High-energy synchrotron x-ray study of deformation-induced martensitic transformation in a neutron-irradiated Type 316 stainless steel

An unusual tensile deformation behaviour in the form of a propagating band along the sample gauge was observed in two neutron-irradiated 316 stainless steel samples during room-temperature tests, leading to a combination of high strength and high ductility. These bands were not observed in an unirra...

Full description

Saved in:
Bibliographic Details
Published inActa materialia Vol. 200; pp. 315 - 327
Main Authors Zhang, Xuan, Xu, Chi, Chen, Yiren, Chen, Wei-Ying, Park, Jun-Sang, Kenesei, Peter, Almer, Jonathan, Burns, Jatuporn, Wu, Yaqiao, Li, Meimei
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.11.2020
Elsevier
Subjects
Online AccessGet full text
ISSN1359-6454
1873-2453
DOI10.1016/j.actamat.2020.08.057

Cover

Abstract An unusual tensile deformation behaviour in the form of a propagating band along the sample gauge was observed in two neutron-irradiated 316 stainless steel samples during room-temperature tests, leading to a combination of high strength and high ductility. These bands were not observed in an unirradiated counterpart. With the help of in situ high-energy synchrotron x-ray diffraction, the phase-specific crystal information was tracked at different deformation levels in each sample. Post-irradiation and post-deformation samples were examined using electron microscopy to characterize various microstructural features. All samples displayed a deformation-induced martensitic phase transformation, which was identified as a second strain-hardening mechanism accompanying the dislocation hardening. The deformation-induced martensitic transformation was rationalized by the effect of applied stress on the effective martensite start temperature. The results showed that the irradiation did not alter the dislocation hardening and the martensitic transformation mechanisms, but the increased yield strength in irradiated materials facilitated the localized phase transformation at the onset of plastic deformation, in contrast to the unirradiated material which required pre-straining. The hardening effect of the martensitic transformation reduced the tendency towards necking and mitigated the loss of ductility in the irradiated material by carrying the deformation in the form of a propagating band. Despite the beneficial effect from the martensitic transformation, this study indicates that this mechanism cannot not be activated at typical operating temperatures of nuclear reactors. [Display omitted]
AbstractList An unusual tensile deformation behaviour in the form of a propagating band along the sample gauge was observed in two neutron-irradiated 316 stainless steel samples during room-temperature tests, leading to a combination of high strength and high ductility. These bands were not observed in an unirradiated counterpart. With the help of in situ high-energy synchrotron x-ray diffraction, the phase-specific crystal information was tracked at different deformation levels in each sample. Post-irradiation and post-deformation samples were examined using electron microscopy to characterize various microstructural features. All samples displayed a deformation-induced martensitic phase transformation, which was identified as a second strain-hardening mechanism accompanying the dislocation hardening. The deformation-induced martensitic transformation was rationalized by the effect of applied stress on the effective martensite start temperature. The results showed that the irradiation did not alter the dislocation hardening and the martensitic transformation mechanisms, but the increased yield strength in irradiated materials facilitated the localized phase transformation at the onset of plastic deformation, in contrast to the unirradiated material which required pre-straining. The hardening effect of the martensitic transformation reduced the tendency towards necking and mitigated the loss of ductility in the irradiated material by carrying the deformation in the form of a propagating band. Despite the beneficial effect from the martensitic transformation, this study indicates that this mechanism cannot not be activated at typical operating temperatures of nuclear reactors. [Display omitted]
An unusual tensile deformation behaviour in the form of a propagating band along the sample gauge was observed in two neutron-irradiated 316 stainless steel samples during room-temperature tests, leading to a combination of high strength and high ductility. These bands were not observed in an unirradiated counterpart. With the help of in situ high-energy synchrotron x-ray diffraction, the phase-specific crystal information was tracked at different deformation levels in each sample. Post-irradiation and post-deformation samples were examined using electron microscopy to characterize various microstructural features. All samples displayed a deformation-induced martensitic phase transformation, which was identified as a second strain-hardening mechanism accompanying the dislocation hardening. The deformation-induced martensitic transformation was rationalized by the effect of applied stress on the effective martensite start temperature. The results showed that the irradiation did not alter the dislocation hardening and the martensitic transformation mechanisms, but the increased yield strength in irradiated materials facilitated the localized phase transformation at the onset of plastic deformation, in contrast to the unirradiated material which required pre-straining. The hardening effect of the martensitic transformation reduced the tendency towards necking and mitigated the loss of ductility in the irradiated material by carrying the deformation in the form of a propagating band. Despite the beneficial effect from the martensitic transformation, this study indicates that this mechanism cannot not be activated at typical operating temperatures of nuclear reactors.
Author Li, Meimei
Wu, Yaqiao
Almer, Jonathan
Zhang, Xuan
Xu, Chi
Park, Jun-Sang
Chen, Wei-Ying
Kenesei, Peter
Burns, Jatuporn
Chen, Yiren
Author_xml – sequence: 1
  givenname: Xuan
  surname: Zhang
  fullname: Zhang, Xuan
  email: xuanzhang@anl.gov
  organization: Nuclear Science and Engineering Division, Argonne National Laboratory, Lemont IL 60439, United States of America
– sequence: 2
  givenname: Chi
  surname: Xu
  fullname: Xu, Chi
  email: xuchi@bnu.edu.cn
  organization: Nuclear Science and Engineering Division, Argonne National Laboratory, Lemont IL 60439, United States of America
– sequence: 3
  givenname: Yiren
  surname: Chen
  fullname: Chen, Yiren
  email: yiren_chen@anl.gov
  organization: Nuclear Science and Engineering Division, Argonne National Laboratory, Lemont IL 60439, United States of America
– sequence: 4
  givenname: Wei-Ying
  surname: Chen
  fullname: Chen, Wei-Ying
  email: wychen@anl.gov
  organization: Nuclear Science and Engineering Division, Argonne National Laboratory, Lemont IL 60439, United States of America
– sequence: 5
  givenname: Jun-Sang
  surname: Park
  fullname: Park, Jun-Sang
  email: parkjs@anl.gov
  organization: X-ray Science Division, Argonne National Laboratory, Lemont IL 60439, United States of America
– sequence: 6
  givenname: Peter
  surname: Kenesei
  fullname: Kenesei, Peter
  email: kenesei@anl.gov
  organization: X-ray Science Division, Argonne National Laboratory, Lemont IL 60439, United States of America
– sequence: 7
  givenname: Jonathan
  surname: Almer
  fullname: Almer, Jonathan
  email: almer@anl.gov
  organization: X-ray Science Division, Argonne National Laboratory, Lemont IL 60439, United States of America
– sequence: 8
  givenname: Jatuporn
  surname: Burns
  fullname: Burns, Jatuporn
  email: Jatuporn.Burns@inl.gov
  organization: Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, United States of America
– sequence: 9
  givenname: Yaqiao
  surname: Wu
  fullname: Wu, Yaqiao
  email: YaqiaoWu@boisestate.edu
  organization: Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, United States of America
– sequence: 10
  givenname: Meimei
  surname: Li
  fullname: Li, Meimei
  email: mli@anl.gov
  organization: Nuclear Science and Engineering Division, Argonne National Laboratory, Lemont IL 60439, United States of America
BackLink https://www.osti.gov/servlets/purl/1669111$$D View this record in Osti.gov
BookMark eNqFkMtOBCEQRYnRxOcnmBD3tNA0_YgLY4w6JiZudE1oKBwmIxhgjP0Dfre0Y1y4cUWFuvdW1TlEuz54QOiU0YpR1p6vKqWzelW5qmlNK9pXVHQ76ID1HSd1I_huqbkYSNuIZh8dprSilNVdQw_Q58K9LAl4iC8TTpPXyxhyDB5_kKjKT96YCQeLDdgQywgXPHHebDQY_KpiBp9cdhrnqHz6lWDnscIeNnMUcTEq41QulqfpDTBnbQlWzq8hpVIBrI_RnlXrBCc_7xF6vr15ul6Qh8e7--urB6KbZshEK2g7ZkbRcVNDX0PbMOgGZvU48rGzVoOy49gMvBXMKhCWWyXAiF6VNuP8CJ1tc0PKTibtMuilDt6DzpK17cAYKyKxFekYUopg5Vt05dhJMipn4nIlf4jLmbikvSzEi-_ij6_kf_ModNz6X_fl1g3l_ncHcV4PfAHt4rydCe6fhC8vMKcS
CitedBy_id crossref_primary_10_1016_j_actamat_2025_120786
crossref_primary_10_1016_j_net_2023_09_015
crossref_primary_10_1007_s11661_023_06986_1
crossref_primary_10_2139_ssrn_4193499
crossref_primary_10_1016_j_msea_2022_143726
crossref_primary_10_1016_j_jnucmat_2022_153572
crossref_primary_10_1016_j_jnucmat_2023_154338
crossref_primary_10_1016_j_jnucmat_2021_152874
crossref_primary_10_1016_j_matdes_2025_113692
crossref_primary_10_1098_rspa_2022_0633
crossref_primary_10_1016_j_actamat_2022_117889
crossref_primary_10_1016_j_jnucmat_2022_153911
crossref_primary_10_1103_PhysRevMaterials_6_053606
crossref_primary_10_1016_j_msea_2024_147380
crossref_primary_10_1016_j_ijplas_2023_103612
crossref_primary_10_5006_4655
crossref_primary_10_1016_j_jeurceramsoc_2023_11_058
crossref_primary_10_1039_D1EE00638J
crossref_primary_10_1016_j_actamat_2022_118434
crossref_primary_10_1016_j_actamat_2024_120409
crossref_primary_10_1016_j_jmst_2024_11_057
crossref_primary_10_1016_j_cossms_2023_101132
crossref_primary_10_1016_j_matchar_2021_111218
crossref_primary_10_1016_j_scriptamat_2022_114690
Cites_doi 10.1016/j.actamat.2003.12.023
10.1016/S0022-3115(96)00218-8
10.1016/S0022-3115(98)00163-9
10.1016/j.jnucmat.2018.06.004
10.1063/1.117951
10.1016/j.actamat.2014.05.026
10.1107/S0021889869006881
10.1016/j.msea.2013.03.071
10.1016/j.jnucmat.2018.05.068
10.1063/1.4974246
10.1016/j.jnucmat.2015.07.009
10.1103/PhysRev.85.1060.2
10.1016/j.jnucmat.2018.04.043
10.1016/j.ijplas.2009.03.003
10.1016/j.actamat.2018.07.008
10.1016/0001-6160(53)90083-2
10.1016/j.msea.2003.11.084
10.1016/j.jnucmat.2014.02.037
10.1016/S0022-3115(96)00484-9
10.1016/j.scriptamat.2006.10.009
10.1016/j.scriptamat.2008.01.023
10.1680/ieacifcacc.48748.0019
10.1016/0001-6160(53)90006-6
10.1007/BF02647406
10.1016/j.jnucmat.2010.06.010
10.1016/j.mtla.2019.100208
10.1016/j.jnucmat.2008.12.115
10.1016/j.jnucmat.2014.02.018
10.1016/0022-3115(93)90129-M
10.1016/S1359-6454(99)00200-1
10.1016/j.jnucmat.2015.07.013
10.1179/mst.1998.14.12.1213
10.1016/j.msea.2014.12.017
10.1016/j.actamat.2004.05.003
10.1016/j.actamat.2016.12.038
10.1016/j.scriptamat.2016.12.025
10.1016/S1359-6454(98)00014-7
10.3989/revmetalm.0920
ContentType Journal Article
Copyright 2020 Acta Materialia Inc.
Copyright_xml – notice: 2020 Acta Materialia Inc.
CorporateAuthor Argonne National Lab. (ANL), Argonne, IL (United States)
CorporateAuthor_xml – name: Argonne National Lab. (ANL), Argonne, IL (United States)
DBID AAYXX
CITATION
OIOZB
OTOTI
DOI 10.1016/j.actamat.2020.08.057
DatabaseName CrossRef
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2453
EndPage 327
ExternalDocumentID 1669111
10_1016_j_actamat_2020_08_057
S1359645420306649
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNEU
ABTAH
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
T9H
TN5
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
AALMO
ABPIF
ABPTK
OIOZB
OTOTI
ID FETCH-LOGICAL-c449t-cae671db573d2e82e641e791fcbb3b7ffceafbb493651fae5f3fa5ed58a3b7133
IEDL.DBID .~1
ISSN 1359-6454
IngestDate Thu May 18 22:41:16 EDT 2023
Tue Jul 01 01:30:06 EDT 2025
Thu Apr 24 22:59:14 EDT 2025
Fri Feb 23 02:39:24 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Neutron irradiation
Martensitic transformation
In situ x-ray diffraction
Tensile deformation
Stainless steels
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c449t-cae671db573d2e82e641e791fcbb3b7ffceafbb493651fae5f3fa5ed58a3b7133
Notes USDOE
AC02-06CH11357; AC07-051D14517
USDOE Office of Nuclear Energy
USDOE Office of Nuclear Energy - Nuclear Energy Enabling Technologies (NEET)
OpenAccessLink https://www.osti.gov/servlets/purl/1669111
PageCount 13
ParticipantIDs osti_scitechconnect_1669111
crossref_primary_10_1016_j_actamat_2020_08_057
crossref_citationtrail_10_1016_j_actamat_2020_08_057
elsevier_sciencedirect_doi_10_1016_j_actamat_2020_08_057
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Acta materialia
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Pawel, Rowcliffe, Alexander, Grossbeck, Shiba (bib0003) 1996; 233-237
Herring, Galt (bib0048) 1952; 85
Williamson, Hall (bib0025) 1953; 1
Zhang, Xu, Wang, Chen, Li, Almer, Benda, Kenesei, Mashayekhi, Park, Westferro (bib0024) 2017; 88
K.Q. Bagley, J.W. Barnaby, A.S. Fraser, 16. Irradiation embrittlement ofaustenitic stainless steels, Irradiation embrittlement and creep in fuel cladding and core components, pp. 143–153.
Eiehelman, Hull (bib0045) 1953; 45
McClintock, Vevera, Riemer, Gallmeier, Hyres, Ferguson (bib0019) 2014; 450
Zhang, Li, Park, Kenesei, Almer, Xu, Stubbins (bib0020) 2017; 126
Rabenberg, Jaques, Sencer, Garner, Freyer, Okita, Butt (bib0041) 2014; 448
Zhang, Knott (bib0049) 1999; 47
Gussev, McClintock, Garner (bib0013) 2016; 468
Tan, Busby (bib0040) 2015; 465
Cullity, Stock (bib0030) 2001
Jenkins, K.M. A. (bib0038) 2000
Byun, Farrell (bib0001) 2004; 52
Li, Wang, Almer (bib0027) 2014; 76
Yang, Chen, Huang, Allen, Rao (bib0037) 2016
Xu, Chen, Zhang, Wu, Li, Yang (bib0034) 2018; 507
Miao, Mo, Zhou, Liu, Lan, Zhang, Miller, Powers, Almer, Stubbins (bib0008) 2015; 625
Gusev, Maksimkin, Garner (bib0018) 2010; 403
Huang, Matlock, Krauss (bib0015) 1989; 20
Gusev, Maksimkin, Osipov, Garner (bib0017) 2009; 386-88
Spencer, Embury, Conlon, Véron, Bréchet (bib0007) 2004; 387–389
Hedström, Lienert, Almer, Odén (bib0029) 2007; 56
Grässel, Frommeyer (bib0014) 1998; 14
Zhang, Li, Park, Kenesei, Sharma, Almer (bib0022) 2018; 508
Byun, Hashimoto, Farrell (bib0016) 2004; 52
Ungár, Borbély (bib0026) 1996; 69
Das, Tarafder (bib0009) 2009; 25
Rowcliffe, Robertson, Klueh, Shiba, Alexander, Grossbeck, Jitsukawa (bib0004) 1998; 258-263
Odnobokova, Kipelova, Belyakov, Kaibyshev (bib0036) 2014; 63
Dickson (bib0032) 1969; 2
Noyan, Cohen (bib0044) 1987
Renault-Laborne, Hure, Malaplate, Gavoille, Sefta, Tanguy (bib0006) 2018; 508
Pawel, Rowcliffe, Lucas, Zinkle (bib0002) 1996; 239
The Program Anizc. <http://metal.elte.hu/anizc/>.
Patel, Cohen (bib0043) 1953; 1
Clausen, Lorentzen, Leffers (bib0035) 1998; 46
Tian, Gorbatov, Borgenstam, Ruban, Hedstrom (bib0012) 2017; 48A
Lucas (bib0039) 1993; 206
Man, Kubena, Smaga, Man, Jaevenpaa, Weidner, Chlup, Polak (bib0011) 2016
Miao, Yao, Lian, Park, Almer, Bhattacharya, Yacout, Mo (bib0021) 2017; 131
(bib0031) 2013
Xu, Zhang, Chen, Li, Park, Kenesei, Almer, Yang (bib0023) 2018; 156
Mao, Sun, Huang, Shiau, Garner, Freyer, Wharry (bib0042) 2019; 5
Solomon, Solomon (bib0046) 2010; 46
Perdahcıoğlu, Geijselaers, Groen (bib0047) 2008; 58
Ueji, Takagi, Tsuchida, Shinagawa, Tanaka, Mizuguchi (bib0010) 2013; 576
Miao (10.1016/j.actamat.2020.08.057_bib0008) 2015; 625
Renault-Laborne (10.1016/j.actamat.2020.08.057_bib0006) 2018; 508
Solomon (10.1016/j.actamat.2020.08.057_bib0046) 2010; 46
(10.1016/j.actamat.2020.08.057_bib0031) 2013
Man (10.1016/j.actamat.2020.08.057_bib0011) 2016
Gussev (10.1016/j.actamat.2020.08.057_bib0013) 2016; 468
Zhang (10.1016/j.actamat.2020.08.057_bib0049) 1999; 47
Li (10.1016/j.actamat.2020.08.057_bib0027) 2014; 76
Pawel (10.1016/j.actamat.2020.08.057_bib0002) 1996; 239
Williamson (10.1016/j.actamat.2020.08.057_bib0025) 1953; 1
Eiehelman (10.1016/j.actamat.2020.08.057_bib0045) 1953; 45
Yang (10.1016/j.actamat.2020.08.057_bib0037) 2016
Tan (10.1016/j.actamat.2020.08.057_bib0040) 2015; 465
Noyan (10.1016/j.actamat.2020.08.057_bib0044) 1987
Ueji (10.1016/j.actamat.2020.08.057_bib0010) 2013; 576
Clausen (10.1016/j.actamat.2020.08.057_bib0035) 1998; 46
Spencer (10.1016/j.actamat.2020.08.057_bib0007) 2004; 387–389
Byun (10.1016/j.actamat.2020.08.057_bib0001) 2004; 52
Pawel (10.1016/j.actamat.2020.08.057_bib0003) 1996; 233-237
Xu (10.1016/j.actamat.2020.08.057_bib0034) 2018; 507
Perdahcıoğlu (10.1016/j.actamat.2020.08.057_bib0047) 2008; 58
Patel (10.1016/j.actamat.2020.08.057_bib0043) 1953; 1
Xu (10.1016/j.actamat.2020.08.057_bib0023) 2018; 156
Jenkins (10.1016/j.actamat.2020.08.057_bib0038) 2000
Mao (10.1016/j.actamat.2020.08.057_bib0042) 2019; 5
Rowcliffe (10.1016/j.actamat.2020.08.057_bib0004) 1998; 258-263
Herring (10.1016/j.actamat.2020.08.057_bib0048) 1952; 85
Huang (10.1016/j.actamat.2020.08.057_bib0015) 1989; 20
Zhang (10.1016/j.actamat.2020.08.057_bib0020) 2017; 126
Zhang (10.1016/j.actamat.2020.08.057_bib0024) 2017; 88
McClintock (10.1016/j.actamat.2020.08.057_bib0019) 2014; 450
Byun (10.1016/j.actamat.2020.08.057_bib0016) 2004; 52
Miao (10.1016/j.actamat.2020.08.057_bib0021) 2017; 131
Gusev (10.1016/j.actamat.2020.08.057_bib0018) 2010; 403
Ungár (10.1016/j.actamat.2020.08.057_bib0026) 1996; 69
Odnobokova (10.1016/j.actamat.2020.08.057_bib0036) 2014; 63
Tian (10.1016/j.actamat.2020.08.057_bib0012) 2017; 48A
Gusev (10.1016/j.actamat.2020.08.057_bib0017) 2009; 386-88
10.1016/j.actamat.2020.08.057_bib0028
Rabenberg (10.1016/j.actamat.2020.08.057_bib0041) 2014; 448
10.1016/j.actamat.2020.08.057_bib0005
Dickson (10.1016/j.actamat.2020.08.057_bib0032) 1969; 2
Das (10.1016/j.actamat.2020.08.057_bib0009) 2009; 25
Cullity (10.1016/j.actamat.2020.08.057_bib0030) 2001
Zhang (10.1016/j.actamat.2020.08.057_bib0022) 2018; 508
Hedström (10.1016/j.actamat.2020.08.057_bib0029) 2007; 56
Lucas (10.1016/j.actamat.2020.08.057_bib0039) 1993; 206
Grässel (10.1016/j.actamat.2020.08.057_bib0014) 1998; 14
References_xml – volume: 507
  start-page: 188
  year: 2018
  end-page: 197
  ident: bib0034
  article-title: Effects of neutron irradiation and post-irradiation annealing on the microstructure of HT-UPS stainless steel
  publication-title: J. Nucl. Mater.
– volume: 625
  start-page: 146
  year: 2015
  end-page: 152
  ident: bib0008
  article-title: synchrotron tensile investigations on the phase responses within an oxide dispersion-strengthened (ODS) 304 steel
  publication-title: Mater. Sci. Eng.: A
– volume: 403
  start-page: 121
  year: 2010
  end-page: 125
  ident: bib0018
  article-title: Peculiarities of plastic flow involving “deformation waves” observed during low-temperature tensile tests of highly irradiated 12Cr18Ni10Ti and 08Cr16Ni11Mo3 steels
  publication-title: J. Nucl. Mater.
– volume: 56
  start-page: 213
  year: 2007
  end-page: 216
  ident: bib0029
  article-title: Stepwise transformation behavior of the strain-induced martensitic transformation in a metastable stainless steel
  publication-title: Scr. Mater.
– volume: 2
  start-page: 176
  year: 1969
  end-page: 180
  ident: bib0032
  article-title: The significance of texture parameters in phase analysis by X-ray diffraction
  publication-title: J. Appl. Crystallogr.
– volume: 58
  start-page: 947
  year: 2008
  end-page: 950
  ident: bib0047
  article-title: Influence of plastic strain on deformation-induced martensitic transformations
  publication-title: Scr. Mater.
– reference: K.Q. Bagley, J.W. Barnaby, A.S. Fraser, 16. Irradiation embrittlement ofaustenitic stainless steels, Irradiation embrittlement and creep in fuel cladding and core components, pp. 143–153.
– volume: 69
  start-page: 3173
  year: 1996
  end-page: 3175
  ident: bib0026
  article-title: The effect of dislocation contrast on x‐ray line broadening: a new approach to line profile analysis
  publication-title: Appl. Phys. Lett.
– volume: 508
  start-page: 488
  year: 2018
  end-page: 504
  ident: bib0006
  article-title: Tensile properties and deformation microstructure of highly neutron-irradiated 316 stainless steels at low and fast strain rate
  publication-title: J. Nucl. Mater.
– volume: 126
  start-page: 67
  year: 2017
  end-page: 76
  ident: bib0020
  article-title: high-energy X-ray diffraction study of tensile deformation of neutron-irradiated polycrystalline Fe-9%Cr alloy
  publication-title: Acta Mater.
– volume: 47
  start-page: 3483
  year: 1999
  end-page: 3495
  ident: bib0049
  article-title: Cleavage fracture in bainitic and martensitic microstructures
  publication-title: Acta Mater.
– volume: 450
  start-page: 130
  year: 2014
  end-page: 140
  ident: bib0019
  article-title: Post-irradiation tensile properties of the first and second operational target modules at the Spallation Neutron Source
  publication-title: J. Nucl. Mater.
– volume: 45
  year: 1953
  ident: bib0045
  publication-title: Trans. Am. Soc. Metals
– volume: 20
  start-page: 1239
  year: 1989
  end-page: 1246
  ident: bib0015
  article-title: Martensite formation, strain rate sensitivity, and deformation-behavior of type-304 stainless-steel sheet
  publication-title: Metallurgical Mater. Trans. a-Phys. Metall. Mater. Sci.
– volume: 52
  start-page: 3889
  year: 2004
  end-page: 3899
  ident: bib0016
  article-title: Temperature dependence of strain hardening and plastic instability behaviors in austenitic stainless steels
  publication-title: Acta Mater.
– volume: 52
  start-page: 1597
  year: 2004
  end-page: 1608
  ident: bib0001
  article-title: Plastic instability in polycrystalline metals after low temperature irradiation
  publication-title: Acta Mater.
– volume: 387–389
  start-page: 873
  year: 2004
  end-page: 881
  ident: bib0007
  article-title: Strengthening via the formation of strain-induced martensite in stainless steels
  publication-title: Mater. Sci. Eng.: A
– volume: 576
  start-page: 14
  year: 2013
  end-page: 20
  ident: bib0010
  article-title: Crystallographic orientation dependence of ε martensite transformation during tensile deformation of polycrystalline 30% Mn austenitic steel
  publication-title: Mater. Sci. Eng.: A
– volume: 5
  year: 2019
  ident: bib0042
  article-title: Grain orientation dependence of nanoindentation and deformation-induced martensitic phase transformation in neutron irradiated AISI 304 L stainless steel
  publication-title: Materialia
– year: 2000
  ident: bib0038
  article-title: Characterisation of Radiation Damage By Transmission Electron Microscopy
– volume: 233-237
  start-page: 202
  year: 1996
  end-page: 206
  ident: bib0003
  article-title: Effects of low temperature neutron irradiation on deformation behavior of austenitic stainless steels
  publication-title: J. Nucl. Mater.
– volume: 63
  year: 2014
  ident: bib0036
  article-title: Microstructure evolution in a 316 L stainless steel subjected to multidirectional forging and unidirectional bar rolling
  publication-title: IOP Conf. Series: Mater. Sci. Eng.
– volume: 131
  start-page: 29
  year: 2017
  end-page: 32
  ident: bib0021
  article-title: synchrotron investigation of grain growth behavior of nano-grained UO2
  publication-title: Scr. Mater.
– year: 1987
  ident: bib0044
  article-title: Residual Stress Measurement By Diffraction and Interpretation
– volume: 386-88
  start-page: 273
  year: 2009
  end-page: 276
  ident: bib0017
  article-title: Anomalously large deformation of 12Cr18Ni10Ti austenitic steel irradiated to 55 dpa at 310 °C in the BN-350 reactor
  publication-title: J. Nucl. Mater.
– start-page: 2137
  year: 2016
  end-page: 2149
  ident: bib0037
  article-title: Irradiation microstructure of austenitic steels and cast steels irradiated in the BOR-60 reactor at 320°C
  publication-title: Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems — Water Reactors
– volume: 206
  start-page: 287
  year: 1993
  end-page: 305
  ident: bib0039
  article-title: The evolution of mechanical property change in irradiated austenitic stainless steels
  publication-title: J. Nucl. Mater.
– volume: 239
  start-page: 126
  year: 1996
  end-page: 131
  ident: bib0002
  article-title: Irradiation performance of stainless steels for ITER application
  publication-title: J. Nucl. Mater.
– volume: 14
  start-page: 1213
  year: 1998
  end-page: 1217
  ident: bib0014
  article-title: Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe–Mn–Si–AI steels
  publication-title: Mater. Sci. Technol.
– year: 2001
  ident: bib0030
  article-title: Elements of X-ray Diffraction
– volume: 48A
  start-page: 1
  year: 2017
  end-page: 7
  ident: bib0012
  article-title: Deformation microstructure and deformation-induced martensite in austenitic Fe-Cr-Ni alloys depending on stacking fault energy
  publication-title: Metallurgical Mater. Trans. a-Phys. Metall. Mater. Sci.
– volume: 156
  start-page: 330
  year: 2018
  end-page: 341
  ident: bib0023
  article-title: In-situ high-energy X-ray characterization of neutron irradiated HT-UPS stainless steel under tensile deformation
  publication-title: Acta Mater.
– volume: 46
  start-page: 121
  year: 2010
  end-page: 128
  ident: bib0046
  article-title: Deformation induced martensite in AISI 316 stainless steel
  publication-title: Revista de Metalurgia
– start-page: 2299
  year: 2016
  end-page: 2306
  ident: bib0011
  article-title: Microstructural changes during deformation of AISI 300 grade austenitic stainless steels: impact of chemical heterogeneity
  publication-title: 21st European Conference on Fracture
– volume: 85
  start-page: 1060
  year: 1952
  end-page: 1061
  ident: bib0048
  article-title: Elastic and Plastic Properties of Very Small Metal Specimens
  publication-title: Physical Rev.
– volume: 1
  start-page: 531
  year: 1953
  end-page: 538
  ident: bib0043
  article-title: Criterion for the action of applied stress in the martensitic transformation
  publication-title: Acta Metallurgica
– volume: 88
  year: 2017
  ident: bib0024
  article-title: iRadMat: a thermo-mechanical testing system for
  publication-title: Rev. Sci. Instr.
– volume: 1
  start-page: 22
  year: 1953
  end-page: 31
  ident: bib0025
  article-title: X-ray line broadening from filed aluminium and wolfram
  publication-title: Acta Metallurgica
– volume: 76
  start-page: 381
  year: 2014
  end-page: 393
  ident: bib0027
  article-title: Dislocation evolution during tensile deformation in ferritic-martensitic steels revealed by high-energy X-rays
  publication-title: Acta Mater.
– volume: 258-263
  start-page: 1275
  year: 1998
  end-page: 1279
  ident: bib0004
  article-title: Fracture toughness and tensile behavior of ferritic–martensitic steels irradiated at low temperatures
  publication-title: J. Nucl. Mater.
– volume: 465
  start-page: 724
  year: 2015
  end-page: 730
  ident: bib0040
  article-title: Formulating the strength factor α for improved predictability of radiation hardening
  publication-title: J. Nucl. Mater.
– year: 2013
  ident: bib0031
  publication-title: Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation
– volume: 508
  start-page: 556
  year: 2018
  end-page: 566
  ident: bib0022
  article-title: High-energy x-ray diffraction microscopy study of deformation microstructures in neutron-irradiated polycrystalline Fe-9%Cr
  publication-title: J. Nucl. Mater.
– volume: 468
  start-page: 210
  year: 2016
  end-page: 220
  ident: bib0013
  article-title: Analysis of structure and deformation behavior of AISI 316 L tensile specimens from the second operational target module at the Spallation Neutron Source
  publication-title: J. Nucl. Mater.
– reference: The Program Anizc. <http://metal.elte.hu/anizc/>.
– volume: 46
  start-page: 3087
  year: 1998
  end-page: 3098
  ident: bib0035
  article-title: Self-consistent modelling of the plastic deformation of f.c.c. polycrystals and its implications for diffraction measurements of internal stresses
  publication-title: Acta Mater.
– volume: 448
  start-page: 315
  year: 2014
  end-page: 324
  ident: bib0041
  article-title: Mechanical behavior of AISI 304SS determined by miniature test methods after neutron irradiation to 28dpa
  publication-title: J. Nucl. Mater.
– volume: 25
  start-page: 2222
  year: 2009
  end-page: 2247
  ident: bib0009
  article-title: Experimental investigation on martensitic transformation and fracture morphologies of austenitic stainless steel
  publication-title: Int. J. Plast.
– volume: 52
  start-page: 1597
  issue: 6
  year: 2004
  ident: 10.1016/j.actamat.2020.08.057_bib0001
  article-title: Plastic instability in polycrystalline metals after low temperature irradiation
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2003.12.023
– volume: 233-237
  start-page: 202
  year: 1996
  ident: 10.1016/j.actamat.2020.08.057_bib0003
  article-title: Effects of low temperature neutron irradiation on deformation behavior of austenitic stainless steels
  publication-title: J. Nucl. Mater.
  doi: 10.1016/S0022-3115(96)00218-8
– volume: 258-263
  start-page: 1275
  year: 1998
  ident: 10.1016/j.actamat.2020.08.057_bib0004
  article-title: Fracture toughness and tensile behavior of ferritic–martensitic steels irradiated at low temperatures
  publication-title: J. Nucl. Mater.
  doi: 10.1016/S0022-3115(98)00163-9
– volume: 508
  start-page: 556
  year: 2018
  ident: 10.1016/j.actamat.2020.08.057_bib0022
  article-title: High-energy x-ray diffraction microscopy study of deformation microstructures in neutron-irradiated polycrystalline Fe-9%Cr
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2018.06.004
– volume: 69
  start-page: 3173
  issue: 21
  year: 1996
  ident: 10.1016/j.actamat.2020.08.057_bib0026
  article-title: The effect of dislocation contrast on x‐ray line broadening: a new approach to line profile analysis
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.117951
– volume: 76
  start-page: 381
  year: 2014
  ident: 10.1016/j.actamat.2020.08.057_bib0027
  article-title: Dislocation evolution during tensile deformation in ferritic-martensitic steels revealed by high-energy X-rays
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.05.026
– volume: 2
  start-page: 176
  issue: 4
  year: 1969
  ident: 10.1016/j.actamat.2020.08.057_bib0032
  article-title: The significance of texture parameters in phase analysis by X-ray diffraction
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889869006881
– volume: 576
  start-page: 14
  year: 2013
  ident: 10.1016/j.actamat.2020.08.057_bib0010
  article-title: Crystallographic orientation dependence of ε martensite transformation during tensile deformation of polycrystalline 30% Mn austenitic steel
  publication-title: Mater. Sci. Eng.: A
  doi: 10.1016/j.msea.2013.03.071
– year: 2001
  ident: 10.1016/j.actamat.2020.08.057_bib0030
– volume: 508
  start-page: 488
  year: 2018
  ident: 10.1016/j.actamat.2020.08.057_bib0006
  article-title: Tensile properties and deformation microstructure of highly neutron-irradiated 316 stainless steels at low and fast strain rate
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2018.05.068
– volume: 88
  issue: 1
  year: 2017
  ident: 10.1016/j.actamat.2020.08.057_bib0024
  article-title: iRadMat: a thermo-mechanical testing system for in situ high-energy X-ray characterization of radioactive specimens
  publication-title: Rev. Sci. Instr.
  doi: 10.1063/1.4974246
– year: 1987
  ident: 10.1016/j.actamat.2020.08.057_bib0044
– volume: 465
  start-page: 724
  year: 2015
  ident: 10.1016/j.actamat.2020.08.057_bib0040
  article-title: Formulating the strength factor α for improved predictability of radiation hardening
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2015.07.009
– volume: 85
  start-page: 1060
  issue: 6
  year: 1952
  ident: 10.1016/j.actamat.2020.08.057_bib0048
  article-title: Elastic and Plastic Properties of Very Small Metal Specimens
  publication-title: Physical Rev.
  doi: 10.1103/PhysRev.85.1060.2
– volume: 45
  issue: 77
  year: 1953
  ident: 10.1016/j.actamat.2020.08.057_bib0045
  publication-title: Trans. Am. Soc. Metals
– volume: 507
  start-page: 188
  year: 2018
  ident: 10.1016/j.actamat.2020.08.057_bib0034
  article-title: Effects of neutron irradiation and post-irradiation annealing on the microstructure of HT-UPS stainless steel
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2018.04.043
– volume: 25
  start-page: 2222
  issue: 11
  year: 2009
  ident: 10.1016/j.actamat.2020.08.057_bib0009
  article-title: Experimental investigation on martensitic transformation and fracture morphologies of austenitic stainless steel
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2009.03.003
– volume: 156
  start-page: 330
  year: 2018
  ident: 10.1016/j.actamat.2020.08.057_bib0023
  article-title: In-situ high-energy X-ray characterization of neutron irradiated HT-UPS stainless steel under tensile deformation
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.07.008
– volume: 1
  start-page: 531
  issue: 5
  year: 1953
  ident: 10.1016/j.actamat.2020.08.057_bib0043
  article-title: Criterion for the action of applied stress in the martensitic transformation
  publication-title: Acta Metallurgica
  doi: 10.1016/0001-6160(53)90083-2
– volume: 387–389
  start-page: 873
  year: 2004
  ident: 10.1016/j.actamat.2020.08.057_bib0007
  article-title: Strengthening via the formation of strain-induced martensite in stainless steels
  publication-title: Mater. Sci. Eng.: A
  doi: 10.1016/j.msea.2003.11.084
– volume: 450
  start-page: 130
  issue: 1
  year: 2014
  ident: 10.1016/j.actamat.2020.08.057_bib0019
  article-title: Post-irradiation tensile properties of the first and second operational target modules at the Spallation Neutron Source
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2014.02.037
– volume: 239
  start-page: 126
  year: 1996
  ident: 10.1016/j.actamat.2020.08.057_bib0002
  article-title: Irradiation performance of stainless steels for ITER application
  publication-title: J. Nucl. Mater.
  doi: 10.1016/S0022-3115(96)00484-9
– start-page: 2137
  year: 2016
  ident: 10.1016/j.actamat.2020.08.057_bib0037
  article-title: Irradiation microstructure of austenitic steels and cast steels irradiated in the BOR-60 reactor at 320°C
– volume: 56
  start-page: 213
  issue: 3
  year: 2007
  ident: 10.1016/j.actamat.2020.08.057_bib0029
  article-title: Stepwise transformation behavior of the strain-induced martensitic transformation in a metastable stainless steel
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2006.10.009
– volume: 58
  start-page: 947
  issue: 11
  year: 2008
  ident: 10.1016/j.actamat.2020.08.057_bib0047
  article-title: Influence of plastic strain on deformation-induced martensitic transformations
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2008.01.023
– ident: 10.1016/j.actamat.2020.08.057_bib0005
  doi: 10.1680/ieacifcacc.48748.0019
– volume: 1
  start-page: 22
  issue: 1
  year: 1953
  ident: 10.1016/j.actamat.2020.08.057_bib0025
  article-title: X-ray line broadening from filed aluminium and wolfram
  publication-title: Acta Metallurgica
  doi: 10.1016/0001-6160(53)90006-6
– volume: 20
  start-page: 1239
  issue: 7
  year: 1989
  ident: 10.1016/j.actamat.2020.08.057_bib0015
  article-title: Martensite formation, strain rate sensitivity, and deformation-behavior of type-304 stainless-steel sheet
  publication-title: Metallurgical Mater. Trans. a-Phys. Metall. Mater. Sci.
  doi: 10.1007/BF02647406
– volume: 403
  start-page: 121
  issue: 1
  year: 2010
  ident: 10.1016/j.actamat.2020.08.057_bib0018
  article-title: Peculiarities of plastic flow involving “deformation waves” observed during low-temperature tensile tests of highly irradiated 12Cr18Ni10Ti and 08Cr16Ni11Mo3 steels
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2010.06.010
– volume: 5
  year: 2019
  ident: 10.1016/j.actamat.2020.08.057_bib0042
  article-title: Grain orientation dependence of nanoindentation and deformation-induced martensitic phase transformation in neutron irradiated AISI 304 L stainless steel
  publication-title: Materialia
  doi: 10.1016/j.mtla.2019.100208
– volume: 386-88
  start-page: 273
  year: 2009
  ident: 10.1016/j.actamat.2020.08.057_bib0017
  article-title: Anomalously large deformation of 12Cr18Ni10Ti austenitic steel irradiated to 55 dpa at 310 °C in the BN-350 reactor
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2008.12.115
– volume: 448
  start-page: 315
  issue: 1
  year: 2014
  ident: 10.1016/j.actamat.2020.08.057_bib0041
  article-title: Mechanical behavior of AISI 304SS determined by miniature test methods after neutron irradiation to 28dpa
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2014.02.018
– volume: 48A
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.actamat.2020.08.057_bib0012
  article-title: Deformation microstructure and deformation-induced martensite in austenitic Fe-Cr-Ni alloys depending on stacking fault energy
  publication-title: Metallurgical Mater. Trans. a-Phys. Metall. Mater. Sci.
– year: 2000
  ident: 10.1016/j.actamat.2020.08.057_bib0038
– volume: 206
  start-page: 287
  issue: 2
  year: 1993
  ident: 10.1016/j.actamat.2020.08.057_bib0039
  article-title: The evolution of mechanical property change in irradiated austenitic stainless steels
  publication-title: J. Nucl. Mater.
  doi: 10.1016/0022-3115(93)90129-M
– volume: 47
  start-page: 3483
  issue: 12
  year: 1999
  ident: 10.1016/j.actamat.2020.08.057_bib0049
  article-title: Cleavage fracture in bainitic and martensitic microstructures
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(99)00200-1
– start-page: 2299
  year: 2016
  ident: 10.1016/j.actamat.2020.08.057_bib0011
  article-title: Microstructural changes during deformation of AISI 300 grade austenitic stainless steels: impact of chemical heterogeneity
– volume: 468
  start-page: 210
  year: 2016
  ident: 10.1016/j.actamat.2020.08.057_bib0013
  article-title: Analysis of structure and deformation behavior of AISI 316 L tensile specimens from the second operational target module at the Spallation Neutron Source
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2015.07.013
– volume: 14
  start-page: 1213
  issue: 12
  year: 1998
  ident: 10.1016/j.actamat.2020.08.057_bib0014
  article-title: Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe–Mn–Si–AI steels
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/mst.1998.14.12.1213
– volume: 625
  start-page: 146
  year: 2015
  ident: 10.1016/j.actamat.2020.08.057_bib0008
  article-title: In situ synchrotron tensile investigations on the phase responses within an oxide dispersion-strengthened (ODS) 304 steel
  publication-title: Mater. Sci. Eng.: A
  doi: 10.1016/j.msea.2014.12.017
– volume: 52
  start-page: 3889
  issue: 13
  year: 2004
  ident: 10.1016/j.actamat.2020.08.057_bib0016
  article-title: Temperature dependence of strain hardening and plastic instability behaviors in austenitic stainless steels
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2004.05.003
– volume: 126
  start-page: 67
  year: 2017
  ident: 10.1016/j.actamat.2020.08.057_bib0020
  article-title: In situ high-energy X-ray diffraction study of tensile deformation of neutron-irradiated polycrystalline Fe-9%Cr alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.12.038
– volume: 131
  start-page: 29
  year: 2017
  ident: 10.1016/j.actamat.2020.08.057_bib0021
  article-title: In situ synchrotron investigation of grain growth behavior of nano-grained UO2
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2016.12.025
– volume: 46
  start-page: 3087
  issue: 9
  year: 1998
  ident: 10.1016/j.actamat.2020.08.057_bib0035
  article-title: Self-consistent modelling of the plastic deformation of f.c.c. polycrystals and its implications for diffraction measurements of internal stresses
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(98)00014-7
– ident: 10.1016/j.actamat.2020.08.057_bib0028
– year: 2013
  ident: 10.1016/j.actamat.2020.08.057_bib0031
– volume: 63
  year: 2014
  ident: 10.1016/j.actamat.2020.08.057_bib0036
  article-title: Microstructure evolution in a 316 L stainless steel subjected to multidirectional forging and unidirectional bar rolling
  publication-title: IOP Conf. Series: Mater. Sci. Eng.
– volume: 46
  start-page: 121
  issue: 2
  year: 2010
  ident: 10.1016/j.actamat.2020.08.057_bib0046
  article-title: Deformation induced martensite in AISI 316 stainless steel
  publication-title: Revista de Metalurgia
  doi: 10.3989/revmetalm.0920
SSID ssj0012740
Score 2.4724686
Snippet An unusual tensile deformation behaviour in the form of a propagating band along the sample gauge was observed in two neutron-irradiated 316 stainless steel...
SourceID osti
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 315
SubjectTerms In situ x-ray diffraction
Martensitic transformation
MATERIALS SCIENCE
Neutron irradiation
Stainless steels
Tensile deformation
Title High-energy synchrotron x-ray study of deformation-induced martensitic transformation in a neutron-irradiated Type 316 stainless steel
URI https://dx.doi.org/10.1016/j.actamat.2020.08.057
https://www.osti.gov/servlets/purl/1669111
Volume 200
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2453
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012740
  issn: 1359-6454
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-2453
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012740
  issn: 1359-6454
  databaseCode: ACRLP
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-2453
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012740
  issn: 1359-6454
  databaseCode: .~1
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-2453
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012740
  issn: 1359-6454
  databaseCode: AIKHN
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2453
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012740
  issn: 1359-6454
  databaseCode: AKRWK
  dateStart: 19960101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF6Ce0kOpXmR1k3YQ68be7UPSccQGpwWckkDuYnd1SxxcGWjypBccszv7owkuw4EDL3pNYvQrOaxfN-3jH0bOxdimUYhweZCp0ZjHHROBFsqCDEzuWtRvjd2cqd_3Jv7HXa54sIQrLKP_V1Mb6N1f2XUf83RYjod3UplctKjSqjstZpIfKT-hXP6_GUN85DYdXVMYZMLevofi2f0iK_cOCwMsU1Mxq2SJ2Wp9_PTYI6_3EbqufrEPvY1I7_oXmuf7UB1wPY2lAQP2SvhNQS0RD7-57kKD_WcFrn5k6gdXiERWT6PvIQ1W1FgN45-LflvgnVWhN0KvNmoY9F6WnHHK1jSUGJa1yRkgCUqp-6VK2l5y76aYbTEI4DZEbu7-v7rciL6LRZE0DpvRHBgU1l6k6oygSwBqyWkuYzBe-XTGAO46L3OlTUyOjBRRWegNJnD29jfHrNBNa_ghHFwqcNRPNDypPEqCxpkND7xUY3HZfqZ6dWHLUKvP07bYMyKFdDssej9UZA_Ctoe06DZ-dps0QlwbDPIVl4r3sykApPENtMheZnMSEE3ENQI7aS1lBK-_P_AQ7ZLZx2H8SsbNPUSTrGYafxZO1vP2IeL65-Tm7_yEPl4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdGdwAOCDYQUD582NVrHX8kOU4TU8dGL2ul3SLbeRadurQKqQT_AH837yVp6SSkSdwSWz_L8nPeh_Pez4ydjJ0LsUyjkGBzoVOjUQ86J4ItFYSYmdy1Wb5TO5nrr7fm9oCdb2thKK2y1_2dTm-1dd8y6ldztF4sRjdSmZz4qBJye63On7BDfJO42Q_PLq8m093PBAy8umJhkwsC_C3kGd3hrBuHviFGism4JfMkQ_VvEzVY4Ve3Z30uXrIXvdvIz7qZvWIHUB2x53tkgsfsN6VsCGhr-fiPX1X4Xq_onJv_FLXDFuKR5avIS9gVLAoMyFG0Jb-nzM6K0rcCb_ZcWUQvKu54BRsaSizqmrgM0EvlFMByJS1vC7CWqDDxCWD5ms0vvszOJ6K_ZUEErfNGBAc2laU3qSoTyBKwWkKayxi8Vz6NMYCL3utcWSOjAxNVdAZKkznsxhD3DRtUqwreMg4udTiKBzqhNF5lQYOMxic-qvG4TN8xvV3YIvQU5HQTxrLY5prdFb08CpJHQTdkGoSd7mDrjoPjMUC2lVrxYDMVaCcegw5JygQjEt1A2UaIk9aSVXj__wN_Zk8ns2_XxfXl9GrInlFPV9L4gQ2aegMf0bdp_Kd-7_4BYPn8Iw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-energy+synchrotron+x-ray+study+of+deformation-induced+martensitic+transformation+in+a+neutron-irradiated+Type+316+stainless+steel&rft.jtitle=Acta+materialia&rft.au=Zhang%2C+Xuan&rft.au=Xu%2C+Chi&rft.au=Chen%2C+Yiren&rft.au=Chen%2C+Wei-Ying&rft.date=2020-11-01&rft.pub=Elsevier+Ltd&rft.issn=1359-6454&rft.eissn=1873-2453&rft.volume=200&rft.spage=315&rft.epage=327&rft_id=info:doi/10.1016%2Fj.actamat.2020.08.057&rft.externalDocID=S1359645420306649
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6454&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6454&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6454&client=summon