B-Value Optimization in the Estimation of Intravoxel Incoherent Motion Parameters in Patients with Cervical Cancer
This study aimed to find the optimal number of b-values for intravoxel incoherent motion (IVIM) imaging analysis, using simulated and data from cervical cancer patients. Simulated data were generated using literature pooled means, which served as reference values for simulations. data from 100 treat...
Saved in:
| Published in | Korean journal of radiology Vol. 21; no. 2; pp. 218 - 227 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Korea (South)
The Korean Society of Radiology
01.02.2020
대한영상의학회 |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1229-6929 2005-8330 2005-8330 |
| DOI | 10.3348/kjr.2019.0232 |
Cover
| Abstract | This study aimed to find the optimal number of b-values for intravoxel incoherent motion (IVIM) imaging analysis, using simulated and
data from cervical cancer patients.
Simulated data were generated using literature pooled means, which served as reference values for simulations.
data from 100 treatment-naïve cervical cancer patients with IVIM imaging (13 b-values, scan time, 436 seconds) were retrospectively reviewed. A stepwise b-value fitting algorithm calculated optimal thresholds. Feed forward selection determined the optimal subsampled b-value distribution for biexponential IVIM fitting, and simplified IVIM modeling using monoexponential fitting was attempted. IVIM parameters computed using all b-values served as reference values for
data.
In simulations, parameters were accurately estimated with six b-values, or three b-values for simplified IVIM, respectively.
data showed that the optimal threshold was 40 s/mm² for patients with squamous cell carcinoma and a subsampled acquisition of six b-values (scan time, 198 seconds) estimated parameters were not significantly different from reference parameters (individual parameter error rates of less than 5%). In patients with adenocarcinoma, the optimal threshold was 100 s/mm², but an optimal subsample could not be identified. Irrespective of the histological subtype, only three b-values were needed for simplified IVIM, but these parameters did not retain their discriminative ability.
Subsampling of six b-values halved the IVIM scan time without significant losses in accuracy and discriminative ability. Simplified IVIM is possible with only three b-values, at the risk of losing diagnostic information. |
|---|---|
| AbstractList | Objective This study aimed to find the optimal number of b-values for intravoxel incoherent motion (IVIM) imaging analysis, using simulated and in vivo data from cervical cancer patients. Materials and Methods Simulated data were generated using literature pooled means, which served as reference values for simulations. In vivo data from 100 treatment-naïve cervical cancer patients with IVIM imaging (13 b-values, scan time, 436 seconds) were retrospectively reviewed. A stepwise b-value fitting algorithm calculated optimal thresholds. Feed forward selection determined the optimal subsampled b-value distribution for biexponential IVIM fitting, and simplified IVIM modeling using monoexponential fitting was attempted. IVIM parameters computed using all b-values served as reference values for in vivo data. Results In simulations, parameters were accurately estimated with six b-values, or three b-values for simplified IVIM, respectively. In vivo data showed that the optimal threshold was 40 s/mm2 for patients with squamous cell carcinoma and a subsampled acquisition of six b-values (scan time, 198 seconds) estimated parameters were not significantly different from reference parameters (individual parameter error rates of less than 5%). In patients with adenocarcinoma, the optimal threshold was 100 s/mm2, but an optimal subsample could not be identified. Irrespective of the histological subtype, only three b-values were needed for simplified IVIM, but these parameters did not retain their discriminative ability. Conclusion Subsampling of six b-values halved the IVIM scan time without significant losses in accuracy and discriminative ability. Simplified IVIM is possible with only three b-values, at the risk of losing diagnostic information. Objective: This study aimed to find the optimal number of b-values for intravoxel incoherent motion (IVIM) imaging analysis, using simulated and in vivo data from cervical cancer patients. Materials and Methods: Simulated data were generated using literature pooled means, which served as reference values for simulations. In vivo data from 100 treatment-naïve cervical cancer patients with IVIM imaging (13 b-values, scan time, 436 seconds) were retrospectively reviewed. A stepwise b-value fitting algorithm calculated optimal thresholds. Feed forward selection determined the optimal subsampled b-value distribution for biexponential IVIM fitting, and simplified IVIM modeling using monoexponential fitting was attempted. IVIM parameters computed using all b-values served as reference values for in vivo data. Results: In simulations, parameters were accurately estimated with six b-values, or three b-values for simplified IVIM, respectively. In vivo data showed that the optimal threshold was 40 s/mm2 for patients with squamous cell carcinoma and a subsampled acquisition of six b-values (scan time, 198 seconds) estimated parameters were not significantly different from reference parameters (individual parameter error rates of less than 5%). In patients with adenocarcinoma, the optimal threshold was 100 s/mm2, but an optimal subsample could not be identified. Irrespective of the histological subtype, only three b-values were needed for simplified IVIM, but these parameters did not retain their discriminative ability. Conclusion: Subsampling of six b-values halved the IVIM scan time without significant losses in accuracy and discriminative ability. Simplified IVIM is possible with only three b-values, at the risk of losing diagnostic information. KCI Citation Count: 0 This study aimed to find the optimal number of b-values for intravoxel incoherent motion (IVIM) imaging analysis, using simulated and in vivo data from cervical cancer patients.OBJECTIVEThis study aimed to find the optimal number of b-values for intravoxel incoherent motion (IVIM) imaging analysis, using simulated and in vivo data from cervical cancer patients.Simulated data were generated using literature pooled means, which served as reference values for simulations. In vivo data from 100 treatment-naïve cervical cancer patients with IVIM imaging (13 b-values, scan time, 436 seconds) were retrospectively reviewed. A stepwise b-value fitting algorithm calculated optimal thresholds. Feed forward selection determined the optimal subsampled b-value distribution for biexponential IVIM fitting, and simplified IVIM modeling using monoexponential fitting was attempted. IVIM parameters computed using all b-values served as reference values for in vivo data.MATERIALS AND METHODSSimulated data were generated using literature pooled means, which served as reference values for simulations. In vivo data from 100 treatment-naïve cervical cancer patients with IVIM imaging (13 b-values, scan time, 436 seconds) were retrospectively reviewed. A stepwise b-value fitting algorithm calculated optimal thresholds. Feed forward selection determined the optimal subsampled b-value distribution for biexponential IVIM fitting, and simplified IVIM modeling using monoexponential fitting was attempted. IVIM parameters computed using all b-values served as reference values for in vivo data.In simulations, parameters were accurately estimated with six b-values, or three b-values for simplified IVIM, respectively. In vivo data showed that the optimal threshold was 40 s/mm² for patients with squamous cell carcinoma and a subsampled acquisition of six b-values (scan time, 198 seconds) estimated parameters were not significantly different from reference parameters (individual parameter error rates of less than 5%). In patients with adenocarcinoma, the optimal threshold was 100 s/mm², but an optimal subsample could not be identified. Irrespective of the histological subtype, only three b-values were needed for simplified IVIM, but these parameters did not retain their discriminative ability.RESULTSIn simulations, parameters were accurately estimated with six b-values, or three b-values for simplified IVIM, respectively. In vivo data showed that the optimal threshold was 40 s/mm² for patients with squamous cell carcinoma and a subsampled acquisition of six b-values (scan time, 198 seconds) estimated parameters were not significantly different from reference parameters (individual parameter error rates of less than 5%). In patients with adenocarcinoma, the optimal threshold was 100 s/mm², but an optimal subsample could not be identified. Irrespective of the histological subtype, only three b-values were needed for simplified IVIM, but these parameters did not retain their discriminative ability.Subsampling of six b-values halved the IVIM scan time without significant losses in accuracy and discriminative ability. Simplified IVIM is possible with only three b-values, at the risk of losing diagnostic information.CONCLUSIONSubsampling of six b-values halved the IVIM scan time without significant losses in accuracy and discriminative ability. Simplified IVIM is possible with only three b-values, at the risk of losing diagnostic information. This study aimed to find the optimal number of b-values for intravoxel incoherent motion (IVIM) imaging analysis, using simulated and data from cervical cancer patients. Simulated data were generated using literature pooled means, which served as reference values for simulations. data from 100 treatment-naïve cervical cancer patients with IVIM imaging (13 b-values, scan time, 436 seconds) were retrospectively reviewed. A stepwise b-value fitting algorithm calculated optimal thresholds. Feed forward selection determined the optimal subsampled b-value distribution for biexponential IVIM fitting, and simplified IVIM modeling using monoexponential fitting was attempted. IVIM parameters computed using all b-values served as reference values for data. In simulations, parameters were accurately estimated with six b-values, or three b-values for simplified IVIM, respectively. data showed that the optimal threshold was 40 s/mm² for patients with squamous cell carcinoma and a subsampled acquisition of six b-values (scan time, 198 seconds) estimated parameters were not significantly different from reference parameters (individual parameter error rates of less than 5%). In patients with adenocarcinoma, the optimal threshold was 100 s/mm², but an optimal subsample could not be identified. Irrespective of the histological subtype, only three b-values were needed for simplified IVIM, but these parameters did not retain their discriminative ability. Subsampling of six b-values halved the IVIM scan time without significant losses in accuracy and discriminative ability. Simplified IVIM is possible with only three b-values, at the risk of losing diagnostic information. |
| Author | Perucho, Jose Angelo Udal Vardhanabhuti, Varut Wurnig, Moritz Christoph Becker, Anton Sebastian Lee, Elaine Yuen Phin Wang, Mandi Chang, Hing Chiu Charles |
| AuthorAffiliation | 1 Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong 2 Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich, Switzerland |
| AuthorAffiliation_xml | – name: 1 Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong – name: 2 Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich, Switzerland |
| Author_xml | – sequence: 1 givenname: Jose Angelo Udal orcidid: 0000-0001-6088-3173 surname: Perucho fullname: Perucho, Jose Angelo Udal organization: Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong – sequence: 2 givenname: Hing Chiu Charles orcidid: 0000-0001-8634-328X surname: Chang fullname: Chang, Hing Chiu Charles organization: Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong – sequence: 3 givenname: Varut orcidid: 0000-0001-6677-3194 surname: Vardhanabhuti fullname: Vardhanabhuti, Varut organization: Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong – sequence: 4 givenname: Mandi orcidid: 0000-0002-8467-148X surname: Wang fullname: Wang, Mandi organization: Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong – sequence: 5 givenname: Anton Sebastian orcidid: 0000-0001-8372-6496 surname: Becker fullname: Becker, Anton Sebastian organization: Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich, Switzerland – sequence: 6 givenname: Moritz Christoph orcidid: 0000-0001-7865-4010 surname: Wurnig fullname: Wurnig, Moritz Christoph organization: Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich, Switzerland – sequence: 7 givenname: Elaine Yuen Phin orcidid: 0000-0002-0627-5297 surname: Lee fullname: Lee, Elaine Yuen Phin organization: Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31997597$$D View this record in MEDLINE/PubMed https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002554207$$DAccess content in National Research Foundation of Korea (NRF) |
| BookMark | eNqFUk1vEzEQtVARTQNHrsgSFzhs8NpeO74glaiFSEWtUOFqeb1e4mRjB9ubtvx6vNnyVQlxGmvmvXkzb3wCjpx3BoDnJZoRQudvNusww6gUM4QJfgQmGKGqmBOCjsCkxFgUTGBxDE5iXCOEBZrTJ-CYlELwSvAJCO-KL6rrDbzcJbu131Wy3kHrYFoZeBZzbsz4Fi5dCmrvb02Xn9qvTDAuwY_-UL9SQW1NMiEO5KtMysUIb2xawYUJe6tVBxfKaROegset6qJ5dh-n4PP52fXiQ3Fx-X65OL0oNKUiFTWrG1K1TDdVzYdY45qVigpKjKoIRqzBSLS6NQrpkjSClLzhNRU1Vxi3iEzB67GvC63caCu9sof41ctNkKefrpeSMYYqLjJ2NmJ7t1N3N6rr5C7k3cOdLJEcjJbZaDkYLQejM-HtSNj19dY02gzm_CYNUn9XnF1l4b1kQmBKWW7w6r5B8N96E5Pc2qhN1ylnfB8lzpo8HwnTDH35ALr2fXDZO4k5ngvBeD74FLz4c6Jfo_y8dQYUI0AHH2Mw7X9XJA_w2qbDb8gL2e4frB_z_s2E |
| CitedBy_id | crossref_primary_10_1016_j_mri_2024_02_008 crossref_primary_10_1259_bjr_20220952 crossref_primary_10_1155_2022_2276102 crossref_primary_10_4103_jmp_jmp_10_24 crossref_primary_10_1002_mrm_28671 crossref_primary_10_1002_nbm_5201 crossref_primary_10_2463_mrms_rev_2022_0107 crossref_primary_10_1002_mrm_29165 crossref_primary_10_1016_j_compbiomed_2023_106746 crossref_primary_10_1088_1361_6560_ad3db8 crossref_primary_10_1007_s00330_020_07248_z crossref_primary_10_1016_j_eswa_2020_114270 crossref_primary_10_1186_s40644_024_00765_w crossref_primary_10_1002_mrm_29612 crossref_primary_10_1155_2021_6651070 crossref_primary_10_3390_diagnostics11060926 crossref_primary_10_1088_1361_6560_ac9a1f crossref_primary_10_1007_s00330_021_07817_w crossref_primary_10_1016_j_mri_2020_12_008 |
| Cites_doi | 10.1007/s00330-016-4596-8 10.1186/s12885-016-2116-5 10.1097/RLI.0b013e3181ffc485 10.1002/jmri.24808 10.3348/kjr.2017.18.3.510 10.2463/mrms.6.211 10.1002/mrm.1910100305 10.2214/AJR.10.5515 10.1002/jmri.24271 10.1007/s11604-007-0187-6 10.1016/j.ejrad.2014.09.003 10.1371/journal.pone.0112866 10.1053/jlts.2002.30886 10.1186/s12885-017-3800-9 10.1007/s00330-007-0843-3 10.1002/mrm.25506 10.1097/RLI.0b013e3182a71cc3 10.1002/mrm.22740 10.1016/j.mri.2011.03.004 10.2214/AJR.15.15945 10.1097/RCT.0000000000000569 10.1118/1.4736516 10.1097/MD.0000000000003275 10.1016/S1001-9294(09)60027-4 10.1016/j.ygyno.2008.07.048 10.1002/mrm.24277 10.1002/acm2.12065 10.1097/RCT.0000000000000266 10.3174/ajnr.A4929 10.3109/0284186X.2010.500305 10.1148/radiology.168.2.3393671 10.1002/mrm.1910230113 10.1016/j.mri.2016.04.009 10.3174/ajnr.A0587 10.1002/nbm.3852 10.1038/ncponc1073 10.1097/RLI.0b013e3181c8ceac 10.1007/s00330-014-3160-7 10.1002/jmri.25680 10.1038/s41598-017-11988-2 |
| ContentType | Journal Article |
| Copyright | Copyright © 2020 The Korean Society of Radiology. 2020. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2020 The Korean Society of Radiology 2020 The Korean Society of Radiology |
| Copyright_xml | – notice: Copyright © 2020 The Korean Society of Radiology. – notice: 2020. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2020 The Korean Society of Radiology 2020 The Korean Society of Radiology |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. KB0 M0S M1P NAPCQ PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY ACYCR |
| DOI | 10.3348/kjr.2019.0232 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection Medical Database Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall Korean Citation Index |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2005-8330 |
| EndPage | 227 |
| ExternalDocumentID | oai_kci_go_kr_ARTI_6660579 10.3348/kjr.2019.0232 PMC6992446 31997597 10_3348_kjr_2019_0232 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: ; grantid: GRF 17119916 |
| GroupedDBID | --- 29L 2WC 5-W 53G 5GY 7RV 7X7 88E 8FI 8FJ 8JR 8XY 9ZL AAYXX ABUWG ADBBV ADRAZ AENEX AFKRA ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BENPR CCPQU CITATION CS3 DIK DU5 E3Z EBD EF. EMOBN F5P FRP FYUFA GX1 HMCUK HYE KQ8 M1P M48 NAPCQ O5R O5S OK1 OVT P6G PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PSQYO PUEGO RNS RPM SV3 TR2 UKHRP W2D WH7 XSB CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY ACYCR M~E |
| ID | FETCH-LOGICAL-c449t-b6bd35f6cd5b75f6cb2b61a4943ea53206d209fcfea0c13d9317d7b49b7a22f03 |
| IEDL.DBID | M48 |
| ISSN | 1229-6929 2005-8330 |
| IngestDate | Tue Nov 21 21:42:24 EST 2023 Sun Sep 07 10:56:08 EDT 2025 Tue Sep 30 16:57:45 EDT 2025 Fri Sep 05 12:29:27 EDT 2025 Tue Oct 07 07:03:31 EDT 2025 Thu Apr 03 07:00:23 EDT 2025 Wed Oct 01 02:09:43 EDT 2025 Thu Apr 24 23:09:55 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Diffusion-weighted imaging Magnetic resonance imaging b-values Cervical cancer Intravoxel incoherent motion |
| Language | English |
| License | Copyright © 2020 The Korean Society of Radiology. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by-nc |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c449t-b6bd35f6cd5b75f6cb2b61a4943ea53206d209fcfea0c13d9317d7b49b7a22f03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 https://doi.org/10.3348/kjr.2019.0232 |
| ORCID | 0000-0001-8634-328X 0000-0002-8467-148X 0000-0001-6677-3194 0000-0002-0627-5297 0000-0001-6088-3173 0000-0001-7865-4010 0000-0001-8372-6496 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3348/kjr.2019.0232 |
| PMID | 31997597 |
| PQID | 2728996783 |
| PQPubID | 5474425 |
| PageCount | 10 |
| ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_6660579 unpaywall_primary_10_3348_kjr_2019_0232 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6992446 proquest_miscellaneous_2348797524 proquest_journals_2728996783 pubmed_primary_31997597 crossref_primary_10_3348_kjr_2019_0232 crossref_citationtrail_10_3348_kjr_2019_0232 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-02-01 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Korea (South) |
| PublicationPlace_xml | – name: Korea (South) – name: Seoul |
| PublicationTitle | Korean journal of radiology |
| PublicationTitleAlternate | Korean J Radiol |
| PublicationYear | 2020 |
| Publisher | The Korean Society of Radiology 대한영상의학회 |
| Publisher_xml | – name: The Korean Society of Radiology – name: 대한영상의학회 |
| References | McVeigh (10.3348/kjr.2019.0232_ref1) 2008; 18 Lee (10.3348/kjr.2019.0232_ref11) 2017; 46 Ogura (10.3348/kjr.2019.0232_ref17) 2016; 207 Lee (10.3348/kjr.2019.0232_ref7) 2014; 24 Jambor (10.3348/kjr.2019.0232_ref25) 2014; 39 Conklin (10.3348/kjr.2019.0232_ref28) 2016; 37 Sigmund (10.3348/kjr.2019.0232_ref38) 2011; 65 Wu (10.3348/kjr.2019.0232_ref34) 2017; 41 Le Bihan (10.3348/kjr.2019.0232_ref8) 1988; 168 Dale (10.3348/kjr.2019.0232_ref14) 2010; 45 Zhou (10.3348/kjr.2019.0232_ref33) 2016; 34 Patterson (10.3348/kjr.2019.0232_ref3) 2008; 5 Pieper (10.3348/kjr.2019.0232_ref29) 2016; 95 Tan (10.3348/kjr.2019.0232_ref40) 2005 Ogura (10.3348/kjr.2019.0232_ref13) 2015; 39 Becker (10.3348/kjr.2019.0232_ref35) 2017; 6 Wurnig (10.3348/kjr.2019.0232_ref41) 2018; 31 Wurnig (10.3348/kjr.2019.0232_ref19) 2015; 74 Lai (10.3348/kjr.2019.0232_ref36) 2017; 17 Zhu (10.3348/kjr.2019.0232_ref12) 2017; 7 Freiman (10.3348/kjr.2019.0232_ref18) 2012; 39 Chen (10.3348/kjr.2019.0232_ref23) 2017; 18 Lin (10.3348/kjr.2019.0232_ref32) 2017; 27 Koh (10.3348/kjr.2019.0232_ref4) 2007; 6 Lee (10.3348/kjr.2019.0232_ref9) 2015; 42 Sasaki (10.3348/kjr.2019.0232_ref27) 2014; 9 Koh (10.3348/kjr.2019.0232_ref22) 2011; 196 Concia (10.3348/kjr.2019.0232_ref31) 2014; 49 Kallehauge (10.3348/kjr.2019.0232_ref6) 2010; 49 Becker (10.3348/kjr.2019.0232_ref20) 2017; 18 Matsuoka (10.3348/kjr.2019.0232_ref16) 2008; 26 Harry (10.3348/kjr.2019.0232_ref5) 2008; 111 Xue (10.3348/kjr.2019.0232_ref2) 2008; 23 Dyvorne (10.3348/kjr.2019.0232_ref26) 2014; 83 Chandarana (10.3348/kjr.2019.0232_ref39) 2011; 46 Zhu (10.3348/kjr.2019.0232_ref10) 2016; 16 Pekar (10.3348/kjr.2019.0232_ref30) 1992; 23 Habermann (10.3348/kjr.2019.0232_ref15) 2007; 28 Molmenti (10.3348/kjr.2019.0232_ref42) 2002; 8 Pang (10.3348/kjr.2019.0232_ref21) 2013; 69 Le Bihan (10.3348/kjr.2019.0232_ref37) 1989; 10 Lemke (10.3348/kjr.2019.0232_ref24) 2011; 29 |
| References_xml | – volume: 27 start-page: 2400 year: 2017 ident: 10.3348/kjr.2019.0232_ref32 publication-title: Eur Radiol doi: 10.1007/s00330-016-4596-8 – volume: 16 start-page: 79 year: 2016 ident: 10.3348/kjr.2019.0232_ref10 publication-title: BMC Cancer doi: 10.1186/s12885-016-2116-5 – volume: 46 start-page: 285 year: 2011 ident: 10.3348/kjr.2019.0232_ref39 publication-title: Invest Radiol doi: 10.1097/RLI.0b013e3181ffc485 – volume: 42 start-page: 454 year: 2015 ident: 10.3348/kjr.2019.0232_ref9 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.24808 – volume: 18 start-page: 510 year: 2017 ident: 10.3348/kjr.2019.0232_ref20 publication-title: Korean J Radiol doi: 10.3348/kjr.2017.18.3.510 – volume: 6 start-page: 211 year: 2007 ident: 10.3348/kjr.2019.0232_ref4 publication-title: Magn Reson Med Sci doi: 10.2463/mrms.6.211 – volume: 10 start-page: 324 year: 1989 ident: 10.3348/kjr.2019.0232_ref37 publication-title: Magn Reson Med doi: 10.1002/mrm.1910100305 – volume: 196 start-page: 1351 year: 2011 ident: 10.3348/kjr.2019.0232_ref22 publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.10.5515 – volume: 39 start-page: 1213 year: 2014 ident: 10.3348/kjr.2019.0232_ref25 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.24271 – volume: 26 start-page: 15 year: 2008 ident: 10.3348/kjr.2019.0232_ref16 publication-title: Radiat Med doi: 10.1007/s11604-007-0187-6 – volume: 83 start-page: 2109 year: 2014 ident: 10.3348/kjr.2019.0232_ref26 publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2014.09.003 – volume: 9 start-page: e112866 year: 2014 ident: 10.3348/kjr.2019.0232_ref27 publication-title: PLoS One doi: 10.1371/journal.pone.0112866 – volume: 8 start-page: 160 year: 2002 ident: 10.3348/kjr.2019.0232_ref42 publication-title: Liver Transpl doi: 10.1053/jlts.2002.30886 – volume: 17 start-page: 825 year: 2017 ident: 10.3348/kjr.2019.0232_ref36 publication-title: BMC Cancer doi: 10.1186/s12885-017-3800-9 – volume: 18 start-page: 1058 year: 2008 ident: 10.3348/kjr.2019.0232_ref1 publication-title: Eur Radiol doi: 10.1007/s00330-007-0843-3 – volume: 74 start-page: 1414 year: 2015 ident: 10.3348/kjr.2019.0232_ref19 publication-title: Magn Reson Med doi: 10.1002/mrm.25506 – volume: 49 start-page: 93 year: 2014 ident: 10.3348/kjr.2019.0232_ref31 publication-title: Invest Radiol doi: 10.1097/RLI.0b013e3182a71cc3 – volume: 65 start-page: 1437 year: 2011 ident: 10.3348/kjr.2019.0232_ref38 publication-title: Magn Reson Med doi: 10.1002/mrm.22740 – volume: 29 start-page: 766 year: 2011 ident: 10.3348/kjr.2019.0232_ref24 publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2011.03.004 – volume: 207 start-page: 1239 year: 2016 ident: 10.3348/kjr.2019.0232_ref17 publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.15.15945 – volume-title: Introduction to data mining year: 2005 ident: 10.3348/kjr.2019.0232_ref40 – volume: 41 start-page: 592 year: 2017 ident: 10.3348/kjr.2019.0232_ref34 publication-title: J Comput Assist Tomogr doi: 10.1097/RCT.0000000000000569 – volume: 39 start-page: 4832 year: 2012 ident: 10.3348/kjr.2019.0232_ref18 publication-title: Med Phys doi: 10.1118/1.4736516 – volume: 95 start-page: e3275 year: 2016 ident: 10.3348/kjr.2019.0232_ref29 publication-title: Medicine (Baltimore) doi: 10.1097/MD.0000000000003275 – volume: 23 start-page: 133 year: 2008 ident: 10.3348/kjr.2019.0232_ref2 publication-title: Chin Med Sci J doi: 10.1016/S1001-9294(09)60027-4 – volume: 111 start-page: 213 year: 2008 ident: 10.3348/kjr.2019.0232_ref5 publication-title: Gynecol Oncol doi: 10.1016/j.ygyno.2008.07.048 – volume: 6 start-page: 2058460117729574 year: 2017 ident: 10.3348/kjr.2019.0232_ref35 publication-title: Acta Radiol Open – volume: 69 start-page: 553 year: 2013 ident: 10.3348/kjr.2019.0232_ref21 publication-title: Magn Reson Med doi: 10.1002/mrm.24277 – volume: 18 start-page: 191 year: 2017 ident: 10.3348/kjr.2019.0232_ref23 publication-title: J Appl Clin Med Phys doi: 10.1002/acm2.12065 – volume: 39 start-page: 760 year: 2015 ident: 10.3348/kjr.2019.0232_ref13 publication-title: J Comput Assist Tomogr doi: 10.1097/RCT.0000000000000266 – volume: 37 start-page: 2251 year: 2016 ident: 10.3348/kjr.2019.0232_ref28 publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A4929 – volume: 49 start-page: 1017 year: 2010 ident: 10.3348/kjr.2019.0232_ref6 publication-title: Acta Oncol doi: 10.3109/0284186X.2010.500305 – volume: 168 start-page: 497 year: 1988 ident: 10.3348/kjr.2019.0232_ref8 publication-title: Radiology doi: 10.1148/radiology.168.2.3393671 – volume: 23 start-page: 122 year: 1992 ident: 10.3348/kjr.2019.0232_ref30 publication-title: Magn Reson Med doi: 10.1002/mrm.1910230113 – volume: 34 start-page: 1050 year: 2016 ident: 10.3348/kjr.2019.0232_ref33 publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2016.04.009 – volume: 28 start-page: 1547 year: 2007 ident: 10.3348/kjr.2019.0232_ref15 publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A0587 – volume: 31 start-page: e3852 year: 2018 ident: 10.3348/kjr.2019.0232_ref41 publication-title: NMR Biomed doi: 10.1002/nbm.3852 – volume: 5 start-page: 220 year: 2008 ident: 10.3348/kjr.2019.0232_ref3 publication-title: Nat Clin Pract Oncol doi: 10.1038/ncponc1073 – volume: 45 start-page: 104 year: 2010 ident: 10.3348/kjr.2019.0232_ref14 publication-title: Invest Radiol doi: 10.1097/RLI.0b013e3181c8ceac – volume: 24 start-page: 1506 year: 2014 ident: 10.3348/kjr.2019.0232_ref7 publication-title: Eur Radiol doi: 10.1007/s00330-014-3160-7 – volume: 46 start-page: 1491 year: 2017 ident: 10.3348/kjr.2019.0232_ref11 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.25680 – volume: 7 start-page: 11635 year: 2017 ident: 10.3348/kjr.2019.0232_ref12 publication-title: Sci Rep doi: 10.1038/s41598-017-11988-2 |
| SSID | ssj0029084 |
| Score | 2.340586 |
| Snippet | This study aimed to find the optimal number of b-values for intravoxel incoherent motion (IVIM) imaging analysis, using simulated and
data from cervical cancer... Objective This study aimed to find the optimal number of b-values for intravoxel incoherent motion (IVIM) imaging analysis, using simulated and in vivo data... This study aimed to find the optimal number of b-values for intravoxel incoherent motion (IVIM) imaging analysis, using simulated and in vivo data from... Objective: This study aimed to find the optimal number of b-values for intravoxel incoherent motion (IVIM) imaging analysis, using simulated and in vivo data... |
| SourceID | nrf unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 218 |
| SubjectTerms | Adenocarcinoma - pathology Adult Aged Aged, 80 and over Algorithms Carcinoma, Squamous Cell - pathology Cervical cancer Estimates Female Genitourinary Imaging Humans Image Processing, Computer-Assisted - methods Mann-Whitney U test Middle Aged Neoplasm Staging Patients Reproducibility Retrospective Studies Signal-To-Noise Ratio Simulation Statistical analysis Uterine Cervical Neoplasms - pathology Young Adult 방사선과학 |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELe2TgJeEN8EBjIIwQvZUttxlgeEWNVpQ2qpEEN7s_wVVhqSkrV8_Pfc5QsqYE-JZEc-587nO_vud4Q8ExY2AiYPQmdkFArtXXjgRBLGHKxxIyKb1XAMk6k8PhVvz-KzLTLtcmEwrLLTibWidqXFM_J9lqBrAKqVv15-DbFqFN6udiU0dFtawb2qIca2yQ5DZKwB2TkcT2fvexcsjeoaxEOGQR9gGTSom5iNur_4jPCgw3QPid_YpbaLKvuXAfp3HOXVdbHUP7_rPP9jkzq6Qa631iV904jDTbLli1vkyqS9P79NqsPwo87Xnr4DTfGlTcGk84KCGUjHsNqbREZaZvQEB_tW_vA5vNryHNMCV3RSF_2hM40xXQjMiR_PGmzWC4qHunRUax-gYoQCVd0hp0fjD6PjsK26EFoh0lVopHE8zqR1sUnwaZiRQy1Swb3GMhLSsSjNbOZ1ZIfcpWCBuMSI1CSasSzid8mgKAt_n1CROfieg88ijfDCabANIs2d54nNuBMBedn9ZWVbSHKsjJErcE2QKQqYopApCpkSkOd992WDxfG_jk-BZWph5wrRs_H5qVSLSoGPcKLAYcMM3IDsdhxV7bq9UL-lLCBP-mZYcXiNogtfrqEPjJekScyA_nuNAPTkcIzbgfkGJNkQjb4D0rPZUszPa1RvmYIrLGRAXvRCdPksH1w-gYfkGsOzgTrCfJcMVtXaPwIDamUet6viF6SnG60 priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELe2TgJe-P4IDGQQghfSprHjNI-jW7UNdVRA0fZk-SustCRVmgLjr-cuSSuqAUJCquRKuSTn-GL_Lr77HSHPuYGFIBQ932oR-Fw56_csj_2IARrXPDBpRccwPBGHY358Gp1ukVW1TYyqnH4uapaIaiP__UWm5gvX2Vel6oz2B1WLiQ1vjt91QNQPu_Drtec23SY7IgJE3iI745PR3hn6WiFGdyRVsbKKdLMH_ntNtYkpqHgBDO9K2qjxxtK0nRXp71Dn5eDJq8tsri6-qdnsl5VpcIO4VX5PHZAybS9L3TY_LtM9_lenb5LrDXSle7Wt3SJbLrtNrgybzfk7pHjtf1SzpaNvYRr60uR30klGAWPSA5hK6ixJmqf0CDv1Nf_uZvDX5OeYc1jSYVVRiI4UBowh6yeePKqJXxcUvxjTfjW1gRZ9tNbiLhkPDj70D_2mpINvOE9KXwttWZQKYyMdY6tDLbqKJ5w5hTUqhA2DJDWpU4HpMpsAvLGx5omOVRimAbtHWlmeuQeE8tTC-QwcIqG541YB8AgUs47FJmWWe-TVajSlafjOsezGTILfg4Mv4UFKHHyJg--RF2vxeU308SfBZ2AacmomEqm5sf2Uy2khwQE5kuANYnqvR3ZXliObSWEhwxi9W0AHzCNP14fhdcY9GpW5fAkycL84iaMQ9L9fG9paHYZBQdBfj8QbJrgWQH02j2ST84oyXCTgZ3PhkZdrY_17Lx_-s-Qjci3EbxBVJPsuaZXF0j0GoFbqJ817-BPzbzyr priority: 102 providerName: Unpaywall |
| Title | B-Value Optimization in the Estimation of Intravoxel Incoherent Motion Parameters in Patients with Cervical Cancer |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/31997597 https://www.proquest.com/docview/2728996783 https://www.proquest.com/docview/2348797524 https://pubmed.ncbi.nlm.nih.gov/PMC6992446 http://www.kjronline.org/Synapse/Data/PDFData/0068KJR/kjr-21-218.pdf https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002554207 |
| UnpaywallVersion | publishedVersion |
| Volume | 21 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | Korean Journal of Radiology, 2020, 21(2), , pp.218-227 |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2005-8330 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0029084 issn: 2005-8330 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2005-8330 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0029084 issn: 2005-8330 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2005-8330 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0029084 issn: 2005-8330 databaseCode: GX1 dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVERR databaseName: KoreaMed Open Access customDbUrl: eissn: 2005-8330 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0029084 issn: 2005-8330 databaseCode: 5-W dateStart: 20000101 isFulltext: true titleUrlDefault: https://koreamed.org/journals providerName: Korean Association of Medical Journal Editors – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2005-8330 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0029084 issn: 2005-8330 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2005-8330 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0029084 issn: 2005-8330 databaseCode: 7X7 dateStart: 20020101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2005-8330 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0029084 issn: 2005-8330 databaseCode: BENPR dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2005-8330 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0029084 issn: 2005-8330 databaseCode: M48 dateStart: 20000101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfoJgEviG8CozIIwQvZ0tiJmweEtqrThtRSIYrKk-WvsNKQjKyF7b_nLkkD1QbiyYlsyx939t3Z598R8oIbEARh3PetjgOfK2f9vuXCjxho45oHJq3gGEbj-GjK382i2W9IoWYCz6407TCe1LTMds-_X7yFBf8GLU7G-3uLrwjs2Ut2sdkO2QYhlWAUhxFvLxTCJKiCD_dC9PYAlaCG27xcfUM8dfIyvUrzvOxAeWOVn6qLnyrL_pBOh7fJrUatpPs1H9wh11x-l1wfNRfn90h54H9S2crR97BFfGveXtJ5TkH_o0NY5vULRlqk9Bgb-1Gcuww-TXGC7wGXdFRF-6EThc5ciMiJlSc1KOsZxdNcOqi2HejFADmpvE-mh8OPgyO_CbfgG86Tpa9jbVmUxsZGWmCqQx33FE84cwrjR8Q2DJLUpE4FpsdsAqqHFZonWqgwTAP2gGzlRe4eEcpTC_UZGCux5o5bBUpBoJh1TJiUWe6R1-tZlqbBIseQGJkEmwSJIoEoEokikSgeedkWP61BOP5W8DmQTC7MXCJsNqZfCrkoJRgHxxIsNXx665GdNUXlmt9kKNDyBMnNPPKszYalhvcnKnfFCspAeyIRUQj9f1gzQNsdhg47MF6PiA3WaAtgfzZz8vlJBecdJ2AD89gjr1om-vcoH__PKJ-QmyEeDVQO5jtka1mu3FPQn5a6SzpiJrpk-2A4nnzoVusE_qbjyf7nX1ixHfM |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwENb0MUO5MLwxFBAMj0tNHUm260OHoSGdhDYhw7RMb0Iv05Bghzwo_XP8NnZtx5ABeuvJnpFkS9rValfa_ZaQZ8LARsCiHd_qKPCFctbfsSL2Qw7auBaBSQs4hm4vah-LdyfhyQr5uYiFQbfKhUwsBLXNDZ6Rb7MYTQMQrfz1-JuPWaPwdnWRQkNVqRXsbgExVgV2HLjzMzDhprudt0Dv54ztt46abb_KMuAbIZKZryNteZhGxoY6xqdmOmookQjuFKZNiCwLktSkTgWmwW0CO66NtUh0rBhLAw7fXSXrAgYHxt_6XqvX_1CbfElQ5DxuMHQyAU2kRPnE6Nft4ReEI20kr3CylnbF1WyS_kvh_dtvc2OejdX5mRqN_tgU96-Ta5U2S9-U7HeDrLjsJrnSre7rb5HJnv9RjeaOvgfJ9LUK-aSDjILaSVsgXcrASZqntIM_-57_cCN4NfkphiHOaLdIMkT7Cn3IEAgUG_dLLNgpxUNk2iykHfSiiQw8uU2OL2X-75C1LM_cPUJFaqE9Bxsp0sIJq0AXCRS3jscm5VZ4ZGsxy9JUEOiYiWMkwRRCokggikSiSCSKR17U1ccl9sf_Kj4FksmhGUhE68bn51wOJxJsko4EAxEjfj2yuaCorOTEVP7mao88qYthheO1jcpcPoc68L84iUMG_b9bMkDdHY5-QjBej8RLrFFXwP4sl2SD0wJFPErA9BaRR17WTHTxKO9fPIDHZKN91D2Uh53ewQNyleG5ROHdvknWZpO5ewjK20w_qlYIJZ8ue1H-ArSXWXM |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwENa0ZaZwYXhjKCAYHhdMHEmx6gPDQNpMQ0nJgXZyE3qZhhg75EHpX-PXsWs7KRmgt57kGcvWY1erXWn3W0KeCgsbAYu3Q2fiKBTau3DbCRm2OGjjRkQ2LeEYegfx3qF4P2gN1sivRSwMulUuZGIpqF1h8Yy8wSSaBiBaeSOt3SL6O5034-8hZpDCm9ZFOo2KRfb96QmYb9PX3R2g9TPGOruf2nthnWEgtEIks9DExvFWGlvXMhJLw0zc1CIR3GtMmRA7FiWpTb2ObJO7BHZbJ41IjNSMpRGH_66TS5LzBN0J5eDM2EuiMttxk6F7CeggFb4nxr02Rl8RiLSZvMJpWtkP1_NJ-i9V92-PzcvzfKxPT3SW_bEddq6Rq7UeS99WjHedrPn8Btns1Tf1N8nkXXiks7mnH0EmfauDPekwp6Bw0l2QK1XIJC1S2sXGfhQ_fQaPtjjGAMQZ7ZXphWhfo_cYQoDix_0KBXZK8fiYtks5B71oI-tObpHDC5n922QjL3J_l1CROvieg3UUG-GF06CFRJo7z6VNuRMBebmYZWVr8HPMwZEpMIKQKAqIopAoCokSkOfL6uMK9eN_FZ8AydTIDhXidGP5pVCjiQJrpKvANMRY34BsLSiqagkxVWf8HJDHy9ewtvHCRue-mEMdaE8mssWg_3cqBlh2h6OHEIw3IHKFNZYVsD-rb_LhcYkfHidgdIs4IC-WTHT-KO-dP4BHZBOWovrQPdi_T64wPJAo3dq3yMZsMvcPQGubmYfl8qDk80Wvx99LYFcN |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELe2TgJe-P4IDGQQghfSprHjNI-jW7UNdVRA0fZk-SustCRVmgLjr-cuSSuqAUJCquRKuSTn-GL_Lr77HSHPuYGFIBQ932oR-Fw56_csj_2IARrXPDBpRccwPBGHY358Gp1ukVW1TYyqnH4uapaIaiP__UWm5gvX2Vel6oz2B1WLiQ1vjt91QNQPu_Drtec23SY7IgJE3iI745PR3hn6WiFGdyRVsbKKdLMH_ntNtYkpqHgBDO9K2qjxxtK0nRXp71Dn5eDJq8tsri6-qdnsl5VpcIO4VX5PHZAybS9L3TY_LtM9_lenb5LrDXSle7Wt3SJbLrtNrgybzfk7pHjtf1SzpaNvYRr60uR30klGAWPSA5hK6ixJmqf0CDv1Nf_uZvDX5OeYc1jSYVVRiI4UBowh6yeePKqJXxcUvxjTfjW1gRZ9tNbiLhkPDj70D_2mpINvOE9KXwttWZQKYyMdY6tDLbqKJ5w5hTUqhA2DJDWpU4HpMpsAvLGx5omOVRimAbtHWlmeuQeE8tTC-QwcIqG541YB8AgUs47FJmWWe-TVajSlafjOsezGTILfg4Mv4UFKHHyJg--RF2vxeU308SfBZ2AacmomEqm5sf2Uy2khwQE5kuANYnqvR3ZXliObSWEhwxi9W0AHzCNP14fhdcY9GpW5fAkycL84iaMQ9L9fG9paHYZBQdBfj8QbJrgWQH02j2ST84oyXCTgZ3PhkZdrY_17Lx_-s-Qjci3EbxBVJPsuaZXF0j0GoFbqJ817-BPzbzyr |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=B-Value+Optimization+in+the+Estimation+of+Intravoxel+Incoherent+Motion+Parameters+in+Patients+with+Cervical+Cancer&rft.jtitle=Korean+journal+of+radiology&rft.au=Jose+Angelo+Udal+Perucho&rft.au=Hing+Chiu+Charles+Chang&rft.au=Varut+Vardhanabhuti&rft.au=Mandi+Wang&rft.date=2020-02-01&rft.pub=%EB%8C%80%ED%95%9C%EC%98%81%EC%83%81%EC%9D%98%ED%95%99%ED%9A%8C&rft.issn=1229-6929&rft.eissn=2005-8330&rft.spage=218&rft.epage=227&rft_id=info:doi/10.3348%2Fkjr.2019.0232&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_6660579 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1229-6929&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1229-6929&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1229-6929&client=summon |