Monitoring and Identifying Wind Turbine Generator Bearing Faults Using Deep Belief Network and EWMA Control Charts

Wind turbines are widely installed as the new source of cleaner energy production. Dynamic and random stress imposed on the generator bearing of a wind turbine may lead to overheating and failure. In this paper, a data-driven approach for condition monitoring of generator bearings using temporal tem...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in Energy Research Vol. 9
Main Authors Li, Huajin, Deng, Jiahao, Yuan, Shuang, Feng, Peng, Arachchige, Dimuthu D. K.
Format Journal Article
LanguageEnglish
Japanese
Published Frontiers Media SA 19.11.2021
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN2296-598X
2296-598X
DOI10.3389/fenrg.2021.799039

Cover

Abstract Wind turbines are widely installed as the new source of cleaner energy production. Dynamic and random stress imposed on the generator bearing of a wind turbine may lead to overheating and failure. In this paper, a data-driven approach for condition monitoring of generator bearings using temporal temperature data is presented. Four algorithms, the support vector regression machine, neural network, extreme learning machine, and the deep belief network are applied to model the bearing behavior. Comparative analysis of the models has demonstrated that the deep belief network is most accurate. It has been observed that the bearing failure is preceded by a change in the prediction error of bearing temperature. An exponentially-weighted moving average (EWMA) control chart is deployed to trend the error. Then a binary vector containing the abnormal errors and the normal residuals are generated for classifying failures. LS-SVM based classification models are developed to classify the fault bearings and the normal ones. The proposed approach has been validated with the data collected from 11 wind turbines.
AbstractList Wind turbines are widely installed as the new source of cleaner energy production. Dynamic and random stress imposed on the generator bearing of a wind turbine may lead to overheating and failure. In this paper, a data-driven approach for condition monitoring of generator bearings using temporal temperature data is presented. Four algorithms, the support vector regression machine, neural network, extreme learning machine, and the deep belief network are applied to model the bearing behavior. Comparative analysis of the models has demonstrated that the deep belief network is most accurate. It has been observed that the bearing failure is preceded by a change in the prediction error of bearing temperature. An exponentially-weighted moving average (EWMA) control chart is deployed to trend the error. Then a binary vector containing the abnormal errors and the normal residuals are generated for classifying failures. LS-SVM based classification models are developed to classify the fault bearings and the normal ones. The proposed approach has been validated with the data collected from 11 wind turbines.
Author Huajin Li
Jiahao Deng
Peng Feng
Shuang Yuan
Dimuthu D. K. Arachchige
Author_xml – sequence: 1
  givenname: Huajin
  surname: Li
  fullname: Li, Huajin
– sequence: 2
  givenname: Jiahao
  surname: Deng
  fullname: Deng, Jiahao
– sequence: 3
  givenname: Shuang
  surname: Yuan
  fullname: Yuan, Shuang
– sequence: 4
  givenname: Peng
  surname: Feng
  fullname: Feng, Peng
– sequence: 5
  givenname: Dimuthu D. K.
  surname: Arachchige
  fullname: Arachchige, Dimuthu D. K.
BackLink https://cir.nii.ac.jp/crid/1870583643136947968$$DView record in CiNii
BookMark eNqNkU1P3DAQhq2KSlDgB3DLodfd-itO5gjLR1fi4wKiN8txxotpsFeOV6v99ySbqqo4oF7GM-N5Xo3m_UYOQgxIyBmjcyFq-OEwpNWcU87mFQAV8IUccQ5qVkL96-Cf_JCc9r1vqCwFU5WSRyTdxeBzTD6sChPaYtliyN7txvrZD43HTWp8wOIGAyYzTBYXaPbj12bT5b546sfiEnE9_HQeXXGPeRvT773e1fPdebGIIafYFYsXk3J_Qr460_V4-uc9Jk_XV4-Ln7Pbh5vl4vx2ZqWEPFPKNShlBcohq8HWhlHJnLJgW0dVU3NJBW0p5Y5jI9qysswhR6lcZR1IcUyWk24bzateJ_9m0k5H4_W-EdNKD-t426GWALKiLTAlnESUUErROFTGADLTwKDFJ61NWJvd1nTdX0FG9WiC3pugRxP0ZMIAsQmyKfZ9QvdfTPWBsT6b7McLGt99Sn6fyOD9AI2R1RUta6GkYELBeMpavAPsjKr1
CitedBy_id crossref_primary_10_3389_feart_2022_1018432
crossref_primary_10_3389_fenrg_2022_1014983
crossref_primary_10_3389_feart_2022_1002888
crossref_primary_10_3389_fevo_2022_966111
crossref_primary_10_3389_fenrg_2022_882818
crossref_primary_10_3389_feart_2022_939772
crossref_primary_10_3389_feart_2022_944299
crossref_primary_10_3389_fevo_2022_943865
crossref_primary_10_3389_fenrg_2022_861563
crossref_primary_10_3389_feart_2022_950723
crossref_primary_10_3389_fenrg_2022_900298
crossref_primary_10_3389_feart_2022_1019801
crossref_primary_10_3389_feart_2022_959930
crossref_primary_10_3389_feart_2022_874543
crossref_primary_10_2478_amns_2023_1_00478
crossref_primary_10_3389_fenrg_2022_958384
crossref_primary_10_3389_fonc_2023_868471
crossref_primary_10_3389_feart_2022_997928
crossref_primary_10_3389_fenrg_2022_1009840
crossref_primary_10_3389_fenrg_2022_989221
crossref_primary_10_3389_feart_2022_987294
crossref_primary_10_1016_j_ijleo_2022_170173
crossref_primary_10_1016_j_neucom_2025_129588
crossref_primary_10_3389_fenrg_2022_975462
crossref_primary_10_2478_amns_2023_1_00477
crossref_primary_10_2478_amns_2023_1_00476
crossref_primary_10_3389_feart_2022_960677
crossref_primary_10_3389_feart_2022_960831
crossref_primary_10_3390_s22041461
crossref_primary_10_3389_fenrg_2022_920837
crossref_primary_10_3390_fluids7120371
crossref_primary_10_3389_feart_2022_1026310
crossref_primary_10_3389_feart_2022_951763
crossref_primary_10_3389_feart_2022_952694
crossref_primary_10_3389_fenvs_2022_897254
crossref_primary_10_1016_j_ymssp_2022_109557
crossref_primary_10_3389_fenvs_2022_907872
crossref_primary_10_3389_fenrg_2022_1109214
crossref_primary_10_3389_fenrg_2022_930999
crossref_primary_10_3389_feart_2022_925356
crossref_primary_10_3389_fenrg_2022_1008927
crossref_primary_10_3389_fams_2023_1268340
crossref_primary_10_3389_feart_2022_931508
crossref_primary_10_1016_j_egyr_2024_06_041
crossref_primary_10_3390_su15054531
crossref_primary_10_1016_j_energy_2022_124996
crossref_primary_10_3389_feart_2022_944301
crossref_primary_10_3389_fenrg_2022_888298
crossref_primary_10_3389_fenrg_2022_998585
crossref_primary_10_3389_fenrg_2022_984107
crossref_primary_10_3389_feart_2022_1029929
crossref_primary_10_3389_feart_2022_872792
crossref_primary_10_3389_fenrg_2022_931031
crossref_primary_10_3389_fenrg_2022_964516
crossref_primary_10_4028_p_C6ITcm
crossref_primary_10_3389_fenrg_2022_954274
crossref_primary_10_3389_feart_2022_1026895
crossref_primary_10_3389_fenrg_2022_899692
crossref_primary_10_1016_j_ymssp_2023_110528
crossref_primary_10_3389_feart_2022_965071
crossref_primary_10_3389_fenrg_2022_888327
crossref_primary_10_3389_feart_2022_1016458
crossref_primary_10_3389_fenrg_2022_945327
crossref_primary_10_3390_su16031344
crossref_primary_10_1002_ese3_70055
crossref_primary_10_3389_fenrg_2022_858518
crossref_primary_10_3389_feart_2022_930013
crossref_primary_10_1088_1361_6501_ad6786
crossref_primary_10_3389_fevo_2022_964936
crossref_primary_10_3390_informatics9010006
crossref_primary_10_3390_info13080375
crossref_primary_10_3389_fenrg_2022_906107
crossref_primary_10_3389_feart_2022_953627
crossref_primary_10_3389_fenvs_2022_912523
crossref_primary_10_3389_fenrg_2022_1037539
crossref_primary_10_1016_j_ecolind_2024_111814
crossref_primary_10_3389_fenrg_2023_1111355
crossref_primary_10_3389_fenvs_2022_858635
crossref_primary_10_1016_j_oceaneng_2022_111683
crossref_primary_10_3389_feart_2022_941119
crossref_primary_10_3389_feart_2022_835308
crossref_primary_10_3389_feart_2022_861912
crossref_primary_10_3389_feart_2022_913243
crossref_primary_10_3389_fenvs_2022_861747
crossref_primary_10_3389_fenrg_2022_952354
crossref_primary_10_3390_bios12030159
crossref_primary_10_1088_1361_6501_ad5223
crossref_primary_10_3390_app12136573
crossref_primary_10_3389_feart_2022_1004442
crossref_primary_10_3389_fenrg_2022_972437
crossref_primary_10_1155_2022_8918871
crossref_primary_10_1007_s42835_023_01677_8
crossref_primary_10_3389_feart_2022_1033012
crossref_primary_10_3389_fnbot_2022_988024
crossref_primary_10_3389_feart_2022_904655
crossref_primary_10_3389_fenrg_2021_812492
crossref_primary_10_3389_fenrg_2022_864211
crossref_primary_10_3389_fenvs_2022_855694
crossref_primary_10_3389_fenrg_2022_966567
crossref_primary_10_1016_j_apm_2024_115760
crossref_primary_10_3389_fevo_2022_1094535
crossref_primary_10_3389_fenrg_2022_920407
crossref_primary_10_3389_feart_2022_961615
crossref_primary_10_3389_feart_2022_973320
crossref_primary_10_3389_fevo_2022_944298
crossref_primary_10_3389_fenrg_2021_805206
crossref_primary_10_3389_fenrg_2022_914026
crossref_primary_10_3389_fevo_2022_966104
crossref_primary_10_3389_feart_2022_968250
crossref_primary_10_3389_fenrg_2022_803716
crossref_primary_10_3389_fenrg_2022_972570
crossref_primary_10_3390_app12104882
crossref_primary_10_3389_fenrg_2021_812367
crossref_primary_10_3389_feart_2022_897779
crossref_primary_10_1364_OE_529655
crossref_primary_10_3389_fenrg_2022_1019464
crossref_primary_10_3389_fenrg_2022_927048
crossref_primary_10_3389_fenrg_2022_944961
Cites_doi 10.1198/004017001750386279
10.1006/mssp.2001.1398
10.1016/j.renene.2016.03.025
10.1016/j.sigpro.2013.04.015
10.1021/acs.jproteome.8b00322
10.1016/j.renene.2012.04.020
10.1016/j.asoc.2017.01.015
10.1016/j.renene.2016.10.032
10.1093/jcde/qwaa003
10.1007/s10878-006-9035-3
10.1016/j.renene.2018.04.059
10.1016/j.soildyn.2020.106220
10.1002/we.2142
10.1016/s0004-3702(97)00043-x
10.1109/tnnls.2021.3102323
10.1016/s0893-6080(03)00169-2
10.1016/j.jsv.2004.10.005
10.1007/s10346-018-1020-2
10.1016/j.apenergy.2016.11.111
10.1145/319382.319388
10.3389/fenrg.2021.780928
10.1016/j.apenergy.2016.08.108
10.1080/16843703.2005.11673089
10.1038/nature14539
10.1142/S0129065706000482
10.1111/cgf.14012
10.1007/s11069-021-04706-9
10.1007/s00521-017-2968-x
10.1109/tii.2017.2662215
10.1016/j.neucom.2021.03.110
10.1016/j.renene.2015.06.034
10.1162/089976602760128018
10.1007/s11128-018-2048-x
10.1029/2007rg000228
10.1016/j.renene.2012.11.030
10.1109/MSP.2010.939038
10.1007/s10346-019-01312-6
10.1002/we.538
10.1109/TSG.2016.2621135
10.3390/s131216950
10.1109/tits.2021.3074522
10.1109/TII.2016.2607179
10.1109/tetci.2018.2880511
10.1016/j.renene.2017.01.056
10.1162/neco.2006.18.7.1527
ContentType Journal Article
DBID RYH
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.3389/fenrg.2021.799039
DatabaseName CiNii Complete
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals - May need to register for free articles
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2296-598X
ExternalDocumentID oai_doaj_org_article_499470d9163f4ee49543bfe6aa9e1ab9
10.3389/fenrg.2021.799039
10_3389_fenrg_2021_799039
GroupedDBID 5VS
9T4
AAFWJ
ACGFS
ACXDI
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
GROUPED_DOAJ
KQ8
M~E
OK1
RYH
AAYXX
CITATION
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c449t-66fbe44796fe189c8a1041f6c9cdf06b824030d002f2eb3d57c1fe2e46f7cf943
IEDL.DBID UNPAY
ISSN 2296-598X
IngestDate Wed Aug 27 01:25:20 EDT 2025
Tue Aug 19 18:22:51 EDT 2025
Wed Oct 01 03:40:19 EDT 2025
Thu Apr 24 23:04:25 EDT 2025
Thu Jun 26 23:01:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
Japanese
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c449t-66fbe44796fe189c8a1041f6c9cdf06b824030d002f2eb3d57c1fe2e46f7cf943
ORCID 0000-0001-9055-8507
0000-0003-0694-2018
0000-0002-0626-5240
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.frontiersin.org/articles/10.3389/fenrg.2021.799039/pdf
ParticipantIDs doaj_primary_oai_doaj_org_article_499470d9163f4ee49543bfe6aa9e1ab9
unpaywall_primary_10_3389_fenrg_2021_799039
crossref_primary_10_3389_fenrg_2021_799039
crossref_citationtrail_10_3389_fenrg_2021_799039
nii_cinii_1870583643136947968
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-19
PublicationDateYYYYMMDD 2021-11-19
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-19
  day: 19
PublicationDecade 2020
PublicationTitle Frontiers in Energy Research
PublicationYear 2021
Publisher Frontiers Media SA
Frontiers Media S.A
Publisher_xml – name: Frontiers Media SA
– name: Frontiers Media S.A
References Wang (B45); 13
Li (B23) 2018; 15
Jones (B15) 2001; 43
Yang (B50) 2018; 127
Deng (B3) 2013; 28
Yang (B49) 2013; 53
Hinton (B10) 2002; 14
Kusiak (B18) 2012; 48
Liu (B26) 2018; 17
Sbihi (B35) 2007; 13
Yang (B48) 2017; 23
Peeters (B32) 2018; 116
Sun (B40); 39
Klein (B16) 2001; 15
Lei (B20) 2013; 13
Li (B24) 2020; 17
Guo (B7) 2012
Drucker (B4) 1997; 9
Ouyang (B28) 2021; 448
Peng (B33) 2005; 286
Liang (B25) 2006; 16
Tavner (B41) 2012; 16
LeCun (B19) 2015; 521
Mitchell (B27) 1999; 42
Hinton (B9) 2006; 18
Ouyang (B30) 2017; 102
Sun (B39); 7
Huang (B13) 2008; 46
Feng (B5) 2020; 135
Shen (B36)
Zhu (B51) 2018; 30
Huang (B14) 2008
Wang (B46); 9
Wang (B43) 2017; 188
Gritsenko (B6) 2017
Shen (B38) 2021
He (B8) 2018
Kohavi (B17) 1997; 97
Li (B22); 108
Shen (B37)
Wang (B44); 182
Bach‐Andersen (B1) 2018; 21
Hu (B12) 2016; 85
Teng (B42) 2016; 93
Li (B21); 9
Yan (B47) 2014; 96
Cherkassky (B2) 2004; 17
Ouyang (B29) 2019; 3
Pandey (B31) 2018; 17
Qiu (B34) 2017; 54
Horng Shiau (B11) 2005; 2
References_xml – volume: 43
  start-page: 156
  year: 2001
  ident: B15
  article-title: The Performance of Exponentially Weighted Moving Average Charts with Estimated Parameters
  publication-title: Technometrics
  doi: 10.1198/004017001750386279
– volume: 15
  start-page: 1061
  year: 2001
  ident: B16
  article-title: Non-stationary Signals: Phase-Energy Approach-Theory and Simulations
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1006/mssp.2001.1398
– volume: 93
  start-page: 591
  year: 2016
  ident: B42
  article-title: Multi-fault Detection and Failure Analysis of Wind Turbine Gearbox Using Complex Wavelet Transform
  publication-title: Renew. Energ.
  doi: 10.1016/j.renene.2016.03.025
– volume: 96
  start-page: 1
  year: 2014
  ident: B47
  article-title: Wavelets for Fault Diagnosis of Rotary Machines: a Review with Applications
  publication-title: Signal. Process.
  doi: 10.1016/j.sigpro.2013.04.015
– start-page: V01BT02A033
  year: 2018
  ident: B8
  article-title: Predicting Manufactured Shapes of a Projection Micro-stereolithography Process via Convolutional Encoder-Decoder Networks
– start-page: 304
  volume-title: International Conference on Extreme Learning Machine
  year: 2017
  ident: B6
  article-title: Deformable Surface Registration with Extreme Learning Machines
– ident: B36
  article-title: Mixture Density Networks-Based Knock Simulator
  publication-title: IEEE/ASME Trans. Mechatronics
– volume: 17
  start-page: 3214
  year: 2018
  ident: B31
  article-title: KELM-CPPpred: Kernel Extreme Learning Machine Based Prediction Model for Cell-Penetrating Peptides
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.8b00322
– volume: 48
  start-page: 110
  year: 2012
  ident: B18
  article-title: Analyzing Bearing Faults in Wind Turbines: a Data-Mining Approach
  publication-title: Renew. Energ.
  doi: 10.1016/j.renene.2012.04.020
– volume: 54
  start-page: 246
  year: 2017
  ident: B34
  article-title: Empirical Mode Decomposition Based Ensemble Deep Learning for Load Demand Time Series Forecasting
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.01.015
– volume: 102
  start-page: 1
  year: 2017
  ident: B30
  article-title: Modeling Wind-Turbine Power Curve: A Data Partitioning and Mining Approach
  publication-title: Renew. Energ.
  doi: 10.1016/j.renene.2016.10.032
– start-page: 12
  year: 2008
  ident: B14
  article-title: The Orthogonal Hilbert-Huang Transform and its Application in Earthquake Motion Recordings Analysis
– volume: 7
  start-page: 18
  ident: B39
  article-title: Embedded Spectral Descriptors: Learning the point-wise Correspondence Metric via Siamese Neural Networks
  publication-title: J. Comput. Des. Eng.
  doi: 10.1093/jcde/qwaa003
– volume: 13
  start-page: 337
  year: 2007
  ident: B35
  article-title: A Best First Search Exact Algorithm for the Multiple-Choice Multidimensional Knapsack Problem
  publication-title: J. Comb. Optim
  doi: 10.1007/s10878-006-9035-3
– volume: 127
  start-page: 230
  year: 2018
  ident: B50
  article-title: An Unsupervised Spatiotemporal Graphical Modeling Approach for Wind Turbine Condition Monitoring
  publication-title: Renew. Energ.
  doi: 10.1016/j.renene.2018.04.059
– volume: 9
  start-page: 155
  year: 1997
  ident: B4
  article-title: Support Vector Regression Machines
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 135
  start-page: 106
  year: 2020
  ident: B5
  article-title: DEM Investigation on the Mechanical Behaviors of Flawed Specimens Subjected to Coupled Static-Dynamic Loads
  publication-title: Soil Dyn. Earthquake Eng.
  doi: 10.1016/j.soildyn.2020.106220
– volume: 21
  start-page: 29
  year: 2018
  ident: B1
  article-title: Deep Learning for Automated Drivetrain Fault Detection
  publication-title: Wind Energy
  doi: 10.1002/we.2142
– volume: 97
  start-page: 273
  year: 1997
  ident: B17
  article-title: Wrappers for Feature Subset Selection
  publication-title: Artif. intelligence
  doi: 10.1016/s0004-3702(97)00043-x
– ident: B37
  article-title: Sample-Based Neural Approximation Approach for Probabilistic Constrained Programs
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/tnnls.2021.3102323
– volume: 17
  start-page: 113
  year: 2004
  ident: B2
  article-title: Practical Selection of SVM Parameters and Noise Estimation for SVM Regression
  publication-title: Neural networks
  doi: 10.1016/s0893-6080(03)00169-2
– volume: 286
  start-page: 187
  year: 2005
  ident: B33
  article-title: An Improved Hilbert–Huang Transform and its Application in Vibration Signal Analysis
  publication-title: J. sound vibration
  doi: 10.1016/j.jsv.2004.10.005
– volume: 15
  start-page: 2047
  year: 2018
  ident: B23
  article-title: Prediction of Landslide Displacement with an Ensemble-Based Extreme Learning Machine and Copula Models
  publication-title: Landslides
  doi: 10.1007/s10346-018-1020-2
– volume: 188
  start-page: 56
  year: 2017
  ident: B43
  article-title: Deep Learning Based Ensemble Approach for Probabilistic Wind Power Forecasting
  publication-title: Appl. Energ.
  doi: 10.1016/j.apenergy.2016.11.111
– volume: 42
  start-page: 30
  year: 1999
  ident: B27
  article-title: Machine Learning and Data Mining
  publication-title: Commun. ACM
  doi: 10.1145/319382.319388
– volume: 9
  start-page: 780928
  ident: B21
  article-title: Short-Term Nacelle Orientation Forecasting Using Bilinear Transformation and ICEEMDAN Framework
  publication-title: Front. Energ. Res.
  doi: 10.3389/fenrg.2021.780928
– volume: 182
  start-page: 80
  ident: B44
  article-title: Deep Belief Network Based Deterministic and Probabilistic Wind Speed Forecasting Approach
  publication-title: Appl. Energ.
  doi: 10.1016/j.apenergy.2016.08.108
– volume: 2
  start-page: 125
  year: 2005
  ident: B11
  article-title: Robustness of the EWMA Control Chart to Non-normality for Autocorrelated Processes
  publication-title: Qual. Technology Quantitative Management
  doi: 10.1080/16843703.2005.11673089
– volume: 521
  start-page: 436
  year: 2015
  ident: B19
  article-title: Deep Learning
  publication-title: nature
  doi: 10.1038/nature14539
– volume: 16
  start-page: 29
  year: 2006
  ident: B25
  article-title: Classification of Mental Tasks from EEG Signals Using Extreme Learning Machine
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065706000482
– volume: 39
  start-page: 204
  ident: B40
  article-title: Zernet: Convolutional Neural Networks on Arbitrary Surfaces via Zernike Local tangent Space Estimation
  publication-title: Computer Graphics Forum
  doi: 10.1111/cgf.14012
– volume: 108
  start-page: 799
  ident: B22
  article-title: Rainfall Prediction Using Optimally Pruned Extreme Learning Machines
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-021-04706-9
– volume: 30
  start-page: 3825
  year: 2018
  ident: B51
  article-title: A Hybrid Machine Learning and Computing Model for Forecasting Displacement of Multifactor-Induced Landslides
  publication-title: Neural Comput. Applic
  doi: 10.1007/s00521-017-2968-x
– volume: 23
  start-page: 91
  year: 2017
  ident: B48
  article-title: Fault Diagnosis for a Wind Turbine Generator Bearing via Sparse Representation and Shift-Invariant K-Svd
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/tii.2017.2662215
– volume: 448
  start-page: 82
  year: 2021
  ident: B28
  article-title: Feature Learning for Stacked ELM via Low-Rank Matrix Factorization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.110
– volume: 85
  start-page: 83
  year: 2016
  ident: B12
  article-title: Transfer Learning for Short-Term Wind Speed Prediction with Deep Neural Networks
  publication-title: Renew. Energ.
  doi: 10.1016/j.renene.2015.06.034
– volume: 14
  start-page: 1771
  year: 2002
  ident: B10
  article-title: Training Products of Experts by Minimizing Contrastive Divergence
  publication-title: Neural Comput.
  doi: 10.1162/089976602760128018
– volume: 17
  start-page: 1
  year: 2018
  ident: B26
  article-title: Quantum Relief Algorithm
  publication-title: Quan. Inf. Process.
  doi: 10.1007/s11128-018-2048-x
– volume: 46
  year: 2008
  ident: B13
  article-title: A Review on Hilbert‐Huang Transform: Method and its Applications to Geophysical Studies
  publication-title: Rev. Geophys.
  doi: 10.1029/2007rg000228
– volume: 53
  start-page: 365
  year: 2013
  ident: B49
  article-title: Wind Turbine Condition Monitoring by the Approach of SCADA Data Analysis
  publication-title: Renew. Energ.
  doi: 10.1016/j.renene.2012.11.030
– volume: 28
  start-page: 145
  year: 2013
  ident: B3
  article-title: Deep Learning for Signal and Information Processing
  publication-title: IEEE Signal. Process. Mag.
  doi: 10.1109/MSP.2010.939038
– volume: 17
  start-page: 693
  year: 2020
  ident: B24
  article-title: Modeling and Predicting Reservoir Landslide Displacement with Deep Belief Network and EWMA Control Charts: a Case Study in Three Gorges Reservoir
  publication-title: Landslides
  doi: 10.1007/s10346-019-01312-6
– volume: 16
  start-page: 175
  year: 2012
  ident: B41
  article-title: Study of Weather and Location Effects on Wind Turbine Failure Rates
  publication-title: Wind Energy
  doi: 10.1002/we.538
– volume: 9
  start-page: 2824
  ident: B46
  article-title: Wind Turbine Blade Breakage Monitoring with Deep Autoencoders
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2016.2621135
– volume: 13
  start-page: 16950
  year: 2013
  ident: B20
  article-title: Fault Diagnosis of Rotating Machinery Based on an Adaptive Ensemble Empirical Mode Decomposition
  publication-title: Sensors (Basel)
  doi: 10.3390/s131216950
– year: 2021
  ident: B38
  article-title: Pedestrian-Aware Statistical Risk Assessment
  publication-title: IEEE Trans. Intell. Transportation Syst.
  doi: 10.1109/tits.2021.3074522
– start-page: 235
  year: 2012
  ident: B7
  article-title: Wind Turbine Generator Bearing Condition Monitoring with NEST Method
– volume: 13
  start-page: 1360
  ident: B45
  article-title: Wind Turbine Gearbox Failure Identification with Deep Neural Networks
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2016.2607179
– volume: 3
  start-page: 127
  year: 2019
  ident: B29
  article-title: Modeling and Forecasting Short-Term Power Load with Copula Model and Deep Belief Network
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
  doi: 10.1109/tetci.2018.2880511
– volume: 116
  start-page: 74
  year: 2018
  ident: B32
  article-title: Vibration-based Bearing Fault Detection for Operations and Maintenance Cost Reduction in Wind Energy
  publication-title: Renew. Energ.
  doi: 10.1016/j.renene.2017.01.056
– volume: 18
  start-page: 1527
  year: 2006
  ident: B9
  article-title: A Fast Learning Algorithm for Deep Belief Nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
SSID ssib045316764
ssj0001325410
Score 2.522475
Snippet Wind turbines are widely installed as the new source of cleaner energy production. Dynamic and random stress imposed on the generator bearing of a wind turbine...
SourceID doaj
unpaywall
crossref
nii
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
SubjectTerms A
bearing failure
condition monitoring
deep belief network
EWMA control chart
General Works
SCADA data analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQC3RAPEV5yQMTKNRuXDseebSqkOhUBFvkJ0KqQtWmQvx7znaoMsHCEimxY53uLr774nsgdClADbTp68wKP8iY4SYrQMyZI7mVVmlFRch3fprw8TN7fB28tlp9hZiwVB44Ma4HHjkTxIIXk3vmHPjzLNfecaWko0rH1D0wYy0wFf-u5AB8aHOMCShM9jyI4w3wYJ_eCNiBQ3PwliGK9frBvFTv7x20tarm6utTzWYtUzPaRTuNj4hvE217aMNV-6jTqhx4gBbpWww3WFUWp3zbmLOEXwBm4-lqAZjX4VRWGmbiO9DpMDxSq1m9xDFWAD84N4cRcEQ9nqSI8Lje8OXpFt-nMHYcjuTr5SF6Hg2n9-OsaZ-QGcZknXHutWNMSO4dLaQpFEAv6rmRxnrCdRFK8RELW6LvA6S2A2God33HuBfGS5Yfoc3qo3LHCAMmUiBG4sHiMS-dIrkGWE0Ms0RoKbuI_PCyNE1t8dDiYlYCxgjsLyP7y8D-MrG_i67Wr8xTYY3fJt8FAa0nhprY8QFoStloSvmXpnTROYgX6AtXCvvUoMjBH6M5l4FJRRddrwX_N0kn_0HSKdoOS4bcRirP0Ga9WLlzcHJqfRH1-Rs0_Pci
  priority: 102
  providerName: Directory of Open Access Journals
Title Monitoring and Identifying Wind Turbine Generator Bearing Faults Using Deep Belief Network and EWMA Control Charts
URI https://cir.nii.ac.jp/crid/1870583643136947968
https://www.frontiersin.org/articles/10.3389/fenrg.2021.799039/pdf
https://doaj.org/article/499470d9163f4ee49543bfe6aa9e1ab9
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2296-598X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325410
  issn: 2296-598X
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals - May need to register for free articles
  customDbUrl:
  eissn: 2296-598X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325410
  issn: 2296-598X
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2296-598X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325410
  issn: 2296-598X
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9swFBdbeth66L5Z2rXosNOGU8uWJeuYdg1l0LBDQ7OT0WcJC15IbUr31-89yw3pGBtjF4MsycjvPVnvZ733EyHvJZiBsZlJnAxFwq2wSQlqTnyaO-W00UxivvPFVJzP-Od5Md_KhcGwyoCp-3gQ9KKOTMF9iBjOcEBU6jiAaK8B22VsJOFrmqvjlQuPyY7ATaYB2ZlNv4y_4qlymRJJocp53M78fd8HC1LH2w_LTL1Y7JInbb3Sd7d6udxacibPiL0fbIw0-TZqGzOyP37hcfy_t3lO9nqPlI5jhxfkka9fkt0tnsJXZB1nPhaorh2N2b1dhhS9AlBPL9s1IGxPI4k1tKQnMIOweqLbZXNDu8gE-sn7FdSA2xvoNMafd887u7oY09MYNE8xAKC5eU1mk7PL0_OkP6whsZyrJhEiGM-5VCJ4VipbagB6LAirrAupMCUS_6UOFBQyAPCukJYFn3kugrRB8fwNGdTfa_-WUEBgGowmDbC-8qC8TnMDID613KXSKDUk6b3GKtszmeOBGssKEA2KtOpEWqFIqyjSIfmw6bKKNB5_anyCZrBpiAzc3Q1QX9WrrwKkyGXqwLvOA_cecCbPTfBCa-WZNvCQQzAiGB9eGXwVizIH74_lQqGQyiH5uDGvvw9p_59aH5CnWMKUSabekUGzbv0h-E6NOer-ORz1U-QnbSMWWQ
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELage4A98EYUWOQDJ1C6duLY8bG7bLVC2orDVltOkZ-oogpVNxGCX89MnK0KQiDEJZJjO3JmxvZ88sxnQl4rMAPrcpt5FctMOOmyCtScBVZ47Y01XGG-88Vcni_E-2W53MuFwbDKiKn7eBH0qklMwUOIGM5wQFT6OIJoPwG2y_lEwWpa6OONj7fJgcRDphE5WMw_TD_irXK5llmpq2U6zvx93582pJ63H7aZZrU6JHe6ZmO-fTXr9d6WM7tP3M1gU6TJ50nX2on7_guP4__9zQNyb_BI6TR1eEhuheYROdzjKXxMtmnmY4GaxtOU3dtnSNErAPX0stsCwg40kVhDS3oCMwirZ6Zbt9e0j0yg70LYQA24vZHOU_x5_72zq4spPU1B8xQDANrrJ2QxO7s8Pc-GyxoyJ4RuMymjDUIoLWPglXaVAaDHo3Ta-cikrZD4j3lQUMwBwPtSOR5DHoSMykUtiqdk1HxpwjNCAYEZMBoWYX8VUQfDCgsgnjnhmbJajwm70VjtBiZzvFBjXQOiQZHWvUhrFGmdRDomb3ZdNonG40-NT9AMdg2Rgbt_AeqrB_XVgBSFYh686yKKEABnisLGII3RgRsLHzkCI4Lx4ZPDqlhWBXh_vJAahVSNydudef19SM__qfULchdLmDLJ9UsyarddOALfqbWvhsnxA-zJFWQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monitoring+and+Identifying+Wind+Turbine+Generator+Bearing+Faults+Using+Deep+Belief+Network+and+EWMA+Control+Charts&rft.jtitle=Frontiers+in+energy+research&rft.au=Li%2C+Huajin&rft.au=Deng%2C+Jiahao&rft.au=Yuan%2C+Shuang&rft.au=Feng%2C+Peng&rft.date=2021-11-19&rft.issn=2296-598X&rft.eissn=2296-598X&rft.volume=9&rft_id=info:doi/10.3389%2Ffenrg.2021.799039&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fenrg_2021_799039
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-598X&client=summon