variables that are not selected for inclusion in the final regression model have their regression coefficient set to zero. Regression coefficients are averaged across the bootstrap samples, and non-parametric percentile bootstrap confidence intervals are then constructed for each regression coefficient. We conducted a series of Monte Carlo simulations to examine the performance of this method for estimating regression coefficients and constructing confidence intervals for variables selected using backwards variable elimination. We demonstrated that this method results in confidence intervals with superior coverage compared with those developed from conventional backwards variable elimination. We illustrate the utility of our method by applying it to a large sample of subjects hospitalized with a heart attack.Applied researchers frequently use automated model selection methods, such as backwards variable elimination, to develop parsimonious regression models. Statisticians have criticized the use of these methods for several reasons, amongst them are the facts that the estimated regression coefficients are biased and that the derived confidence intervals do not have the advertised coverage rates. We developed a method to improve estimation of regression coefficients and confidence intervals which employs backwards variable elimination in multiple bootstrap samples. In a given bootstrap sample, predictor variables that are not selected for inclusion in the final regression model have their regression coefficient set to zero. Regression coefficients are averaged across the bootstrap samples, and non-parametric percentile bootstrap confidence intervals are then constructed for each regression coefficient. We conducted a series of Monte Carlo simulations to examine the performance of this method for estimating regression coefficients and constructing confidence intervals for variables selected using backwards variable elimination. We demonstrated that this method results in confidence intervals with superior coverage compared with those developed from conventional backwards variable elimination. We illustrate the utility of our method by applying it to a large sample of subjects hospitalized with a heart attack.
Applied researchers frequently use automated model selection methods, such as backwards variable elimination, to develop parsimonious regression models. Statisticians have criticized the use of these methods for several reasons, amongst them are the facts that the estimated regression coefficients are biased and that the derived confidence intervals do not have the advertised coverage rates. We developed a method to improve estimation of regression coefficients and confidence intervals which employs backwards variable elimination in multiple bootstrap samples. In a given bootstrap sample, predictor variables that are not selected for inclusion in the final regression model have their regression coefficient set to zero. Regression coefficients are averaged across the bootstrap samples, and non-parametric percentile bootstrap confidence intervals are then constructed for each regression coefficient. We conducted a series of Monte Carlo simulations to examine the performance of this method for estimating regression coefficients and constructing confidence intervals for variables selected using backwards variable elimination. We demonstrated that this method results in confidence intervals with superior coverage compared with those developed from conventional backwards variable elimination. We illustrate the utility of our method by applying it to a large sample of subjects hospitalized with a heart attack.
Author Austin, Peter C.
Author_xml – sequence: 1
  givenname: Peter C.
  surname: Austin
  fullname: Austin, Peter C.
  email: peter.austin@ices.on.ca
  organization: Institute for Clinical Evaluative Sciences, Toronto, Ont., Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17940997$$D View this record in MEDLINE/PubMed
BookMark eNp1kUFv1DAQhS1URLcFiV-ALA6olyzjOIk3R9RCqdSFAxSOlmNPitvEXmxn2_4HfjTe3QKigpOl0Tfved47IHvOOyTkOYM5AyhfRzvOOYPqEZkxaEUBZb3YIzMohSgawep9chDjFQBjdSmekH0m2graVszIj4to3SVN35B23qeYglrR5KkdV8GvkWJMdlTJekeVM1R711uDTiO1LmFYqyHS3gca8DJgjBtOe-x7qy26FGnEAXVCQ6etT6f09Y0KJtK1ClZ1Q3YY7Gjd1uIpedxnQXx2_x6Si3dvPx-_L84_np4dvzkvdFVDVRjNORhdM2DAjcCea9VwQNBcYCsWvKtEnjZGd8w0ChTjutOIi1b3pgTOD8mrnW6-8fuUT5SjjRqHQTn0U5RNW9ZQthvw5QPwyk_B5b_JsuSMC87rDL24h6ZuRCNXIScW7uSvkDNwtAN08DEG7P8gIDf9ydyf3PSX0fkDVNu0zSYXY4d_LRS7hRs74N1_heWns-XfvI0Jb3_zKlzLRnBRy68fTmW7PDmpvyyWsuE_AcUdvcs
CODEN SMEDDA
CitedBy_id crossref_primary_10_1016_j_metabol_2009_04_009
crossref_primary_10_1177_0312896214534150
crossref_primary_10_1007_s11818_017_0137_1
crossref_primary_10_1111_trf_12752
crossref_primary_10_1111_j_1365_2788_2010_01333_x
crossref_primary_10_1007_s10994_015_5502_3
crossref_primary_10_1111_head_13767
crossref_primary_10_1002_sim_5344
crossref_primary_10_1016_j_jpain_2013_08_009
crossref_primary_10_1161_CIRCULATIONAHA_109_925214
crossref_primary_10_1016_j_amjcard_2009_07_013
crossref_primary_10_3928_08910162_20100526_03
crossref_primary_10_1097_FPC_0b013e3283540286
crossref_primary_10_1111_resp_12519
crossref_primary_10_1080_07317107_2024_2408238
crossref_primary_10_1186_s12911_022_01859_w
crossref_primary_10_1016_j_jclinepi_2016_05_010
crossref_primary_10_1016_j_clinbiochem_2010_08_010
crossref_primary_10_1016_j_jht_2012_03_001
crossref_primary_10_1111_bju_12677
crossref_primary_10_1111_acem_14756
crossref_primary_10_1016_S1836_9553_10_70042_4
crossref_primary_10_1177_216507991005800605
crossref_primary_10_1186_s12955_015_0392_4
crossref_primary_10_1016_j_psychres_2020_113149
crossref_primary_10_1002_sim_7451
crossref_primary_10_1053_j_jvca_2016_11_022
crossref_primary_10_1016_j_ejso_2016_09_007
crossref_primary_10_1016_j_jtcvs_2016_11_028
crossref_primary_10_1016_j_jvssci_2021_08_003
crossref_primary_10_1016_j_amjmed_2017_03_008
crossref_primary_10_1002_pds_3539
crossref_primary_10_1016_j_amjcard_2009_12_062
crossref_primary_10_1016_j_chest_2021_06_048
crossref_primary_10_1016_j_jphys_2014_07_005
crossref_primary_10_1016_j_jclinepi_2010_09_015
crossref_primary_10_1016_S1836_9553_12_70071_1
crossref_primary_10_2139_ssrn_2079341
crossref_primary_10_2139_ssrn_2079348
crossref_primary_10_1016_S1836_9553_13_70183_8
crossref_primary_10_1097_EDE_0b013e31825fa528
crossref_primary_10_1002_pds_5386
crossref_primary_10_1016_j_jss_2016_07_042
crossref_primary_10_1371_journal_pone_0250671
crossref_primary_10_1111_j_1741_3737_2011_00832_x
crossref_primary_10_1038_sc_2012_25
crossref_primary_10_1371_journal_pone_0131932
crossref_primary_10_1016_j_socscimed_2019_04_045
crossref_primary_10_1002_for_2440
crossref_primary_10_1053_j_ajkd_2019_03_429
crossref_primary_10_1007_s12144_024_07037_7
crossref_primary_10_1007_s00520_020_05831_0
crossref_primary_10_1093_rheumatology_kep447
Cites_doi 10.1111/j.2044-8317.1992.tb00992.x
10.1016/j.ahj.2005.06.034
10.1080/03610919808813505
10.2307/2348223
10.1016/j.athoracsur.2006.06.089
10.1016/j.athoracsur.2004.04.063
10.1002/sim.2770
10.1201/9781420035933
10.1067/mtc.2002.121975
10.1016/j.athoracsur.2006.02.050
10.1016/j.jclinepi.2004.04.003
10.1111/j.1467-985X.2005.00380.x
10.1002/sim.2053
10.1002/sim.2328
10.2307/2529336
10.1016/j.athoracsur.2003.08.056
10.1198/0003130043277
10.1016/j.amjcard.2005.06.089
10.1007/978-1-4757-3462-1
10.1002/(SICI)1097-0258(20000430)19:8<1059::AID-SIM412>3.0.CO;2-0
10.1016/S0895-4356(96)00236-3
10.2307/2685338
10.1007/978-1-4899-4541-9
10.1016/S0022-5223(03)00950-4
10.1002/sim.4780111607
10.2307/2981576
10.2307/2684336
ContentType Journal Article
Copyright Copyright © 2007 John Wiley & Sons, Ltd.
Copyright John Wiley and Sons, Limited Jul 30, 2008
Copyright_xml – notice: Copyright © 2007 John Wiley & Sons, Ltd.
– notice: Copyright John Wiley and Sons, Limited Jul 30, 2008
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1002/sim.3104
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 3300
ExternalDocumentID 1499695871
17940997
10_1002_sim_3104
SIM3104
ark_67375_WNG_9MDD5V8M_6
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council (NSERC)
– fundername: Ontario Ministry of Health and Long Term Care
– fundername: CIHR (Institute of Health Services and Policy Research)
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
EX3
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WOW
WQJ
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
WRC
WUP
WWH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
ID FETCH-LOGICAL-c4504-dc330dc510103d7ef3ca630e0c37e9783b477ef6dcb1d6a0a13cbcee89cfd2033
IEDL.DBID DR2
ISSN 0277-6715
IngestDate Thu Jul 10 22:59:27 EDT 2025
Fri Jul 25 06:23:24 EDT 2025
Mon Jul 21 06:03:25 EDT 2025
Tue Jul 01 04:33:17 EDT 2025
Thu Apr 24 22:52:16 EDT 2025
Wed Jan 22 16:27:54 EST 2025
Sun Sep 21 06:20:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4504-dc330dc510103d7ef3ca630e0c37e9783b477ef6dcb1d6a0a13cbcee89cfd2033
Notes Ontario Ministry of Health and Long Term Care
ArticleID:SIM3104
istex:1FFB0CF22D7B0EEB18DF9119734A5A5A8AE66D27
ark:/67375/WNG-9MDD5V8M-6
CIHR (Institute of Health Services and Policy Research)
Natural Sciences and Engineering Research Council (NSERC)
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 17940997
PQID 223137335
PQPubID 48361
PageCount 15
ParticipantIDs proquest_miscellaneous_69250293
proquest_journals_223137335
pubmed_primary_17940997
crossref_primary_10_1002_sim_3104
crossref_citationtrail_10_1002_sim_3104
wiley_primary_10_1002_sim_3104_SIM3104
istex_primary_ark_67375_WNG_9MDD5V8M_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 30 July 2008
PublicationDateYYYYMMDD 2008-07-30
PublicationDate_xml – month: 07
  year: 2008
  text: 30 July 2008
  day: 30
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Statist. Med
PublicationYear 2008
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References Flack VF, Chang PC. Frequency of selecting noise variables in subset regression analysis: a simulation study. The American Statistician 1987; 14:84-86.
Austin PC, Tu JV. Comparing clinical data with administrative data for producing AMI report cards. Journal of the Royal Statistical Society, Series A (Statistics in Society) 2006; 169:115-126.
Austin PC, Mamdani MM, Juurlink DN, Alter DA, Tu JV. Missed opportunities in the secondary prevention of myocardial infarction: an assessment of the effects of statin underprescribing on mortality. American Heart Journal 2006; 151:969-975.
Miller A. Subset Selection in Regression (2nd edn). Chapman & Hall/CRC: Boca Raton, FL, 2002.
Efron B, Tibshirani R. An Introduction to the Bootstrap. Chapman & Hall: London, 1993.
Austin PC, Tu JV. Bootstrap methods for developing predictive models in cardiovascular research. The American Statistician 2004; 58:131-137.
Sauerbrei W, Schumacher M. A bootstrap resampling procedure for model building: application to the Cox regression model. Statistics in Medicine 1992; 11:2093-2109.
Koch CG, Khandwala F, Nussmeier N, Blackstone EH. Gender and outcomes after coronary artery bypass grafting: a propensity matched comparison. Journal of Thoracic and Cardiovascular Surgery 2003; 126:2032-2043.
Miller AJ. Selection of subsets of regression variables. Journal of the Royal Statistical Society, Series A 1984; 147:389-425.
Derkson S, Keselman HJ. Backward, forward and stepwise automated subset selection algorithms: frequency of obtaining authentic and noise variables. British Journal of Mathematical and Statistical Psychology 1992; 45:265-282.
Murtaugh PA. Methods of variable selection in regression modeling. Communications in Statistics-Simulation and Computation 1998; 27:711-734.
Steyerberg EW, Eijkemans MJC, Harrell Jr FE, Habbema JDF. Prognostic modeling with logistic regression analysis: a comparison of selection and estimation methods in small datasets. Statistics in Medicine 2000; 19:1059-1079.
Rice TW, Khuntia D, Rybicki LA, Adelstein DJ, Vogelbaum MA, Mason DP, Murthy SC, Blackstone EH. Brain metastases from esophageal cancer: a phenomenon of adjuvant therapy? Annals of Thoracic Surgery 2006; 82(6):2042-2049, 2049, e1-e2.
Svensson LG, Blackstone EH, Rajeswaran J, Sabik 3rd JF, Lytle BW, Gonzalez-Stawinski G, Varvitsiotis P, Banbury MK, McCarthy PM, Pettersson GB, Cosgrove DM. Does the arterial cannulation site for circulatory arrest influence stroke risk? Annals of Thoracic Surgery 2004; 78(4):1274-1284.
Hocking RR. The analysis and selection of variables in linear regression. Biometrics 1976; 32:1-49.
Sabik JF, Gillinov AM, Blackstone EH et al. Does off-pump coronary surgery reduce morbidity and mortality? Journal of Thoracic and Cardiovascular Surgery 2002; 124:698-707.
Harrell Jr FE. Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis. Springer: New York, NY, 2001.
DeCamp MM, Blackstone EH, Naunheim KS, Krasna MJ, Wood DE, Meli YM, McKenna Jr RJ. NETT Research Group. Patient and surgical factors influencing air leak after lung volume reduction surgery: lessons learned from the National Emphysema Treatment Trial. Annals of Thoracic Surgery 2006; 82(1):197-206.
Austin PC. A comparison of classification and regression trees, logistic regression, generalized additive models, and multivariate adaptive regression splines for predicting AMI mortality. Statistics in Medicine 2007; 26:2937-2957.
Austin PC, Tu JV. Automated variable selection methods for logistic regression result in unstable models for predicting AMI mortality. Journal of Clinical Epidemiology 2004; 57:1138-1146.
Austin PC, Mamdani MM. A comparison of propensity score methods: a case-study estimating the effectiveness of post-AMI statin use. Statistics in Medicine 2006; 25:2084-2106.
R Core Development Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, 2005.
Austin PC, Mamdani MM, Stukel TA, Anderson GM, Tu JV. The use of the propensity score for estimating treatment effects: administrative versus clinical data. Statistics in Medicine 2005; 24:1563-1578.
Sabik JF, Nemeh H, Lytle BW, Blackstone EH, Gillinov AM, Rajeswaran J, Cosgrove DM. Cannulation of the axillary artery with a side graft reduces morbidity. Annals of Thoracic Surgery 2004; 77(4):1315-1320.
Copas JB, Long T. Estimating the residual variance in orthogonal regression with variable selection. The Statistician 1991; 40:51-59.
Hurvich CM, Tsai C-L. The impact of model selection on inference in linear regression. The American Statistician 1990; 44:214-217.
Tu JV, Donovan LR, Lee DS, Austin PC, Ko DT, Wang JT, Newman AM. Quality of Cardiac Care in Ontario. Institute for Clinical Evaluative Sciences: Toronto, Ont., 2004.
Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. Journal of Clinical Epidemiology 1996; 49:1373-1379.
Shishehbor MH, Seshadri N, Aktas M, Acharya N, Gillinov AM, Blackstone EH, Houghtaling PL, Migrino RQ, Ghaffari S. Comparison of outcomes in patients undergoing coronary bypass of patent versus restenosed bare metal stented coronary arteries. American Journal of Cardiology 2005; 96:1416-1419.
1998; 27
1987; 14
1984; 147
2006; 151
2005
2004
1993
2002
1992; 11
2005; 24
1976; 32
2006; 82
2004; 77
1990; 44
2000; 19
2001
2004; 58
2002; 124
2006; 25
2004; 78
1991; 40
2004; 57
2005; 96
2003; 126
1996; 49
1992; 45
2007; 26
2006; 169
e_1_2_1_22_2
e_1_2_1_23_2
e_1_2_1_21_2
e_1_2_1_26_2
e_1_2_1_27_2
e_1_2_1_24_2
e_1_2_1_25_2
e_1_2_1_28_2
e_1_2_1_29_2
Tu JV (e_1_2_1_12_2) 2004
e_1_2_1_6_2
e_1_2_1_30_2
e_1_2_1_7_2
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_2_2
e_1_2_1_11_2
e_1_2_1_3_2
e_1_2_1_10_2
R Core Development Team (e_1_2_1_20_2) 2005
e_1_2_1_15_2
e_1_2_1_16_2
e_1_2_1_13_2
e_1_2_1_14_2
e_1_2_1_19_2
e_1_2_1_8_2
e_1_2_1_17_2
e_1_2_1_9_2
e_1_2_1_18_2
References_xml – reference: Shishehbor MH, Seshadri N, Aktas M, Acharya N, Gillinov AM, Blackstone EH, Houghtaling PL, Migrino RQ, Ghaffari S. Comparison of outcomes in patients undergoing coronary bypass of patent versus restenosed bare metal stented coronary arteries. American Journal of Cardiology 2005; 96:1416-1419.
– reference: Rice TW, Khuntia D, Rybicki LA, Adelstein DJ, Vogelbaum MA, Mason DP, Murthy SC, Blackstone EH. Brain metastases from esophageal cancer: a phenomenon of adjuvant therapy? Annals of Thoracic Surgery 2006; 82(6):2042-2049, 2049, e1-e2.
– reference: Koch CG, Khandwala F, Nussmeier N, Blackstone EH. Gender and outcomes after coronary artery bypass grafting: a propensity matched comparison. Journal of Thoracic and Cardiovascular Surgery 2003; 126:2032-2043.
– reference: DeCamp MM, Blackstone EH, Naunheim KS, Krasna MJ, Wood DE, Meli YM, McKenna Jr RJ. NETT Research Group. Patient and surgical factors influencing air leak after lung volume reduction surgery: lessons learned from the National Emphysema Treatment Trial. Annals of Thoracic Surgery 2006; 82(1):197-206.
– reference: Tu JV, Donovan LR, Lee DS, Austin PC, Ko DT, Wang JT, Newman AM. Quality of Cardiac Care in Ontario. Institute for Clinical Evaluative Sciences: Toronto, Ont., 2004.
– reference: Steyerberg EW, Eijkemans MJC, Harrell Jr FE, Habbema JDF. Prognostic modeling with logistic regression analysis: a comparison of selection and estimation methods in small datasets. Statistics in Medicine 2000; 19:1059-1079.
– reference: Hurvich CM, Tsai C-L. The impact of model selection on inference in linear regression. The American Statistician 1990; 44:214-217.
– reference: Copas JB, Long T. Estimating the residual variance in orthogonal regression with variable selection. The Statistician 1991; 40:51-59.
– reference: Austin PC, Tu JV. Comparing clinical data with administrative data for producing AMI report cards. Journal of the Royal Statistical Society, Series A (Statistics in Society) 2006; 169:115-126.
– reference: Sabik JF, Gillinov AM, Blackstone EH et al. Does off-pump coronary surgery reduce morbidity and mortality? Journal of Thoracic and Cardiovascular Surgery 2002; 124:698-707.
– reference: Sabik JF, Nemeh H, Lytle BW, Blackstone EH, Gillinov AM, Rajeswaran J, Cosgrove DM. Cannulation of the axillary artery with a side graft reduces morbidity. Annals of Thoracic Surgery 2004; 77(4):1315-1320.
– reference: Derkson S, Keselman HJ. Backward, forward and stepwise automated subset selection algorithms: frequency of obtaining authentic and noise variables. British Journal of Mathematical and Statistical Psychology 1992; 45:265-282.
– reference: Hocking RR. The analysis and selection of variables in linear regression. Biometrics 1976; 32:1-49.
– reference: Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. Journal of Clinical Epidemiology 1996; 49:1373-1379.
– reference: Miller AJ. Selection of subsets of regression variables. Journal of the Royal Statistical Society, Series A 1984; 147:389-425.
– reference: Harrell Jr FE. Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis. Springer: New York, NY, 2001.
– reference: Austin PC. A comparison of classification and regression trees, logistic regression, generalized additive models, and multivariate adaptive regression splines for predicting AMI mortality. Statistics in Medicine 2007; 26:2937-2957.
– reference: Flack VF, Chang PC. Frequency of selecting noise variables in subset regression analysis: a simulation study. The American Statistician 1987; 14:84-86.
– reference: Austin PC, Tu JV. Automated variable selection methods for logistic regression result in unstable models for predicting AMI mortality. Journal of Clinical Epidemiology 2004; 57:1138-1146.
– reference: Miller A. Subset Selection in Regression (2nd edn). Chapman & Hall/CRC: Boca Raton, FL, 2002.
– reference: Austin PC, Tu JV. Bootstrap methods for developing predictive models in cardiovascular research. The American Statistician 2004; 58:131-137.
– reference: Sauerbrei W, Schumacher M. A bootstrap resampling procedure for model building: application to the Cox regression model. Statistics in Medicine 1992; 11:2093-2109.
– reference: Svensson LG, Blackstone EH, Rajeswaran J, Sabik 3rd JF, Lytle BW, Gonzalez-Stawinski G, Varvitsiotis P, Banbury MK, McCarthy PM, Pettersson GB, Cosgrove DM. Does the arterial cannulation site for circulatory arrest influence stroke risk? Annals of Thoracic Surgery 2004; 78(4):1274-1284.
– reference: Austin PC, Mamdani MM. A comparison of propensity score methods: a case-study estimating the effectiveness of post-AMI statin use. Statistics in Medicine 2006; 25:2084-2106.
– reference: Murtaugh PA. Methods of variable selection in regression modeling. Communications in Statistics-Simulation and Computation 1998; 27:711-734.
– reference: Efron B, Tibshirani R. An Introduction to the Bootstrap. Chapman & Hall: London, 1993.
– reference: Austin PC, Mamdani MM, Stukel TA, Anderson GM, Tu JV. The use of the propensity score for estimating treatment effects: administrative versus clinical data. Statistics in Medicine 2005; 24:1563-1578.
– reference: Austin PC, Mamdani MM, Juurlink DN, Alter DA, Tu JV. Missed opportunities in the secondary prevention of myocardial infarction: an assessment of the effects of statin underprescribing on mortality. American Heart Journal 2006; 151:969-975.
– reference: R Core Development Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, 2005.
– volume: 124
  start-page: 698
  year: 2002
  end-page: 707
  article-title: Does off‐pump coronary surgery reduce morbidity and mortality?
  publication-title: Journal of Thoracic and Cardiovascular Surgery
– volume: 147
  start-page: 389
  year: 1984
  end-page: 425
  article-title: Selection of subsets of regression variables
  publication-title: Journal of the Royal Statistical Society, Series A
– year: 2005
– volume: 57
  start-page: 1138
  year: 2004
  end-page: 1146
  article-title: Automated variable selection methods for logistic regression result in unstable models for predicting AMI mortality
  publication-title: Journal of Clinical Epidemiology
– volume: 49
  start-page: 1373
  year: 1996
  end-page: 1379
  article-title: A simulation study of the number of events per variable in logistic regression analysis
  publication-title: Journal of Clinical Epidemiology
– volume: 45
  start-page: 265
  year: 1992
  end-page: 282
  article-title: Backward, forward and stepwise automated subset selection algorithms: frequency of obtaining authentic and noise variables
  publication-title: British Journal of Mathematical and Statistical Psychology
– year: 2001
– volume: 58
  start-page: 131
  year: 2004
  end-page: 137
  article-title: Bootstrap methods for developing predictive models in cardiovascular research
  publication-title: The American Statistician
– volume: 40
  start-page: 51
  year: 1991
  end-page: 59
  article-title: Estimating the residual variance in orthogonal regression with variable selection
  publication-title: The Statistician
– volume: 14
  start-page: 84
  year: 1987
  end-page: 86
  article-title: Frequency of selecting noise variables in subset regression analysis: a simulation study
  publication-title: The American Statistician
– volume: 44
  start-page: 214
  year: 1990
  end-page: 217
  article-title: The impact of model selection on inference in linear regression
  publication-title: The American Statistician
– volume: 151
  start-page: 969
  year: 2006
  end-page: 975
  article-title: Missed opportunities in the secondary prevention of myocardial infarction: an assessment of the effects of statin underprescribing on mortality
  publication-title: American Heart Journal
– volume: 26
  start-page: 2937
  year: 2007
  end-page: 2957
  article-title: A comparison of classification and regression trees, logistic regression, generalized additive models, and multivariate adaptive regression splines for predicting AMI mortality
  publication-title: Statistics in Medicine
– volume: 11
  start-page: 2093
  year: 1992
  end-page: 2109
  article-title: A bootstrap resampling procedure for model building: application to the Cox regression model
  publication-title: Statistics in Medicine
– volume: 78
  start-page: 1274
  issue: 4
  year: 2004
  end-page: 1284
  article-title: Does the arterial cannulation site for circulatory arrest influence stroke risk?
  publication-title: Annals of Thoracic Surgery
– volume: 25
  start-page: 2084
  year: 2006
  end-page: 2106
  article-title: A comparison of propensity score methods: a case‐study estimating the effectiveness of post‐AMI statin use
  publication-title: Statistics in Medicine
– volume: 126
  start-page: 2032
  year: 2003
  end-page: 2043
  article-title: Gender and outcomes after coronary artery bypass grafting: a propensity matched comparison
  publication-title: Journal of Thoracic and Cardiovascular Surgery
– volume: 77
  start-page: 1315
  issue: 4
  year: 2004
  end-page: 1320
  article-title: Cannulation of the axillary artery with a side graft reduces morbidity
  publication-title: Annals of Thoracic Surgery
– volume: 27
  start-page: 711
  year: 1998
  end-page: 734
  article-title: Methods of variable selection in regression modeling
  publication-title: Communications in Statistics—Simulation and Computation
– year: 2002
– volume: 32
  start-page: 1
  year: 1976
  end-page: 49
  article-title: The analysis and selection of variables in linear regression
  publication-title: Biometrics
– volume: 24
  start-page: 1563
  year: 2005
  end-page: 1578
  article-title: The use of the propensity score for estimating treatment effects: administrative versus clinical data
  publication-title: Statistics in Medicine
– year: 2004
– volume: 82
  start-page: 2042
  issue: 6
  year: 2006
  end-page: 2049
  article-title: Brain metastases from esophageal cancer: a phenomenon of adjuvant therapy?
  publication-title: Annals of Thoracic Surgery
– volume: 19
  start-page: 1059
  year: 2000
  end-page: 1079
  article-title: Prognostic modeling with logistic regression analysis: a comparison of selection and estimation methods in small datasets
  publication-title: Statistics in Medicine
– year: 1993
– volume: 96
  start-page: 1416
  year: 2005
  end-page: 1419
  article-title: Comparison of outcomes in patients undergoing coronary bypass of patent versus restenosed bare metal stented coronary arteries
  publication-title: American Journal of Cardiology
– volume: 82
  start-page: 197
  issue: 1
  year: 2006
  end-page: 206
  article-title: Patient and surgical factors influencing air leak after lung volume reduction surgery: lessons learned from the National Emphysema Treatment Trial
  publication-title: Annals of Thoracic Surgery
– volume: 169
  start-page: 115
  year: 2006
  end-page: 126
  article-title: Comparing clinical data with administrative data for producing AMI report cards
  publication-title: Journal of the Royal Statistical Society, Series A (Statistics in Society)
– volume-title: Quality of Cardiac Care in Ontario
  year: 2004
  ident: e_1_2_1_12_2
– ident: e_1_2_1_5_2
  doi: 10.1111/j.2044-8317.1992.tb00992.x
– ident: e_1_2_1_16_2
  doi: 10.1016/j.ahj.2005.06.034
– ident: e_1_2_1_7_2
  doi: 10.1080/03610919808813505
– ident: e_1_2_1_8_2
  doi: 10.2307/2348223
– ident: e_1_2_1_26_2
  doi: 10.1016/j.athoracsur.2006.06.089
– ident: e_1_2_1_28_2
  doi: 10.1016/j.athoracsur.2004.04.063
– ident: e_1_2_1_13_2
  doi: 10.1002/sim.2770
– ident: e_1_2_1_3_2
  doi: 10.1201/9781420035933
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2005
  ident: e_1_2_1_20_2
– ident: e_1_2_1_24_2
  doi: 10.1067/mtc.2002.121975
– ident: e_1_2_1_27_2
  doi: 10.1016/j.athoracsur.2006.02.050
– ident: e_1_2_1_9_2
  doi: 10.1016/j.jclinepi.2004.04.003
– ident: e_1_2_1_15_2
  doi: 10.1111/j.1467-985X.2005.00380.x
– ident: e_1_2_1_17_2
  doi: 10.1002/sim.2053
– ident: e_1_2_1_14_2
  doi: 10.1002/sim.2328
– ident: e_1_2_1_4_2
  doi: 10.2307/2529336
– ident: e_1_2_1_29_2
  doi: 10.1016/j.athoracsur.2003.08.056
– ident: e_1_2_1_23_2
  doi: 10.1198/0003130043277
– ident: e_1_2_1_30_2
  doi: 10.1016/j.amjcard.2005.06.089
– ident: e_1_2_1_10_2
  doi: 10.1007/978-1-4757-3462-1
– ident: e_1_2_1_19_2
  doi: 10.1002/(SICI)1097-0258(20000430)19:8<1059::AID-SIM412>3.0.CO;2-0
– ident: e_1_2_1_21_2
  doi: 10.1016/S0895-4356(96)00236-3
– ident: e_1_2_1_11_2
  doi: 10.2307/2685338
– ident: e_1_2_1_18_2
  doi: 10.1007/978-1-4899-4541-9
– ident: e_1_2_1_25_2
  doi: 10.1016/S0022-5223(03)00950-4
– ident: e_1_2_1_22_2
  doi: 10.1002/sim.4780111607
– ident: e_1_2_1_2_2
  doi: 10.2307/2981576
– ident: e_1_2_1_6_2
  doi: 10.2307/2684336
SSID ssj0011527
Score 2.1499777
Snippet Applied researchers frequently use automated model selection methods, such as backwards variable elimination, to develop parsimonious regression models....
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3286
SubjectTerms automated variable selection
backwards variable elimination
bootstrap
Bootstrap method
Computer Simulation
Confidence Intervals
Data Interpretation, Statistical
Estimating techniques
Female
Heart attacks
Humans
Logistic Models
Male
Medical statistics
Monte Carlo Method
Monte Carlo simulation
Monte Carlo simulations
Myocardial Infarction - therapy
Quality of Health Care
regression models
Research Design
Title Using the bootstrap to improve estimation and confidence intervals for regression coefficients selected using backwards variable elimination
URI https://api.istex.fr/ark:/67375/WNG-9MDD5V8M-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.3104
https://www.ncbi.nlm.nih.gov/pubmed/17940997
https://www.proquest.com/docview/223137335
https://www.proquest.com/docview/69250293
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0277-6715
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0258
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011527
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB6kghTEy3qL9TKC6FPayU4yyTyKtVYhfVCrBR-GuUWWttmyyYr4G_zRnjOTpFQqiE8L2RMymZyZ-ebMd75DyHNhBat0UaWwuvI0FxVLTeWbVM-d1rIyUgfKf30g9g_z90fF0cCqxFyYqA8xBdxwZIT5Gge4Nt3OuWhotziFDWeQAs14EU5oP0zKUdlYrRVPKEWZFaPuLJvvjDdeWImuYqf-uAxmXkStYdnZu0m-jg2ObJPj7XVvtu3PP7Qc_--NbpEbAxqlr6L73CZXfDsj1-rhvH1GrseoHo3JSjOyidg0SjvfIb8C3YACgqQA1XuMmZzRfkkXIU7hKep3xMRIqltHYePdxAqmdBGIluD4FCAzXflvkYzbgo0PkhbI7qBdKNHjHV2H5xiMNGKKGP0O-3vM-KLwvsjkwUfcJYd7bz693k-H4g6pzQuWp85yzpzFKYFxV_qGWy0488zy0mM8yuQlXBXOmswJzXTGrYEVvZK2cXPG-T2y0S5b_4BQ2TQyl0Yb4XQuMzBzhc0bVzGXOS9ZQl6OH1rZQfkcC3CcqKjZPFfQ8wp7PiHPJsuzqPZxic2L4CuTgV4dIzuuLNSXg7dK1ru7xeeqViIhW6MzqWFi6BSgsYyXnBcJeTr9CyMaj2l065frTgkJsBRQWELuRw88bwpMnpjpDE0IfvTXNqqP72r8ffivhltkMxJhYMVhj8hGv1r7x4C2evMkjKvf73sqFg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9NmwSTEB_lY2XAjITgKZtTJ04inhBldLD0ATbYA5Ll2M5UDdKpTRHib-CP5s5uOg0NCfFUKb0ojnPn-_l89zuAZ9JInus0j9C7iiiROY-q3NWRHliti7wqtE_5L8dydJy8O0lP1uBlVwsT-CFWATeyDL9ek4FTQHrvgjV0PvmGO07iAt2g4zmyyuGHFXdU3PVrpTNKmcVpxzzLB3vdnZd80QZN64-rgOZl3Oodz_4t-NINOeSbnO0u2mrX_PyDzfE_3-k23FwCUvYqaNAdWHNND66VyyP3HtwIgT0W6pV6sEnwNLA734VfPuOAIYhkiNZbCpucs3bKJj5U4RhReITaSKYby3DvXYcmpmzicy1R9xmiZjZzpyEft0EZ51ktKMGDzX2XHmfZwj-nomAjVYmx77jFp6Ivhi9MyTz0iHtwvP_m6PUoWvZ3iEyS8iSyRghuDa0KXNjM1cJoKbjjRmSOQlJVkuFVaU0VW6m5joWp0KnnhantgAtxH9abaeO2gBV1XSRFpStpdVLEKGZTk9Q25za2ruB9eNF9aWWW5OfUg-OrCrTNA4Uzr2jm-_B0JXkeCD-ukHnulWUloGdnlCCXperz-K0qyuEw_ZSXSvZhu9MmtVwb5goBWSwyIdI-7Kz-RaOmkxrduOlirmSByBSBWB8eBBW8GAqun1TsjEPwivTXMaqPByX9PvxXwR24PjoqD9Xhwfj9NmyGvBh0QPwRrLezhXuM4Kutnngj-w1lBy4y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbQJk2TEJdyCwNmJARP2Zw6cZJHRCkb0AoBg0l7sHwLqralVZsixG_gR3OOnWQaGhLiqVJ6ojjOsf35-DvfIeSZMIIVKitiWF15nIqCxbpwVayGVqmy0KXylP_JVBwcpW-Ps-OWVYm5MEEfog-44cjw8zUO8IWt9i9EQ1ezc9hwohToZipgc4WA6GMvHZV05VrxiFLkSdYJz7LhfnfnpaVoE3v1x1U48zJs9evO-CY56Voc6Cane-tG75mff4g5_t8r3SI3WjhKXwb_uU2uuXpAtibtgfuAXA9hPRqylQZkG8Fp0Ha-Q355vgEFCEkBqzcYNFnQZk5nPlDhKAp4hMxIqmpLYeddhRKmdOaZluD5FDAzXbpvgY1bg43zmhZI76ArX6PHWbr2z9EYasQcMfodNviY8kXhfZHKg4-4S47Grz-_Oojb6g6xSTOWxtZwzqzBOYFxm7uKGyU4c8zw3GFASqc5XBXW6MQKxVTCjYYlvShNZYeM83tko57X7gGhZVWVaamVFlalZQJmNjNpZQtmE-tKFpEX3YeWppU-xwocZzKINg8l9LzEno_I095yEeQ-rrB57n2lN1DLU6TH5Zn8On0jy8lolH0pJlJEZKdzJtnODCsJcCzhOedZRHb7f2FI4zmNqt18vZKiBFwKMCwi94MHXjQFZk9MdYYmeD_6axvlp8MJ_j78V8NdsvVhNJbvD6fvdsh2IMXA6sMekY1muXaPAXk1-okfYr8Bxmws4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+the+bootstrap+to+improve+estimation+and+confidence+intervals+for+regression+coefficients+selected+using+backwards+variable+elimination&rft.jtitle=Statistics+in+medicine&rft.au=Austin%2C+Peter+C&rft.date=2008-07-30&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=27&rft.issue=17&rft.spage=3286&rft_id=info:doi/10.1002%2Fsim.3104&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=1499695871
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon