High-energy synchrotron x-ray study of deformation-induced martensitic transformation in a neutron-irradiated Type 316 stainless steel
An unusual tensile deformation behaviour in the form of a propagating band along the sample gauge was observed in two neutron-irradiated 316 stainless steel samples during room-temperature tests, leading to a combination of high strength and high ductility. These bands were not observed in an unirra...
Saved in:
Published in | Acta materialia Vol. 200; pp. 315 - 327 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.11.2020
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1359-6454 1873-2453 |
DOI | 10.1016/j.actamat.2020.08.057 |
Cover
Abstract | An unusual tensile deformation behaviour in the form of a propagating band along the sample gauge was observed in two neutron-irradiated 316 stainless steel samples during room-temperature tests, leading to a combination of high strength and high ductility. These bands were not observed in an unirradiated counterpart. With the help of in situ high-energy synchrotron x-ray diffraction, the phase-specific crystal information was tracked at different deformation levels in each sample. Post-irradiation and post-deformation samples were examined using electron microscopy to characterize various microstructural features. All samples displayed a deformation-induced martensitic phase transformation, which was identified as a second strain-hardening mechanism accompanying the dislocation hardening. The deformation-induced martensitic transformation was rationalized by the effect of applied stress on the effective martensite start temperature. The results showed that the irradiation did not alter the dislocation hardening and the martensitic transformation mechanisms, but the increased yield strength in irradiated materials facilitated the localized phase transformation at the onset of plastic deformation, in contrast to the unirradiated material which required pre-straining. The hardening effect of the martensitic transformation reduced the tendency towards necking and mitigated the loss of ductility in the irradiated material by carrying the deformation in the form of a propagating band. Despite the beneficial effect from the martensitic transformation, this study indicates that this mechanism cannot not be activated at typical operating temperatures of nuclear reactors.
[Display omitted] |
---|---|
AbstractList | An unusual tensile deformation behaviour in the form of a propagating band along the sample gauge was observed in two neutron-irradiated 316 stainless steel samples during room-temperature tests, leading to a combination of high strength and high ductility. These bands were not observed in an unirradiated counterpart. With the help of in situ high-energy synchrotron x-ray diffraction, the phase-specific crystal information was tracked at different deformation levels in each sample. Post-irradiation and post-deformation samples were examined using electron microscopy to characterize various microstructural features. All samples displayed a deformation-induced martensitic phase transformation, which was identified as a second strain-hardening mechanism accompanying the dislocation hardening. The deformation-induced martensitic transformation was rationalized by the effect of applied stress on the effective martensite start temperature. The results showed that the irradiation did not alter the dislocation hardening and the martensitic transformation mechanisms, but the increased yield strength in irradiated materials facilitated the localized phase transformation at the onset of plastic deformation, in contrast to the unirradiated material which required pre-straining. The hardening effect of the martensitic transformation reduced the tendency towards necking and mitigated the loss of ductility in the irradiated material by carrying the deformation in the form of a propagating band. Despite the beneficial effect from the martensitic transformation, this study indicates that this mechanism cannot not be activated at typical operating temperatures of nuclear reactors.
[Display omitted] An unusual tensile deformation behaviour in the form of a propagating band along the sample gauge was observed in two neutron-irradiated 316 stainless steel samples during room-temperature tests, leading to a combination of high strength and high ductility. These bands were not observed in an unirradiated counterpart. With the help of in situ high-energy synchrotron x-ray diffraction, the phase-specific crystal information was tracked at different deformation levels in each sample. Post-irradiation and post-deformation samples were examined using electron microscopy to characterize various microstructural features. All samples displayed a deformation-induced martensitic phase transformation, which was identified as a second strain-hardening mechanism accompanying the dislocation hardening. The deformation-induced martensitic transformation was rationalized by the effect of applied stress on the effective martensite start temperature. The results showed that the irradiation did not alter the dislocation hardening and the martensitic transformation mechanisms, but the increased yield strength in irradiated materials facilitated the localized phase transformation at the onset of plastic deformation, in contrast to the unirradiated material which required pre-straining. The hardening effect of the martensitic transformation reduced the tendency towards necking and mitigated the loss of ductility in the irradiated material by carrying the deformation in the form of a propagating band. Despite the beneficial effect from the martensitic transformation, this study indicates that this mechanism cannot not be activated at typical operating temperatures of nuclear reactors. |
Author | Li, Meimei Wu, Yaqiao Almer, Jonathan Zhang, Xuan Xu, Chi Park, Jun-Sang Chen, Wei-Ying Kenesei, Peter Burns, Jatuporn Chen, Yiren |
Author_xml | – sequence: 1 givenname: Xuan surname: Zhang fullname: Zhang, Xuan email: xuanzhang@anl.gov organization: Nuclear Science and Engineering Division, Argonne National Laboratory, Lemont IL 60439, United States of America – sequence: 2 givenname: Chi surname: Xu fullname: Xu, Chi email: xuchi@bnu.edu.cn organization: Nuclear Science and Engineering Division, Argonne National Laboratory, Lemont IL 60439, United States of America – sequence: 3 givenname: Yiren surname: Chen fullname: Chen, Yiren email: yiren_chen@anl.gov organization: Nuclear Science and Engineering Division, Argonne National Laboratory, Lemont IL 60439, United States of America – sequence: 4 givenname: Wei-Ying surname: Chen fullname: Chen, Wei-Ying email: wychen@anl.gov organization: Nuclear Science and Engineering Division, Argonne National Laboratory, Lemont IL 60439, United States of America – sequence: 5 givenname: Jun-Sang surname: Park fullname: Park, Jun-Sang email: parkjs@anl.gov organization: X-ray Science Division, Argonne National Laboratory, Lemont IL 60439, United States of America – sequence: 6 givenname: Peter surname: Kenesei fullname: Kenesei, Peter email: kenesei@anl.gov organization: X-ray Science Division, Argonne National Laboratory, Lemont IL 60439, United States of America – sequence: 7 givenname: Jonathan surname: Almer fullname: Almer, Jonathan email: almer@anl.gov organization: X-ray Science Division, Argonne National Laboratory, Lemont IL 60439, United States of America – sequence: 8 givenname: Jatuporn surname: Burns fullname: Burns, Jatuporn email: Jatuporn.Burns@inl.gov organization: Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, United States of America – sequence: 9 givenname: Yaqiao surname: Wu fullname: Wu, Yaqiao email: YaqiaoWu@boisestate.edu organization: Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, United States of America – sequence: 10 givenname: Meimei surname: Li fullname: Li, Meimei email: mli@anl.gov organization: Nuclear Science and Engineering Division, Argonne National Laboratory, Lemont IL 60439, United States of America |
BackLink | https://www.osti.gov/servlets/purl/1669111$$D View this record in Osti.gov |
BookMark | eNqFkMtOBCEQRYnRxOcnmBD3tNA0_YgLY4w6JiZudE1oKBwmIxhgjP0Dfre0Y1y4cUWFuvdW1TlEuz54QOiU0YpR1p6vKqWzelW5qmlNK9pXVHQ76ID1HSd1I_huqbkYSNuIZh8dprSilNVdQw_Q58K9LAl4iC8TTpPXyxhyDB5_kKjKT96YCQeLDdgQywgXPHHebDQY_KpiBp9cdhrnqHz6lWDnscIeNnMUcTEq41QulqfpDTBnbQlWzq8hpVIBrI_RnlXrBCc_7xF6vr15ul6Qh8e7--urB6KbZshEK2g7ZkbRcVNDX0PbMOgGZvU48rGzVoOy49gMvBXMKhCWWyXAiF6VNuP8CJ1tc0PKTibtMuilDt6DzpK17cAYKyKxFekYUopg5Vt05dhJMipn4nIlf4jLmbikvSzEi-_ij6_kf_ModNz6X_fl1g3l_ncHcV4PfAHt4rydCe6fhC8vMKcS |
CitedBy_id | crossref_primary_10_1016_j_actamat_2025_120786 crossref_primary_10_1016_j_net_2023_09_015 crossref_primary_10_1007_s11661_023_06986_1 crossref_primary_10_2139_ssrn_4193499 crossref_primary_10_1016_j_msea_2022_143726 crossref_primary_10_1016_j_jnucmat_2022_153572 crossref_primary_10_1016_j_jnucmat_2023_154338 crossref_primary_10_1016_j_jnucmat_2021_152874 crossref_primary_10_1016_j_matdes_2025_113692 crossref_primary_10_1098_rspa_2022_0633 crossref_primary_10_1016_j_actamat_2022_117889 crossref_primary_10_1016_j_jnucmat_2022_153911 crossref_primary_10_1103_PhysRevMaterials_6_053606 crossref_primary_10_1016_j_msea_2024_147380 crossref_primary_10_1016_j_ijplas_2023_103612 crossref_primary_10_5006_4655 crossref_primary_10_1016_j_jeurceramsoc_2023_11_058 crossref_primary_10_1039_D1EE00638J crossref_primary_10_1016_j_actamat_2022_118434 crossref_primary_10_1016_j_actamat_2024_120409 crossref_primary_10_1016_j_jmst_2024_11_057 crossref_primary_10_1016_j_cossms_2023_101132 crossref_primary_10_1016_j_matchar_2021_111218 crossref_primary_10_1016_j_scriptamat_2022_114690 |
Cites_doi | 10.1016/j.actamat.2003.12.023 10.1016/S0022-3115(96)00218-8 10.1016/S0022-3115(98)00163-9 10.1016/j.jnucmat.2018.06.004 10.1063/1.117951 10.1016/j.actamat.2014.05.026 10.1107/S0021889869006881 10.1016/j.msea.2013.03.071 10.1016/j.jnucmat.2018.05.068 10.1063/1.4974246 10.1016/j.jnucmat.2015.07.009 10.1103/PhysRev.85.1060.2 10.1016/j.jnucmat.2018.04.043 10.1016/j.ijplas.2009.03.003 10.1016/j.actamat.2018.07.008 10.1016/0001-6160(53)90083-2 10.1016/j.msea.2003.11.084 10.1016/j.jnucmat.2014.02.037 10.1016/S0022-3115(96)00484-9 10.1016/j.scriptamat.2006.10.009 10.1016/j.scriptamat.2008.01.023 10.1680/ieacifcacc.48748.0019 10.1016/0001-6160(53)90006-6 10.1007/BF02647406 10.1016/j.jnucmat.2010.06.010 10.1016/j.mtla.2019.100208 10.1016/j.jnucmat.2008.12.115 10.1016/j.jnucmat.2014.02.018 10.1016/0022-3115(93)90129-M 10.1016/S1359-6454(99)00200-1 10.1016/j.jnucmat.2015.07.013 10.1179/mst.1998.14.12.1213 10.1016/j.msea.2014.12.017 10.1016/j.actamat.2004.05.003 10.1016/j.actamat.2016.12.038 10.1016/j.scriptamat.2016.12.025 10.1016/S1359-6454(98)00014-7 10.3989/revmetalm.0920 |
ContentType | Journal Article |
Copyright | 2020 Acta Materialia Inc. |
Copyright_xml | – notice: 2020 Acta Materialia Inc. |
CorporateAuthor | Argonne National Lab. (ANL), Argonne, IL (United States) |
CorporateAuthor_xml | – name: Argonne National Lab. (ANL), Argonne, IL (United States) |
DBID | AAYXX CITATION OIOZB OTOTI |
DOI | 10.1016/j.actamat.2020.08.057 |
DatabaseName | CrossRef OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2453 |
EndPage | 327 |
ExternalDocumentID | 1669111 10_1016_j_actamat_2020_08_057 S1359645420306649 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNEU ABTAH ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD AEBSH AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SSM SSQ SSZ T5K T9H TN5 XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH AALMO ABPIF ABPTK OIOZB OTOTI |
ID | FETCH-LOGICAL-c449t-cae671db573d2e82e641e791fcbb3b7ffceafbb493651fae5f3fa5ed58a3b7133 |
IEDL.DBID | .~1 |
ISSN | 1359-6454 |
IngestDate | Thu May 18 22:41:16 EDT 2023 Tue Jul 01 01:30:06 EDT 2025 Thu Apr 24 22:59:14 EDT 2025 Fri Feb 23 02:39:24 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Neutron irradiation Martensitic transformation In situ x-ray diffraction Tensile deformation Stainless steels |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c449t-cae671db573d2e82e641e791fcbb3b7ffceafbb493651fae5f3fa5ed58a3b7133 |
Notes | USDOE AC02-06CH11357; AC07-051D14517 USDOE Office of Nuclear Energy USDOE Office of Nuclear Energy - Nuclear Energy Enabling Technologies (NEET) |
OpenAccessLink | https://www.osti.gov/servlets/purl/1669111 |
PageCount | 13 |
ParticipantIDs | osti_scitechconnect_1669111 crossref_primary_10_1016_j_actamat_2020_08_057 crossref_citationtrail_10_1016_j_actamat_2020_08_057 elsevier_sciencedirect_doi_10_1016_j_actamat_2020_08_057 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-01 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Acta materialia |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Pawel, Rowcliffe, Alexander, Grossbeck, Shiba (bib0003) 1996; 233-237 Herring, Galt (bib0048) 1952; 85 Williamson, Hall (bib0025) 1953; 1 Zhang, Xu, Wang, Chen, Li, Almer, Benda, Kenesei, Mashayekhi, Park, Westferro (bib0024) 2017; 88 K.Q. Bagley, J.W. Barnaby, A.S. Fraser, 16. Irradiation embrittlement ofaustenitic stainless steels, Irradiation embrittlement and creep in fuel cladding and core components, pp. 143–153. Eiehelman, Hull (bib0045) 1953; 45 McClintock, Vevera, Riemer, Gallmeier, Hyres, Ferguson (bib0019) 2014; 450 Zhang, Li, Park, Kenesei, Almer, Xu, Stubbins (bib0020) 2017; 126 Rabenberg, Jaques, Sencer, Garner, Freyer, Okita, Butt (bib0041) 2014; 448 Zhang, Knott (bib0049) 1999; 47 Gussev, McClintock, Garner (bib0013) 2016; 468 Tan, Busby (bib0040) 2015; 465 Cullity, Stock (bib0030) 2001 Jenkins, K.M. A. (bib0038) 2000 Byun, Farrell (bib0001) 2004; 52 Li, Wang, Almer (bib0027) 2014; 76 Yang, Chen, Huang, Allen, Rao (bib0037) 2016 Xu, Chen, Zhang, Wu, Li, Yang (bib0034) 2018; 507 Miao, Mo, Zhou, Liu, Lan, Zhang, Miller, Powers, Almer, Stubbins (bib0008) 2015; 625 Gusev, Maksimkin, Garner (bib0018) 2010; 403 Huang, Matlock, Krauss (bib0015) 1989; 20 Gusev, Maksimkin, Osipov, Garner (bib0017) 2009; 386-88 Spencer, Embury, Conlon, Véron, Bréchet (bib0007) 2004; 387–389 Hedström, Lienert, Almer, Odén (bib0029) 2007; 56 Grässel, Frommeyer (bib0014) 1998; 14 Zhang, Li, Park, Kenesei, Sharma, Almer (bib0022) 2018; 508 Byun, Hashimoto, Farrell (bib0016) 2004; 52 Ungár, Borbély (bib0026) 1996; 69 Das, Tarafder (bib0009) 2009; 25 Rowcliffe, Robertson, Klueh, Shiba, Alexander, Grossbeck, Jitsukawa (bib0004) 1998; 258-263 Odnobokova, Kipelova, Belyakov, Kaibyshev (bib0036) 2014; 63 Dickson (bib0032) 1969; 2 Noyan, Cohen (bib0044) 1987 Renault-Laborne, Hure, Malaplate, Gavoille, Sefta, Tanguy (bib0006) 2018; 508 Pawel, Rowcliffe, Lucas, Zinkle (bib0002) 1996; 239 The Program Anizc. <http://metal.elte.hu/anizc/>. Patel, Cohen (bib0043) 1953; 1 Clausen, Lorentzen, Leffers (bib0035) 1998; 46 Tian, Gorbatov, Borgenstam, Ruban, Hedstrom (bib0012) 2017; 48A Lucas (bib0039) 1993; 206 Man, Kubena, Smaga, Man, Jaevenpaa, Weidner, Chlup, Polak (bib0011) 2016 Miao, Yao, Lian, Park, Almer, Bhattacharya, Yacout, Mo (bib0021) 2017; 131 (bib0031) 2013 Xu, Zhang, Chen, Li, Park, Kenesei, Almer, Yang (bib0023) 2018; 156 Mao, Sun, Huang, Shiau, Garner, Freyer, Wharry (bib0042) 2019; 5 Solomon, Solomon (bib0046) 2010; 46 Perdahcıoğlu, Geijselaers, Groen (bib0047) 2008; 58 Ueji, Takagi, Tsuchida, Shinagawa, Tanaka, Mizuguchi (bib0010) 2013; 576 Miao (10.1016/j.actamat.2020.08.057_bib0008) 2015; 625 Renault-Laborne (10.1016/j.actamat.2020.08.057_bib0006) 2018; 508 Solomon (10.1016/j.actamat.2020.08.057_bib0046) 2010; 46 (10.1016/j.actamat.2020.08.057_bib0031) 2013 Man (10.1016/j.actamat.2020.08.057_bib0011) 2016 Gussev (10.1016/j.actamat.2020.08.057_bib0013) 2016; 468 Zhang (10.1016/j.actamat.2020.08.057_bib0049) 1999; 47 Li (10.1016/j.actamat.2020.08.057_bib0027) 2014; 76 Pawel (10.1016/j.actamat.2020.08.057_bib0002) 1996; 239 Williamson (10.1016/j.actamat.2020.08.057_bib0025) 1953; 1 Eiehelman (10.1016/j.actamat.2020.08.057_bib0045) 1953; 45 Yang (10.1016/j.actamat.2020.08.057_bib0037) 2016 Tan (10.1016/j.actamat.2020.08.057_bib0040) 2015; 465 Noyan (10.1016/j.actamat.2020.08.057_bib0044) 1987 Ueji (10.1016/j.actamat.2020.08.057_bib0010) 2013; 576 Clausen (10.1016/j.actamat.2020.08.057_bib0035) 1998; 46 Spencer (10.1016/j.actamat.2020.08.057_bib0007) 2004; 387–389 Byun (10.1016/j.actamat.2020.08.057_bib0001) 2004; 52 Pawel (10.1016/j.actamat.2020.08.057_bib0003) 1996; 233-237 Xu (10.1016/j.actamat.2020.08.057_bib0034) 2018; 507 Perdahcıoğlu (10.1016/j.actamat.2020.08.057_bib0047) 2008; 58 Patel (10.1016/j.actamat.2020.08.057_bib0043) 1953; 1 Xu (10.1016/j.actamat.2020.08.057_bib0023) 2018; 156 Jenkins (10.1016/j.actamat.2020.08.057_bib0038) 2000 Mao (10.1016/j.actamat.2020.08.057_bib0042) 2019; 5 Rowcliffe (10.1016/j.actamat.2020.08.057_bib0004) 1998; 258-263 Herring (10.1016/j.actamat.2020.08.057_bib0048) 1952; 85 Huang (10.1016/j.actamat.2020.08.057_bib0015) 1989; 20 Zhang (10.1016/j.actamat.2020.08.057_bib0020) 2017; 126 Zhang (10.1016/j.actamat.2020.08.057_bib0024) 2017; 88 McClintock (10.1016/j.actamat.2020.08.057_bib0019) 2014; 450 Byun (10.1016/j.actamat.2020.08.057_bib0016) 2004; 52 Miao (10.1016/j.actamat.2020.08.057_bib0021) 2017; 131 Gusev (10.1016/j.actamat.2020.08.057_bib0018) 2010; 403 Ungár (10.1016/j.actamat.2020.08.057_bib0026) 1996; 69 Odnobokova (10.1016/j.actamat.2020.08.057_bib0036) 2014; 63 Tian (10.1016/j.actamat.2020.08.057_bib0012) 2017; 48A Gusev (10.1016/j.actamat.2020.08.057_bib0017) 2009; 386-88 10.1016/j.actamat.2020.08.057_bib0028 Rabenberg (10.1016/j.actamat.2020.08.057_bib0041) 2014; 448 10.1016/j.actamat.2020.08.057_bib0005 Dickson (10.1016/j.actamat.2020.08.057_bib0032) 1969; 2 Das (10.1016/j.actamat.2020.08.057_bib0009) 2009; 25 Cullity (10.1016/j.actamat.2020.08.057_bib0030) 2001 Zhang (10.1016/j.actamat.2020.08.057_bib0022) 2018; 508 Hedström (10.1016/j.actamat.2020.08.057_bib0029) 2007; 56 Lucas (10.1016/j.actamat.2020.08.057_bib0039) 1993; 206 Grässel (10.1016/j.actamat.2020.08.057_bib0014) 1998; 14 |
References_xml | – volume: 507 start-page: 188 year: 2018 end-page: 197 ident: bib0034 article-title: Effects of neutron irradiation and post-irradiation annealing on the microstructure of HT-UPS stainless steel publication-title: J. Nucl. Mater. – volume: 625 start-page: 146 year: 2015 end-page: 152 ident: bib0008 article-title: synchrotron tensile investigations on the phase responses within an oxide dispersion-strengthened (ODS) 304 steel publication-title: Mater. Sci. Eng.: A – volume: 403 start-page: 121 year: 2010 end-page: 125 ident: bib0018 article-title: Peculiarities of plastic flow involving “deformation waves” observed during low-temperature tensile tests of highly irradiated 12Cr18Ni10Ti and 08Cr16Ni11Mo3 steels publication-title: J. Nucl. Mater. – volume: 56 start-page: 213 year: 2007 end-page: 216 ident: bib0029 article-title: Stepwise transformation behavior of the strain-induced martensitic transformation in a metastable stainless steel publication-title: Scr. Mater. – volume: 2 start-page: 176 year: 1969 end-page: 180 ident: bib0032 article-title: The significance of texture parameters in phase analysis by X-ray diffraction publication-title: J. Appl. Crystallogr. – volume: 58 start-page: 947 year: 2008 end-page: 950 ident: bib0047 article-title: Influence of plastic strain on deformation-induced martensitic transformations publication-title: Scr. Mater. – reference: K.Q. Bagley, J.W. Barnaby, A.S. Fraser, 16. Irradiation embrittlement ofaustenitic stainless steels, Irradiation embrittlement and creep in fuel cladding and core components, pp. 143–153. – volume: 69 start-page: 3173 year: 1996 end-page: 3175 ident: bib0026 article-title: The effect of dislocation contrast on x‐ray line broadening: a new approach to line profile analysis publication-title: Appl. Phys. Lett. – volume: 508 start-page: 488 year: 2018 end-page: 504 ident: bib0006 article-title: Tensile properties and deformation microstructure of highly neutron-irradiated 316 stainless steels at low and fast strain rate publication-title: J. Nucl. Mater. – volume: 126 start-page: 67 year: 2017 end-page: 76 ident: bib0020 article-title: high-energy X-ray diffraction study of tensile deformation of neutron-irradiated polycrystalline Fe-9%Cr alloy publication-title: Acta Mater. – volume: 47 start-page: 3483 year: 1999 end-page: 3495 ident: bib0049 article-title: Cleavage fracture in bainitic and martensitic microstructures publication-title: Acta Mater. – volume: 450 start-page: 130 year: 2014 end-page: 140 ident: bib0019 article-title: Post-irradiation tensile properties of the first and second operational target modules at the Spallation Neutron Source publication-title: J. Nucl. Mater. – volume: 45 year: 1953 ident: bib0045 publication-title: Trans. Am. Soc. Metals – volume: 20 start-page: 1239 year: 1989 end-page: 1246 ident: bib0015 article-title: Martensite formation, strain rate sensitivity, and deformation-behavior of type-304 stainless-steel sheet publication-title: Metallurgical Mater. Trans. a-Phys. Metall. Mater. Sci. – volume: 52 start-page: 3889 year: 2004 end-page: 3899 ident: bib0016 article-title: Temperature dependence of strain hardening and plastic instability behaviors in austenitic stainless steels publication-title: Acta Mater. – volume: 52 start-page: 1597 year: 2004 end-page: 1608 ident: bib0001 article-title: Plastic instability in polycrystalline metals after low temperature irradiation publication-title: Acta Mater. – volume: 387–389 start-page: 873 year: 2004 end-page: 881 ident: bib0007 article-title: Strengthening via the formation of strain-induced martensite in stainless steels publication-title: Mater. Sci. Eng.: A – volume: 576 start-page: 14 year: 2013 end-page: 20 ident: bib0010 article-title: Crystallographic orientation dependence of ε martensite transformation during tensile deformation of polycrystalline 30% Mn austenitic steel publication-title: Mater. Sci. Eng.: A – volume: 5 year: 2019 ident: bib0042 article-title: Grain orientation dependence of nanoindentation and deformation-induced martensitic phase transformation in neutron irradiated AISI 304 L stainless steel publication-title: Materialia – year: 2000 ident: bib0038 article-title: Characterisation of Radiation Damage By Transmission Electron Microscopy – volume: 233-237 start-page: 202 year: 1996 end-page: 206 ident: bib0003 article-title: Effects of low temperature neutron irradiation on deformation behavior of austenitic stainless steels publication-title: J. Nucl. Mater. – volume: 63 year: 2014 ident: bib0036 article-title: Microstructure evolution in a 316 L stainless steel subjected to multidirectional forging and unidirectional bar rolling publication-title: IOP Conf. Series: Mater. Sci. Eng. – volume: 131 start-page: 29 year: 2017 end-page: 32 ident: bib0021 article-title: synchrotron investigation of grain growth behavior of nano-grained UO2 publication-title: Scr. Mater. – year: 1987 ident: bib0044 article-title: Residual Stress Measurement By Diffraction and Interpretation – volume: 386-88 start-page: 273 year: 2009 end-page: 276 ident: bib0017 article-title: Anomalously large deformation of 12Cr18Ni10Ti austenitic steel irradiated to 55 dpa at 310 °C in the BN-350 reactor publication-title: J. Nucl. Mater. – start-page: 2137 year: 2016 end-page: 2149 ident: bib0037 article-title: Irradiation microstructure of austenitic steels and cast steels irradiated in the BOR-60 reactor at 320°C publication-title: Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems — Water Reactors – volume: 206 start-page: 287 year: 1993 end-page: 305 ident: bib0039 article-title: The evolution of mechanical property change in irradiated austenitic stainless steels publication-title: J. Nucl. Mater. – volume: 239 start-page: 126 year: 1996 end-page: 131 ident: bib0002 article-title: Irradiation performance of stainless steels for ITER application publication-title: J. Nucl. Mater. – volume: 14 start-page: 1213 year: 1998 end-page: 1217 ident: bib0014 article-title: Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe–Mn–Si–AI steels publication-title: Mater. Sci. Technol. – year: 2001 ident: bib0030 article-title: Elements of X-ray Diffraction – volume: 48A start-page: 1 year: 2017 end-page: 7 ident: bib0012 article-title: Deformation microstructure and deformation-induced martensite in austenitic Fe-Cr-Ni alloys depending on stacking fault energy publication-title: Metallurgical Mater. Trans. a-Phys. Metall. Mater. Sci. – volume: 156 start-page: 330 year: 2018 end-page: 341 ident: bib0023 article-title: In-situ high-energy X-ray characterization of neutron irradiated HT-UPS stainless steel under tensile deformation publication-title: Acta Mater. – volume: 46 start-page: 121 year: 2010 end-page: 128 ident: bib0046 article-title: Deformation induced martensite in AISI 316 stainless steel publication-title: Revista de Metalurgia – start-page: 2299 year: 2016 end-page: 2306 ident: bib0011 article-title: Microstructural changes during deformation of AISI 300 grade austenitic stainless steels: impact of chemical heterogeneity publication-title: 21st European Conference on Fracture – volume: 85 start-page: 1060 year: 1952 end-page: 1061 ident: bib0048 article-title: Elastic and Plastic Properties of Very Small Metal Specimens publication-title: Physical Rev. – volume: 1 start-page: 531 year: 1953 end-page: 538 ident: bib0043 article-title: Criterion for the action of applied stress in the martensitic transformation publication-title: Acta Metallurgica – volume: 88 year: 2017 ident: bib0024 article-title: iRadMat: a thermo-mechanical testing system for publication-title: Rev. Sci. Instr. – volume: 1 start-page: 22 year: 1953 end-page: 31 ident: bib0025 article-title: X-ray line broadening from filed aluminium and wolfram publication-title: Acta Metallurgica – volume: 76 start-page: 381 year: 2014 end-page: 393 ident: bib0027 article-title: Dislocation evolution during tensile deformation in ferritic-martensitic steels revealed by high-energy X-rays publication-title: Acta Mater. – volume: 258-263 start-page: 1275 year: 1998 end-page: 1279 ident: bib0004 article-title: Fracture toughness and tensile behavior of ferritic–martensitic steels irradiated at low temperatures publication-title: J. Nucl. Mater. – volume: 465 start-page: 724 year: 2015 end-page: 730 ident: bib0040 article-title: Formulating the strength factor α for improved predictability of radiation hardening publication-title: J. Nucl. Mater. – year: 2013 ident: bib0031 publication-title: Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation – volume: 508 start-page: 556 year: 2018 end-page: 566 ident: bib0022 article-title: High-energy x-ray diffraction microscopy study of deformation microstructures in neutron-irradiated polycrystalline Fe-9%Cr publication-title: J. Nucl. Mater. – volume: 468 start-page: 210 year: 2016 end-page: 220 ident: bib0013 article-title: Analysis of structure and deformation behavior of AISI 316 L tensile specimens from the second operational target module at the Spallation Neutron Source publication-title: J. Nucl. Mater. – reference: The Program Anizc. <http://metal.elte.hu/anizc/>. – volume: 46 start-page: 3087 year: 1998 end-page: 3098 ident: bib0035 article-title: Self-consistent modelling of the plastic deformation of f.c.c. polycrystals and its implications for diffraction measurements of internal stresses publication-title: Acta Mater. – volume: 448 start-page: 315 year: 2014 end-page: 324 ident: bib0041 article-title: Mechanical behavior of AISI 304SS determined by miniature test methods after neutron irradiation to 28dpa publication-title: J. Nucl. Mater. – volume: 25 start-page: 2222 year: 2009 end-page: 2247 ident: bib0009 article-title: Experimental investigation on martensitic transformation and fracture morphologies of austenitic stainless steel publication-title: Int. J. Plast. – volume: 52 start-page: 1597 issue: 6 year: 2004 ident: 10.1016/j.actamat.2020.08.057_bib0001 article-title: Plastic instability in polycrystalline metals after low temperature irradiation publication-title: Acta Mater. doi: 10.1016/j.actamat.2003.12.023 – volume: 233-237 start-page: 202 year: 1996 ident: 10.1016/j.actamat.2020.08.057_bib0003 article-title: Effects of low temperature neutron irradiation on deformation behavior of austenitic stainless steels publication-title: J. Nucl. Mater. doi: 10.1016/S0022-3115(96)00218-8 – volume: 258-263 start-page: 1275 year: 1998 ident: 10.1016/j.actamat.2020.08.057_bib0004 article-title: Fracture toughness and tensile behavior of ferritic–martensitic steels irradiated at low temperatures publication-title: J. Nucl. Mater. doi: 10.1016/S0022-3115(98)00163-9 – volume: 508 start-page: 556 year: 2018 ident: 10.1016/j.actamat.2020.08.057_bib0022 article-title: High-energy x-ray diffraction microscopy study of deformation microstructures in neutron-irradiated polycrystalline Fe-9%Cr publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2018.06.004 – volume: 69 start-page: 3173 issue: 21 year: 1996 ident: 10.1016/j.actamat.2020.08.057_bib0026 article-title: The effect of dislocation contrast on x‐ray line broadening: a new approach to line profile analysis publication-title: Appl. Phys. Lett. doi: 10.1063/1.117951 – volume: 76 start-page: 381 year: 2014 ident: 10.1016/j.actamat.2020.08.057_bib0027 article-title: Dislocation evolution during tensile deformation in ferritic-martensitic steels revealed by high-energy X-rays publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.05.026 – volume: 2 start-page: 176 issue: 4 year: 1969 ident: 10.1016/j.actamat.2020.08.057_bib0032 article-title: The significance of texture parameters in phase analysis by X-ray diffraction publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889869006881 – volume: 576 start-page: 14 year: 2013 ident: 10.1016/j.actamat.2020.08.057_bib0010 article-title: Crystallographic orientation dependence of ε martensite transformation during tensile deformation of polycrystalline 30% Mn austenitic steel publication-title: Mater. Sci. Eng.: A doi: 10.1016/j.msea.2013.03.071 – year: 2001 ident: 10.1016/j.actamat.2020.08.057_bib0030 – volume: 508 start-page: 488 year: 2018 ident: 10.1016/j.actamat.2020.08.057_bib0006 article-title: Tensile properties and deformation microstructure of highly neutron-irradiated 316 stainless steels at low and fast strain rate publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2018.05.068 – volume: 88 issue: 1 year: 2017 ident: 10.1016/j.actamat.2020.08.057_bib0024 article-title: iRadMat: a thermo-mechanical testing system for in situ high-energy X-ray characterization of radioactive specimens publication-title: Rev. Sci. Instr. doi: 10.1063/1.4974246 – year: 1987 ident: 10.1016/j.actamat.2020.08.057_bib0044 – volume: 465 start-page: 724 year: 2015 ident: 10.1016/j.actamat.2020.08.057_bib0040 article-title: Formulating the strength factor α for improved predictability of radiation hardening publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2015.07.009 – volume: 85 start-page: 1060 issue: 6 year: 1952 ident: 10.1016/j.actamat.2020.08.057_bib0048 article-title: Elastic and Plastic Properties of Very Small Metal Specimens publication-title: Physical Rev. doi: 10.1103/PhysRev.85.1060.2 – volume: 45 issue: 77 year: 1953 ident: 10.1016/j.actamat.2020.08.057_bib0045 publication-title: Trans. Am. Soc. Metals – volume: 507 start-page: 188 year: 2018 ident: 10.1016/j.actamat.2020.08.057_bib0034 article-title: Effects of neutron irradiation and post-irradiation annealing on the microstructure of HT-UPS stainless steel publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2018.04.043 – volume: 25 start-page: 2222 issue: 11 year: 2009 ident: 10.1016/j.actamat.2020.08.057_bib0009 article-title: Experimental investigation on martensitic transformation and fracture morphologies of austenitic stainless steel publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2009.03.003 – volume: 156 start-page: 330 year: 2018 ident: 10.1016/j.actamat.2020.08.057_bib0023 article-title: In-situ high-energy X-ray characterization of neutron irradiated HT-UPS stainless steel under tensile deformation publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.07.008 – volume: 1 start-page: 531 issue: 5 year: 1953 ident: 10.1016/j.actamat.2020.08.057_bib0043 article-title: Criterion for the action of applied stress in the martensitic transformation publication-title: Acta Metallurgica doi: 10.1016/0001-6160(53)90083-2 – volume: 387–389 start-page: 873 year: 2004 ident: 10.1016/j.actamat.2020.08.057_bib0007 article-title: Strengthening via the formation of strain-induced martensite in stainless steels publication-title: Mater. Sci. Eng.: A doi: 10.1016/j.msea.2003.11.084 – volume: 450 start-page: 130 issue: 1 year: 2014 ident: 10.1016/j.actamat.2020.08.057_bib0019 article-title: Post-irradiation tensile properties of the first and second operational target modules at the Spallation Neutron Source publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2014.02.037 – volume: 239 start-page: 126 year: 1996 ident: 10.1016/j.actamat.2020.08.057_bib0002 article-title: Irradiation performance of stainless steels for ITER application publication-title: J. Nucl. Mater. doi: 10.1016/S0022-3115(96)00484-9 – start-page: 2137 year: 2016 ident: 10.1016/j.actamat.2020.08.057_bib0037 article-title: Irradiation microstructure of austenitic steels and cast steels irradiated in the BOR-60 reactor at 320°C – volume: 56 start-page: 213 issue: 3 year: 2007 ident: 10.1016/j.actamat.2020.08.057_bib0029 article-title: Stepwise transformation behavior of the strain-induced martensitic transformation in a metastable stainless steel publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2006.10.009 – volume: 58 start-page: 947 issue: 11 year: 2008 ident: 10.1016/j.actamat.2020.08.057_bib0047 article-title: Influence of plastic strain on deformation-induced martensitic transformations publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2008.01.023 – ident: 10.1016/j.actamat.2020.08.057_bib0005 doi: 10.1680/ieacifcacc.48748.0019 – volume: 1 start-page: 22 issue: 1 year: 1953 ident: 10.1016/j.actamat.2020.08.057_bib0025 article-title: X-ray line broadening from filed aluminium and wolfram publication-title: Acta Metallurgica doi: 10.1016/0001-6160(53)90006-6 – volume: 20 start-page: 1239 issue: 7 year: 1989 ident: 10.1016/j.actamat.2020.08.057_bib0015 article-title: Martensite formation, strain rate sensitivity, and deformation-behavior of type-304 stainless-steel sheet publication-title: Metallurgical Mater. Trans. a-Phys. Metall. Mater. Sci. doi: 10.1007/BF02647406 – volume: 403 start-page: 121 issue: 1 year: 2010 ident: 10.1016/j.actamat.2020.08.057_bib0018 article-title: Peculiarities of plastic flow involving “deformation waves” observed during low-temperature tensile tests of highly irradiated 12Cr18Ni10Ti and 08Cr16Ni11Mo3 steels publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2010.06.010 – volume: 5 year: 2019 ident: 10.1016/j.actamat.2020.08.057_bib0042 article-title: Grain orientation dependence of nanoindentation and deformation-induced martensitic phase transformation in neutron irradiated AISI 304 L stainless steel publication-title: Materialia doi: 10.1016/j.mtla.2019.100208 – volume: 386-88 start-page: 273 year: 2009 ident: 10.1016/j.actamat.2020.08.057_bib0017 article-title: Anomalously large deformation of 12Cr18Ni10Ti austenitic steel irradiated to 55 dpa at 310 °C in the BN-350 reactor publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2008.12.115 – volume: 448 start-page: 315 issue: 1 year: 2014 ident: 10.1016/j.actamat.2020.08.057_bib0041 article-title: Mechanical behavior of AISI 304SS determined by miniature test methods after neutron irradiation to 28dpa publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2014.02.018 – volume: 48A start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.actamat.2020.08.057_bib0012 article-title: Deformation microstructure and deformation-induced martensite in austenitic Fe-Cr-Ni alloys depending on stacking fault energy publication-title: Metallurgical Mater. Trans. a-Phys. Metall. Mater. Sci. – year: 2000 ident: 10.1016/j.actamat.2020.08.057_bib0038 – volume: 206 start-page: 287 issue: 2 year: 1993 ident: 10.1016/j.actamat.2020.08.057_bib0039 article-title: The evolution of mechanical property change in irradiated austenitic stainless steels publication-title: J. Nucl. Mater. doi: 10.1016/0022-3115(93)90129-M – volume: 47 start-page: 3483 issue: 12 year: 1999 ident: 10.1016/j.actamat.2020.08.057_bib0049 article-title: Cleavage fracture in bainitic and martensitic microstructures publication-title: Acta Mater. doi: 10.1016/S1359-6454(99)00200-1 – start-page: 2299 year: 2016 ident: 10.1016/j.actamat.2020.08.057_bib0011 article-title: Microstructural changes during deformation of AISI 300 grade austenitic stainless steels: impact of chemical heterogeneity – volume: 468 start-page: 210 year: 2016 ident: 10.1016/j.actamat.2020.08.057_bib0013 article-title: Analysis of structure and deformation behavior of AISI 316 L tensile specimens from the second operational target module at the Spallation Neutron Source publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2015.07.013 – volume: 14 start-page: 1213 issue: 12 year: 1998 ident: 10.1016/j.actamat.2020.08.057_bib0014 article-title: Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe–Mn–Si–AI steels publication-title: Mater. Sci. Technol. doi: 10.1179/mst.1998.14.12.1213 – volume: 625 start-page: 146 year: 2015 ident: 10.1016/j.actamat.2020.08.057_bib0008 article-title: In situ synchrotron tensile investigations on the phase responses within an oxide dispersion-strengthened (ODS) 304 steel publication-title: Mater. Sci. Eng.: A doi: 10.1016/j.msea.2014.12.017 – volume: 52 start-page: 3889 issue: 13 year: 2004 ident: 10.1016/j.actamat.2020.08.057_bib0016 article-title: Temperature dependence of strain hardening and plastic instability behaviors in austenitic stainless steels publication-title: Acta Mater. doi: 10.1016/j.actamat.2004.05.003 – volume: 126 start-page: 67 year: 2017 ident: 10.1016/j.actamat.2020.08.057_bib0020 article-title: In situ high-energy X-ray diffraction study of tensile deformation of neutron-irradiated polycrystalline Fe-9%Cr alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.12.038 – volume: 131 start-page: 29 year: 2017 ident: 10.1016/j.actamat.2020.08.057_bib0021 article-title: In situ synchrotron investigation of grain growth behavior of nano-grained UO2 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2016.12.025 – volume: 46 start-page: 3087 issue: 9 year: 1998 ident: 10.1016/j.actamat.2020.08.057_bib0035 article-title: Self-consistent modelling of the plastic deformation of f.c.c. polycrystals and its implications for diffraction measurements of internal stresses publication-title: Acta Mater. doi: 10.1016/S1359-6454(98)00014-7 – ident: 10.1016/j.actamat.2020.08.057_bib0028 – year: 2013 ident: 10.1016/j.actamat.2020.08.057_bib0031 – volume: 63 year: 2014 ident: 10.1016/j.actamat.2020.08.057_bib0036 article-title: Microstructure evolution in a 316 L stainless steel subjected to multidirectional forging and unidirectional bar rolling publication-title: IOP Conf. Series: Mater. Sci. Eng. – volume: 46 start-page: 121 issue: 2 year: 2010 ident: 10.1016/j.actamat.2020.08.057_bib0046 article-title: Deformation induced martensite in AISI 316 stainless steel publication-title: Revista de Metalurgia doi: 10.3989/revmetalm.0920 |
SSID | ssj0012740 |
Score | 2.4724686 |
Snippet | An unusual tensile deformation behaviour in the form of a propagating band along the sample gauge was observed in two neutron-irradiated 316 stainless steel... |
SourceID | osti crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 315 |
SubjectTerms | In situ x-ray diffraction Martensitic transformation MATERIALS SCIENCE Neutron irradiation Stainless steels Tensile deformation |
Title | High-energy synchrotron x-ray study of deformation-induced martensitic transformation in a neutron-irradiated Type 316 stainless steel |
URI | https://dx.doi.org/10.1016/j.actamat.2020.08.057 https://www.osti.gov/servlets/purl/1669111 |
Volume | 200 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2453 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012740 issn: 1359-6454 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-2453 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012740 issn: 1359-6454 databaseCode: ACRLP dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-2453 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012740 issn: 1359-6454 databaseCode: .~1 dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-2453 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012740 issn: 1359-6454 databaseCode: AIKHN dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2453 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012740 issn: 1359-6454 databaseCode: AKRWK dateStart: 19960101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF6Ce0kOpXmR1k3YQ68be7UPSccQGpwWckkDuYnd1SxxcGWjypBccszv7owkuw4EDL3pNYvQrOaxfN-3jH0bOxdimUYhweZCp0ZjHHROBFsqCDEzuWtRvjd2cqd_3Jv7HXa54sIQrLKP_V1Mb6N1f2XUf83RYjod3UplctKjSqjstZpIfKT-hXP6_GUN85DYdXVMYZMLevofi2f0iK_cOCwMsU1Mxq2SJ2Wp9_PTYI6_3EbqufrEPvY1I7_oXmuf7UB1wPY2lAQP2SvhNQS0RD7-57kKD_WcFrn5k6gdXiERWT6PvIQ1W1FgN45-LflvgnVWhN0KvNmoY9F6WnHHK1jSUGJa1yRkgCUqp-6VK2l5y76aYbTEI4DZEbu7-v7rciL6LRZE0DpvRHBgU1l6k6oygSwBqyWkuYzBe-XTGAO46L3OlTUyOjBRRWegNJnD29jfHrNBNa_ghHFwqcNRPNDypPEqCxpkND7xUY3HZfqZ6dWHLUKvP07bYMyKFdDssej9UZA_Ctoe06DZ-dps0QlwbDPIVl4r3sykApPENtMheZnMSEE3ENQI7aS1lBK-_P_AQ7ZLZx2H8SsbNPUSTrGYafxZO1vP2IeL65-Tm7_yEPl4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdGdwAOCDYQUD582NVrHX8kOU4TU8dGL2ul3SLbeRadurQKqQT_AH837yVp6SSkSdwSWz_L8nPeh_Pez4ydjJ0LsUyjkGBzoVOjUQ86J4ItFYSYmdy1Wb5TO5nrr7fm9oCdb2thKK2y1_2dTm-1dd8y6ldztF4sRjdSmZz4qBJye63On7BDfJO42Q_PLq8m093PBAy8umJhkwsC_C3kGd3hrBuHviFGism4JfMkQ_VvEzVY4Ve3Z30uXrIXvdvIz7qZvWIHUB2x53tkgsfsN6VsCGhr-fiPX1X4Xq_onJv_FLXDFuKR5avIS9gVLAoMyFG0Jb-nzM6K0rcCb_ZcWUQvKu54BRsaSizqmrgM0EvlFMByJS1vC7CWqDDxCWD5ms0vvszOJ6K_ZUEErfNGBAc2laU3qSoTyBKwWkKayxi8Vz6NMYCL3utcWSOjAxNVdAZKkznsxhD3DRtUqwreMg4udTiKBzqhNF5lQYOMxic-qvG4TN8xvV3YIvQU5HQTxrLY5prdFb08CpJHQTdkGoSd7mDrjoPjMUC2lVrxYDMVaCcegw5JygQjEt1A2UaIk9aSVXj__wN_Zk8ns2_XxfXl9GrInlFPV9L4gQ2aegMf0bdp_Kd-7_4BYPn8Iw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-energy+synchrotron+x-ray+study+of+deformation-induced+martensitic+transformation+in+a+neutron-irradiated+Type+316+stainless+steel&rft.jtitle=Acta+materialia&rft.au=Zhang%2C+Xuan&rft.au=Xu%2C+Chi&rft.au=Chen%2C+Yiren&rft.au=Chen%2C+Wei-Ying&rft.date=2020-11-01&rft.pub=Elsevier+Ltd&rft.issn=1359-6454&rft.eissn=1873-2453&rft.volume=200&rft.spage=315&rft.epage=327&rft_id=info:doi/10.1016%2Fj.actamat.2020.08.057&rft.externalDocID=S1359645420306649 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6454&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6454&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6454&client=summon |