Dynamical self-consistent field theory captures multi-scale physics during spinodal decomposition in a symmetric binary homopolymer blend
We study the spinodal decomposition in a symmetric, binary homopolymer blend using our recently developed dynamical self-consistent field theory. By taking the extremal solution of a dynamical functional integral, the theory reduces the interacting, multi-chain dynamics to a Smoluchowski equation de...
        Saved in:
      
    
          | Published in | The Journal of chemical physics Vol. 152; no. 10; pp. 104903 - 104914 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          American Institute of Physics
    
        14.03.2020
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0021-9606 1089-7690 1089-7690  | 
| DOI | 10.1063/1.5142179 | 
Cover
| Abstract | We study the spinodal decomposition in a symmetric, binary homopolymer blend using our recently developed dynamical self-consistent field theory. By taking the extremal solution of a dynamical functional integral, the theory reduces the interacting, multi-chain dynamics to a Smoluchowski equation describing the statistical dynamics of a single, unentangled chain in a self-consistent, time-dependent, mean force-field. We numerically solve this equation by evaluating averages over a large ensemble of replica chains, each one of which obeys single-chain Langevin dynamics, subject to the mean field. Following a quench from the disordered state, an early time spinodal instability in the blend composition develops, before even one Rouse time elapses. The dominant, unstable, growing wavelength is on the order of the coil size. The blend then enters a late-time, t, scaling regime with a growing domain size that follows the expected Lifshitz–Slyozov–Wagner t1/3 power law, a characteristic of a diffusion-driven coarsening process. These results provide a satisfying test of this new method, which correctly captures both the early and late time physics in the blend. Our simulation spans five orders-of-magnitude in time as the domains coarsen to 20 times the coil size, while remaining faithful to the dynamics of the microscopic chain model. | 
    
|---|---|
| AbstractList | We study the spinodal decomposition in a symmetric, binary homopolymer blend using our recently developed dynamical self-consistent field theory. By taking the extremal solution of a dynamical functional integral, the theory reduces the interacting, multi-chain dynamics to a Smoluchowski equation describing the statistical dynamics of a single, unentangled chain in a self-consistent, time-dependent, mean force-field. We numerically solve this equation by evaluating averages over a large ensemble of replica chains, each one of which obeys single-chain Langevin dynamics, subject to the mean field. Following a quench from the disordered state, an early time spinodal instability in the blend composition develops, before even one Rouse time elapses. The dominant, unstable, growing wavelength is on the order of the coil size. The blend then enters a late-time, t, scaling regime with a growing domain size that follows the expected Lifshitz-Slyozov-Wagner t
power law, a characteristic of a diffusion-driven coarsening process. These results provide a satisfying test of this new method, which correctly captures both the early and late time physics in the blend. Our simulation spans five orders-of-magnitude in time as the domains coarsen to 20 times the coil size, while remaining faithful to the dynamics of the microscopic chain model. We study the spinodal decomposition in a symmetric, binary homopolymer blend using our recently developed dynamical self-consistent field theory. By taking the extremal solution of a dynamical functional integral, the theory reduces the interacting, multi-chain dynamics to a Smoluchowski equation describing the statistical dynamics of a single, unentangled chain in a self-consistent, time-dependent, mean force-field. We numerically solve this equation by evaluating averages over a large ensemble of replica chains, each one of which obeys single-chain Langevin dynamics, subject to the mean field. Following a quench from the disordered state, an early time spinodal instability in the blend composition develops, before even one Rouse time elapses. The dominant, unstable, growing wavelength is on the order of the coil size. The blend then enters a late-time, t, scaling regime with a growing domain size that follows the expected Lifshitz-Slyozov-Wagner t1/3 power law, a characteristic of a diffusion-driven coarsening process. These results provide a satisfying test of this new method, which correctly captures both the early and late time physics in the blend. Our simulation spans five orders-of-magnitude in time as the domains coarsen to 20 times the coil size, while remaining faithful to the dynamics of the microscopic chain model.We study the spinodal decomposition in a symmetric, binary homopolymer blend using our recently developed dynamical self-consistent field theory. By taking the extremal solution of a dynamical functional integral, the theory reduces the interacting, multi-chain dynamics to a Smoluchowski equation describing the statistical dynamics of a single, unentangled chain in a self-consistent, time-dependent, mean force-field. We numerically solve this equation by evaluating averages over a large ensemble of replica chains, each one of which obeys single-chain Langevin dynamics, subject to the mean field. Following a quench from the disordered state, an early time spinodal instability in the blend composition develops, before even one Rouse time elapses. The dominant, unstable, growing wavelength is on the order of the coil size. The blend then enters a late-time, t, scaling regime with a growing domain size that follows the expected Lifshitz-Slyozov-Wagner t1/3 power law, a characteristic of a diffusion-driven coarsening process. These results provide a satisfying test of this new method, which correctly captures both the early and late time physics in the blend. Our simulation spans five orders-of-magnitude in time as the domains coarsen to 20 times the coil size, while remaining faithful to the dynamics of the microscopic chain model. We study the spinodal decomposition in a symmetric, binary homopolymer blend using our recently developed dynamical self-consistent field theory. By taking the extremal solution of a dynamical functional integral, the theory reduces the interacting, multi-chain dynamics to a Smoluchowski equation describing the statistical dynamics of a single, unentangled chain in a self-consistent, time-dependent, mean force-field. We numerically solve this equation by evaluating averages over a large ensemble of replica chains, each one of which obeys single-chain Langevin dynamics, subject to the mean field. Following a quench from the disordered state, an early time spinodal instability in the blend composition develops, before even one Rouse time elapses. The dominant, unstable, growing wavelength is on the order of the coil size. The blend then enters a late-time, t, scaling regime with a growing domain size that follows the expected Lifshitz–Slyozov–Wagner t1/3 power law, a characteristic of a diffusion-driven coarsening process. These results provide a satisfying test of this new method, which correctly captures both the early and late time physics in the blend. Our simulation spans five orders-of-magnitude in time as the domains coarsen to 20 times the coil size, while remaining faithful to the dynamics of the microscopic chain model.  | 
    
| Author | Grzetic, Douglas J. Wickham, Robert A.  | 
    
| Author_xml | – sequence: 1 givenname: Douglas J. surname: Grzetic fullname: Grzetic, Douglas J. email: dgrzetic@mrl.ucsb.edu organization: Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada – sequence: 2 givenname: Robert A. surname: Wickham fullname: Wickham, Robert A. organization: Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32171199$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp90cuKFDEUBuAgI07P6MIXkIAbFWomt65UljJeYcCNrkMqdWJnqCRlkhqoR_Ctraa7FUZxlc33_5ycc4HOYoqA0HNKrihp-TW92lLBqFSP0IaSTjWyVeQMbQhhtFEtac_RRSl3hBAqmXiCzvmKKVVqg36-W6IJ3poRFxhdY1MsvlSIFTsP44DrDlJesDVTnTMUHOax-qasAcDTbineFjzM2cfvuEw-pmFtGsCmMKXiq08R-4gNLksIULO3uPfRrIW7FNKUxiVAxv0IcXiKHjszFnh2fC_Rtw_vv958am6_fPx88_a2sUKo2oAgUjJlt4PqLLQcBB-M4r11QnbEtNK5LfS9pVvDWO86LshAqOKO9UqJXvFL9OrQO-X0Y4ZSdfDFwjiaCGkumnEp2460jK305QN6l-Yc1-n2SsiWc7lXL45q7gMMeso-rD_UpyWv4PoAbE6lZHDa-mr2u6nZ-FFTovdn1FQfz7gmXj9InEr_Zd8cbDm1_sb3Kf-Behrc__Dfzb8AgSK6qA | 
    
| CODEN | JCPSA6 | 
    
| CitedBy_id | crossref_primary_10_1021_acs_jpcb_3c07756 crossref_primary_10_1021_acs_macromol_4c00196 crossref_primary_10_1007_s40509_022_00276_y crossref_primary_10_1063_5_0084602  | 
    
| Cites_doi | 10.1063/1.465536 10.1016/0022-3697(61)90054-3 10.1007/bf01316547 10.1063/1.456901 10.1039/c1cp20247b 10.1021/nn301306v 10.1063/1.4884825 10.1021/ma951071z 10.1016/0001-6160(61)90182-1 10.1063/1.1557052 10.1103/physreve.49.3199 10.1063/1.1695731 10.1021/ma2014832 10.1103/physreva.38.1542 10.1103/physrevb.43.5747 10.1063/1.445747 10.1103/physreva.8.423 10.1039/c3sm27499c 10.1002/pol.1981.180190205 10.1063/1.478121 10.1146/annurev-matsci-071312-121618 10.1021/ma951102q 10.1063/1.1497636 10.1103/physreve.62.5967 10.1021/ma0620464 10.1021/acs.macromol.9b00720 10.1063/1.4865911 10.1063/1.1674820 10.1063/1.3142103 10.1103/physrevb.38.520 10.1007/bf01638138 10.1103/physreva.20.595 10.1021/ma961673y 10.1021/ma00002a020 10.1002/polb.20385 10.1063/1.459082 10.1063/1.4964631 10.1051/jphyscol:1976138 10.1039/c6sm00770h 10.1103/physrevlett.70.1449 10.1021/acs.macromol.9b01709 10.1103/physreva.23.1535 10.1103/physreve.64.041804 10.1016/0001-6160(61)90155-9 10.1063/1.439809 10.1063/1.2364506 10.1021/acs.macromol.7b01731 10.1103/physrevb.18.353 10.1103/physrevlett.96.250601 10.1063/1.442226 10.1103/physreva.31.1103 10.1016/0001-6160(70)90144-6 10.1002/bbpc.19610650704 10.1007/bf01312880 10.1007/bf01022182 10.1021/ma00116a038 10.1021/ma00002a037 10.1063/1.469996  | 
    
| ContentType | Journal Article | 
    
| Copyright | Author(s) 2020 Author(s). Published under license by AIP Publishing.  | 
    
| Copyright_xml | – notice: Author(s) – notice: 2020 Author(s). Published under license by AIP Publishing.  | 
    
| DBID | AAYXX CITATION NPM 8FD H8D L7M 7X8  | 
    
| DOI | 10.1063/1.5142179 | 
    
| DatabaseName | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic  | 
    
| DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Technology Research Database  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Chemistry Physics  | 
    
| EISSN | 1089-7690 | 
    
| ExternalDocumentID | 32171199 10_1063_1_5142179 jcp  | 
    
| Genre | Journal Article | 
    
| GrantInformation_xml | – fundername: Canada Foundation for Innovation grantid: Project # 18169 funderid: https://doi.org/10.13039/501100000196 – fundername: Natural Sciences and Engineering Research Council of Canada grantid: RGPIN 2017-04580 funderid: https://doi.org/10.13039/501100000038  | 
    
| GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 53G 5VS 85S AAAAW AABDS AAEUA AAPUP AAYIH ABPPZ ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D-I DU5 EBS ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS TN5 TWZ UPT WH7 YQT YZZ ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION NPM 8FD H8D L7M 7X8  | 
    
| ID | FETCH-LOGICAL-c449t-e407729c5d98ce63e43da93bcf4780a67ff5ebbc15a22bf8340d0193f2b994b93 | 
    
| ISSN | 0021-9606 1089-7690  | 
    
| IngestDate | Fri Jul 11 09:26:56 EDT 2025 Sun Jun 29 15:54:59 EDT 2025 Wed Feb 19 02:30:54 EST 2025 Thu Apr 24 23:12:59 EDT 2025 Tue Jul 01 00:27:42 EDT 2025 Wed Nov 11 00:04:51 EST 2020 Fri Jun 21 00:19:26 EDT 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 10 | 
    
| Language | English | 
    
| License | 0021-9606/2020/152(10)/104903/12/$30.00 Published under license by AIP Publishing.  | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c449t-e407729c5d98ce63e43da93bcf4780a67ff5ebbc15a22bf8340d0193f2b994b93 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-8595-5652 0000000285955652  | 
    
| PMID | 32171199 | 
    
| PQID | 2374763372 | 
    
| PQPubID | 2050685 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | proquest_journals_2374763372 scitation_primary_10_1063_1_5142179 crossref_citationtrail_10_1063_1_5142179 proquest_miscellaneous_2377680622 pubmed_primary_32171199 crossref_primary_10_1063_1_5142179  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2020-03-14 | 
    
| PublicationDateYYYYMMDD | 2020-03-14 | 
    
| PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-14 day: 14  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Melville  | 
    
| PublicationTitle | The Journal of chemical physics | 
    
| PublicationTitleAlternate | J Chem Phys | 
    
| PublicationYear | 2020 | 
    
| Publisher | American Institute of Physics | 
    
| Publisher_xml | – name: American Institute of Physics | 
    
| References | Puri, Oono (c59) 1988; 38 Malik, Hall, Genzer (c20) 2011; 44 Fredrickson, Orland (c43) 2014; 140 Ji, Nagpal, Liu, Delcambre, Müller, de Pablo, Nealey (c3) 2012; 6 Chao, Koski, Riggleman (c40) 2017; 13 (c10) 1965; 42 Spencer, Curry, Wickham (c27) 2016; 145 Jensen (c51) 1981; 25 Pincus (c14) 1981; 75 Castellano, Glotzer (c19) 1995; 103 de Gennes (c13) 1980; 72 Wang, Ren, Müller (c31) 2019; 52 Patel, Larson, Winey, Watanabe (c7) 1995; 28 Hadziioannou, Mathis, Skoulios (c5) 1979; 257 Soga, Zuckermann, Guo (c34) 1996; 29 Binder (c15) 1983; 79 Bausch, Janssen, Wagner (c45) 1976; 24 De Dominicis, Peliti (c46) 1978; 18 Daoulas, Müller (c38) 2006; 125 Mazenko (c60) 1991; 43 Cook (c12) 1970; 18 Lifshitz, Slyozov (c16) 1961; 19 Rostiashvili, Rehkopf, Vilgis (c53) 1999; 110 Fritz, Koschke, Harmandaris, van der Vegt, Kremer (c1) 2011; 13 Reister, Müller, Binder (c30) 2001; 64 Janssen (c45) 1976; 23 Siggia (c21) 1979; 20 De Dominicis (c46) 1976; 37 Müller, MacDowell, Virnau, Binder (c8) 2002; 117 Koppi, Tirrell, Bates (c6) 1993; 70 Ganesan, Pryamitsyn (c36) 2003; 118 Weeks, Chandler, Andersen (c50) 1971; 54 (c60) 2000; 62 Wagner (c17) 1961; 65 Doi (c37) 1981; 19 Furukawa (c24) 1985; 31 Milano, Kawakatsu (c39) 2009; 130 Furukawa (c59) 1981; 23 Koski, Ferrier, Krook, Chao, Composto, Frischknecht, Riggleman (c41) 2017; 50 Müller, Smith (c32) 2005; 43 Fredrickson, Helfand (c52) 1990; 93 Sariban, Binder (c18) 1991; 24 Grzetic, Wickham, Shi (c25) 2014; 140 Spencer, Wickham (c26) 2013; 9 Laradji, Guo, Zuckermann (c33) 1994; 49 Sides, Kim, Kramer, Fredrickson (c55) 2006; 96 Fraajie (c28) 1993; 99 Hajduk, Takenouchi, Hillmyer, Bates, Vigild, Almdal (c2) 1997; 30 Cahn (c10) 1961; 9 Bates, Wiltzius (c22) 1989; 91 Honda, Kawakatsu (c29) 2007; 40 He, Liu, Feng, Jiang, Han (c23) 1991; 24 Mazenko, Valls, Zannetti (c59) 1988; 38 Koski, Krook, Ford, Yahata, Ohno, Murray, Frischknecht, Composto, Riggleman (c42) 2019; 52 Martin, Siggia, Rose (c44) 1973; 8 Müller, de Pablo (c4) 2013; 43 (c10) 1968; 242 Hillert (c9) 1961; 9 Miao, Guo, Zuckermann (c35) 1996; 29 (2023071601275631500_c4) 2013; 43 (2023071601275631500_c2) 1997; 30 (2023071601275631500_c50) 1971; 54 (2023071601275631500_c56) 1992 (2023071601275631500_c13) 1980; 72 (2023071601275631500_c39) 2009; 130 (2023071601275631500_c53) 1999; 110 (2023071601275631500_c24) 1985; 31 (2023071601275631500_c8) 2002; 117 (2023071601275631500_c1) 2011; 13 (2023071601275631500_c12) 1970; 18 (2023071601275631500_c21) 1979; 20 (2023071601275631500_c51) 1981; 25 Cahn (2023071601275631500_c10c) 1968; 242 (2023071601275631500_c20) 2011; 44 (2023071601275631500_c47) 2006 (2023071601275631500_c27) 2016; 145 (2023071601275631500_c10a) 1961; 9 (2023071601275631500_c23) 1991; 24 (2023071601275631500_c42) 2019; 52 (2023071601275631500_c33) 1994; 49 (2023071601275631500_c55) 2006; 96 (2023071601275631500_c45a) 1976; 23 (2023071601275631500_c34) 1996; 29 (2023071601275631500_c17) 1961; 65 (2023071601275631500_c36) 2003; 118 (2023071601275631500_c59b) 1988; 38 (2023071601275631500_c30) 2001; 64 (2023071601275631500_c3) 2012; 6 Cahn (2023071601275631500_c10b) 1965; 42 Aaronson (2023071601275631500_c11) 1970 (2023071601275631500_c43) 2014; 140 (2023071601275631500_c7) 1995; 28 (2023071601275631500_c19) 1995; 103 (2023071601275631500_c60a) 1991; 43 (2023071601275631500_c15) 1983; 79 (2023071601275631500_c26) 2013; 9 (2023071601275631500_c29) 2007; 40 (2023071601275631500_c35) 1996; 29 (2023071601275631500_c59c) 1988; 38 (2023071601275631500_c18) 1991; 24 (2023071601275631500_c40) 2017; 13 (2023071601275631500_c38) 2006; 125 (2023071601275631500_c45b) 1976; 24 (2023071601275631500_c46b) 1978; 18 (2023071601275631500_c46a) 1976; 37 (2023071601275631500_c59a) 1981; 23 Mazenko (2023071601275631500_c60b) 2000; 62 (2023071601275631500_c14) 1981; 75 (2023071601275631500_c52) 1990; 93 (2023071601275631500_c5) 1979; 257 (2023071601275631500_c31) 2019; 52 (2023071601275631500_c37) 1981; 19 (2023071601275631500_c28) 1993; 99 2023071601275631500_c48 (2023071601275631500_c22) 1989; 91 (2023071601275631500_c57) 1995 (2023071601275631500_c32) 2005; 43 (2023071601275631500_c16) 1961; 19 (2023071601275631500_c49) 1986 (2023071601275631500_c25) 2014; 140 (2023071601275631500_c41) 2017; 50 (2023071601275631500_c6) 1993; 70 (2023071601275631500_c9) 1961; 9 (2023071601275631500_c44) 1973; 8  | 
    
| References_xml | – volume: 18 start-page: 353 year: 1978 ident: c46 publication-title: Phys. Rev. B – volume: 19 start-page: 35 year: 1961 ident: c16 publication-title: J. Phys. Chem. Solids – volume: 52 start-page: 5110 year: 2019 ident: c42 publication-title: Macromolecules – volume: 23 start-page: 377 year: 1976 ident: c45 publication-title: Z. Phys. B: Condens. Matter Quanta – volume: 24 start-page: 113 year: 1976 ident: c45 publication-title: Z. Phys. B: Condens. Matter Quanta – volume: 242 start-page: 166 year: 1968 ident: c10 publication-title: Trans. Metall. Soc. AIME – volume: 13 start-page: 10412 year: 2011 ident: c1 publication-title: Phys. Chem. Chem. Phys. – volume: 103 start-page: 9363 year: 1995 ident: c19 publication-title: J. Chem. Phys. – volume: 110 start-page: 639 year: 1999 ident: c53 publication-title: J. Chem. Phys. – volume: 9 start-page: 795 year: 1961 ident: c10 publication-title: Acta Metall. – volume: 65 start-page: 581 year: 1961 ident: c17 publication-title: Z. Elektrochem. – volume: 145 start-page: 144902 year: 2016 ident: c27 publication-title: J. Chem. Phys. – volume: 54 start-page: 5237 year: 1971 ident: c50 publication-title: J. Chem. Phys. – volume: 96 start-page: 250601 year: 2006 ident: c55 publication-title: Phys. Rev. Lett. – volume: 6 start-page: 5440 year: 2012 ident: c3 publication-title: ACS Nano – volume: 29 start-page: 1998 year: 1996 ident: c34 publication-title: Macromolecules – volume: 118 start-page: 4345 year: 2003 ident: c36 publication-title: J. Chem. Phys. – volume: 130 start-page: 214106 year: 2009 ident: c39 publication-title: J. Chem. Phys. – volume: 18 start-page: 297 year: 1970 ident: c12 publication-title: Acta Metall. – volume: 99 start-page: 9202 year: 1993 ident: c28 publication-title: J. Chem. Phys. – volume: 28 start-page: 4313 year: 1995 ident: c7 publication-title: Macromolecules – volume: 30 start-page: 3788 year: 1997 ident: c2 publication-title: Macromolecules – volume: 13 start-page: 239 year: 2017 ident: c40 publication-title: Soft Matter – volume: 19 start-page: 229 year: 1981 ident: c37 publication-title: J. Polym. Sci., Part B: Polym. Phys. – volume: 43 start-page: 5747 year: 1991 ident: c60 publication-title: Phys. Rev. B – volume: 64 start-page: 041804 year: 2001 ident: c30 publication-title: Phys. Rev. E – volume: 24 start-page: 464 year: 1991 ident: c23 publication-title: Macromolecules – volume: 31 start-page: 1103 year: 1985 ident: c24 publication-title: Phys. Rev. A – volume: 38 start-page: 1542 year: 1988 ident: c59 publication-title: Phys. Rev. A – volume: 43 start-page: 934 year: 2005 ident: c32 publication-title: J. Polym. Sci.: Part B: Polym. Phys. – volume: 9 start-page: 525 year: 1961 ident: c9 publication-title: Acta Metall. – volume: 43 start-page: 1 year: 2013 ident: c4 publication-title: Annu. Rev. Mater. Res. – volume: 8 start-page: 423 year: 1973 ident: c44 publication-title: Phys. Rev. A – volume: 50 start-page: 8797 year: 2017 ident: c41 publication-title: Macromolecules – volume: 29 start-page: 2289 year: 1996 ident: c35 publication-title: Macromolecules – volume: 40 start-page: 1227 year: 2007 ident: c29 publication-title: Macromolecules – volume: 70 start-page: 1449 year: 1993 ident: c6 publication-title: Phys. Rev. Lett. – volume: 72 start-page: 4756 year: 1980 ident: c13 publication-title: J. Chem. Phys. – volume: 257 start-page: 136 year: 1979 ident: c5 publication-title: Colloid Polym. Sci. – volume: 20 start-page: 595 year: 1979 ident: c21 publication-title: Phys. Rev. A – volume: 24 start-page: 578 year: 1991 ident: c18 publication-title: Macromolecules – volume: 140 start-page: 084902 year: 2014 ident: c43 publication-title: J. Chem. Phys. – volume: 25 start-page: 183 year: 1981 ident: c51 publication-title: J. Stat. Phys. – volume: 93 start-page: 2048 year: 1990 ident: c52 publication-title: J. Chem. Phys. – volume: 37 start-page: 247 year: 1976 ident: c46 publication-title: J. Phys., Colloq. – volume: 91 start-page: 3258 year: 1989 ident: c22 publication-title: J. Chem. Phys. – volume: 23 start-page: 1535 year: 1981 ident: c59 publication-title: Phys. Rev. A – volume: 62 start-page: 5967 year: 2000 ident: c60 publication-title: Phys. Rev. E – volume: 42 start-page: 93 year: 1965 ident: c10 publication-title: J. Chem. Phys. – volume: 52 start-page: 7704 year: 2019 ident: c31 publication-title: Macromolecules – volume: 38 start-page: 520 year: 1988 ident: c59 publication-title: Phys. Rev. B – volume: 117 start-page: 5480 year: 2002 ident: c8 publication-title: J. Chem. Phys. – volume: 140 start-page: 244907 year: 2014 ident: c25 publication-title: J. Chem. Phys. – volume: 9 start-page: 3373 year: 2013 ident: c26 publication-title: Soft Matter – volume: 79 start-page: 6387 year: 1983 ident: c15 publication-title: J. Chem. Phys. – volume: 125 start-page: 184904 year: 2006 ident: c38 publication-title: J. Chem. Phys. – volume: 49 start-page: 3199 year: 1994 ident: c33 publication-title: Phys. Rev. E – volume: 75 start-page: 1996 year: 1981 ident: c14 publication-title: J. Chem. Phys. – volume: 44 start-page: 8284 year: 2011 ident: c20 publication-title: Macromolecules – volume: 99 start-page: 9202 year: 1993 ident: 2023071601275631500_c28 publication-title: J. Chem. Phys. doi: 10.1063/1.465536 – volume: 19 start-page: 35 year: 1961 ident: 2023071601275631500_c16 publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(61)90054-3 – ident: 2023071601275631500_c48 – volume: 23 start-page: 377 year: 1976 ident: 2023071601275631500_c45a publication-title: Z. Phys. B: Condens. Matter Quanta doi: 10.1007/bf01316547 – volume: 91 start-page: 3258 year: 1989 ident: 2023071601275631500_c22 publication-title: J. Chem. Phys. doi: 10.1063/1.456901 – volume: 13 start-page: 10412 year: 2011 ident: 2023071601275631500_c1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c1cp20247b – volume-title: The Theory of Polymer Dynamics year: 1986 ident: 2023071601275631500_c49 – volume: 6 start-page: 5440 year: 2012 ident: 2023071601275631500_c3 publication-title: ACS Nano doi: 10.1021/nn301306v – volume: 140 start-page: 244907 year: 2014 ident: 2023071601275631500_c25 publication-title: J. Chem. Phys. doi: 10.1063/1.4884825 – volume: 29 start-page: 2289 year: 1996 ident: 2023071601275631500_c35 publication-title: Macromolecules doi: 10.1021/ma951071z – volume: 242 start-page: 166 year: 1968 ident: 2023071601275631500_c10c publication-title: Trans. Metall. Soc. AIME – volume: 9 start-page: 795 year: 1961 ident: 2023071601275631500_c10a publication-title: Acta Metall. doi: 10.1016/0001-6160(61)90182-1 – volume: 118 start-page: 4345 year: 2003 ident: 2023071601275631500_c36 publication-title: J. Chem. Phys. doi: 10.1063/1.1557052 – volume: 49 start-page: 3199 year: 1994 ident: 2023071601275631500_c33 publication-title: Phys. Rev. E doi: 10.1103/physreve.49.3199 – volume: 42 start-page: 93 year: 1965 ident: 2023071601275631500_c10b publication-title: J. Chem. Phys. doi: 10.1063/1.1695731 – volume: 44 start-page: 8284 year: 2011 ident: 2023071601275631500_c20 publication-title: Macromolecules doi: 10.1021/ma2014832 – volume: 38 start-page: 1542 year: 1988 ident: 2023071601275631500_c59b publication-title: Phys. Rev. A doi: 10.1103/physreva.38.1542 – volume: 43 start-page: 5747 year: 1991 ident: 2023071601275631500_c60a publication-title: Phys. Rev. B doi: 10.1103/physrevb.43.5747 – volume: 79 start-page: 6387 year: 1983 ident: 2023071601275631500_c15 publication-title: J. Chem. Phys. doi: 10.1063/1.445747 – volume: 8 start-page: 423 year: 1973 ident: 2023071601275631500_c44 publication-title: Phys. Rev. A doi: 10.1103/physreva.8.423 – volume: 9 start-page: 3373 year: 2013 ident: 2023071601275631500_c26 publication-title: Soft Matter doi: 10.1039/c3sm27499c – volume: 19 start-page: 229 year: 1981 ident: 2023071601275631500_c37 publication-title: J. Polym. Sci., Part B: Polym. Phys. doi: 10.1002/pol.1981.180190205 – volume-title: Principles of Condensed Matter Physics year: 1995 ident: 2023071601275631500_c57 – volume: 110 start-page: 639 year: 1999 ident: 2023071601275631500_c53 publication-title: J. Chem. Phys. doi: 10.1063/1.478121 – volume: 43 start-page: 1 year: 2013 ident: 2023071601275631500_c4 publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-071312-121618 – volume: 29 start-page: 1998 year: 1996 ident: 2023071601275631500_c34 publication-title: Macromolecules doi: 10.1021/ma951102q – volume: 117 start-page: 5480 year: 2002 ident: 2023071601275631500_c8 publication-title: J. Chem. Phys. doi: 10.1063/1.1497636 – volume: 62 start-page: 5967 year: 2000 ident: 2023071601275631500_c60b publication-title: Phys. Rev. E doi: 10.1103/physreve.62.5967 – volume: 40 start-page: 1227 year: 2007 ident: 2023071601275631500_c29 publication-title: Macromolecules doi: 10.1021/ma0620464 – volume-title: Numerical Recipes in C: The Art of Scientific Computing year: 1992 ident: 2023071601275631500_c56 – volume: 52 start-page: 5110 year: 2019 ident: 2023071601275631500_c42 publication-title: Macromolecules doi: 10.1021/acs.macromol.9b00720 – volume: 140 start-page: 084902 year: 2014 ident: 2023071601275631500_c43 publication-title: J. Chem. Phys. doi: 10.1063/1.4865911 – volume: 54 start-page: 5237 year: 1971 ident: 2023071601275631500_c50 publication-title: J. Chem. Phys. doi: 10.1063/1.1674820 – volume: 130 start-page: 214106 year: 2009 ident: 2023071601275631500_c39 publication-title: J. Chem. Phys. doi: 10.1063/1.3142103 – volume: 38 start-page: 520 year: 1988 ident: 2023071601275631500_c59c publication-title: Phys. Rev. B doi: 10.1103/physrevb.38.520 – volume: 257 start-page: 136 year: 1979 ident: 2023071601275631500_c5 publication-title: Colloid Polym. Sci. doi: 10.1007/bf01638138 – volume: 20 start-page: 595 year: 1979 ident: 2023071601275631500_c21 publication-title: Phys. Rev. A doi: 10.1103/physreva.20.595 – volume: 30 start-page: 3788 year: 1997 ident: 2023071601275631500_c2 publication-title: Macromolecules doi: 10.1021/ma961673y – start-page: 497 volume-title: Phase Transformations year: 1970 ident: 2023071601275631500_c11 – volume: 24 start-page: 464 year: 1991 ident: 2023071601275631500_c23 publication-title: Macromolecules doi: 10.1021/ma00002a020 – volume: 43 start-page: 934 year: 2005 ident: 2023071601275631500_c32 publication-title: J. Polym. Sci.: Part B: Polym. Phys. doi: 10.1002/polb.20385 – volume: 93 start-page: 2048 year: 1990 ident: 2023071601275631500_c52 publication-title: J. Chem. Phys. doi: 10.1063/1.459082 – volume: 145 start-page: 144902 year: 2016 ident: 2023071601275631500_c27 publication-title: J. Chem. Phys. doi: 10.1063/1.4964631 – volume: 37 start-page: 247 year: 1976 ident: 2023071601275631500_c46a publication-title: J. Phys., Colloq. doi: 10.1051/jphyscol:1976138 – volume: 13 start-page: 239 year: 2017 ident: 2023071601275631500_c40 publication-title: Soft Matter doi: 10.1039/c6sm00770h – volume: 70 start-page: 1449 year: 1993 ident: 2023071601275631500_c6 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.70.1449 – volume: 52 start-page: 7704 year: 2019 ident: 2023071601275631500_c31 publication-title: Macromolecules doi: 10.1021/acs.macromol.9b01709 – volume: 23 start-page: 1535 year: 1981 ident: 2023071601275631500_c59a publication-title: Phys. Rev. A doi: 10.1103/physreva.23.1535 – volume: 64 start-page: 041804 year: 2001 ident: 2023071601275631500_c30 publication-title: Phys. Rev. E doi: 10.1103/physreve.64.041804 – volume: 9 start-page: 525 year: 1961 ident: 2023071601275631500_c9 publication-title: Acta Metall. doi: 10.1016/0001-6160(61)90155-9 – volume: 72 start-page: 4756 year: 1980 ident: 2023071601275631500_c13 publication-title: J. Chem. Phys. doi: 10.1063/1.439809 – volume: 125 start-page: 184904 year: 2006 ident: 2023071601275631500_c38 publication-title: J. Chem. Phys. doi: 10.1063/1.2364506 – volume: 50 start-page: 8797 year: 2017 ident: 2023071601275631500_c41 publication-title: Macromolecules doi: 10.1021/acs.macromol.7b01731 – volume: 18 start-page: 353 year: 1978 ident: 2023071601275631500_c46b publication-title: Phys. Rev. B doi: 10.1103/physrevb.18.353 – volume: 96 start-page: 250601 year: 2006 ident: 2023071601275631500_c55 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.96.250601 – volume: 75 start-page: 1996 year: 1981 ident: 2023071601275631500_c14 publication-title: J. Chem. Phys. doi: 10.1063/1.442226 – volume: 31 start-page: 1103 year: 1985 ident: 2023071601275631500_c24 publication-title: Phys. Rev. A doi: 10.1103/physreva.31.1103 – volume: 18 start-page: 297 year: 1970 ident: 2023071601275631500_c12 publication-title: Acta Metall. doi: 10.1016/0001-6160(70)90144-6 – volume-title: The Equilibrium Theory of Inhomogeneous Polymers year: 2006 ident: 2023071601275631500_c47 – volume: 65 start-page: 581 year: 1961 ident: 2023071601275631500_c17 publication-title: Z. Elektrochem. doi: 10.1002/bbpc.19610650704 – volume: 24 start-page: 113 year: 1976 ident: 2023071601275631500_c45b publication-title: Z. Phys. B: Condens. Matter Quanta doi: 10.1007/bf01312880 – volume: 25 start-page: 183 year: 1981 ident: 2023071601275631500_c51 publication-title: J. Stat. Phys. doi: 10.1007/bf01022182 – volume: 28 start-page: 4313 year: 1995 ident: 2023071601275631500_c7 publication-title: Macromolecules doi: 10.1021/ma00116a038 – volume: 24 start-page: 578 year: 1991 ident: 2023071601275631500_c18 publication-title: Macromolecules doi: 10.1021/ma00002a037 – volume: 103 start-page: 9363 year: 1995 ident: 2023071601275631500_c19 publication-title: J. Chem. Phys. doi: 10.1063/1.469996  | 
    
| SSID | ssj0001724 | 
    
| Score | 2.3659422 | 
    
| Snippet | We study the spinodal decomposition in a symmetric, binary homopolymer blend using our recently developed dynamical self-consistent field theory. By taking the... | 
    
| SourceID | proquest pubmed crossref scitation  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 104903 | 
    
| SubjectTerms | Chain dynamics Coarsening Coils Computer simulation Domains Dynamics Field theory Physics Self consistent fields Spinodal decomposition Test procedures Time dependence  | 
    
| Title | Dynamical self-consistent field theory captures multi-scale physics during spinodal decomposition in a symmetric binary homopolymer blend | 
    
| URI | http://dx.doi.org/10.1063/1.5142179 https://www.ncbi.nlm.nih.gov/pubmed/32171199 https://www.proquest.com/docview/2374763372 https://www.proquest.com/docview/2377680622  | 
    
| Volume | 152 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1089-7690 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0001724 issn: 0021-9606 databaseCode: ADMLS dateStart: 19850101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagE9p4QDAuKwxkLg9IUUpiO078WG2gaWIIiU3aWxQ7jjbRplXTIXX_gH_NcexculVo8BJViWOn-b7Y5_jcEPqQC8qiRBGfFyT3mZKhn0RMmkSQqgiJ1EVmopFPvvGjM3Z8Hp135oI6umQpR-p6Y1zJ_6AK5wBXEyX7D8i2ncIJ-A34whEQhuOdMD605eRNyIeeFL4yzq6AWp1uSU9yG6W48lQ2N3aCynoP-hXcoN2WRtXEKVbzy3KWG4uNNl7mzpXL7IZkXrWaTk3hLeVJG717MZua2gqrqV54EpattWKfXbBZLeaqJiOBG7Bz-Lk28ZM9Id47HnW7QOqnC-C2rt_eeNTfnwBl1Di7sf6ca5xAeOASXttpNkiEH3NbKLSdhyPSJ1ywcYIHicrsNYxAzgNlSnSrWGO5v7G4tS6HtbGd0zRM3a330RaBlSAYoK3x4cnXH-36DSKdy91tn7vJR8Xpp3bcdSnmlmryEG2DAGN9KXriyulj9MgBgMeWNE_QPV3uou2DprzfLnrw3eLxFP1uaYRv0AjXNMKWRrihEe7RCDtUsaURbmiE12iEL0uc4ZZG2NII92iEaxo9Q2dfPp8eHPmuQoevGBNLX7PAaGcqykWiNKea0TwTVKqCxUmQ8bgoIi2lCqOMEFkklAU56BS0IFIIJgV9jgblrNR7CEeUwFWexwKEeh5TkZui84olUucgVMoh-ti88bR5taaKyiS9hewQvWubzm3Olk2N9hvYUvdJVymhoF1zSmMyRG_bywCMsaJlpZ5d1W1ARQ84gTYvLNztKBR6DkMBnb9v8f_bI2xo9Wu26Fqk87x4eZd_8wrtdN_ePhosF1f6NUjLS_nG0fsPC5TESg | 
    
| linkProvider | EBSCOhost | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamical+self-consistent+field+theory+captures+multi-scale+physics+during+spinodal+decomposition+in+a+symmetric+binary+homopolymer+blend&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Grzetic%2C+Douglas+J.&rft.au=Wickham%2C+Robert+A.&rft.date=2020-03-14&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=152&rft.issue=10&rft_id=info:doi/10.1063%2F1.5142179&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_5142179 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |