Monitoring and Identifying Wind Turbine Generator Bearing Faults Using Deep Belief Network and EWMA Control Charts
Wind turbines are widely installed as the new source of cleaner energy production. Dynamic and random stress imposed on the generator bearing of a wind turbine may lead to overheating and failure. In this paper, a data-driven approach for condition monitoring of generator bearings using temporal tem...
Saved in:
Published in | Frontiers in Energy Research Vol. 9 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English Japanese |
Published |
Frontiers Media SA
19.11.2021
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
ISSN | 2296-598X 2296-598X |
DOI | 10.3389/fenrg.2021.799039 |
Cover
Abstract | Wind turbines are widely installed as the new source of cleaner energy production. Dynamic and random stress imposed on the generator bearing of a wind turbine may lead to overheating and failure. In this paper, a data-driven approach for condition monitoring of generator bearings using temporal temperature data is presented. Four algorithms, the support vector regression machine, neural network, extreme learning machine, and the deep belief network are applied to model the bearing behavior. Comparative analysis of the models has demonstrated that the deep belief network is most accurate. It has been observed that the bearing failure is preceded by a change in the prediction error of bearing temperature. An exponentially-weighted moving average (EWMA) control chart is deployed to trend the error. Then a binary vector containing the abnormal errors and the normal residuals are generated for classifying failures. LS-SVM based classification models are developed to classify the fault bearings and the normal ones. The proposed approach has been validated with the data collected from 11 wind turbines. |
---|---|
AbstractList | Wind turbines are widely installed as the new source of cleaner energy production. Dynamic and random stress imposed on the generator bearing of a wind turbine may lead to overheating and failure. In this paper, a data-driven approach for condition monitoring of generator bearings using temporal temperature data is presented. Four algorithms, the support vector regression machine, neural network, extreme learning machine, and the deep belief network are applied to model the bearing behavior. Comparative analysis of the models has demonstrated that the deep belief network is most accurate. It has been observed that the bearing failure is preceded by a change in the prediction error of bearing temperature. An exponentially-weighted moving average (EWMA) control chart is deployed to trend the error. Then a binary vector containing the abnormal errors and the normal residuals are generated for classifying failures. LS-SVM based classification models are developed to classify the fault bearings and the normal ones. The proposed approach has been validated with the data collected from 11 wind turbines. |
Author | Huajin Li Jiahao Deng Peng Feng Shuang Yuan Dimuthu D. K. Arachchige |
Author_xml | – sequence: 1 givenname: Huajin surname: Li fullname: Li, Huajin – sequence: 2 givenname: Jiahao surname: Deng fullname: Deng, Jiahao – sequence: 3 givenname: Shuang surname: Yuan fullname: Yuan, Shuang – sequence: 4 givenname: Peng surname: Feng fullname: Feng, Peng – sequence: 5 givenname: Dimuthu D. K. surname: Arachchige fullname: Arachchige, Dimuthu D. K. |
BackLink | https://cir.nii.ac.jp/crid/1870583643136947968$$DView record in CiNii |
BookMark | eNqNkU1P3DAQhq2KSlDgB3DLodfd-itO5gjLR1fi4wKiN8txxotpsFeOV6v99ySbqqo4oF7GM-N5Xo3m_UYOQgxIyBmjcyFq-OEwpNWcU87mFQAV8IUccQ5qVkL96-Cf_JCc9r1vqCwFU5WSRyTdxeBzTD6sChPaYtliyN7txvrZD43HTWp8wOIGAyYzTBYXaPbj12bT5b546sfiEnE9_HQeXXGPeRvT773e1fPdebGIIafYFYsXk3J_Qr460_V4-uc9Jk_XV4-Ln7Pbh5vl4vx2ZqWEPFPKNShlBcohq8HWhlHJnLJgW0dVU3NJBW0p5Y5jI9qysswhR6lcZR1IcUyWk24bzateJ_9m0k5H4_W-EdNKD-t426GWALKiLTAlnESUUErROFTGADLTwKDFJ61NWJvd1nTdX0FG9WiC3pugRxP0ZMIAsQmyKfZ9QvdfTPWBsT6b7McLGt99Sn6fyOD9AI2R1RUta6GkYELBeMpavAPsjKr1 |
CitedBy_id | crossref_primary_10_3389_feart_2022_1018432 crossref_primary_10_3389_fenrg_2022_1014983 crossref_primary_10_3389_feart_2022_1002888 crossref_primary_10_3389_fevo_2022_966111 crossref_primary_10_3389_fenrg_2022_882818 crossref_primary_10_3389_feart_2022_939772 crossref_primary_10_3389_feart_2022_944299 crossref_primary_10_3389_fevo_2022_943865 crossref_primary_10_3389_fenrg_2022_861563 crossref_primary_10_3389_feart_2022_950723 crossref_primary_10_3389_fenrg_2022_900298 crossref_primary_10_3389_feart_2022_1019801 crossref_primary_10_3389_feart_2022_959930 crossref_primary_10_3389_feart_2022_874543 crossref_primary_10_2478_amns_2023_1_00478 crossref_primary_10_3389_fenrg_2022_958384 crossref_primary_10_3389_fonc_2023_868471 crossref_primary_10_3389_feart_2022_997928 crossref_primary_10_3389_fenrg_2022_1009840 crossref_primary_10_3389_fenrg_2022_989221 crossref_primary_10_3389_feart_2022_987294 crossref_primary_10_1016_j_ijleo_2022_170173 crossref_primary_10_1016_j_neucom_2025_129588 crossref_primary_10_3389_fenrg_2022_975462 crossref_primary_10_2478_amns_2023_1_00477 crossref_primary_10_2478_amns_2023_1_00476 crossref_primary_10_3389_feart_2022_960677 crossref_primary_10_3389_feart_2022_960831 crossref_primary_10_3390_s22041461 crossref_primary_10_3389_fenrg_2022_920837 crossref_primary_10_3390_fluids7120371 crossref_primary_10_3389_feart_2022_1026310 crossref_primary_10_3389_feart_2022_951763 crossref_primary_10_3389_feart_2022_952694 crossref_primary_10_3389_fenvs_2022_897254 crossref_primary_10_1016_j_ymssp_2022_109557 crossref_primary_10_3389_fenvs_2022_907872 crossref_primary_10_3389_fenrg_2022_1109214 crossref_primary_10_3389_fenrg_2022_930999 crossref_primary_10_3389_feart_2022_925356 crossref_primary_10_3389_fenrg_2022_1008927 crossref_primary_10_3389_fams_2023_1268340 crossref_primary_10_3389_feart_2022_931508 crossref_primary_10_1016_j_egyr_2024_06_041 crossref_primary_10_3390_su15054531 crossref_primary_10_1016_j_energy_2022_124996 crossref_primary_10_3389_feart_2022_944301 crossref_primary_10_3389_fenrg_2022_888298 crossref_primary_10_3389_fenrg_2022_998585 crossref_primary_10_3389_fenrg_2022_984107 crossref_primary_10_3389_feart_2022_1029929 crossref_primary_10_3389_feart_2022_872792 crossref_primary_10_3389_fenrg_2022_931031 crossref_primary_10_3389_fenrg_2022_964516 crossref_primary_10_4028_p_C6ITcm crossref_primary_10_3389_fenrg_2022_954274 crossref_primary_10_3389_feart_2022_1026895 crossref_primary_10_3389_fenrg_2022_899692 crossref_primary_10_1016_j_ymssp_2023_110528 crossref_primary_10_3389_feart_2022_965071 crossref_primary_10_3389_fenrg_2022_888327 crossref_primary_10_3389_feart_2022_1016458 crossref_primary_10_3389_fenrg_2022_945327 crossref_primary_10_3390_su16031344 crossref_primary_10_1002_ese3_70055 crossref_primary_10_3389_fenrg_2022_858518 crossref_primary_10_3389_feart_2022_930013 crossref_primary_10_1088_1361_6501_ad6786 crossref_primary_10_3389_fevo_2022_964936 crossref_primary_10_3390_informatics9010006 crossref_primary_10_3390_info13080375 crossref_primary_10_3389_fenrg_2022_906107 crossref_primary_10_3389_feart_2022_953627 crossref_primary_10_3389_fenvs_2022_912523 crossref_primary_10_3389_fenrg_2022_1037539 crossref_primary_10_1016_j_ecolind_2024_111814 crossref_primary_10_3389_fenrg_2023_1111355 crossref_primary_10_3389_fenvs_2022_858635 crossref_primary_10_1016_j_oceaneng_2022_111683 crossref_primary_10_3389_feart_2022_941119 crossref_primary_10_3389_feart_2022_835308 crossref_primary_10_3389_feart_2022_861912 crossref_primary_10_3389_feart_2022_913243 crossref_primary_10_3389_fenvs_2022_861747 crossref_primary_10_3389_fenrg_2022_952354 crossref_primary_10_3390_bios12030159 crossref_primary_10_1088_1361_6501_ad5223 crossref_primary_10_3390_app12136573 crossref_primary_10_3389_feart_2022_1004442 crossref_primary_10_3389_fenrg_2022_972437 crossref_primary_10_1155_2022_8918871 crossref_primary_10_1007_s42835_023_01677_8 crossref_primary_10_3389_feart_2022_1033012 crossref_primary_10_3389_fnbot_2022_988024 crossref_primary_10_3389_feart_2022_904655 crossref_primary_10_3389_fenrg_2021_812492 crossref_primary_10_3389_fenrg_2022_864211 crossref_primary_10_3389_fenvs_2022_855694 crossref_primary_10_3389_fenrg_2022_966567 crossref_primary_10_1016_j_apm_2024_115760 crossref_primary_10_3389_fevo_2022_1094535 crossref_primary_10_3389_fenrg_2022_920407 crossref_primary_10_3389_feart_2022_961615 crossref_primary_10_3389_feart_2022_973320 crossref_primary_10_3389_fevo_2022_944298 crossref_primary_10_3389_fenrg_2021_805206 crossref_primary_10_3389_fenrg_2022_914026 crossref_primary_10_3389_fevo_2022_966104 crossref_primary_10_3389_feart_2022_968250 crossref_primary_10_3389_fenrg_2022_803716 crossref_primary_10_3389_fenrg_2022_972570 crossref_primary_10_3390_app12104882 crossref_primary_10_3389_fenrg_2021_812367 crossref_primary_10_3389_feart_2022_897779 crossref_primary_10_1364_OE_529655 crossref_primary_10_3389_fenrg_2022_1019464 crossref_primary_10_3389_fenrg_2022_927048 crossref_primary_10_3389_fenrg_2022_944961 |
Cites_doi | 10.1198/004017001750386279 10.1006/mssp.2001.1398 10.1016/j.renene.2016.03.025 10.1016/j.sigpro.2013.04.015 10.1021/acs.jproteome.8b00322 10.1016/j.renene.2012.04.020 10.1016/j.asoc.2017.01.015 10.1016/j.renene.2016.10.032 10.1093/jcde/qwaa003 10.1007/s10878-006-9035-3 10.1016/j.renene.2018.04.059 10.1016/j.soildyn.2020.106220 10.1002/we.2142 10.1016/s0004-3702(97)00043-x 10.1109/tnnls.2021.3102323 10.1016/s0893-6080(03)00169-2 10.1016/j.jsv.2004.10.005 10.1007/s10346-018-1020-2 10.1016/j.apenergy.2016.11.111 10.1145/319382.319388 10.3389/fenrg.2021.780928 10.1016/j.apenergy.2016.08.108 10.1080/16843703.2005.11673089 10.1038/nature14539 10.1142/S0129065706000482 10.1111/cgf.14012 10.1007/s11069-021-04706-9 10.1007/s00521-017-2968-x 10.1109/tii.2017.2662215 10.1016/j.neucom.2021.03.110 10.1016/j.renene.2015.06.034 10.1162/089976602760128018 10.1007/s11128-018-2048-x 10.1029/2007rg000228 10.1016/j.renene.2012.11.030 10.1109/MSP.2010.939038 10.1007/s10346-019-01312-6 10.1002/we.538 10.1109/TSG.2016.2621135 10.3390/s131216950 10.1109/tits.2021.3074522 10.1109/TII.2016.2607179 10.1109/tetci.2018.2880511 10.1016/j.renene.2017.01.056 10.1162/neco.2006.18.7.1527 |
ContentType | Journal Article |
DBID | RYH AAYXX CITATION ADTOC UNPAY DOA |
DOI | 10.3389/fenrg.2021.799039 |
DatabaseName | CiNii Complete CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals - May need to register for free articles url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2296-598X |
ExternalDocumentID | oai_doaj_org_article_499470d9163f4ee49543bfe6aa9e1ab9 10.3389/fenrg.2021.799039 10_3389_fenrg_2021_799039 |
GroupedDBID | 5VS 9T4 AAFWJ ACGFS ACXDI ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV GROUPED_DOAJ KQ8 M~E OK1 RYH AAYXX CITATION ADTOC IPNFZ RIG UNPAY |
ID | FETCH-LOGICAL-c449t-66fbe44796fe189c8a1041f6c9cdf06b824030d002f2eb3d57c1fe2e46f7cf943 |
IEDL.DBID | UNPAY |
ISSN | 2296-598X |
IngestDate | Wed Aug 27 01:25:20 EDT 2025 Tue Aug 19 18:22:51 EDT 2025 Wed Oct 01 03:40:19 EDT 2025 Thu Apr 24 23:04:25 EDT 2025 Thu Jun 26 23:01:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English Japanese |
License | cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c449t-66fbe44796fe189c8a1041f6c9cdf06b824030d002f2eb3d57c1fe2e46f7cf943 |
ORCID | 0000-0001-9055-8507 0000-0003-0694-2018 0000-0002-0626-5240 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.frontiersin.org/articles/10.3389/fenrg.2021.799039/pdf |
ParticipantIDs | doaj_primary_oai_doaj_org_article_499470d9163f4ee49543bfe6aa9e1ab9 unpaywall_primary_10_3389_fenrg_2021_799039 crossref_primary_10_3389_fenrg_2021_799039 crossref_citationtrail_10_3389_fenrg_2021_799039 nii_cinii_1870583643136947968 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-19 |
PublicationDateYYYYMMDD | 2021-11-19 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-19 day: 19 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in Energy Research |
PublicationYear | 2021 |
Publisher | Frontiers Media SA Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media SA – name: Frontiers Media S.A |
References | Wang (B45); 13 Li (B23) 2018; 15 Jones (B15) 2001; 43 Yang (B50) 2018; 127 Deng (B3) 2013; 28 Yang (B49) 2013; 53 Hinton (B10) 2002; 14 Kusiak (B18) 2012; 48 Liu (B26) 2018; 17 Sbihi (B35) 2007; 13 Yang (B48) 2017; 23 Peeters (B32) 2018; 116 Sun (B40); 39 Klein (B16) 2001; 15 Lei (B20) 2013; 13 Li (B24) 2020; 17 Guo (B7) 2012 Drucker (B4) 1997; 9 Ouyang (B28) 2021; 448 Peng (B33) 2005; 286 Liang (B25) 2006; 16 Tavner (B41) 2012; 16 LeCun (B19) 2015; 521 Mitchell (B27) 1999; 42 Hinton (B9) 2006; 18 Ouyang (B30) 2017; 102 Sun (B39); 7 Huang (B13) 2008; 46 Feng (B5) 2020; 135 Shen (B36) Zhu (B51) 2018; 30 Huang (B14) 2008 Wang (B46); 9 Wang (B43) 2017; 188 Gritsenko (B6) 2017 Shen (B38) 2021 He (B8) 2018 Kohavi (B17) 1997; 97 Li (B22); 108 Shen (B37) Wang (B44); 182 Bach‐Andersen (B1) 2018; 21 Hu (B12) 2016; 85 Teng (B42) 2016; 93 Li (B21); 9 Yan (B47) 2014; 96 Cherkassky (B2) 2004; 17 Ouyang (B29) 2019; 3 Pandey (B31) 2018; 17 Qiu (B34) 2017; 54 Horng Shiau (B11) 2005; 2 |
References_xml | – volume: 43 start-page: 156 year: 2001 ident: B15 article-title: The Performance of Exponentially Weighted Moving Average Charts with Estimated Parameters publication-title: Technometrics doi: 10.1198/004017001750386279 – volume: 15 start-page: 1061 year: 2001 ident: B16 article-title: Non-stationary Signals: Phase-Energy Approach-Theory and Simulations publication-title: Mech. Syst. Signal Process. doi: 10.1006/mssp.2001.1398 – volume: 93 start-page: 591 year: 2016 ident: B42 article-title: Multi-fault Detection and Failure Analysis of Wind Turbine Gearbox Using Complex Wavelet Transform publication-title: Renew. Energ. doi: 10.1016/j.renene.2016.03.025 – volume: 96 start-page: 1 year: 2014 ident: B47 article-title: Wavelets for Fault Diagnosis of Rotary Machines: a Review with Applications publication-title: Signal. Process. doi: 10.1016/j.sigpro.2013.04.015 – start-page: V01BT02A033 year: 2018 ident: B8 article-title: Predicting Manufactured Shapes of a Projection Micro-stereolithography Process via Convolutional Encoder-Decoder Networks – start-page: 304 volume-title: International Conference on Extreme Learning Machine year: 2017 ident: B6 article-title: Deformable Surface Registration with Extreme Learning Machines – ident: B36 article-title: Mixture Density Networks-Based Knock Simulator publication-title: IEEE/ASME Trans. Mechatronics – volume: 17 start-page: 3214 year: 2018 ident: B31 article-title: KELM-CPPpred: Kernel Extreme Learning Machine Based Prediction Model for Cell-Penetrating Peptides publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.8b00322 – volume: 48 start-page: 110 year: 2012 ident: B18 article-title: Analyzing Bearing Faults in Wind Turbines: a Data-Mining Approach publication-title: Renew. Energ. doi: 10.1016/j.renene.2012.04.020 – volume: 54 start-page: 246 year: 2017 ident: B34 article-title: Empirical Mode Decomposition Based Ensemble Deep Learning for Load Demand Time Series Forecasting publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.01.015 – volume: 102 start-page: 1 year: 2017 ident: B30 article-title: Modeling Wind-Turbine Power Curve: A Data Partitioning and Mining Approach publication-title: Renew. Energ. doi: 10.1016/j.renene.2016.10.032 – start-page: 12 year: 2008 ident: B14 article-title: The Orthogonal Hilbert-Huang Transform and its Application in Earthquake Motion Recordings Analysis – volume: 7 start-page: 18 ident: B39 article-title: Embedded Spectral Descriptors: Learning the point-wise Correspondence Metric via Siamese Neural Networks publication-title: J. Comput. Des. Eng. doi: 10.1093/jcde/qwaa003 – volume: 13 start-page: 337 year: 2007 ident: B35 article-title: A Best First Search Exact Algorithm for the Multiple-Choice Multidimensional Knapsack Problem publication-title: J. Comb. Optim doi: 10.1007/s10878-006-9035-3 – volume: 127 start-page: 230 year: 2018 ident: B50 article-title: An Unsupervised Spatiotemporal Graphical Modeling Approach for Wind Turbine Condition Monitoring publication-title: Renew. Energ. doi: 10.1016/j.renene.2018.04.059 – volume: 9 start-page: 155 year: 1997 ident: B4 article-title: Support Vector Regression Machines publication-title: Adv. Neural Inf. Process. Syst. – volume: 135 start-page: 106 year: 2020 ident: B5 article-title: DEM Investigation on the Mechanical Behaviors of Flawed Specimens Subjected to Coupled Static-Dynamic Loads publication-title: Soil Dyn. Earthquake Eng. doi: 10.1016/j.soildyn.2020.106220 – volume: 21 start-page: 29 year: 2018 ident: B1 article-title: Deep Learning for Automated Drivetrain Fault Detection publication-title: Wind Energy doi: 10.1002/we.2142 – volume: 97 start-page: 273 year: 1997 ident: B17 article-title: Wrappers for Feature Subset Selection publication-title: Artif. intelligence doi: 10.1016/s0004-3702(97)00043-x – ident: B37 article-title: Sample-Based Neural Approximation Approach for Probabilistic Constrained Programs publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/tnnls.2021.3102323 – volume: 17 start-page: 113 year: 2004 ident: B2 article-title: Practical Selection of SVM Parameters and Noise Estimation for SVM Regression publication-title: Neural networks doi: 10.1016/s0893-6080(03)00169-2 – volume: 286 start-page: 187 year: 2005 ident: B33 article-title: An Improved Hilbert–Huang Transform and its Application in Vibration Signal Analysis publication-title: J. sound vibration doi: 10.1016/j.jsv.2004.10.005 – volume: 15 start-page: 2047 year: 2018 ident: B23 article-title: Prediction of Landslide Displacement with an Ensemble-Based Extreme Learning Machine and Copula Models publication-title: Landslides doi: 10.1007/s10346-018-1020-2 – volume: 188 start-page: 56 year: 2017 ident: B43 article-title: Deep Learning Based Ensemble Approach for Probabilistic Wind Power Forecasting publication-title: Appl. Energ. doi: 10.1016/j.apenergy.2016.11.111 – volume: 42 start-page: 30 year: 1999 ident: B27 article-title: Machine Learning and Data Mining publication-title: Commun. ACM doi: 10.1145/319382.319388 – volume: 9 start-page: 780928 ident: B21 article-title: Short-Term Nacelle Orientation Forecasting Using Bilinear Transformation and ICEEMDAN Framework publication-title: Front. Energ. Res. doi: 10.3389/fenrg.2021.780928 – volume: 182 start-page: 80 ident: B44 article-title: Deep Belief Network Based Deterministic and Probabilistic Wind Speed Forecasting Approach publication-title: Appl. Energ. doi: 10.1016/j.apenergy.2016.08.108 – volume: 2 start-page: 125 year: 2005 ident: B11 article-title: Robustness of the EWMA Control Chart to Non-normality for Autocorrelated Processes publication-title: Qual. Technology Quantitative Management doi: 10.1080/16843703.2005.11673089 – volume: 521 start-page: 436 year: 2015 ident: B19 article-title: Deep Learning publication-title: nature doi: 10.1038/nature14539 – volume: 16 start-page: 29 year: 2006 ident: B25 article-title: Classification of Mental Tasks from EEG Signals Using Extreme Learning Machine publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065706000482 – volume: 39 start-page: 204 ident: B40 article-title: Zernet: Convolutional Neural Networks on Arbitrary Surfaces via Zernike Local tangent Space Estimation publication-title: Computer Graphics Forum doi: 10.1111/cgf.14012 – volume: 108 start-page: 799 ident: B22 article-title: Rainfall Prediction Using Optimally Pruned Extreme Learning Machines publication-title: Nat. Hazards doi: 10.1007/s11069-021-04706-9 – volume: 30 start-page: 3825 year: 2018 ident: B51 article-title: A Hybrid Machine Learning and Computing Model for Forecasting Displacement of Multifactor-Induced Landslides publication-title: Neural Comput. Applic doi: 10.1007/s00521-017-2968-x – volume: 23 start-page: 91 year: 2017 ident: B48 article-title: Fault Diagnosis for a Wind Turbine Generator Bearing via Sparse Representation and Shift-Invariant K-Svd publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/tii.2017.2662215 – volume: 448 start-page: 82 year: 2021 ident: B28 article-title: Feature Learning for Stacked ELM via Low-Rank Matrix Factorization publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.03.110 – volume: 85 start-page: 83 year: 2016 ident: B12 article-title: Transfer Learning for Short-Term Wind Speed Prediction with Deep Neural Networks publication-title: Renew. Energ. doi: 10.1016/j.renene.2015.06.034 – volume: 14 start-page: 1771 year: 2002 ident: B10 article-title: Training Products of Experts by Minimizing Contrastive Divergence publication-title: Neural Comput. doi: 10.1162/089976602760128018 – volume: 17 start-page: 1 year: 2018 ident: B26 article-title: Quantum Relief Algorithm publication-title: Quan. Inf. Process. doi: 10.1007/s11128-018-2048-x – volume: 46 year: 2008 ident: B13 article-title: A Review on Hilbert‐Huang Transform: Method and its Applications to Geophysical Studies publication-title: Rev. Geophys. doi: 10.1029/2007rg000228 – volume: 53 start-page: 365 year: 2013 ident: B49 article-title: Wind Turbine Condition Monitoring by the Approach of SCADA Data Analysis publication-title: Renew. Energ. doi: 10.1016/j.renene.2012.11.030 – volume: 28 start-page: 145 year: 2013 ident: B3 article-title: Deep Learning for Signal and Information Processing publication-title: IEEE Signal. Process. Mag. doi: 10.1109/MSP.2010.939038 – volume: 17 start-page: 693 year: 2020 ident: B24 article-title: Modeling and Predicting Reservoir Landslide Displacement with Deep Belief Network and EWMA Control Charts: a Case Study in Three Gorges Reservoir publication-title: Landslides doi: 10.1007/s10346-019-01312-6 – volume: 16 start-page: 175 year: 2012 ident: B41 article-title: Study of Weather and Location Effects on Wind Turbine Failure Rates publication-title: Wind Energy doi: 10.1002/we.538 – volume: 9 start-page: 2824 ident: B46 article-title: Wind Turbine Blade Breakage Monitoring with Deep Autoencoders publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2016.2621135 – volume: 13 start-page: 16950 year: 2013 ident: B20 article-title: Fault Diagnosis of Rotating Machinery Based on an Adaptive Ensemble Empirical Mode Decomposition publication-title: Sensors (Basel) doi: 10.3390/s131216950 – year: 2021 ident: B38 article-title: Pedestrian-Aware Statistical Risk Assessment publication-title: IEEE Trans. Intell. Transportation Syst. doi: 10.1109/tits.2021.3074522 – start-page: 235 year: 2012 ident: B7 article-title: Wind Turbine Generator Bearing Condition Monitoring with NEST Method – volume: 13 start-page: 1360 ident: B45 article-title: Wind Turbine Gearbox Failure Identification with Deep Neural Networks publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2016.2607179 – volume: 3 start-page: 127 year: 2019 ident: B29 article-title: Modeling and Forecasting Short-Term Power Load with Copula Model and Deep Belief Network publication-title: IEEE Trans. Emerg. Top. Comput. Intell. doi: 10.1109/tetci.2018.2880511 – volume: 116 start-page: 74 year: 2018 ident: B32 article-title: Vibration-based Bearing Fault Detection for Operations and Maintenance Cost Reduction in Wind Energy publication-title: Renew. Energ. doi: 10.1016/j.renene.2017.01.056 – volume: 18 start-page: 1527 year: 2006 ident: B9 article-title: A Fast Learning Algorithm for Deep Belief Nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 |
SSID | ssib045316764 ssj0001325410 |
Score | 2.522475 |
Snippet | Wind turbines are widely installed as the new source of cleaner energy production. Dynamic and random stress imposed on the generator bearing of a wind turbine... |
SourceID | doaj unpaywall crossref nii |
SourceType | Open Website Open Access Repository Enrichment Source Index Database Publisher |
SubjectTerms | A bearing failure condition monitoring deep belief network EWMA control chart General Works SCADA data analysis |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQC3RAPEV5yQMTKNRuXDseebSqkOhUBFvkJ0KqQtWmQvx7znaoMsHCEimxY53uLr774nsgdClADbTp68wKP8iY4SYrQMyZI7mVVmlFRch3fprw8TN7fB28tlp9hZiwVB44Ma4HHjkTxIIXk3vmHPjzLNfecaWko0rH1D0wYy0wFf-u5AB8aHOMCShM9jyI4w3wYJ_eCNiBQ3PwliGK9frBvFTv7x20tarm6utTzWYtUzPaRTuNj4hvE217aMNV-6jTqhx4gBbpWww3WFUWp3zbmLOEXwBm4-lqAZjX4VRWGmbiO9DpMDxSq1m9xDFWAD84N4cRcEQ9nqSI8Lje8OXpFt-nMHYcjuTr5SF6Hg2n9-OsaZ-QGcZknXHutWNMSO4dLaQpFEAv6rmRxnrCdRFK8RELW6LvA6S2A2God33HuBfGS5Yfoc3qo3LHCAMmUiBG4sHiMS-dIrkGWE0Ms0RoKbuI_PCyNE1t8dDiYlYCxgjsLyP7y8D-MrG_i67Wr8xTYY3fJt8FAa0nhprY8QFoStloSvmXpnTROYgX6AtXCvvUoMjBH6M5l4FJRRddrwX_N0kn_0HSKdoOS4bcRirP0Ga9WLlzcHJqfRH1-Rs0_Pci priority: 102 providerName: Directory of Open Access Journals |
Title | Monitoring and Identifying Wind Turbine Generator Bearing Faults Using Deep Belief Network and EWMA Control Charts |
URI | https://cir.nii.ac.jp/crid/1870583643136947968 https://www.frontiersin.org/articles/10.3389/fenrg.2021.799039/pdf https://doaj.org/article/499470d9163f4ee49543bfe6aa9e1ab9 |
UnpaywallVersion | publishedVersion |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2296-598X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325410 issn: 2296-598X databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Directory of Open Access Journals - May need to register for free articles customDbUrl: eissn: 2296-598X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325410 issn: 2296-598X databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2296-598X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325410 issn: 2296-598X databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9swFBdbeth66L5Z2rXosNOGU8uWJeuYdg1l0LBDQ7OT0WcJC15IbUr31-89yw3pGBtjF4MsycjvPVnvZ733EyHvJZiBsZlJnAxFwq2wSQlqTnyaO-W00UxivvPFVJzP-Od5Md_KhcGwyoCp-3gQ9KKOTMF9iBjOcEBU6jiAaK8B22VsJOFrmqvjlQuPyY7ATaYB2ZlNv4y_4qlymRJJocp53M78fd8HC1LH2w_LTL1Y7JInbb3Sd7d6udxacibPiL0fbIw0-TZqGzOyP37hcfy_t3lO9nqPlI5jhxfkka9fkt0tnsJXZB1nPhaorh2N2b1dhhS9AlBPL9s1IGxPI4k1tKQnMIOweqLbZXNDu8gE-sn7FdSA2xvoNMafd887u7oY09MYNE8xAKC5eU1mk7PL0_OkP6whsZyrJhEiGM-5VCJ4VipbagB6LAirrAupMCUS_6UOFBQyAPCukJYFn3kugrRB8fwNGdTfa_-WUEBgGowmDbC-8qC8TnMDID613KXSKDUk6b3GKtszmeOBGssKEA2KtOpEWqFIqyjSIfmw6bKKNB5_anyCZrBpiAzc3Q1QX9WrrwKkyGXqwLvOA_cecCbPTfBCa-WZNvCQQzAiGB9eGXwVizIH74_lQqGQyiH5uDGvvw9p_59aH5CnWMKUSabekUGzbv0h-E6NOer-ORz1U-QnbSMWWQ |
linkProvider | Unpaywall |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELage4A98EYUWOQDJ1C6duLY8bG7bLVC2orDVltOkZ-oogpVNxGCX89MnK0KQiDEJZJjO3JmxvZ88sxnQl4rMAPrcpt5FctMOOmyCtScBVZ47Y01XGG-88Vcni_E-2W53MuFwbDKiKn7eBH0qklMwUOIGM5wQFT6OIJoPwG2y_lEwWpa6OONj7fJgcRDphE5WMw_TD_irXK5llmpq2U6zvx93582pJ63H7aZZrU6JHe6ZmO-fTXr9d6WM7tP3M1gU6TJ50nX2on7_guP4__9zQNyb_BI6TR1eEhuheYROdzjKXxMtmnmY4GaxtOU3dtnSNErAPX0stsCwg40kVhDS3oCMwirZ6Zbt9e0j0yg70LYQA24vZHOU_x5_72zq4spPU1B8xQDANrrJ2QxO7s8Pc-GyxoyJ4RuMymjDUIoLWPglXaVAaDHo3Ta-cikrZD4j3lQUMwBwPtSOR5DHoSMykUtiqdk1HxpwjNCAYEZMBoWYX8VUQfDCgsgnjnhmbJajwm70VjtBiZzvFBjXQOiQZHWvUhrFGmdRDomb3ZdNonG40-NT9AMdg2Rgbt_AeqrB_XVgBSFYh686yKKEABnisLGII3RgRsLHzkCI4Lx4ZPDqlhWBXh_vJAahVSNydudef19SM__qfULchdLmDLJ9UsyarddOALfqbWvhsnxA-zJFWQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monitoring+and+Identifying+Wind+Turbine+Generator+Bearing+Faults+Using+Deep+Belief+Network+and+EWMA+Control+Charts&rft.jtitle=Frontiers+in+energy+research&rft.au=Li%2C+Huajin&rft.au=Deng%2C+Jiahao&rft.au=Yuan%2C+Shuang&rft.au=Feng%2C+Peng&rft.date=2021-11-19&rft.issn=2296-598X&rft.eissn=2296-598X&rft.volume=9&rft_id=info:doi/10.3389%2Ffenrg.2021.799039&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fenrg_2021_799039 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-598X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-598X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-598X&client=summon |