Estimation of the Hemodynamic Response of fMRI Data Using RBF Neural Network
Functional magnetic resonance imaging (fMRI) is an important technique for neuroimaging. The conventional system identification methods used in fMRI data analysis assume a linear time-invariant system with the impulse response described by the hemodynamic responses (HDR). However, the measured blood...
        Saved in:
      
    
          | Published in | IEEE transactions on biomedical engineering Vol. 54; no. 8; pp. 1371 - 1381 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          IEEE
    
        01.08.2007
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0018-9294 1558-2531 1558-2531  | 
| DOI | 10.1109/TBME.2007.900795 | 
Cover
| Abstract | Functional magnetic resonance imaging (fMRI) is an important technique for neuroimaging. The conventional system identification methods used in fMRI data analysis assume a linear time-invariant system with the impulse response described by the hemodynamic responses (HDR). However, the measured blood oxygenation level-dependent (BOLD) signals to a particular processing task (for example, rapid event-related fMRI design) show nonlinear properties and vary with different brain regions and subjects. In this paper, radial basis function (RBF) neural network (a powerful technique for modelling nonlinearities) is proposed to model the dynamics underlying the fMRI data. The equivalence of the proposed method to the existing Volterra series method has been demonstrated. It is shown that the first- and second-order Volterra kernels could be deduced from the parameters of the RBF neural network. Studies on both simulated (using Balloon model) as well as real event-related fMRI data show that the proposed method can accurately estimate the HDR of the brain and capture the variations of the HDRs as a function of the brain regions and subjects. | 
    
|---|---|
| AbstractList | Functional magnetic resonance imaging (fMRI) is an important technique for neuroimaging. The conventional system identification methods used in fMRI data analysis assume a linear time-invariant system with the impulse response described by the hemodynamic responses (HDR). However, the measured blood oxygenation level-dependent (BOLD) signals to a particular processing task (for example, rapid event-related fMRI design) show nonlinear properties and vary with different brain regions and subjects. In this paper, radial basis function (RBF) neural network (a powerful technique for modelling nonlinearities) is proposed to model the dynamics underlying the fMRI data. The equivalence of the proposed method to the existing Volterra series method has been demonstrated. It is shown that the first- and second-order Volterra kernels could be deduced from the parameters of the RBF neural network. Studies on both simulated (using Balloon model) as well as real event-related fMRI data show that the proposed method can accurately estimate the HDR of the brain and capture the variations of the HDRs as a function of the brain regions and subjects. The conventional system identification methods used in fMRI data analysis assume a linear time-invariant system with the impulse response described by the hemodynamic responses (HDR). Functional magnetic resonance imaging (fMRI) is an important technique for neuroimaging. The conventional system identification mathods used in fMRI data analysis assume a linear time-invariant system with the impulse response deseribed by the hemodynamic responses (HDR). However, the measured blood oxygenation level-dependent (BOLD) signals to a particular processing task (for example, rapid event-related fMRI design) show nonlinear properties and vary with different brain regions and subjects. In this paper, radial basis function (RBF) neural network (a powerful technique for modelling nonlinearities) is proposed to model the dynamics underlying the fMRI data. The equivalence of the proposed method to the existing Volterra series method has been demonstrated. It is shown that the first- and second-order Volterra Kernels could be deduced from the parameters of the RBF neural network. Studies on both simulated (using Balloon model) as well as real event-related fMRI data show that the proposed method can accurately estimate the HDR of the brain and capture the variations of the HDRs as a function of the brain regions and subjects. Functional magnetic resonance imaging (fMRI) is an important technique for neuroimaging. The conventional system identification methods used in fMRI data analysis assume a linear time-invariant system with the impulse response described by the hemodynamic responses (HDR). However, the measured blood oxygenation level-dependent (BOLD) signals to a particular processing task (for example, rapid event-related fMRI design) show nonlinear properties and vary with different brain regions and subjects. In this paper, radial basis function (RBF) neural network (a powerful technique for modelling nonlinearities) is proposed to model the dynamics underlying the fMRI data. The equivalence of the proposed method to the existing Volterra series method has been demonstrated. It is shown that the first- and second-order Volterra kernels could be deduced from the parameters of the RBF neural network. Studies on both simulated (using Balloon model) as well as real event-related fMRI data show that the proposed method can accurately estimate the HDR of the brain and capture the variations of the HDRs as a function of the brain regions and subjects.Functional magnetic resonance imaging (fMRI) is an important technique for neuroimaging. The conventional system identification methods used in fMRI data analysis assume a linear time-invariant system with the impulse response described by the hemodynamic responses (HDR). However, the measured blood oxygenation level-dependent (BOLD) signals to a particular processing task (for example, rapid event-related fMRI design) show nonlinear properties and vary with different brain regions and subjects. In this paper, radial basis function (RBF) neural network (a powerful technique for modelling nonlinearities) is proposed to model the dynamics underlying the fMRI data. The equivalence of the proposed method to the existing Volterra series method has been demonstrated. It is shown that the first- and second-order Volterra kernels could be deduced from the parameters of the RBF neural network. Studies on both simulated (using Balloon model) as well as real event-related fMRI data show that the proposed method can accurately estimate the HDR of the brain and capture the variations of the HDRs as a function of the brain regions and subjects.  | 
    
| Author | Luo, Huaien Puthusserypady, Sadasivan  | 
    
| Author_xml | – sequence: 1 givenname: Huaien surname: Luo fullname: Luo, Huaien email: g0305766@nus.edu.sg organization: Nat. Univ. of Singapore – sequence: 2 givenname: Sadasivan surname: Puthusserypady fullname: Puthusserypady, Sadasivan email: elespk@nus.edu.sg  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17694857$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkt9rFDEQx4NU7LX6Lgiy-KBPeybZ_Hy09WoLV4WjfV5yuYlu3d1ckyzl_vtmu4fCCfUlQ8jnOzPfmZygo973gNBbgueEYP355ux6MacYy7nOh-Yv0IxwrkrKK3KEZhgTVWqq2TE6ifEuX5li4hU6JlJopricoeUipqYzqfF94V2RfkFxCZ3f7HrTNbZYQdz6PsL45q5XV8VXk0xxG5v-Z7E6uyi-wxBMm0N68OH3a_TSmTbCm308RbcXi5vzy3L549vV-ZdlaRnTqbSEEWc2FADrNadUMiKMwUpsdG7WYNDCKawwt1hpkJXVzlli1g509kpFdYrIlHfot2b3YNq23obsIuxqgutxMnVad1CPk6mnyWTNp0mzDf5-gJjqrokW2tb04IdYK6G5lJhXmfz4LCkU4ZII_l-Q5vapIGPGDwfgnR9Cn0eUy1Z5JZiqDL3fQ0PuffPX0X5XGcATYIOPMYD7x_T4HQ5MiwOJbdLTslMwTfuc8N0kbADgTx1GZSUIqR4BQNC86w | 
    
| CODEN | IEBEAX | 
    
| CitedBy_id | crossref_primary_10_1109_TBME_2011_2165542 crossref_primary_10_1016_j_neuroimage_2012_07_006 crossref_primary_10_1177_0142331213479646 crossref_primary_10_1002_ar_21289 crossref_primary_10_1016_j_bspc_2014_07_004 crossref_primary_10_1145_3297713 crossref_primary_10_1016_j_pscychresns_2009_04_017  | 
    
| Cites_doi | 10.1002/hbm.1020 10.1002/hbm.460020402 10.1006/nimg.2002.1053 10.1002/(SICI)1097-0193(1998)6:4<239::AID-HBM4>3.3.CO;2-0 10.1006/nimg.2000.0630 10.1016/j.neuroimage.2003.11.029 10.1016/j.neuroimage.2004.11.008 10.1016/j.neuroimage.2005.08.002 10.1109/IEMBS.2002.1134337 10.1002/mrm.1910390109 10.1017/CBO9780511549854 10.1016/S0165-1684(03)00088-4 10.1002/mrm.1910390602 10.1002/mrm.1910140108 10.1006/nimg.2001.0873 10.1016/j.neuroimage.2004.07.013 10.1162/089892900564037 10.1523/JNEUROSCI.16-13-04207.1996  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007 | 
    
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 ADTOC UNPAY  | 
    
| DOI | 10.1109/TBME.2007.900795 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE Materials Research Database Engineering Research Database Engineering Research Database MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Engineering  | 
    
| EISSN | 1558-2531 | 
    
| EndPage | 1381 | 
    
| ExternalDocumentID | oai:scholarbank.nus.edu.sg:10635/55911 2332214711 17694857 10_1109_TBME_2007_900795 4273611  | 
    
| Genre | orig-research Evaluation Studies Research Support, Non-U.S. Gov't Journal Article  | 
    
| GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c449t-c141fad2ee09b5227416aa086d9929a0e96f80805c089e73c9ffc1abfe9200263 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 0018-9294 1558-2531  | 
    
| IngestDate | Tue Aug 26 13:32:48 EDT 2025 Tue Oct 07 09:53:31 EDT 2025 Sat Sep 27 20:53:17 EDT 2025 Mon Oct 06 18:16:39 EDT 2025 Mon Jun 30 08:39:31 EDT 2025 Mon Jul 21 05:43:16 EDT 2025 Wed Oct 01 02:56:56 EDT 2025 Thu Apr 24 22:58:23 EDT 2025 Wed Aug 27 02:52:55 EDT 2025  | 
    
| IsDoiOpenAccess | false | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 8 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c449t-c141fad2ee09b5227416aa086d9929a0e96f80805c089e73c9ffc1abfe9200263 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-1 ObjectType-Feature-3  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://scholarbank.nus.edu.sg/handle/10635/55911 | 
    
| PMID | 17694857 | 
    
| PQID | 863846028 | 
    
| PQPubID | 23462 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | proquest_miscellaneous_869577053 crossref_primary_10_1109_TBME_2007_900795 proquest_miscellaneous_20892613 proquest_journals_863846028 crossref_citationtrail_10_1109_TBME_2007_900795 ieee_primary_4273611 unpaywall_primary_10_1109_tbme_2007_900795 proquest_miscellaneous_68157165 pubmed_primary_17694857  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2007-08-01 | 
    
| PublicationDateYYYYMMDD | 2007-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2007 text: 2007-08-01 day: 01  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: New York  | 
    
| PublicationTitle | IEEE transactions on biomedical engineering | 
    
| PublicationTitleAbbrev | TBME | 
    
| PublicationTitleAlternate | IEEE Trans Biomed Eng | 
    
| PublicationYear | 2007 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 huettel (ref3) 2004 ref12 ref23 ref15 ref14 haykin (ref17) 1999 ref20 boynton (ref6) 1996; 16 ref11 ref22 ref10 ref21 luo (ref19) 2006 ref1 ref16 (ref2) 2001 ref18 ref7 (ref8) 2003 ref9 ref4 ref5  | 
    
| References_xml | – ident: ref11 doi: 10.1002/hbm.1020 – year: 2004 ident: ref3 publication-title: Functional Magnetic Resonance Imaging – ident: ref5 doi: 10.1002/hbm.460020402 – year: 2006 ident: ref19 article-title: narx neural networks for dynamical modelling of fmri data publication-title: IEEE World Congr Computational Intelligence – year: 1999 ident: ref17 publication-title: Neural Networks A Comprehensive Foundation – ident: ref22 doi: 10.1006/nimg.2002.1053 – ident: ref21 doi: 10.1002/(SICI)1097-0193(1998)6:4<239::AID-HBM4>3.3.CO;2-0 – ident: ref15 doi: 10.1006/nimg.2000.0630 – year: 2001 ident: ref2 publication-title: Functional Magnetic Resonance Imaging An Introduction to Methods – ident: ref7 doi: 10.1016/j.neuroimage.2003.11.029 – ident: ref12 doi: 10.1016/j.neuroimage.2004.11.008 – ident: ref18 doi: 10.1016/j.neuroimage.2005.08.002 – ident: ref10 doi: 10.1109/IEMBS.2002.1134337 – ident: ref13 doi: 10.1002/mrm.1910390109 – ident: ref4 doi: 10.1017/CBO9780511549854 – ident: ref20 doi: 10.1016/S0165-1684(03)00088-4 – ident: ref14 doi: 10.1002/mrm.1910390602 – ident: ref1 doi: 10.1002/mrm.1910140108 – ident: ref9 doi: 10.1006/nimg.2001.0873 – ident: ref16 doi: 10.1016/j.neuroimage.2004.07.013 – year: 2003 ident: ref8 publication-title: Human Brain Function – ident: ref23 doi: 10.1162/089892900564037 – volume: 16 start-page: 4207 year: 1996 ident: ref6 article-title: linear systems analysis of functional magnetic resonance imaging in human v1 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.16-13-04207.1996  | 
    
| SSID | ssj0014846 | 
    
| Score | 1.909469 | 
    
| Snippet | Functional magnetic resonance imaging (fMRI) is an important technique for neuroimaging. The conventional system identification methods used in fMRI data... The conventional system identification methods used in fMRI data analysis assume a linear time-invariant system with the impulse response described by the... Functional magnetic resonance imaging (fMRI) is an important technique for neuroimaging. The conventional system identification mathods used in fMRI data...  | 
    
| SourceID | unpaywall proquest pubmed crossref ieee  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 1371 | 
    
| SubjectTerms | Artificial Intelligence Biological neural networks Blood Blood Flow Velocity - physiology Brain Brain - blood supply Brain - physiology Brain Mapping - methods Brain modeling Cerebrovascular Circulation - physiology Computer Simulation Data analysis Event-related design functional magnetic resonance imaging (fMRI) hemodynamic response (HDR) Hemodynamics Humans Image Interpretation, Computer-Assisted - methods Magnetic resonance imaging Magnetic Resonance Imaging - methods Medical imaging Models, Neurological neural network Neural networks Neural Networks (Computer) Neuroimaging Oxygen - blood Particle measurements radial basis functions (RBF) Studies System identification Volterra kernels  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB6hINFyoC2U4kJhD1yK5MQm9tp75JEoRU1EIyLByVqvd3sgOIjYQvDrmcnaaSSggosP9tjWeufxjXf2G4D9dqgwihD1ZcqNi_jfc4moyBWSSl4DkypDK7r9Ae-NgrPL8HIJ6iaIVUaXyvy6mZeWSXD6t2UZB9DCMTy2EAPTZt5lHiL6bsDyaHB-dGUdLtru4az3IUZJVADUr3pl0hOtAuOL5SwUeKCGEguRaNZa5SWUuQofyvxWPtzL8Xgh8nQ_wZ96_44tOLlulkXaVI_P6RzfPKjPsFbBUHZk9eYLLOl8HVYXyAnXYaVfLbtvwO8OOgK7x5FNDEPMyHr6ZpLZbvZsaOtsNV0z_eEvdioLyWbFCGx43GVEAIIvG9iK868w6nYuTnpu1YbBVUEgClf5gW9kdqi1J1KEa4ThpMRUKBP4taWnBTfEThkqLxY6aithjPJlarSgChDe3oRGPsn1FrBISz_jmGVyHhGvjVSZCtBXa4PntPQcaNVTkqiKo5xaZYyTWa7iieTiuN-h1plRYifRgZ_zO24tP8d_ZDdoludyAUI37vsObNeznlQGPE1i9EsBR_DlwN78KloeLafIXE_KKT45Fph_tl-X4LEfouLji9krEjEXYRShI3Tgm9W3f6OIODH3RA4czBXw2RBJpxeH-P09wtvw0f6ppnLGHWgUd6X-gRCrSHcrq3oCSQgcig priority: 102 providerName: Unpaywall  | 
    
| Title | Estimation of the Hemodynamic Response of fMRI Data Using RBF Neural Network | 
    
| URI | https://ieeexplore.ieee.org/document/4273611 https://www.ncbi.nlm.nih.gov/pubmed/17694857 https://www.proquest.com/docview/863846028 https://www.proquest.com/docview/20892613 https://www.proquest.com/docview/68157165 https://www.proquest.com/docview/869577053 http://scholarbank.nus.edu.sg/handle/10635/55911  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 54 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2531 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014846 issn: 1558-2531 databaseCode: RIE dateStart: 19640101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NIQF74GPjIwyGH3gBkTahjh0_btCqIFKhapXGU-Q49gslmVgiBH89d3EaCmyIlyiKnThnn31n393vAJ5PEoNShKAvC-FC1P-jkICKQqXJ5ZW7wjiy6GYLMV_x92fJ2Q68GmJhrLWd85kd0W1nyy9r09JR2ZijrBUUyHtNpsLHag0WA576oJwoxgmMrW9MkpEan55kUw9WqPCiumQ1UhAsivxNGnXpVS7TNPfgZlud6-_f9Hq9JX1mdyDb_Ld3Ovk8aptiZH78Aen4v4Tdhdu9GsqOPd_cgx1b7cPeFjjhPtzIerP7AXyY4kLgYxxZ7RjqjGxuv9Slz2bPlt7P1lKZy5bv2FvdaNY5I7DlyYwRAAg2tvAe5_dhNZuevpmHfRqG0HCumtDEPHa6fG1tpApU10iH0xq3QqXCjtaRVcIROmViolRZOTHKORPrwllFHiBi8gB2q7qyj4BJq-NS4C5TCEm4NtqUhuNabR0-szoKYLwZjtz0GOWUKmOdd3uVSOU0lpQ6U-Z-LAN4Mbxx7vE5_lH3gLp-qNf3egCHmxHP-wl8kae4LnGBylcAz4ZSnHlkTtGVrdsL_HKqcP85ubqGSOMEGR8bZlfUSIVKpMSFMICHntd-UdGzaAAvB-b7i8QGX9km8fHlJB7CLX8mTY6LT2C3-drap6hMNcVRN4uO4Ppq8fH4009DbhZi | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9NQ2LsgY8NRjZgfuAFRNpkdZz4kUGrDpo-VJ20t8hx7Be6ZNoSIfjrdxenocCGeImi2Ilz9tl39t39DuDtKNIoRQj6MhfWR_0_8AmoyJeKXF65zbUli246F9Nz_uUiutiCD30sjDGmdT4zA7ptbflFpRs6KhtylLWCAnkfRJzzyEVr9TYDnriwnCDEKYztr42SgRwuT9OxgyuUeJFtuppYEDBK_Js8ahOs3KVr7sJOU16pH9_VarUhfyZPIF3_uXM7-TZo6nygf_4B6vi_pD2Fx50iyj46znkGW6bcg90NeMI9eJh2hvd9mI1xKXBRjqyyDLVGNjWXVeHy2bOF87Q1VGbTxRn7rGrFWncEtjidMIIAwcbmzuf8OZxPxstPU79LxOBrzmXt65CHVhUnxgQyR4WNtDilcDNUSOxoFRgpLOFTRjpIpIlHWlqrQ5VbI8kHRIxewHZZleYlsNiosBC4zxQiJmQbpQvNcbU2Fp8ZFXgwXA9HpjuUckqWscra3UogMxpLSp4ZZ24sPXjXv3HlEDr-UXefur6v1_W6B0frEc-6KXyTJbgycYHqlwfHfSnOPTKoqNJUzQ1-OZG4Ax3dX0MkYYSsjw2ze2okQkZxjEuhBweO135R0bGoB-975vuLxBpf2STx8G4Sj2Fnukxn2exs_vUIHrkTanJjfAXb9XVjXqNqVedv2hl1CzS1F_8 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB6hINFyoC2U4kJhD1yK5MQm9tp75JEoRU1EIyLByVqvd3sgOIjYQvDrmcnaaSSggosP9tjWeufxjXf2G4D9dqgwihD1ZcqNi_jfc4moyBWSSl4DkypDK7r9Ae-NgrPL8HIJ6iaIVUaXyvy6mZeWSXD6t2UZB9DCMTy2EAPTZt5lHiL6bsDyaHB-dGUdLtru4az3IUZJVADUr3pl0hOtAuOL5SwUeKCGEguRaNZa5SWUuQofyvxWPtzL8Xgh8nQ_wZ96_44tOLlulkXaVI_P6RzfPKjPsFbBUHZk9eYLLOl8HVYXyAnXYaVfLbtvwO8OOgK7x5FNDEPMyHr6ZpLZbvZsaOtsNV0z_eEvdioLyWbFCGx43GVEAIIvG9iK868w6nYuTnpu1YbBVUEgClf5gW9kdqi1J1KEa4ThpMRUKBP4taWnBTfEThkqLxY6aithjPJlarSgChDe3oRGPsn1FrBISz_jmGVyHhGvjVSZCtBXa4PntPQcaNVTkqiKo5xaZYyTWa7iieTiuN-h1plRYifRgZ_zO24tP8d_ZDdoludyAUI37vsObNeznlQGPE1i9EsBR_DlwN78KloeLafIXE_KKT45Fph_tl-X4LEfouLji9krEjEXYRShI3Tgm9W3f6OIODH3RA4czBXw2RBJpxeH-P09wtvw0f6ppnLGHWgUd6X-gRCrSHcrq3oCSQgcig | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+the+Hemodynamic+Response+of+fMRI+Data+Using+RBF+Neural+Network&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Luo%2C+Huaien&rft.au=Puthusserypady%2C+Sadasivan&rft.date=2007-08-01&rft.pub=IEEE&rft.issn=0018-9294&rft.volume=54&rft.issue=8&rft.spage=1371&rft.epage=1381&rft_id=info:doi/10.1109%2FTBME.2007.900795&rft_id=info%3Apmid%2F17694857&rft.externalDocID=4273611 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |