B-Value Optimization in the Estimation of Intravoxel Incoherent Motion Parameters in Patients with Cervical Cancer

This study aimed to find the optimal number of b-values for intravoxel incoherent motion (IVIM) imaging analysis, using simulated and data from cervical cancer patients. Simulated data were generated using literature pooled means, which served as reference values for simulations. data from 100 treat...

Full description

Saved in:
Bibliographic Details
Published inKorean journal of radiology Vol. 21; no. 2; pp. 218 - 227
Main Authors Perucho, Jose Angelo Udal, Chang, Hing Chiu Charles, Vardhanabhuti, Varut, Wang, Mandi, Becker, Anton Sebastian, Wurnig, Moritz Christoph, Lee, Elaine Yuen Phin
Format Journal Article
LanguageEnglish
Published Korea (South) The Korean Society of Radiology 01.02.2020
대한영상의학회
Subjects
Online AccessGet full text
ISSN1229-6929
2005-8330
2005-8330
DOI10.3348/kjr.2019.0232

Cover

Abstract This study aimed to find the optimal number of b-values for intravoxel incoherent motion (IVIM) imaging analysis, using simulated and data from cervical cancer patients. Simulated data were generated using literature pooled means, which served as reference values for simulations. data from 100 treatment-naïve cervical cancer patients with IVIM imaging (13 b-values, scan time, 436 seconds) were retrospectively reviewed. A stepwise b-value fitting algorithm calculated optimal thresholds. Feed forward selection determined the optimal subsampled b-value distribution for biexponential IVIM fitting, and simplified IVIM modeling using monoexponential fitting was attempted. IVIM parameters computed using all b-values served as reference values for data. In simulations, parameters were accurately estimated with six b-values, or three b-values for simplified IVIM, respectively. data showed that the optimal threshold was 40 s/mm² for patients with squamous cell carcinoma and a subsampled acquisition of six b-values (scan time, 198 seconds) estimated parameters were not significantly different from reference parameters (individual parameter error rates of less than 5%). In patients with adenocarcinoma, the optimal threshold was 100 s/mm², but an optimal subsample could not be identified. Irrespective of the histological subtype, only three b-values were needed for simplified IVIM, but these parameters did not retain their discriminative ability. Subsampling of six b-values halved the IVIM scan time without significant losses in accuracy and discriminative ability. Simplified IVIM is possible with only three b-values, at the risk of losing diagnostic information.
AbstractList Objective This study aimed to find the optimal number of b-values for intravoxel incoherent motion (IVIM) imaging analysis, using simulated and in vivo data from cervical cancer patients. Materials and Methods Simulated data were generated using literature pooled means, which served as reference values for simulations. In vivo data from 100 treatment-naïve cervical cancer patients with IVIM imaging (13 b-values, scan time, 436 seconds) were retrospectively reviewed. A stepwise b-value fitting algorithm calculated optimal thresholds. Feed forward selection determined the optimal subsampled b-value distribution for biexponential IVIM fitting, and simplified IVIM modeling using monoexponential fitting was attempted. IVIM parameters computed using all b-values served as reference values for in vivo data. Results In simulations, parameters were accurately estimated with six b-values, or three b-values for simplified IVIM, respectively. In vivo data showed that the optimal threshold was 40 s/mm2 for patients with squamous cell carcinoma and a subsampled acquisition of six b-values (scan time, 198 seconds) estimated parameters were not significantly different from reference parameters (individual parameter error rates of less than 5%). In patients with adenocarcinoma, the optimal threshold was 100 s/mm2, but an optimal subsample could not be identified. Irrespective of the histological subtype, only three b-values were needed for simplified IVIM, but these parameters did not retain their discriminative ability. Conclusion Subsampling of six b-values halved the IVIM scan time without significant losses in accuracy and discriminative ability. Simplified IVIM is possible with only three b-values, at the risk of losing diagnostic information.
Objective: This study aimed to find the optimal number of b-values for intravoxel incoherent motion (IVIM) imaging analysis, using simulated and in vivo data from cervical cancer patients. Materials and Methods: Simulated data were generated using literature pooled means, which served as reference values for simulations. In vivo data from 100 treatment-naïve cervical cancer patients with IVIM imaging (13 b-values, scan time, 436 seconds) were retrospectively reviewed. A stepwise b-value fitting algorithm calculated optimal thresholds. Feed forward selection determined the optimal subsampled b-value distribution for biexponential IVIM fitting, and simplified IVIM modeling using monoexponential fitting was attempted. IVIM parameters computed using all b-values served as reference values for in vivo data. Results: In simulations, parameters were accurately estimated with six b-values, or three b-values for simplified IVIM, respectively. In vivo data showed that the optimal threshold was 40 s/mm2 for patients with squamous cell carcinoma and a subsampled acquisition of six b-values (scan time, 198 seconds) estimated parameters were not significantly different from reference parameters (individual parameter error rates of less than 5%). In patients with adenocarcinoma, the optimal threshold was 100 s/mm2, but an optimal subsample could not be identified. Irrespective of the histological subtype, only three b-values were needed for simplified IVIM, but these parameters did not retain their discriminative ability. Conclusion: Subsampling of six b-values halved the IVIM scan time without significant losses in accuracy and discriminative ability. Simplified IVIM is possible with only three b-values, at the risk of losing diagnostic information. KCI Citation Count: 0
This study aimed to find the optimal number of b-values for intravoxel incoherent motion (IVIM) imaging analysis, using simulated and in vivo data from cervical cancer patients.OBJECTIVEThis study aimed to find the optimal number of b-values for intravoxel incoherent motion (IVIM) imaging analysis, using simulated and in vivo data from cervical cancer patients.Simulated data were generated using literature pooled means, which served as reference values for simulations. In vivo data from 100 treatment-naïve cervical cancer patients with IVIM imaging (13 b-values, scan time, 436 seconds) were retrospectively reviewed. A stepwise b-value fitting algorithm calculated optimal thresholds. Feed forward selection determined the optimal subsampled b-value distribution for biexponential IVIM fitting, and simplified IVIM modeling using monoexponential fitting was attempted. IVIM parameters computed using all b-values served as reference values for in vivo data.MATERIALS AND METHODSSimulated data were generated using literature pooled means, which served as reference values for simulations. In vivo data from 100 treatment-naïve cervical cancer patients with IVIM imaging (13 b-values, scan time, 436 seconds) were retrospectively reviewed. A stepwise b-value fitting algorithm calculated optimal thresholds. Feed forward selection determined the optimal subsampled b-value distribution for biexponential IVIM fitting, and simplified IVIM modeling using monoexponential fitting was attempted. IVIM parameters computed using all b-values served as reference values for in vivo data.In simulations, parameters were accurately estimated with six b-values, or three b-values for simplified IVIM, respectively. In vivo data showed that the optimal threshold was 40 s/mm² for patients with squamous cell carcinoma and a subsampled acquisition of six b-values (scan time, 198 seconds) estimated parameters were not significantly different from reference parameters (individual parameter error rates of less than 5%). In patients with adenocarcinoma, the optimal threshold was 100 s/mm², but an optimal subsample could not be identified. Irrespective of the histological subtype, only three b-values were needed for simplified IVIM, but these parameters did not retain their discriminative ability.RESULTSIn simulations, parameters were accurately estimated with six b-values, or three b-values for simplified IVIM, respectively. In vivo data showed that the optimal threshold was 40 s/mm² for patients with squamous cell carcinoma and a subsampled acquisition of six b-values (scan time, 198 seconds) estimated parameters were not significantly different from reference parameters (individual parameter error rates of less than 5%). In patients with adenocarcinoma, the optimal threshold was 100 s/mm², but an optimal subsample could not be identified. Irrespective of the histological subtype, only three b-values were needed for simplified IVIM, but these parameters did not retain their discriminative ability.Subsampling of six b-values halved the IVIM scan time without significant losses in accuracy and discriminative ability. Simplified IVIM is possible with only three b-values, at the risk of losing diagnostic information.CONCLUSIONSubsampling of six b-values halved the IVIM scan time without significant losses in accuracy and discriminative ability. Simplified IVIM is possible with only three b-values, at the risk of losing diagnostic information.
This study aimed to find the optimal number of b-values for intravoxel incoherent motion (IVIM) imaging analysis, using simulated and data from cervical cancer patients. Simulated data were generated using literature pooled means, which served as reference values for simulations. data from 100 treatment-naïve cervical cancer patients with IVIM imaging (13 b-values, scan time, 436 seconds) were retrospectively reviewed. A stepwise b-value fitting algorithm calculated optimal thresholds. Feed forward selection determined the optimal subsampled b-value distribution for biexponential IVIM fitting, and simplified IVIM modeling using monoexponential fitting was attempted. IVIM parameters computed using all b-values served as reference values for data. In simulations, parameters were accurately estimated with six b-values, or three b-values for simplified IVIM, respectively. data showed that the optimal threshold was 40 s/mm² for patients with squamous cell carcinoma and a subsampled acquisition of six b-values (scan time, 198 seconds) estimated parameters were not significantly different from reference parameters (individual parameter error rates of less than 5%). In patients with adenocarcinoma, the optimal threshold was 100 s/mm², but an optimal subsample could not be identified. Irrespective of the histological subtype, only three b-values were needed for simplified IVIM, but these parameters did not retain their discriminative ability. Subsampling of six b-values halved the IVIM scan time without significant losses in accuracy and discriminative ability. Simplified IVIM is possible with only three b-values, at the risk of losing diagnostic information.
Author Perucho, Jose Angelo Udal
Vardhanabhuti, Varut
Wurnig, Moritz Christoph
Becker, Anton Sebastian
Lee, Elaine Yuen Phin
Wang, Mandi
Chang, Hing Chiu Charles
AuthorAffiliation 1 Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong
2 Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich, Switzerland
AuthorAffiliation_xml – name: 1 Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong
– name: 2 Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich, Switzerland
Author_xml – sequence: 1
  givenname: Jose Angelo Udal
  orcidid: 0000-0001-6088-3173
  surname: Perucho
  fullname: Perucho, Jose Angelo Udal
  organization: Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong
– sequence: 2
  givenname: Hing Chiu Charles
  orcidid: 0000-0001-8634-328X
  surname: Chang
  fullname: Chang, Hing Chiu Charles
  organization: Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong
– sequence: 3
  givenname: Varut
  orcidid: 0000-0001-6677-3194
  surname: Vardhanabhuti
  fullname: Vardhanabhuti, Varut
  organization: Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong
– sequence: 4
  givenname: Mandi
  orcidid: 0000-0002-8467-148X
  surname: Wang
  fullname: Wang, Mandi
  organization: Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong
– sequence: 5
  givenname: Anton Sebastian
  orcidid: 0000-0001-8372-6496
  surname: Becker
  fullname: Becker, Anton Sebastian
  organization: Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich, Switzerland
– sequence: 6
  givenname: Moritz Christoph
  orcidid: 0000-0001-7865-4010
  surname: Wurnig
  fullname: Wurnig, Moritz Christoph
  organization: Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich, Switzerland
– sequence: 7
  givenname: Elaine Yuen Phin
  orcidid: 0000-0002-0627-5297
  surname: Lee
  fullname: Lee, Elaine Yuen Phin
  organization: Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31997597$$D View this record in MEDLINE/PubMed
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002554207$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNqFUk1vEzEQtVARTQNHrsgSFzhs8NpeO74glaiFSEWtUOFqeb1e4mRjB9ubtvx6vNnyVQlxGmvmvXkzb3wCjpx3BoDnJZoRQudvNusww6gUM4QJfgQmGKGqmBOCjsCkxFgUTGBxDE5iXCOEBZrTJ-CYlELwSvAJCO-KL6rrDbzcJbu131Wy3kHrYFoZeBZzbsz4Fi5dCmrvb02Xn9qvTDAuwY_-UL9SQW1NMiEO5KtMysUIb2xawYUJe6tVBxfKaROegset6qJ5dh-n4PP52fXiQ3Fx-X65OL0oNKUiFTWrG1K1TDdVzYdY45qVigpKjKoIRqzBSLS6NQrpkjSClLzhNRU1Vxi3iEzB67GvC63caCu9sof41ctNkKefrpeSMYYqLjJ2NmJ7t1N3N6rr5C7k3cOdLJEcjJbZaDkYLQejM-HtSNj19dY02gzm_CYNUn9XnF1l4b1kQmBKWW7w6r5B8N96E5Pc2qhN1ylnfB8lzpo8HwnTDH35ALr2fXDZO4k5ngvBeD74FLz4c6Jfo_y8dQYUI0AHH2Mw7X9XJA_w2qbDb8gL2e4frB_z_s2E
CitedBy_id crossref_primary_10_1016_j_mri_2024_02_008
crossref_primary_10_1259_bjr_20220952
crossref_primary_10_1155_2022_2276102
crossref_primary_10_4103_jmp_jmp_10_24
crossref_primary_10_1002_mrm_28671
crossref_primary_10_1002_nbm_5201
crossref_primary_10_2463_mrms_rev_2022_0107
crossref_primary_10_1002_mrm_29165
crossref_primary_10_1016_j_compbiomed_2023_106746
crossref_primary_10_1088_1361_6560_ad3db8
crossref_primary_10_1007_s00330_020_07248_z
crossref_primary_10_1016_j_eswa_2020_114270
crossref_primary_10_1186_s40644_024_00765_w
crossref_primary_10_1002_mrm_29612
crossref_primary_10_1155_2021_6651070
crossref_primary_10_3390_diagnostics11060926
crossref_primary_10_1088_1361_6560_ac9a1f
crossref_primary_10_1007_s00330_021_07817_w
crossref_primary_10_1016_j_mri_2020_12_008
Cites_doi 10.1007/s00330-016-4596-8
10.1186/s12885-016-2116-5
10.1097/RLI.0b013e3181ffc485
10.1002/jmri.24808
10.3348/kjr.2017.18.3.510
10.2463/mrms.6.211
10.1002/mrm.1910100305
10.2214/AJR.10.5515
10.1002/jmri.24271
10.1007/s11604-007-0187-6
10.1016/j.ejrad.2014.09.003
10.1371/journal.pone.0112866
10.1053/jlts.2002.30886
10.1186/s12885-017-3800-9
10.1007/s00330-007-0843-3
10.1002/mrm.25506
10.1097/RLI.0b013e3182a71cc3
10.1002/mrm.22740
10.1016/j.mri.2011.03.004
10.2214/AJR.15.15945
10.1097/RCT.0000000000000569
10.1118/1.4736516
10.1097/MD.0000000000003275
10.1016/S1001-9294(09)60027-4
10.1016/j.ygyno.2008.07.048
10.1002/mrm.24277
10.1002/acm2.12065
10.1097/RCT.0000000000000266
10.3174/ajnr.A4929
10.3109/0284186X.2010.500305
10.1148/radiology.168.2.3393671
10.1002/mrm.1910230113
10.1016/j.mri.2016.04.009
10.3174/ajnr.A0587
10.1002/nbm.3852
10.1038/ncponc1073
10.1097/RLI.0b013e3181c8ceac
10.1007/s00330-014-3160-7
10.1002/jmri.25680
10.1038/s41598-017-11988-2
ContentType Journal Article
Copyright Copyright © 2020 The Korean Society of Radiology.
2020. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2020 The Korean Society of Radiology 2020 The Korean Society of Radiology
Copyright_xml – notice: Copyright © 2020 The Korean Society of Radiology.
– notice: 2020. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2020 The Korean Society of Radiology 2020 The Korean Society of Radiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
KB0
M0S
M1P
NAPCQ
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
ACYCR
DOI 10.3348/kjr.2019.0232
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Medical Database
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
Korean Citation Index
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2005-8330
EndPage 227
ExternalDocumentID oai_kci_go_kr_ARTI_6660579
10.3348/kjr.2019.0232
PMC6992446
31997597
10_3348_kjr_2019_0232
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
  grantid: GRF 17119916
GroupedDBID ---
29L
2WC
5-W
53G
5GY
7RV
7X7
88E
8FI
8FJ
8JR
8XY
9ZL
AAYXX
ABUWG
ADBBV
ADRAZ
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BENPR
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EF.
EMOBN
F5P
FRP
FYUFA
GX1
HMCUK
HYE
KQ8
M1P
M48
NAPCQ
O5R
O5S
OK1
OVT
P6G
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PSQYO
PUEGO
RNS
RPM
SV3
TR2
UKHRP
W2D
WH7
XSB
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
ACYCR
M~E
ID FETCH-LOGICAL-c449t-b6bd35f6cd5b75f6cb2b61a4943ea53206d209fcfea0c13d9317d7b49b7a22f03
IEDL.DBID M48
ISSN 1229-6929
2005-8330
IngestDate Tue Nov 21 21:42:24 EST 2023
Sun Sep 07 10:56:08 EDT 2025
Tue Sep 30 16:57:45 EDT 2025
Fri Sep 05 12:29:27 EDT 2025
Tue Oct 07 07:03:31 EDT 2025
Thu Apr 03 07:00:23 EDT 2025
Wed Oct 01 02:09:43 EDT 2025
Thu Apr 24 23:09:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords Diffusion-weighted imaging
Magnetic resonance imaging
b-values
Cervical cancer
Intravoxel incoherent motion
Language English
License Copyright © 2020 The Korean Society of Radiology.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c449t-b6bd35f6cd5b75f6cb2b61a4943ea53206d209fcfea0c13d9317d7b49b7a22f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
https://doi.org/10.3348/kjr.2019.0232
ORCID 0000-0001-8634-328X
0000-0002-8467-148X
0000-0001-6677-3194
0000-0002-0627-5297
0000-0001-6088-3173
0000-0001-7865-4010
0000-0001-8372-6496
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3348/kjr.2019.0232
PMID 31997597
PQID 2728996783
PQPubID 5474425
PageCount 10
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_6660579
unpaywall_primary_10_3348_kjr_2019_0232
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6992446
proquest_miscellaneous_2348797524
proquest_journals_2728996783
pubmed_primary_31997597
crossref_primary_10_3348_kjr_2019_0232
crossref_citationtrail_10_3348_kjr_2019_0232
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Korea (South)
PublicationPlace_xml – name: Korea (South)
– name: Seoul
PublicationTitle Korean journal of radiology
PublicationTitleAlternate Korean J Radiol
PublicationYear 2020
Publisher The Korean Society of Radiology
대한영상의학회
Publisher_xml – name: The Korean Society of Radiology
– name: 대한영상의학회
References McVeigh (10.3348/kjr.2019.0232_ref1) 2008; 18
Lee (10.3348/kjr.2019.0232_ref11) 2017; 46
Ogura (10.3348/kjr.2019.0232_ref17) 2016; 207
Lee (10.3348/kjr.2019.0232_ref7) 2014; 24
Jambor (10.3348/kjr.2019.0232_ref25) 2014; 39
Conklin (10.3348/kjr.2019.0232_ref28) 2016; 37
Sigmund (10.3348/kjr.2019.0232_ref38) 2011; 65
Wu (10.3348/kjr.2019.0232_ref34) 2017; 41
Le Bihan (10.3348/kjr.2019.0232_ref8) 1988; 168
Dale (10.3348/kjr.2019.0232_ref14) 2010; 45
Zhou (10.3348/kjr.2019.0232_ref33) 2016; 34
Patterson (10.3348/kjr.2019.0232_ref3) 2008; 5
Pieper (10.3348/kjr.2019.0232_ref29) 2016; 95
Tan (10.3348/kjr.2019.0232_ref40) 2005
Ogura (10.3348/kjr.2019.0232_ref13) 2015; 39
Becker (10.3348/kjr.2019.0232_ref35) 2017; 6
Wurnig (10.3348/kjr.2019.0232_ref41) 2018; 31
Wurnig (10.3348/kjr.2019.0232_ref19) 2015; 74
Lai (10.3348/kjr.2019.0232_ref36) 2017; 17
Zhu (10.3348/kjr.2019.0232_ref12) 2017; 7
Freiman (10.3348/kjr.2019.0232_ref18) 2012; 39
Chen (10.3348/kjr.2019.0232_ref23) 2017; 18
Lin (10.3348/kjr.2019.0232_ref32) 2017; 27
Koh (10.3348/kjr.2019.0232_ref4) 2007; 6
Lee (10.3348/kjr.2019.0232_ref9) 2015; 42
Sasaki (10.3348/kjr.2019.0232_ref27) 2014; 9
Koh (10.3348/kjr.2019.0232_ref22) 2011; 196
Concia (10.3348/kjr.2019.0232_ref31) 2014; 49
Kallehauge (10.3348/kjr.2019.0232_ref6) 2010; 49
Becker (10.3348/kjr.2019.0232_ref20) 2017; 18
Matsuoka (10.3348/kjr.2019.0232_ref16) 2008; 26
Harry (10.3348/kjr.2019.0232_ref5) 2008; 111
Xue (10.3348/kjr.2019.0232_ref2) 2008; 23
Dyvorne (10.3348/kjr.2019.0232_ref26) 2014; 83
Chandarana (10.3348/kjr.2019.0232_ref39) 2011; 46
Zhu (10.3348/kjr.2019.0232_ref10) 2016; 16
Pekar (10.3348/kjr.2019.0232_ref30) 1992; 23
Habermann (10.3348/kjr.2019.0232_ref15) 2007; 28
Molmenti (10.3348/kjr.2019.0232_ref42) 2002; 8
Pang (10.3348/kjr.2019.0232_ref21) 2013; 69
Le Bihan (10.3348/kjr.2019.0232_ref37) 1989; 10
Lemke (10.3348/kjr.2019.0232_ref24) 2011; 29
References_xml – volume: 27
  start-page: 2400
  year: 2017
  ident: 10.3348/kjr.2019.0232_ref32
  publication-title: Eur Radiol
  doi: 10.1007/s00330-016-4596-8
– volume: 16
  start-page: 79
  year: 2016
  ident: 10.3348/kjr.2019.0232_ref10
  publication-title: BMC Cancer
  doi: 10.1186/s12885-016-2116-5
– volume: 46
  start-page: 285
  year: 2011
  ident: 10.3348/kjr.2019.0232_ref39
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0b013e3181ffc485
– volume: 42
  start-page: 454
  year: 2015
  ident: 10.3348/kjr.2019.0232_ref9
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.24808
– volume: 18
  start-page: 510
  year: 2017
  ident: 10.3348/kjr.2019.0232_ref20
  publication-title: Korean J Radiol
  doi: 10.3348/kjr.2017.18.3.510
– volume: 6
  start-page: 211
  year: 2007
  ident: 10.3348/kjr.2019.0232_ref4
  publication-title: Magn Reson Med Sci
  doi: 10.2463/mrms.6.211
– volume: 10
  start-page: 324
  year: 1989
  ident: 10.3348/kjr.2019.0232_ref37
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910100305
– volume: 196
  start-page: 1351
  year: 2011
  ident: 10.3348/kjr.2019.0232_ref22
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.10.5515
– volume: 39
  start-page: 1213
  year: 2014
  ident: 10.3348/kjr.2019.0232_ref25
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.24271
– volume: 26
  start-page: 15
  year: 2008
  ident: 10.3348/kjr.2019.0232_ref16
  publication-title: Radiat Med
  doi: 10.1007/s11604-007-0187-6
– volume: 83
  start-page: 2109
  year: 2014
  ident: 10.3348/kjr.2019.0232_ref26
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2014.09.003
– volume: 9
  start-page: e112866
  year: 2014
  ident: 10.3348/kjr.2019.0232_ref27
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0112866
– volume: 8
  start-page: 160
  year: 2002
  ident: 10.3348/kjr.2019.0232_ref42
  publication-title: Liver Transpl
  doi: 10.1053/jlts.2002.30886
– volume: 17
  start-page: 825
  year: 2017
  ident: 10.3348/kjr.2019.0232_ref36
  publication-title: BMC Cancer
  doi: 10.1186/s12885-017-3800-9
– volume: 18
  start-page: 1058
  year: 2008
  ident: 10.3348/kjr.2019.0232_ref1
  publication-title: Eur Radiol
  doi: 10.1007/s00330-007-0843-3
– volume: 74
  start-page: 1414
  year: 2015
  ident: 10.3348/kjr.2019.0232_ref19
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25506
– volume: 49
  start-page: 93
  year: 2014
  ident: 10.3348/kjr.2019.0232_ref31
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0b013e3182a71cc3
– volume: 65
  start-page: 1437
  year: 2011
  ident: 10.3348/kjr.2019.0232_ref38
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.22740
– volume: 29
  start-page: 766
  year: 2011
  ident: 10.3348/kjr.2019.0232_ref24
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2011.03.004
– volume: 207
  start-page: 1239
  year: 2016
  ident: 10.3348/kjr.2019.0232_ref17
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.15.15945
– volume-title: Introduction to data mining
  year: 2005
  ident: 10.3348/kjr.2019.0232_ref40
– volume: 41
  start-page: 592
  year: 2017
  ident: 10.3348/kjr.2019.0232_ref34
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/RCT.0000000000000569
– volume: 39
  start-page: 4832
  year: 2012
  ident: 10.3348/kjr.2019.0232_ref18
  publication-title: Med Phys
  doi: 10.1118/1.4736516
– volume: 95
  start-page: e3275
  year: 2016
  ident: 10.3348/kjr.2019.0232_ref29
  publication-title: Medicine (Baltimore)
  doi: 10.1097/MD.0000000000003275
– volume: 23
  start-page: 133
  year: 2008
  ident: 10.3348/kjr.2019.0232_ref2
  publication-title: Chin Med Sci J
  doi: 10.1016/S1001-9294(09)60027-4
– volume: 111
  start-page: 213
  year: 2008
  ident: 10.3348/kjr.2019.0232_ref5
  publication-title: Gynecol Oncol
  doi: 10.1016/j.ygyno.2008.07.048
– volume: 6
  start-page: 2058460117729574
  year: 2017
  ident: 10.3348/kjr.2019.0232_ref35
  publication-title: Acta Radiol Open
– volume: 69
  start-page: 553
  year: 2013
  ident: 10.3348/kjr.2019.0232_ref21
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.24277
– volume: 18
  start-page: 191
  year: 2017
  ident: 10.3348/kjr.2019.0232_ref23
  publication-title: J Appl Clin Med Phys
  doi: 10.1002/acm2.12065
– volume: 39
  start-page: 760
  year: 2015
  ident: 10.3348/kjr.2019.0232_ref13
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/RCT.0000000000000266
– volume: 37
  start-page: 2251
  year: 2016
  ident: 10.3348/kjr.2019.0232_ref28
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A4929
– volume: 49
  start-page: 1017
  year: 2010
  ident: 10.3348/kjr.2019.0232_ref6
  publication-title: Acta Oncol
  doi: 10.3109/0284186X.2010.500305
– volume: 168
  start-page: 497
  year: 1988
  ident: 10.3348/kjr.2019.0232_ref8
  publication-title: Radiology
  doi: 10.1148/radiology.168.2.3393671
– volume: 23
  start-page: 122
  year: 1992
  ident: 10.3348/kjr.2019.0232_ref30
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910230113
– volume: 34
  start-page: 1050
  year: 2016
  ident: 10.3348/kjr.2019.0232_ref33
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2016.04.009
– volume: 28
  start-page: 1547
  year: 2007
  ident: 10.3348/kjr.2019.0232_ref15
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A0587
– volume: 31
  start-page: e3852
  year: 2018
  ident: 10.3348/kjr.2019.0232_ref41
  publication-title: NMR Biomed
  doi: 10.1002/nbm.3852
– volume: 5
  start-page: 220
  year: 2008
  ident: 10.3348/kjr.2019.0232_ref3
  publication-title: Nat Clin Pract Oncol
  doi: 10.1038/ncponc1073
– volume: 45
  start-page: 104
  year: 2010
  ident: 10.3348/kjr.2019.0232_ref14
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0b013e3181c8ceac
– volume: 24
  start-page: 1506
  year: 2014
  ident: 10.3348/kjr.2019.0232_ref7
  publication-title: Eur Radiol
  doi: 10.1007/s00330-014-3160-7
– volume: 46
  start-page: 1491
  year: 2017
  ident: 10.3348/kjr.2019.0232_ref11
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.25680
– volume: 7
  start-page: 11635
  year: 2017
  ident: 10.3348/kjr.2019.0232_ref12
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-11988-2
SSID ssj0029084
Score 2.340586
Snippet This study aimed to find the optimal number of b-values for intravoxel incoherent motion (IVIM) imaging analysis, using simulated and data from cervical cancer...
Objective This study aimed to find the optimal number of b-values for intravoxel incoherent motion (IVIM) imaging analysis, using simulated and in vivo data...
This study aimed to find the optimal number of b-values for intravoxel incoherent motion (IVIM) imaging analysis, using simulated and in vivo data from...
Objective: This study aimed to find the optimal number of b-values for intravoxel incoherent motion (IVIM) imaging analysis, using simulated and in vivo data...
SourceID nrf
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 218
SubjectTerms Adenocarcinoma - pathology
Adult
Aged
Aged, 80 and over
Algorithms
Carcinoma, Squamous Cell - pathology
Cervical cancer
Estimates
Female
Genitourinary Imaging
Humans
Image Processing, Computer-Assisted - methods
Mann-Whitney U test
Middle Aged
Neoplasm Staging
Patients
Reproducibility
Retrospective Studies
Signal-To-Noise Ratio
Simulation
Statistical analysis
Uterine Cervical Neoplasms - pathology
Young Adult
방사선과학
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELe2TgJeEN8EBjIIwQvZUttxlgeEWNVpQ2qpEEN7s_wVVhqSkrV8_Pfc5QsqYE-JZEc-587nO_vud4Q8ExY2AiYPQmdkFArtXXjgRBLGHKxxIyKb1XAMk6k8PhVvz-KzLTLtcmEwrLLTibWidqXFM_J9lqBrAKqVv15-DbFqFN6udiU0dFtawb2qIca2yQ5DZKwB2TkcT2fvexcsjeoaxEOGQR9gGTSom5iNur_4jPCgw3QPid_YpbaLKvuXAfp3HOXVdbHUP7_rPP9jkzq6Qa631iV904jDTbLli1vkyqS9P79NqsPwo87Xnr4DTfGlTcGk84KCGUjHsNqbREZaZvQEB_tW_vA5vNryHNMCV3RSF_2hM40xXQjMiR_PGmzWC4qHunRUax-gYoQCVd0hp0fjD6PjsK26EFoh0lVopHE8zqR1sUnwaZiRQy1Swb3GMhLSsSjNbOZ1ZIfcpWCBuMSI1CSasSzid8mgKAt_n1CROfieg88ijfDCabANIs2d54nNuBMBedn9ZWVbSHKsjJErcE2QKQqYopApCpkSkOd992WDxfG_jk-BZWph5wrRs_H5qVSLSoGPcKLAYcMM3IDsdhxV7bq9UL-lLCBP-mZYcXiNogtfrqEPjJekScyA_nuNAPTkcIzbgfkGJNkQjb4D0rPZUszPa1RvmYIrLGRAXvRCdPksH1w-gYfkGsOzgTrCfJcMVtXaPwIDamUet6viF6SnG60
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELe2TgJe-P4IDGQQghfSprHjNI-jW7UNdVRA0fZk-SustCRVmgLjr-cuSSuqAUJCquRKuSTn-GL_Lr77HSHPuYGFIBQ932oR-Fw56_csj_2IARrXPDBpRccwPBGHY358Gp1ukVW1TYyqnH4uapaIaiP__UWm5gvX2Vel6oz2B1WLiQ1vjt91QNQPu_Drtec23SY7IgJE3iI745PR3hn6WiFGdyRVsbKKdLMH_ntNtYkpqHgBDO9K2qjxxtK0nRXp71Dn5eDJq8tsri6-qdnsl5VpcIO4VX5PHZAybS9L3TY_LtM9_lenb5LrDXSle7Wt3SJbLrtNrgybzfk7pHjtf1SzpaNvYRr60uR30klGAWPSA5hK6ixJmqf0CDv1Nf_uZvDX5OeYc1jSYVVRiI4UBowh6yeePKqJXxcUvxjTfjW1gRZ9tNbiLhkPDj70D_2mpINvOE9KXwttWZQKYyMdY6tDLbqKJ5w5hTUqhA2DJDWpU4HpMpsAvLGx5omOVRimAbtHWlmeuQeE8tTC-QwcIqG541YB8AgUs47FJmWWe-TVajSlafjOsezGTILfg4Mv4UFKHHyJg--RF2vxeU308SfBZ2AacmomEqm5sf2Uy2khwQE5kuANYnqvR3ZXliObSWEhwxi9W0AHzCNP14fhdcY9GpW5fAkycL84iaMQ9L9fG9paHYZBQdBfj8QbJrgWQH02j2ST84oyXCTgZ3PhkZdrY_17Lx_-s-Qjci3EbxBVJPsuaZXF0j0GoFbqJ817-BPzbzyr
  priority: 102
  providerName: Unpaywall
Title B-Value Optimization in the Estimation of Intravoxel Incoherent Motion Parameters in Patients with Cervical Cancer
URI https://www.ncbi.nlm.nih.gov/pubmed/31997597
https://www.proquest.com/docview/2728996783
https://www.proquest.com/docview/2348797524
https://pubmed.ncbi.nlm.nih.gov/PMC6992446
http://www.kjronline.org/Synapse/Data/PDFData/0068KJR/kjr-21-218.pdf
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002554207
UnpaywallVersion publishedVersion
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Korean Journal of Radiology, 2020, 21(2), , pp.218-227
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2005-8330
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0029084
  issn: 2005-8330
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2005-8330
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0029084
  issn: 2005-8330
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2005-8330
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0029084
  issn: 2005-8330
  databaseCode: GX1
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVERR
  databaseName: KoreaMed Open Access
  customDbUrl:
  eissn: 2005-8330
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0029084
  issn: 2005-8330
  databaseCode: 5-W
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://koreamed.org/journals
  providerName: Korean Association of Medical Journal Editors
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2005-8330
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0029084
  issn: 2005-8330
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2005-8330
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0029084
  issn: 2005-8330
  databaseCode: 7X7
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2005-8330
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0029084
  issn: 2005-8330
  databaseCode: BENPR
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2005-8330
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0029084
  issn: 2005-8330
  databaseCode: M48
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfoJgEviG8CozIIwQvZ0tiJmweEtqrThtRSIYrKk-WvsNKQjKyF7b_nLkkD1QbiyYlsyx939t3Z598R8oIbEARh3PetjgOfK2f9vuXCjxho45oHJq3gGEbj-GjK382i2W9IoWYCz6407TCe1LTMds-_X7yFBf8GLU7G-3uLrwjs2Ut2sdkO2QYhlWAUhxFvLxTCJKiCD_dC9PYAlaCG27xcfUM8dfIyvUrzvOxAeWOVn6qLnyrL_pBOh7fJrUatpPs1H9wh11x-l1wfNRfn90h54H9S2crR97BFfGveXtJ5TkH_o0NY5vULRlqk9Bgb-1Gcuww-TXGC7wGXdFRF-6EThc5ciMiJlSc1KOsZxdNcOqi2HejFADmpvE-mh8OPgyO_CbfgG86Tpa9jbVmUxsZGWmCqQx33FE84cwrjR8Q2DJLUpE4FpsdsAqqHFZonWqgwTAP2gGzlRe4eEcpTC_UZGCux5o5bBUpBoJh1TJiUWe6R1-tZlqbBIseQGJkEmwSJIoEoEokikSgeedkWP61BOP5W8DmQTC7MXCJsNqZfCrkoJRgHxxIsNXx665GdNUXlmt9kKNDyBMnNPPKszYalhvcnKnfFCspAeyIRUQj9f1gzQNsdhg47MF6PiA3WaAtgfzZz8vlJBecdJ2AD89gjr1om-vcoH__PKJ-QmyEeDVQO5jtka1mu3FPQn5a6SzpiJrpk-2A4nnzoVusE_qbjyf7nX1ixHfM
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwENb0MUO5MLwxFBAMj0tNHUm260OHoSGdhDYhw7RMb0Iv05Bghzwo_XP8NnZtx5ABeuvJnpFkS9rValfa_ZaQZ8LARsCiHd_qKPCFctbfsSL2Qw7auBaBSQs4hm4vah-LdyfhyQr5uYiFQbfKhUwsBLXNDZ6Rb7MYTQMQrfz1-JuPWaPwdnWRQkNVqRXsbgExVgV2HLjzMzDhprudt0Dv54ztt46abb_KMuAbIZKZryNteZhGxoY6xqdmOmookQjuFKZNiCwLktSkTgWmwW0CO66NtUh0rBhLAw7fXSXrAgYHxt_6XqvX_1CbfElQ5DxuMHQyAU2kRPnE6Nft4ReEI20kr3CylnbF1WyS_kvh_dtvc2OejdX5mRqN_tgU96-Ta5U2S9-U7HeDrLjsJrnSre7rb5HJnv9RjeaOvgfJ9LUK-aSDjILaSVsgXcrASZqntIM_-57_cCN4NfkphiHOaLdIMkT7Cn3IEAgUG_dLLNgpxUNk2iykHfSiiQw8uU2OL2X-75C1LM_cPUJFaqE9Bxsp0sIJq0AXCRS3jscm5VZ4ZGsxy9JUEOiYiWMkwRRCokggikSiSCSKR17U1ccl9sf_Kj4FksmhGUhE68bn51wOJxJsko4EAxEjfj2yuaCorOTEVP7mao88qYthheO1jcpcPoc68L84iUMG_b9bMkDdHY5-QjBej8RLrFFXwP4sl2SD0wJFPErA9BaRR17WTHTxKO9fPIDHZKN91D2Uh53ewQNyleG5ROHdvknWZpO5ewjK20w_qlYIJZ8ue1H-ArSXWXM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwENa0ZaZwYXhjKCAYHhdMHEmx6gPDQNpMQ0nJgXZyE3qZhhg75EHpX-PXsWs7KRmgt57kGcvWY1erXWn3W0KeCgsbAYu3Q2fiKBTau3DbCRm2OGjjRkQ2LeEYegfx3qF4P2gN1sivRSwMulUuZGIpqF1h8Yy8wSSaBiBaeSOt3SL6O5034-8hZpDCm9ZFOo2KRfb96QmYb9PX3R2g9TPGOruf2nthnWEgtEIks9DExvFWGlvXMhJLw0zc1CIR3GtMmRA7FiWpTb2ObJO7BHZbJ41IjNSMpRGH_66TS5LzBN0J5eDM2EuiMttxk6F7CeggFb4nxr02Rl8RiLSZvMJpWtkP1_NJ-i9V92-PzcvzfKxPT3SW_bEddq6Rq7UeS99WjHedrPn8Btns1Tf1N8nkXXiks7mnH0EmfauDPekwp6Bw0l2QK1XIJC1S2sXGfhQ_fQaPtjjGAMQZ7ZXphWhfo_cYQoDix_0KBXZK8fiYtks5B71oI-tObpHDC5n922QjL3J_l1CROvieg3UUG-GF06CFRJo7z6VNuRMBebmYZWVr8HPMwZEpMIKQKAqIopAoCokSkOfL6uMK9eN_FZ8AydTIDhXidGP5pVCjiQJrpKvANMRY34BsLSiqagkxVWf8HJDHy9ewtvHCRue-mEMdaE8mssWg_3cqBlh2h6OHEIw3IHKFNZYVsD-rb_LhcYkfHidgdIs4IC-WTHT-KO-dP4BHZBOWovrQPdi_T64wPJAo3dq3yMZsMvcPQGubmYfl8qDk80Wvx99LYFcN
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELe2TgJe-P4IDGQQghfSprHjNI-jW7UNdVRA0fZk-SustCRVmgLjr-cuSSuqAUJCquRKuSTn-GL_Lr77HSHPuYGFIBQ932oR-Fw56_csj_2IARrXPDBpRccwPBGHY358Gp1ukVW1TYyqnH4uapaIaiP__UWm5gvX2Vel6oz2B1WLiQ1vjt91QNQPu_Drtec23SY7IgJE3iI745PR3hn6WiFGdyRVsbKKdLMH_ntNtYkpqHgBDO9K2qjxxtK0nRXp71Dn5eDJq8tsri6-qdnsl5VpcIO4VX5PHZAybS9L3TY_LtM9_lenb5LrDXSle7Wt3SJbLrtNrgybzfk7pHjtf1SzpaNvYRr60uR30klGAWPSA5hK6ixJmqf0CDv1Nf_uZvDX5OeYc1jSYVVRiI4UBowh6yeePKqJXxcUvxjTfjW1gRZ9tNbiLhkPDj70D_2mpINvOE9KXwttWZQKYyMdY6tDLbqKJ5w5hTUqhA2DJDWpU4HpMpsAvLGx5omOVRimAbtHWlmeuQeE8tTC-QwcIqG541YB8AgUs47FJmWWe-TVajSlafjOsezGTILfg4Mv4UFKHHyJg--RF2vxeU308SfBZ2AacmomEqm5sf2Uy2khwQE5kuANYnqvR3ZXliObSWEhwxi9W0AHzCNP14fhdcY9GpW5fAkycL84iaMQ9L9fG9paHYZBQdBfj8QbJrgWQH02j2ST84oyXCTgZ3PhkZdrY_17Lx_-s-Qjci3EbxBVJPsuaZXF0j0GoFbqJ817-BPzbzyr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=B-Value+Optimization+in+the+Estimation+of+Intravoxel+Incoherent+Motion+Parameters+in+Patients+with+Cervical+Cancer&rft.jtitle=Korean+journal+of+radiology&rft.au=Jose+Angelo+Udal+Perucho&rft.au=Hing+Chiu+Charles+Chang&rft.au=Varut+Vardhanabhuti&rft.au=Mandi+Wang&rft.date=2020-02-01&rft.pub=%EB%8C%80%ED%95%9C%EC%98%81%EC%83%81%EC%9D%98%ED%95%99%ED%9A%8C&rft.issn=1229-6929&rft.eissn=2005-8330&rft.spage=218&rft.epage=227&rft_id=info:doi/10.3348%2Fkjr.2019.0232&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_6660579
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1229-6929&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1229-6929&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1229-6929&client=summon