Estimation of the Hemodynamic Response of fMRI Data Using RBF Neural Network

Functional magnetic resonance imaging (fMRI) is an important technique for neuroimaging. The conventional system identification methods used in fMRI data analysis assume a linear time-invariant system with the impulse response described by the hemodynamic responses (HDR). However, the measured blood...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 54; no. 8; pp. 1371 - 1381
Main Authors Luo, Huaien, Puthusserypady, Sadasivan
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2007
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2007.900795

Cover

Abstract Functional magnetic resonance imaging (fMRI) is an important technique for neuroimaging. The conventional system identification methods used in fMRI data analysis assume a linear time-invariant system with the impulse response described by the hemodynamic responses (HDR). However, the measured blood oxygenation level-dependent (BOLD) signals to a particular processing task (for example, rapid event-related fMRI design) show nonlinear properties and vary with different brain regions and subjects. In this paper, radial basis function (RBF) neural network (a powerful technique for modelling nonlinearities) is proposed to model the dynamics underlying the fMRI data. The equivalence of the proposed method to the existing Volterra series method has been demonstrated. It is shown that the first- and second-order Volterra kernels could be deduced from the parameters of the RBF neural network. Studies on both simulated (using Balloon model) as well as real event-related fMRI data show that the proposed method can accurately estimate the HDR of the brain and capture the variations of the HDRs as a function of the brain regions and subjects.
AbstractList Functional magnetic resonance imaging (fMRI) is an important technique for neuroimaging. The conventional system identification methods used in fMRI data analysis assume a linear time-invariant system with the impulse response described by the hemodynamic responses (HDR). However, the measured blood oxygenation level-dependent (BOLD) signals to a particular processing task (for example, rapid event-related fMRI design) show nonlinear properties and vary with different brain regions and subjects. In this paper, radial basis function (RBF) neural network (a powerful technique for modelling nonlinearities) is proposed to model the dynamics underlying the fMRI data. The equivalence of the proposed method to the existing Volterra series method has been demonstrated. It is shown that the first- and second-order Volterra kernels could be deduced from the parameters of the RBF neural network. Studies on both simulated (using Balloon model) as well as real event-related fMRI data show that the proposed method can accurately estimate the HDR of the brain and capture the variations of the HDRs as a function of the brain regions and subjects.
The conventional system identification methods used in fMRI data analysis assume a linear time-invariant system with the impulse response described by the hemodynamic responses (HDR).
Functional magnetic resonance imaging (fMRI) is an important technique for neuroimaging. The conventional system identification mathods used in fMRI data analysis assume a linear time-invariant system with the impulse response deseribed by the hemodynamic responses (HDR). However, the measured blood oxygenation level-dependent (BOLD) signals to a particular processing task (for example, rapid event-related fMRI design) show nonlinear properties and vary with different brain regions and subjects. In this paper, radial basis function (RBF) neural network (a powerful technique for modelling nonlinearities) is proposed to model the dynamics underlying the fMRI data. The equivalence of the proposed method to the existing Volterra series method has been demonstrated. It is shown that the first- and second-order Volterra Kernels could be deduced from the parameters of the RBF neural network. Studies on both simulated (using Balloon model) as well as real event-related fMRI data show that the proposed method can accurately estimate the HDR of the brain and capture the variations of the HDRs as a function of the brain regions and subjects.
Functional magnetic resonance imaging (fMRI) is an important technique for neuroimaging. The conventional system identification methods used in fMRI data analysis assume a linear time-invariant system with the impulse response described by the hemodynamic responses (HDR). However, the measured blood oxygenation level-dependent (BOLD) signals to a particular processing task (for example, rapid event-related fMRI design) show nonlinear properties and vary with different brain regions and subjects. In this paper, radial basis function (RBF) neural network (a powerful technique for modelling nonlinearities) is proposed to model the dynamics underlying the fMRI data. The equivalence of the proposed method to the existing Volterra series method has been demonstrated. It is shown that the first- and second-order Volterra kernels could be deduced from the parameters of the RBF neural network. Studies on both simulated (using Balloon model) as well as real event-related fMRI data show that the proposed method can accurately estimate the HDR of the brain and capture the variations of the HDRs as a function of the brain regions and subjects.Functional magnetic resonance imaging (fMRI) is an important technique for neuroimaging. The conventional system identification methods used in fMRI data analysis assume a linear time-invariant system with the impulse response described by the hemodynamic responses (HDR). However, the measured blood oxygenation level-dependent (BOLD) signals to a particular processing task (for example, rapid event-related fMRI design) show nonlinear properties and vary with different brain regions and subjects. In this paper, radial basis function (RBF) neural network (a powerful technique for modelling nonlinearities) is proposed to model the dynamics underlying the fMRI data. The equivalence of the proposed method to the existing Volterra series method has been demonstrated. It is shown that the first- and second-order Volterra kernels could be deduced from the parameters of the RBF neural network. Studies on both simulated (using Balloon model) as well as real event-related fMRI data show that the proposed method can accurately estimate the HDR of the brain and capture the variations of the HDRs as a function of the brain regions and subjects.
Author Luo, Huaien
Puthusserypady, Sadasivan
Author_xml – sequence: 1
  givenname: Huaien
  surname: Luo
  fullname: Luo, Huaien
  email: g0305766@nus.edu.sg
  organization: Nat. Univ. of Singapore
– sequence: 2
  givenname: Sadasivan
  surname: Puthusserypady
  fullname: Puthusserypady, Sadasivan
  email: elespk@nus.edu.sg
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17694857$$D View this record in MEDLINE/PubMed
BookMark eNqFkt9rFDEQx4NU7LX6Lgiy-KBPeybZ_Hy09WoLV4WjfV5yuYlu3d1ckyzl_vtmu4fCCfUlQ8jnOzPfmZygo973gNBbgueEYP355ux6MacYy7nOh-Yv0IxwrkrKK3KEZhgTVWqq2TE6ifEuX5li4hU6JlJopricoeUipqYzqfF94V2RfkFxCZ3f7HrTNbZYQdz6PsL45q5XV8VXk0xxG5v-Z7E6uyi-wxBMm0N68OH3a_TSmTbCm308RbcXi5vzy3L549vV-ZdlaRnTqbSEEWc2FADrNadUMiKMwUpsdG7WYNDCKawwt1hpkJXVzlli1g509kpFdYrIlHfot2b3YNq23obsIuxqgutxMnVad1CPk6mnyWTNp0mzDf5-gJjqrokW2tb04IdYK6G5lJhXmfz4LCkU4ZII_l-Q5vapIGPGDwfgnR9Cn0eUy1Z5JZiqDL3fQ0PuffPX0X5XGcATYIOPMYD7x_T4HQ5MiwOJbdLTslMwTfuc8N0kbADgTx1GZSUIqR4BQNC86w
CODEN IEBEAX
CitedBy_id crossref_primary_10_1109_TBME_2011_2165542
crossref_primary_10_1016_j_neuroimage_2012_07_006
crossref_primary_10_1177_0142331213479646
crossref_primary_10_1002_ar_21289
crossref_primary_10_1016_j_bspc_2014_07_004
crossref_primary_10_1145_3297713
crossref_primary_10_1016_j_pscychresns_2009_04_017
Cites_doi 10.1002/hbm.1020
10.1002/hbm.460020402
10.1006/nimg.2002.1053
10.1002/(SICI)1097-0193(1998)6:4<239::AID-HBM4>3.3.CO;2-0
10.1006/nimg.2000.0630
10.1016/j.neuroimage.2003.11.029
10.1016/j.neuroimage.2004.11.008
10.1016/j.neuroimage.2005.08.002
10.1109/IEMBS.2002.1134337
10.1002/mrm.1910390109
10.1017/CBO9780511549854
10.1016/S0165-1684(03)00088-4
10.1002/mrm.1910390602
10.1002/mrm.1910140108
10.1006/nimg.2001.0873
10.1016/j.neuroimage.2004.07.013
10.1162/089892900564037
10.1523/JNEUROSCI.16-13-04207.1996
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ADTOC
UNPAY
DOI 10.1109/TBME.2007.900795
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Materials Research Database
Engineering Research Database
Engineering Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 1381
ExternalDocumentID oai:scholarbank.nus.edu.sg:10635/55911
2332214711
17694857
10_1109_TBME_2007_900795
4273611
Genre orig-research
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c449t-c141fad2ee09b5227416aa086d9929a0e96f80805c089e73c9ffc1abfe9200263
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Tue Aug 26 13:32:48 EDT 2025
Tue Oct 07 09:53:31 EDT 2025
Sat Sep 27 20:53:17 EDT 2025
Mon Oct 06 18:16:39 EDT 2025
Mon Jun 30 08:39:31 EDT 2025
Mon Jul 21 05:43:16 EDT 2025
Wed Oct 01 02:56:56 EDT 2025
Thu Apr 24 22:58:23 EDT 2025
Wed Aug 27 02:52:55 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c449t-c141fad2ee09b5227416aa086d9929a0e96f80805c089e73c9ffc1abfe9200263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-1
ObjectType-Feature-3
OpenAccessLink https://proxy.k.utb.cz/login?url=http://scholarbank.nus.edu.sg/handle/10635/55911
PMID 17694857
PQID 863846028
PQPubID 23462
PageCount 11
ParticipantIDs proquest_miscellaneous_869577053
crossref_primary_10_1109_TBME_2007_900795
proquest_miscellaneous_20892613
proquest_journals_863846028
crossref_citationtrail_10_1109_TBME_2007_900795
ieee_primary_4273611
unpaywall_primary_10_1109_tbme_2007_900795
proquest_miscellaneous_68157165
pubmed_primary_17694857
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-08-01
PublicationDateYYYYMMDD 2007-08-01
PublicationDate_xml – month: 08
  year: 2007
  text: 2007-08-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2007
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
huettel (ref3) 2004
ref12
ref23
ref15
ref14
haykin (ref17) 1999
ref20
boynton (ref6) 1996; 16
ref11
ref22
ref10
ref21
luo (ref19) 2006
ref1
ref16
(ref2) 2001
ref18
ref7
(ref8) 2003
ref9
ref4
ref5
References_xml – ident: ref11
  doi: 10.1002/hbm.1020
– year: 2004
  ident: ref3
  publication-title: Functional Magnetic Resonance Imaging
– ident: ref5
  doi: 10.1002/hbm.460020402
– year: 2006
  ident: ref19
  article-title: narx neural networks for dynamical modelling of fmri data
  publication-title: IEEE World Congr Computational Intelligence
– year: 1999
  ident: ref17
  publication-title: Neural Networks A Comprehensive Foundation
– ident: ref22
  doi: 10.1006/nimg.2002.1053
– ident: ref21
  doi: 10.1002/(SICI)1097-0193(1998)6:4<239::AID-HBM4>3.3.CO;2-0
– ident: ref15
  doi: 10.1006/nimg.2000.0630
– year: 2001
  ident: ref2
  publication-title: Functional Magnetic Resonance Imaging An Introduction to Methods
– ident: ref7
  doi: 10.1016/j.neuroimage.2003.11.029
– ident: ref12
  doi: 10.1016/j.neuroimage.2004.11.008
– ident: ref18
  doi: 10.1016/j.neuroimage.2005.08.002
– ident: ref10
  doi: 10.1109/IEMBS.2002.1134337
– ident: ref13
  doi: 10.1002/mrm.1910390109
– ident: ref4
  doi: 10.1017/CBO9780511549854
– ident: ref20
  doi: 10.1016/S0165-1684(03)00088-4
– ident: ref14
  doi: 10.1002/mrm.1910390602
– ident: ref1
  doi: 10.1002/mrm.1910140108
– ident: ref9
  doi: 10.1006/nimg.2001.0873
– ident: ref16
  doi: 10.1016/j.neuroimage.2004.07.013
– year: 2003
  ident: ref8
  publication-title: Human Brain Function
– ident: ref23
  doi: 10.1162/089892900564037
– volume: 16
  start-page: 4207
  year: 1996
  ident: ref6
  article-title: linear systems analysis of functional magnetic resonance imaging in human v1
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.16-13-04207.1996
SSID ssj0014846
Score 1.909469
Snippet Functional magnetic resonance imaging (fMRI) is an important technique for neuroimaging. The conventional system identification methods used in fMRI data...
The conventional system identification methods used in fMRI data analysis assume a linear time-invariant system with the impulse response described by the...
Functional magnetic resonance imaging (fMRI) is an important technique for neuroimaging. The conventional system identification mathods used in fMRI data...
SourceID unpaywall
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1371
SubjectTerms Artificial Intelligence
Biological neural networks
Blood
Blood Flow Velocity - physiology
Brain
Brain - blood supply
Brain - physiology
Brain Mapping - methods
Brain modeling
Cerebrovascular Circulation - physiology
Computer Simulation
Data analysis
Event-related design
functional magnetic resonance imaging (fMRI)
hemodynamic response (HDR)
Hemodynamics
Humans
Image Interpretation, Computer-Assisted - methods
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical imaging
Models, Neurological
neural network
Neural networks
Neural Networks (Computer)
Neuroimaging
Oxygen - blood
Particle measurements
radial basis functions (RBF)
Studies
System identification
Volterra kernels
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB6hINFyoC2U4kJhD1yK5MQm9tp75JEoRU1EIyLByVqvd3sgOIjYQvDrmcnaaSSggosP9tjWeufxjXf2G4D9dqgwihD1ZcqNi_jfc4moyBWSSl4DkypDK7r9Ae-NgrPL8HIJ6iaIVUaXyvy6mZeWSXD6t2UZB9DCMTy2EAPTZt5lHiL6bsDyaHB-dGUdLtru4az3IUZJVADUr3pl0hOtAuOL5SwUeKCGEguRaNZa5SWUuQofyvxWPtzL8Xgh8nQ_wZ96_44tOLlulkXaVI_P6RzfPKjPsFbBUHZk9eYLLOl8HVYXyAnXYaVfLbtvwO8OOgK7x5FNDEPMyHr6ZpLZbvZsaOtsNV0z_eEvdioLyWbFCGx43GVEAIIvG9iK868w6nYuTnpu1YbBVUEgClf5gW9kdqi1J1KEa4ThpMRUKBP4taWnBTfEThkqLxY6aithjPJlarSgChDe3oRGPsn1FrBISz_jmGVyHhGvjVSZCtBXa4PntPQcaNVTkqiKo5xaZYyTWa7iieTiuN-h1plRYifRgZ_zO24tP8d_ZDdoludyAUI37vsObNeznlQGPE1i9EsBR_DlwN78KloeLafIXE_KKT45Fph_tl-X4LEfouLji9krEjEXYRShI3Tgm9W3f6OIODH3RA4czBXw2RBJpxeH-P09wtvw0f6ppnLGHWgUd6X-gRCrSHcrq3oCSQgcig
  priority: 102
  providerName: Unpaywall
Title Estimation of the Hemodynamic Response of fMRI Data Using RBF Neural Network
URI https://ieeexplore.ieee.org/document/4273611
https://www.ncbi.nlm.nih.gov/pubmed/17694857
https://www.proquest.com/docview/863846028
https://www.proquest.com/docview/20892613
https://www.proquest.com/docview/68157165
https://www.proquest.com/docview/869577053
http://scholarbank.nus.edu.sg/handle/10635/55911
UnpaywallVersion submittedVersion
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 1558-2531
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NIQF74GPjIwyGH3gBkTahjh0_btCqIFKhapXGU-Q49gslmVgiBH89d3EaCmyIlyiKnThnn31n393vAJ5PEoNShKAvC-FC1P-jkICKQqXJ5ZW7wjiy6GYLMV_x92fJ2Q68GmJhrLWd85kd0W1nyy9r09JR2ZijrBUUyHtNpsLHag0WA576oJwoxgmMrW9MkpEan55kUw9WqPCiumQ1UhAsivxNGnXpVS7TNPfgZlud6-_f9Hq9JX1mdyDb_Ld3Ovk8aptiZH78Aen4v4Tdhdu9GsqOPd_cgx1b7cPeFjjhPtzIerP7AXyY4kLgYxxZ7RjqjGxuv9Slz2bPlt7P1lKZy5bv2FvdaNY5I7DlyYwRAAg2tvAe5_dhNZuevpmHfRqG0HCumtDEPHa6fG1tpApU10iH0xq3QqXCjtaRVcIROmViolRZOTHKORPrwllFHiBi8gB2q7qyj4BJq-NS4C5TCEm4NtqUhuNabR0-szoKYLwZjtz0GOWUKmOdd3uVSOU0lpQ6U-Z-LAN4Mbxx7vE5_lH3gLp-qNf3egCHmxHP-wl8kae4LnGBylcAz4ZSnHlkTtGVrdsL_HKqcP85ubqGSOMEGR8bZlfUSIVKpMSFMICHntd-UdGzaAAvB-b7i8QGX9km8fHlJB7CLX8mTY6LT2C3-drap6hMNcVRN4uO4Ppq8fH4009DbhZi
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9NQ2LsgY8NRjZgfuAFRNpkdZz4kUGrDpo-VJ20t8hx7Be6ZNoSIfjrdxenocCGeImi2Ilz9tl39t39DuDtKNIoRQj6MhfWR_0_8AmoyJeKXF65zbUli246F9Nz_uUiutiCD30sjDGmdT4zA7ptbflFpRs6KhtylLWCAnkfRJzzyEVr9TYDnriwnCDEKYztr42SgRwuT9OxgyuUeJFtuppYEDBK_Js8ahOs3KVr7sJOU16pH9_VarUhfyZPIF3_uXM7-TZo6nygf_4B6vi_pD2Fx50iyj46znkGW6bcg90NeMI9eJh2hvd9mI1xKXBRjqyyDLVGNjWXVeHy2bOF87Q1VGbTxRn7rGrFWncEtjidMIIAwcbmzuf8OZxPxstPU79LxOBrzmXt65CHVhUnxgQyR4WNtDilcDNUSOxoFRgpLOFTRjpIpIlHWlqrQ5VbI8kHRIxewHZZleYlsNiosBC4zxQiJmQbpQvNcbU2Fp8ZFXgwXA9HpjuUckqWscra3UogMxpLSp4ZZ24sPXjXv3HlEDr-UXefur6v1_W6B0frEc-6KXyTJbgycYHqlwfHfSnOPTKoqNJUzQ1-OZG4Ax3dX0MkYYSsjw2ze2okQkZxjEuhBweO135R0bGoB-975vuLxBpf2STx8G4Sj2Fnukxn2exs_vUIHrkTanJjfAXb9XVjXqNqVedv2hl1CzS1F_8
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB6hINFyoC2U4kJhD1yK5MQm9tp75JEoRU1EIyLByVqvd3sgOIjYQvDrmcnaaSSggosP9tjWeufxjXf2G4D9dqgwihD1ZcqNi_jfc4moyBWSSl4DkypDK7r9Ae-NgrPL8HIJ6iaIVUaXyvy6mZeWSXD6t2UZB9DCMTy2EAPTZt5lHiL6bsDyaHB-dGUdLtru4az3IUZJVADUr3pl0hOtAuOL5SwUeKCGEguRaNZa5SWUuQofyvxWPtzL8Xgh8nQ_wZ96_44tOLlulkXaVI_P6RzfPKjPsFbBUHZk9eYLLOl8HVYXyAnXYaVfLbtvwO8OOgK7x5FNDEPMyHr6ZpLZbvZsaOtsNV0z_eEvdioLyWbFCGx43GVEAIIvG9iK868w6nYuTnpu1YbBVUEgClf5gW9kdqi1J1KEa4ThpMRUKBP4taWnBTfEThkqLxY6aithjPJlarSgChDe3oRGPsn1FrBISz_jmGVyHhGvjVSZCtBXa4PntPQcaNVTkqiKo5xaZYyTWa7iieTiuN-h1plRYifRgZ_zO24tP8d_ZDdoludyAUI37vsObNeznlQGPE1i9EsBR_DlwN78KloeLafIXE_KKT45Fph_tl-X4LEfouLji9krEjEXYRShI3Tgm9W3f6OIODH3RA4czBXw2RBJpxeH-P09wtvw0f6ppnLGHWgUd6X-gRCrSHcrq3oCSQgcig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+the+Hemodynamic+Response+of+fMRI+Data+Using+RBF+Neural+Network&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Luo%2C+Huaien&rft.au=Puthusserypady%2C+Sadasivan&rft.date=2007-08-01&rft.pub=IEEE&rft.issn=0018-9294&rft.volume=54&rft.issue=8&rft.spage=1371&rft.epage=1381&rft_id=info:doi/10.1109%2FTBME.2007.900795&rft_id=info%3Apmid%2F17694857&rft.externalDocID=4273611
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon