Dynamical self-consistent field theory captures multi-scale physics during spinodal decomposition in a symmetric binary homopolymer blend

We study the spinodal decomposition in a symmetric, binary homopolymer blend using our recently developed dynamical self-consistent field theory. By taking the extremal solution of a dynamical functional integral, the theory reduces the interacting, multi-chain dynamics to a Smoluchowski equation de...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 152; no. 10; pp. 104903 - 104914
Main Authors Grzetic, Douglas J., Wickham, Robert A.
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 14.03.2020
Subjects
Online AccessGet full text
ISSN0021-9606
1089-7690
1089-7690
DOI10.1063/1.5142179

Cover

Abstract We study the spinodal decomposition in a symmetric, binary homopolymer blend using our recently developed dynamical self-consistent field theory. By taking the extremal solution of a dynamical functional integral, the theory reduces the interacting, multi-chain dynamics to a Smoluchowski equation describing the statistical dynamics of a single, unentangled chain in a self-consistent, time-dependent, mean force-field. We numerically solve this equation by evaluating averages over a large ensemble of replica chains, each one of which obeys single-chain Langevin dynamics, subject to the mean field. Following a quench from the disordered state, an early time spinodal instability in the blend composition develops, before even one Rouse time elapses. The dominant, unstable, growing wavelength is on the order of the coil size. The blend then enters a late-time, t, scaling regime with a growing domain size that follows the expected Lifshitz–Slyozov–Wagner t1/3 power law, a characteristic of a diffusion-driven coarsening process. These results provide a satisfying test of this new method, which correctly captures both the early and late time physics in the blend. Our simulation spans five orders-of-magnitude in time as the domains coarsen to 20 times the coil size, while remaining faithful to the dynamics of the microscopic chain model.
AbstractList We study the spinodal decomposition in a symmetric, binary homopolymer blend using our recently developed dynamical self-consistent field theory. By taking the extremal solution of a dynamical functional integral, the theory reduces the interacting, multi-chain dynamics to a Smoluchowski equation describing the statistical dynamics of a single, unentangled chain in a self-consistent, time-dependent, mean force-field. We numerically solve this equation by evaluating averages over a large ensemble of replica chains, each one of which obeys single-chain Langevin dynamics, subject to the mean field. Following a quench from the disordered state, an early time spinodal instability in the blend composition develops, before even one Rouse time elapses. The dominant, unstable, growing wavelength is on the order of the coil size. The blend then enters a late-time, t, scaling regime with a growing domain size that follows the expected Lifshitz-Slyozov-Wagner t power law, a characteristic of a diffusion-driven coarsening process. These results provide a satisfying test of this new method, which correctly captures both the early and late time physics in the blend. Our simulation spans five orders-of-magnitude in time as the domains coarsen to 20 times the coil size, while remaining faithful to the dynamics of the microscopic chain model.
We study the spinodal decomposition in a symmetric, binary homopolymer blend using our recently developed dynamical self-consistent field theory. By taking the extremal solution of a dynamical functional integral, the theory reduces the interacting, multi-chain dynamics to a Smoluchowski equation describing the statistical dynamics of a single, unentangled chain in a self-consistent, time-dependent, mean force-field. We numerically solve this equation by evaluating averages over a large ensemble of replica chains, each one of which obeys single-chain Langevin dynamics, subject to the mean field. Following a quench from the disordered state, an early time spinodal instability in the blend composition develops, before even one Rouse time elapses. The dominant, unstable, growing wavelength is on the order of the coil size. The blend then enters a late-time, t, scaling regime with a growing domain size that follows the expected Lifshitz-Slyozov-Wagner t1/3 power law, a characteristic of a diffusion-driven coarsening process. These results provide a satisfying test of this new method, which correctly captures both the early and late time physics in the blend. Our simulation spans five orders-of-magnitude in time as the domains coarsen to 20 times the coil size, while remaining faithful to the dynamics of the microscopic chain model.We study the spinodal decomposition in a symmetric, binary homopolymer blend using our recently developed dynamical self-consistent field theory. By taking the extremal solution of a dynamical functional integral, the theory reduces the interacting, multi-chain dynamics to a Smoluchowski equation describing the statistical dynamics of a single, unentangled chain in a self-consistent, time-dependent, mean force-field. We numerically solve this equation by evaluating averages over a large ensemble of replica chains, each one of which obeys single-chain Langevin dynamics, subject to the mean field. Following a quench from the disordered state, an early time spinodal instability in the blend composition develops, before even one Rouse time elapses. The dominant, unstable, growing wavelength is on the order of the coil size. The blend then enters a late-time, t, scaling regime with a growing domain size that follows the expected Lifshitz-Slyozov-Wagner t1/3 power law, a characteristic of a diffusion-driven coarsening process. These results provide a satisfying test of this new method, which correctly captures both the early and late time physics in the blend. Our simulation spans five orders-of-magnitude in time as the domains coarsen to 20 times the coil size, while remaining faithful to the dynamics of the microscopic chain model.
We study the spinodal decomposition in a symmetric, binary homopolymer blend using our recently developed dynamical self-consistent field theory. By taking the extremal solution of a dynamical functional integral, the theory reduces the interacting, multi-chain dynamics to a Smoluchowski equation describing the statistical dynamics of a single, unentangled chain in a self-consistent, time-dependent, mean force-field. We numerically solve this equation by evaluating averages over a large ensemble of replica chains, each one of which obeys single-chain Langevin dynamics, subject to the mean field. Following a quench from the disordered state, an early time spinodal instability in the blend composition develops, before even one Rouse time elapses. The dominant, unstable, growing wavelength is on the order of the coil size. The blend then enters a late-time, t, scaling regime with a growing domain size that follows the expected Lifshitz–Slyozov–Wagner t1/3 power law, a characteristic of a diffusion-driven coarsening process. These results provide a satisfying test of this new method, which correctly captures both the early and late time physics in the blend. Our simulation spans five orders-of-magnitude in time as the domains coarsen to 20 times the coil size, while remaining faithful to the dynamics of the microscopic chain model.
Author Grzetic, Douglas J.
Wickham, Robert A.
Author_xml – sequence: 1
  givenname: Douglas J.
  surname: Grzetic
  fullname: Grzetic, Douglas J.
  email: dgrzetic@mrl.ucsb.edu
  organization: Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
– sequence: 2
  givenname: Robert A.
  surname: Wickham
  fullname: Wickham, Robert A.
  organization: Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32171199$$D View this record in MEDLINE/PubMed
BookMark eNp90cuKFDEUBuAgI07P6MIXkIAbFWomt65UljJeYcCNrkMqdWJnqCRlkhqoR_Ctraa7FUZxlc33_5ycc4HOYoqA0HNKrihp-TW92lLBqFSP0IaSTjWyVeQMbQhhtFEtac_RRSl3hBAqmXiCzvmKKVVqg36-W6IJ3poRFxhdY1MsvlSIFTsP44DrDlJesDVTnTMUHOax-qasAcDTbineFjzM2cfvuEw-pmFtGsCmMKXiq08R-4gNLksIULO3uPfRrIW7FNKUxiVAxv0IcXiKHjszFnh2fC_Rtw_vv958am6_fPx88_a2sUKo2oAgUjJlt4PqLLQcBB-M4r11QnbEtNK5LfS9pVvDWO86LshAqOKO9UqJXvFL9OrQO-X0Y4ZSdfDFwjiaCGkumnEp2460jK305QN6l-Yc1-n2SsiWc7lXL45q7gMMeso-rD_UpyWv4PoAbE6lZHDa-mr2u6nZ-FFTovdn1FQfz7gmXj9InEr_Zd8cbDm1_sb3Kf-Behrc__Dfzb8AgSK6qA
CODEN JCPSA6
CitedBy_id crossref_primary_10_1021_acs_jpcb_3c07756
crossref_primary_10_1021_acs_macromol_4c00196
crossref_primary_10_1007_s40509_022_00276_y
crossref_primary_10_1063_5_0084602
Cites_doi 10.1063/1.465536
10.1016/0022-3697(61)90054-3
10.1007/bf01316547
10.1063/1.456901
10.1039/c1cp20247b
10.1021/nn301306v
10.1063/1.4884825
10.1021/ma951071z
10.1016/0001-6160(61)90182-1
10.1063/1.1557052
10.1103/physreve.49.3199
10.1063/1.1695731
10.1021/ma2014832
10.1103/physreva.38.1542
10.1103/physrevb.43.5747
10.1063/1.445747
10.1103/physreva.8.423
10.1039/c3sm27499c
10.1002/pol.1981.180190205
10.1063/1.478121
10.1146/annurev-matsci-071312-121618
10.1021/ma951102q
10.1063/1.1497636
10.1103/physreve.62.5967
10.1021/ma0620464
10.1021/acs.macromol.9b00720
10.1063/1.4865911
10.1063/1.1674820
10.1063/1.3142103
10.1103/physrevb.38.520
10.1007/bf01638138
10.1103/physreva.20.595
10.1021/ma961673y
10.1021/ma00002a020
10.1002/polb.20385
10.1063/1.459082
10.1063/1.4964631
10.1051/jphyscol:1976138
10.1039/c6sm00770h
10.1103/physrevlett.70.1449
10.1021/acs.macromol.9b01709
10.1103/physreva.23.1535
10.1103/physreve.64.041804
10.1016/0001-6160(61)90155-9
10.1063/1.439809
10.1063/1.2364506
10.1021/acs.macromol.7b01731
10.1103/physrevb.18.353
10.1103/physrevlett.96.250601
10.1063/1.442226
10.1103/physreva.31.1103
10.1016/0001-6160(70)90144-6
10.1002/bbpc.19610650704
10.1007/bf01312880
10.1007/bf01022182
10.1021/ma00116a038
10.1021/ma00002a037
10.1063/1.469996
ContentType Journal Article
Copyright Author(s)
2020 Author(s). Published under license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2020 Author(s). Published under license by AIP Publishing.
DBID AAYXX
CITATION
NPM
8FD
H8D
L7M
7X8
DOI 10.1063/1.5142179
DatabaseName CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
CrossRef
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID 32171199
10_1063_1_5142179
jcp
Genre Journal Article
GrantInformation_xml – fundername: Canada Foundation for Innovation
  grantid: Project # 18169
  funderid: https://doi.org/10.13039/501100000196
– fundername: Natural Sciences and Engineering Research Council of Canada
  grantid: RGPIN 2017-04580
  funderid: https://doi.org/10.13039/501100000038
GroupedDBID ---
-DZ
-ET
-~X
123
1UP
2-P
29K
4.4
53G
5VS
85S
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABPPZ
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D-I
DU5
EBS
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
NPM
8FD
H8D
L7M
7X8
ID FETCH-LOGICAL-c449t-e407729c5d98ce63e43da93bcf4780a67ff5ebbc15a22bf8340d0193f2b994b93
ISSN 0021-9606
1089-7690
IngestDate Fri Jul 11 09:26:56 EDT 2025
Sun Jun 29 15:54:59 EDT 2025
Wed Feb 19 02:30:54 EST 2025
Thu Apr 24 23:12:59 EDT 2025
Tue Jul 01 00:27:42 EDT 2025
Wed Nov 11 00:04:51 EST 2020
Fri Jun 21 00:19:26 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License 0021-9606/2020/152(10)/104903/12/$30.00
Published under license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c449t-e407729c5d98ce63e43da93bcf4780a67ff5ebbc15a22bf8340d0193f2b994b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8595-5652
0000000285955652
PMID 32171199
PQID 2374763372
PQPubID 2050685
PageCount 12
ParticipantIDs proquest_journals_2374763372
scitation_primary_10_1063_1_5142179
crossref_citationtrail_10_1063_1_5142179
proquest_miscellaneous_2377680622
pubmed_primary_32171199
crossref_primary_10_1063_1_5142179
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-14
PublicationDateYYYYMMDD 2020-03-14
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-14
  day: 14
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Melville
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2020
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Puri, Oono (c59) 1988; 38
Malik, Hall, Genzer (c20) 2011; 44
Fredrickson, Orland (c43) 2014; 140
Ji, Nagpal, Liu, Delcambre, Müller, de Pablo, Nealey (c3) 2012; 6
Chao, Koski, Riggleman (c40) 2017; 13
(c10) 1965; 42
Spencer, Curry, Wickham (c27) 2016; 145
Jensen (c51) 1981; 25
Pincus (c14) 1981; 75
Castellano, Glotzer (c19) 1995; 103
de Gennes (c13) 1980; 72
Wang, Ren, Müller (c31) 2019; 52
Patel, Larson, Winey, Watanabe (c7) 1995; 28
Hadziioannou, Mathis, Skoulios (c5) 1979; 257
Soga, Zuckermann, Guo (c34) 1996; 29
Binder (c15) 1983; 79
Bausch, Janssen, Wagner (c45) 1976; 24
De Dominicis, Peliti (c46) 1978; 18
Daoulas, Müller (c38) 2006; 125
Mazenko (c60) 1991; 43
Cook (c12) 1970; 18
Lifshitz, Slyozov (c16) 1961; 19
Rostiashvili, Rehkopf, Vilgis (c53) 1999; 110
Fritz, Koschke, Harmandaris, van der Vegt, Kremer (c1) 2011; 13
Reister, Müller, Binder (c30) 2001; 64
Janssen (c45) 1976; 23
Siggia (c21) 1979; 20
De Dominicis (c46) 1976; 37
Müller, MacDowell, Virnau, Binder (c8) 2002; 117
Koppi, Tirrell, Bates (c6) 1993; 70
Ganesan, Pryamitsyn (c36) 2003; 118
Weeks, Chandler, Andersen (c50) 1971; 54
(c60) 2000; 62
Wagner (c17) 1961; 65
Doi (c37) 1981; 19
Furukawa (c24) 1985; 31
Milano, Kawakatsu (c39) 2009; 130
Furukawa (c59) 1981; 23
Koski, Ferrier, Krook, Chao, Composto, Frischknecht, Riggleman (c41) 2017; 50
Müller, Smith (c32) 2005; 43
Fredrickson, Helfand (c52) 1990; 93
Sariban, Binder (c18) 1991; 24
Grzetic, Wickham, Shi (c25) 2014; 140
Spencer, Wickham (c26) 2013; 9
Laradji, Guo, Zuckermann (c33) 1994; 49
Sides, Kim, Kramer, Fredrickson (c55) 2006; 96
Fraajie (c28) 1993; 99
Hajduk, Takenouchi, Hillmyer, Bates, Vigild, Almdal (c2) 1997; 30
Cahn (c10) 1961; 9
Bates, Wiltzius (c22) 1989; 91
Honda, Kawakatsu (c29) 2007; 40
He, Liu, Feng, Jiang, Han (c23) 1991; 24
Mazenko, Valls, Zannetti (c59) 1988; 38
Koski, Krook, Ford, Yahata, Ohno, Murray, Frischknecht, Composto, Riggleman (c42) 2019; 52
Martin, Siggia, Rose (c44) 1973; 8
Müller, de Pablo (c4) 2013; 43
(c10) 1968; 242
Hillert (c9) 1961; 9
Miao, Guo, Zuckermann (c35) 1996; 29
(2023071601275631500_c4) 2013; 43
(2023071601275631500_c2) 1997; 30
(2023071601275631500_c50) 1971; 54
(2023071601275631500_c56) 1992
(2023071601275631500_c13) 1980; 72
(2023071601275631500_c39) 2009; 130
(2023071601275631500_c53) 1999; 110
(2023071601275631500_c24) 1985; 31
(2023071601275631500_c8) 2002; 117
(2023071601275631500_c1) 2011; 13
(2023071601275631500_c12) 1970; 18
(2023071601275631500_c21) 1979; 20
(2023071601275631500_c51) 1981; 25
Cahn (2023071601275631500_c10c) 1968; 242
(2023071601275631500_c20) 2011; 44
(2023071601275631500_c47) 2006
(2023071601275631500_c27) 2016; 145
(2023071601275631500_c10a) 1961; 9
(2023071601275631500_c23) 1991; 24
(2023071601275631500_c42) 2019; 52
(2023071601275631500_c33) 1994; 49
(2023071601275631500_c55) 2006; 96
(2023071601275631500_c45a) 1976; 23
(2023071601275631500_c34) 1996; 29
(2023071601275631500_c17) 1961; 65
(2023071601275631500_c36) 2003; 118
(2023071601275631500_c59b) 1988; 38
(2023071601275631500_c30) 2001; 64
(2023071601275631500_c3) 2012; 6
Cahn (2023071601275631500_c10b) 1965; 42
Aaronson (2023071601275631500_c11) 1970
(2023071601275631500_c43) 2014; 140
(2023071601275631500_c7) 1995; 28
(2023071601275631500_c19) 1995; 103
(2023071601275631500_c60a) 1991; 43
(2023071601275631500_c15) 1983; 79
(2023071601275631500_c26) 2013; 9
(2023071601275631500_c29) 2007; 40
(2023071601275631500_c35) 1996; 29
(2023071601275631500_c59c) 1988; 38
(2023071601275631500_c18) 1991; 24
(2023071601275631500_c40) 2017; 13
(2023071601275631500_c38) 2006; 125
(2023071601275631500_c45b) 1976; 24
(2023071601275631500_c46b) 1978; 18
(2023071601275631500_c46a) 1976; 37
(2023071601275631500_c59a) 1981; 23
Mazenko (2023071601275631500_c60b) 2000; 62
(2023071601275631500_c14) 1981; 75
(2023071601275631500_c52) 1990; 93
(2023071601275631500_c5) 1979; 257
(2023071601275631500_c31) 2019; 52
(2023071601275631500_c37) 1981; 19
(2023071601275631500_c28) 1993; 99
2023071601275631500_c48
(2023071601275631500_c22) 1989; 91
(2023071601275631500_c57) 1995
(2023071601275631500_c32) 2005; 43
(2023071601275631500_c16) 1961; 19
(2023071601275631500_c49) 1986
(2023071601275631500_c25) 2014; 140
(2023071601275631500_c41) 2017; 50
(2023071601275631500_c6) 1993; 70
(2023071601275631500_c9) 1961; 9
(2023071601275631500_c44) 1973; 8
References_xml – volume: 18
  start-page: 353
  year: 1978
  ident: c46
  publication-title: Phys. Rev. B
– volume: 19
  start-page: 35
  year: 1961
  ident: c16
  publication-title: J. Phys. Chem. Solids
– volume: 52
  start-page: 5110
  year: 2019
  ident: c42
  publication-title: Macromolecules
– volume: 23
  start-page: 377
  year: 1976
  ident: c45
  publication-title: Z. Phys. B: Condens. Matter Quanta
– volume: 24
  start-page: 113
  year: 1976
  ident: c45
  publication-title: Z. Phys. B: Condens. Matter Quanta
– volume: 242
  start-page: 166
  year: 1968
  ident: c10
  publication-title: Trans. Metall. Soc. AIME
– volume: 13
  start-page: 10412
  year: 2011
  ident: c1
  publication-title: Phys. Chem. Chem. Phys.
– volume: 103
  start-page: 9363
  year: 1995
  ident: c19
  publication-title: J. Chem. Phys.
– volume: 110
  start-page: 639
  year: 1999
  ident: c53
  publication-title: J. Chem. Phys.
– volume: 9
  start-page: 795
  year: 1961
  ident: c10
  publication-title: Acta Metall.
– volume: 65
  start-page: 581
  year: 1961
  ident: c17
  publication-title: Z. Elektrochem.
– volume: 145
  start-page: 144902
  year: 2016
  ident: c27
  publication-title: J. Chem. Phys.
– volume: 54
  start-page: 5237
  year: 1971
  ident: c50
  publication-title: J. Chem. Phys.
– volume: 96
  start-page: 250601
  year: 2006
  ident: c55
  publication-title: Phys. Rev. Lett.
– volume: 6
  start-page: 5440
  year: 2012
  ident: c3
  publication-title: ACS Nano
– volume: 29
  start-page: 1998
  year: 1996
  ident: c34
  publication-title: Macromolecules
– volume: 118
  start-page: 4345
  year: 2003
  ident: c36
  publication-title: J. Chem. Phys.
– volume: 130
  start-page: 214106
  year: 2009
  ident: c39
  publication-title: J. Chem. Phys.
– volume: 18
  start-page: 297
  year: 1970
  ident: c12
  publication-title: Acta Metall.
– volume: 99
  start-page: 9202
  year: 1993
  ident: c28
  publication-title: J. Chem. Phys.
– volume: 28
  start-page: 4313
  year: 1995
  ident: c7
  publication-title: Macromolecules
– volume: 30
  start-page: 3788
  year: 1997
  ident: c2
  publication-title: Macromolecules
– volume: 13
  start-page: 239
  year: 2017
  ident: c40
  publication-title: Soft Matter
– volume: 19
  start-page: 229
  year: 1981
  ident: c37
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
– volume: 43
  start-page: 5747
  year: 1991
  ident: c60
  publication-title: Phys. Rev. B
– volume: 64
  start-page: 041804
  year: 2001
  ident: c30
  publication-title: Phys. Rev. E
– volume: 24
  start-page: 464
  year: 1991
  ident: c23
  publication-title: Macromolecules
– volume: 31
  start-page: 1103
  year: 1985
  ident: c24
  publication-title: Phys. Rev. A
– volume: 38
  start-page: 1542
  year: 1988
  ident: c59
  publication-title: Phys. Rev. A
– volume: 43
  start-page: 934
  year: 2005
  ident: c32
  publication-title: J. Polym. Sci.: Part B: Polym. Phys.
– volume: 9
  start-page: 525
  year: 1961
  ident: c9
  publication-title: Acta Metall.
– volume: 43
  start-page: 1
  year: 2013
  ident: c4
  publication-title: Annu. Rev. Mater. Res.
– volume: 8
  start-page: 423
  year: 1973
  ident: c44
  publication-title: Phys. Rev. A
– volume: 50
  start-page: 8797
  year: 2017
  ident: c41
  publication-title: Macromolecules
– volume: 29
  start-page: 2289
  year: 1996
  ident: c35
  publication-title: Macromolecules
– volume: 40
  start-page: 1227
  year: 2007
  ident: c29
  publication-title: Macromolecules
– volume: 70
  start-page: 1449
  year: 1993
  ident: c6
  publication-title: Phys. Rev. Lett.
– volume: 72
  start-page: 4756
  year: 1980
  ident: c13
  publication-title: J. Chem. Phys.
– volume: 257
  start-page: 136
  year: 1979
  ident: c5
  publication-title: Colloid Polym. Sci.
– volume: 20
  start-page: 595
  year: 1979
  ident: c21
  publication-title: Phys. Rev. A
– volume: 24
  start-page: 578
  year: 1991
  ident: c18
  publication-title: Macromolecules
– volume: 140
  start-page: 084902
  year: 2014
  ident: c43
  publication-title: J. Chem. Phys.
– volume: 25
  start-page: 183
  year: 1981
  ident: c51
  publication-title: J. Stat. Phys.
– volume: 93
  start-page: 2048
  year: 1990
  ident: c52
  publication-title: J. Chem. Phys.
– volume: 37
  start-page: 247
  year: 1976
  ident: c46
  publication-title: J. Phys., Colloq.
– volume: 91
  start-page: 3258
  year: 1989
  ident: c22
  publication-title: J. Chem. Phys.
– volume: 23
  start-page: 1535
  year: 1981
  ident: c59
  publication-title: Phys. Rev. A
– volume: 62
  start-page: 5967
  year: 2000
  ident: c60
  publication-title: Phys. Rev. E
– volume: 42
  start-page: 93
  year: 1965
  ident: c10
  publication-title: J. Chem. Phys.
– volume: 52
  start-page: 7704
  year: 2019
  ident: c31
  publication-title: Macromolecules
– volume: 38
  start-page: 520
  year: 1988
  ident: c59
  publication-title: Phys. Rev. B
– volume: 117
  start-page: 5480
  year: 2002
  ident: c8
  publication-title: J. Chem. Phys.
– volume: 140
  start-page: 244907
  year: 2014
  ident: c25
  publication-title: J. Chem. Phys.
– volume: 9
  start-page: 3373
  year: 2013
  ident: c26
  publication-title: Soft Matter
– volume: 79
  start-page: 6387
  year: 1983
  ident: c15
  publication-title: J. Chem. Phys.
– volume: 125
  start-page: 184904
  year: 2006
  ident: c38
  publication-title: J. Chem. Phys.
– volume: 49
  start-page: 3199
  year: 1994
  ident: c33
  publication-title: Phys. Rev. E
– volume: 75
  start-page: 1996
  year: 1981
  ident: c14
  publication-title: J. Chem. Phys.
– volume: 44
  start-page: 8284
  year: 2011
  ident: c20
  publication-title: Macromolecules
– volume: 99
  start-page: 9202
  year: 1993
  ident: 2023071601275631500_c28
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.465536
– volume: 19
  start-page: 35
  year: 1961
  ident: 2023071601275631500_c16
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(61)90054-3
– ident: 2023071601275631500_c48
– volume: 23
  start-page: 377
  year: 1976
  ident: 2023071601275631500_c45a
  publication-title: Z. Phys. B: Condens. Matter Quanta
  doi: 10.1007/bf01316547
– volume: 91
  start-page: 3258
  year: 1989
  ident: 2023071601275631500_c22
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.456901
– volume: 13
  start-page: 10412
  year: 2011
  ident: 2023071601275631500_c1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c1cp20247b
– volume-title: The Theory of Polymer Dynamics
  year: 1986
  ident: 2023071601275631500_c49
– volume: 6
  start-page: 5440
  year: 2012
  ident: 2023071601275631500_c3
  publication-title: ACS Nano
  doi: 10.1021/nn301306v
– volume: 140
  start-page: 244907
  year: 2014
  ident: 2023071601275631500_c25
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4884825
– volume: 29
  start-page: 2289
  year: 1996
  ident: 2023071601275631500_c35
  publication-title: Macromolecules
  doi: 10.1021/ma951071z
– volume: 242
  start-page: 166
  year: 1968
  ident: 2023071601275631500_c10c
  publication-title: Trans. Metall. Soc. AIME
– volume: 9
  start-page: 795
  year: 1961
  ident: 2023071601275631500_c10a
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(61)90182-1
– volume: 118
  start-page: 4345
  year: 2003
  ident: 2023071601275631500_c36
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1557052
– volume: 49
  start-page: 3199
  year: 1994
  ident: 2023071601275631500_c33
  publication-title: Phys. Rev. E
  doi: 10.1103/physreve.49.3199
– volume: 42
  start-page: 93
  year: 1965
  ident: 2023071601275631500_c10b
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1695731
– volume: 44
  start-page: 8284
  year: 2011
  ident: 2023071601275631500_c20
  publication-title: Macromolecules
  doi: 10.1021/ma2014832
– volume: 38
  start-page: 1542
  year: 1988
  ident: 2023071601275631500_c59b
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.38.1542
– volume: 43
  start-page: 5747
  year: 1991
  ident: 2023071601275631500_c60a
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.43.5747
– volume: 79
  start-page: 6387
  year: 1983
  ident: 2023071601275631500_c15
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.445747
– volume: 8
  start-page: 423
  year: 1973
  ident: 2023071601275631500_c44
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.8.423
– volume: 9
  start-page: 3373
  year: 2013
  ident: 2023071601275631500_c26
  publication-title: Soft Matter
  doi: 10.1039/c3sm27499c
– volume: 19
  start-page: 229
  year: 1981
  ident: 2023071601275631500_c37
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
  doi: 10.1002/pol.1981.180190205
– volume-title: Principles of Condensed Matter Physics
  year: 1995
  ident: 2023071601275631500_c57
– volume: 110
  start-page: 639
  year: 1999
  ident: 2023071601275631500_c53
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478121
– volume: 43
  start-page: 1
  year: 2013
  ident: 2023071601275631500_c4
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-071312-121618
– volume: 29
  start-page: 1998
  year: 1996
  ident: 2023071601275631500_c34
  publication-title: Macromolecules
  doi: 10.1021/ma951102q
– volume: 117
  start-page: 5480
  year: 2002
  ident: 2023071601275631500_c8
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1497636
– volume: 62
  start-page: 5967
  year: 2000
  ident: 2023071601275631500_c60b
  publication-title: Phys. Rev. E
  doi: 10.1103/physreve.62.5967
– volume: 40
  start-page: 1227
  year: 2007
  ident: 2023071601275631500_c29
  publication-title: Macromolecules
  doi: 10.1021/ma0620464
– volume-title: Numerical Recipes in C: The Art of Scientific Computing
  year: 1992
  ident: 2023071601275631500_c56
– volume: 52
  start-page: 5110
  year: 2019
  ident: 2023071601275631500_c42
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.9b00720
– volume: 140
  start-page: 084902
  year: 2014
  ident: 2023071601275631500_c43
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4865911
– volume: 54
  start-page: 5237
  year: 1971
  ident: 2023071601275631500_c50
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1674820
– volume: 130
  start-page: 214106
  year: 2009
  ident: 2023071601275631500_c39
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3142103
– volume: 38
  start-page: 520
  year: 1988
  ident: 2023071601275631500_c59c
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.38.520
– volume: 257
  start-page: 136
  year: 1979
  ident: 2023071601275631500_c5
  publication-title: Colloid Polym. Sci.
  doi: 10.1007/bf01638138
– volume: 20
  start-page: 595
  year: 1979
  ident: 2023071601275631500_c21
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.20.595
– volume: 30
  start-page: 3788
  year: 1997
  ident: 2023071601275631500_c2
  publication-title: Macromolecules
  doi: 10.1021/ma961673y
– start-page: 497
  volume-title: Phase Transformations
  year: 1970
  ident: 2023071601275631500_c11
– volume: 24
  start-page: 464
  year: 1991
  ident: 2023071601275631500_c23
  publication-title: Macromolecules
  doi: 10.1021/ma00002a020
– volume: 43
  start-page: 934
  year: 2005
  ident: 2023071601275631500_c32
  publication-title: J. Polym. Sci.: Part B: Polym. Phys.
  doi: 10.1002/polb.20385
– volume: 93
  start-page: 2048
  year: 1990
  ident: 2023071601275631500_c52
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.459082
– volume: 145
  start-page: 144902
  year: 2016
  ident: 2023071601275631500_c27
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4964631
– volume: 37
  start-page: 247
  year: 1976
  ident: 2023071601275631500_c46a
  publication-title: J. Phys., Colloq.
  doi: 10.1051/jphyscol:1976138
– volume: 13
  start-page: 239
  year: 2017
  ident: 2023071601275631500_c40
  publication-title: Soft Matter
  doi: 10.1039/c6sm00770h
– volume: 70
  start-page: 1449
  year: 1993
  ident: 2023071601275631500_c6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.70.1449
– volume: 52
  start-page: 7704
  year: 2019
  ident: 2023071601275631500_c31
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.9b01709
– volume: 23
  start-page: 1535
  year: 1981
  ident: 2023071601275631500_c59a
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.23.1535
– volume: 64
  start-page: 041804
  year: 2001
  ident: 2023071601275631500_c30
  publication-title: Phys. Rev. E
  doi: 10.1103/physreve.64.041804
– volume: 9
  start-page: 525
  year: 1961
  ident: 2023071601275631500_c9
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(61)90155-9
– volume: 72
  start-page: 4756
  year: 1980
  ident: 2023071601275631500_c13
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.439809
– volume: 125
  start-page: 184904
  year: 2006
  ident: 2023071601275631500_c38
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2364506
– volume: 50
  start-page: 8797
  year: 2017
  ident: 2023071601275631500_c41
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.7b01731
– volume: 18
  start-page: 353
  year: 1978
  ident: 2023071601275631500_c46b
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.18.353
– volume: 96
  start-page: 250601
  year: 2006
  ident: 2023071601275631500_c55
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.96.250601
– volume: 75
  start-page: 1996
  year: 1981
  ident: 2023071601275631500_c14
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.442226
– volume: 31
  start-page: 1103
  year: 1985
  ident: 2023071601275631500_c24
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.31.1103
– volume: 18
  start-page: 297
  year: 1970
  ident: 2023071601275631500_c12
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(70)90144-6
– volume-title: The Equilibrium Theory of Inhomogeneous Polymers
  year: 2006
  ident: 2023071601275631500_c47
– volume: 65
  start-page: 581
  year: 1961
  ident: 2023071601275631500_c17
  publication-title: Z. Elektrochem.
  doi: 10.1002/bbpc.19610650704
– volume: 24
  start-page: 113
  year: 1976
  ident: 2023071601275631500_c45b
  publication-title: Z. Phys. B: Condens. Matter Quanta
  doi: 10.1007/bf01312880
– volume: 25
  start-page: 183
  year: 1981
  ident: 2023071601275631500_c51
  publication-title: J. Stat. Phys.
  doi: 10.1007/bf01022182
– volume: 28
  start-page: 4313
  year: 1995
  ident: 2023071601275631500_c7
  publication-title: Macromolecules
  doi: 10.1021/ma00116a038
– volume: 24
  start-page: 578
  year: 1991
  ident: 2023071601275631500_c18
  publication-title: Macromolecules
  doi: 10.1021/ma00002a037
– volume: 103
  start-page: 9363
  year: 1995
  ident: 2023071601275631500_c19
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.469996
SSID ssj0001724
Score 2.3659422
Snippet We study the spinodal decomposition in a symmetric, binary homopolymer blend using our recently developed dynamical self-consistent field theory. By taking the...
SourceID proquest
pubmed
crossref
scitation
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 104903
SubjectTerms Chain dynamics
Coarsening
Coils
Computer simulation
Domains
Dynamics
Field theory
Physics
Self consistent fields
Spinodal decomposition
Test procedures
Time dependence
Title Dynamical self-consistent field theory captures multi-scale physics during spinodal decomposition in a symmetric binary homopolymer blend
URI http://dx.doi.org/10.1063/1.5142179
https://www.ncbi.nlm.nih.gov/pubmed/32171199
https://www.proquest.com/docview/2374763372
https://www.proquest.com/docview/2377680622
Volume 152
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1089-7690
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0001724
  issn: 0021-9606
  databaseCode: ADMLS
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagE9p4QDAuKwxkLg9IUUpiO078WG2gaWIIiU3aWxQ7jjbRplXTIXX_gH_NcexculVo8BJViWOn-b7Y5_jcEPqQC8qiRBGfFyT3mZKhn0RMmkSQqgiJ1EVmopFPvvGjM3Z8Hp135oI6umQpR-p6Y1zJ_6AK5wBXEyX7D8i2ncIJ-A34whEQhuOdMD605eRNyIeeFL4yzq6AWp1uSU9yG6W48lQ2N3aCynoP-hXcoN2WRtXEKVbzy3KWG4uNNl7mzpXL7IZkXrWaTk3hLeVJG717MZua2gqrqV54EpattWKfXbBZLeaqJiOBG7Bz-Lk28ZM9Id47HnW7QOqnC-C2rt_eeNTfnwBl1Di7sf6ca5xAeOASXttpNkiEH3NbKLSdhyPSJ1ywcYIHicrsNYxAzgNlSnSrWGO5v7G4tS6HtbGd0zRM3a330RaBlSAYoK3x4cnXH-36DSKdy91tn7vJR8Xpp3bcdSnmlmryEG2DAGN9KXriyulj9MgBgMeWNE_QPV3uou2DprzfLnrw3eLxFP1uaYRv0AjXNMKWRrihEe7RCDtUsaURbmiE12iEL0uc4ZZG2NII92iEaxo9Q2dfPp8eHPmuQoevGBNLX7PAaGcqykWiNKea0TwTVKqCxUmQ8bgoIi2lCqOMEFkklAU56BS0IFIIJgV9jgblrNR7CEeUwFWexwKEeh5TkZui84olUucgVMoh-ti88bR5taaKyiS9hewQvWubzm3Olk2N9hvYUvdJVymhoF1zSmMyRG_bywCMsaJlpZ5d1W1ARQ84gTYvLNztKBR6DkMBnb9v8f_bI2xo9Wu26Fqk87x4eZd_8wrtdN_ePhosF1f6NUjLS_nG0fsPC5TESg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamical+self-consistent+field+theory+captures+multi-scale+physics+during+spinodal+decomposition+in+a+symmetric+binary+homopolymer+blend&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Grzetic%2C+Douglas+J.&rft.au=Wickham%2C+Robert+A.&rft.date=2020-03-14&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=152&rft.issue=10&rft_id=info:doi/10.1063%2F1.5142179&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_5142179
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon