Traceable measurement and imaging of the complex permittivity of a multiphase mineral specimen at micron scales using a microwave microscope
This paper describes traceable measurements of the dielectric permittivity and loss tangent of a multiphase material (particulate rock set in epoxy) at micron scales using a resonant Near-Field Scanning Microwave Microscope (NSMM) at 1.2GHz. Calibration and extraction of the permittivity and loss ta...
Saved in:
Published in | Ultramicroscopy Vol. 172; pp. 65 - 74 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.01.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-3991 1879-2723 1879-2723 |
DOI | 10.1016/j.ultramic.2016.11.001 |
Cover
Abstract | This paper describes traceable measurements of the dielectric permittivity and loss tangent of a multiphase material (particulate rock set in epoxy) at micron scales using a resonant Near-Field Scanning Microwave Microscope (NSMM) at 1.2GHz. Calibration and extraction of the permittivity and loss tangent is via an image charge analysis which has been modified by the use of the complex frequency to make it applicable for high loss materials. The results presented are obtained using a spherical probe tip, 0.1mm in diameter, and also a conical probe tip with a rounded end 0.01mm in diameter, which allows imaging with higher resolution (≈10µm). The microscope is calibrated using approach-curve data over a restricted range of gaps (typically between 1% and 10% of tip diameter) as this is found to give the best measurement accuracy. For both tips the uncertainty of scanned measurements of permittivity is estimated to be±10% (at coverage factor k=2) for permittivity ⪝10. Loss tangent can be resolved to approximately 0.001. Subject to this limit, the uncertainty of loss tangent measurements is estimated to be±20% (at k=2). The reported measurements inform studies of how microwave energy interacts with multiphase materials containing microwave absorbent phases.
•Imaging of the dielectric permittivity and loss tangent of high loss materials.•Comparison of measurements with spherical and conical tips.•Studies effects of dielectric boundaries on measurements.•Measurements traceable to dielectric reference data for single crystals. |
---|---|
AbstractList | This paper describes traceable measurements of the dielectric permittivity and loss tangent of a multiphase material (particulate rock set in epoxy) at micron scales using a resonant Near-Field Scanning Microwave Microscope (NSMM) at 1.2GHz. Calibration and extraction of the permittivity and loss tangent is via an image charge analysis which has been modified by the use of the complex frequency to make it applicable for high loss materials. The results presented are obtained using a spherical probe tip, 0.1mm in diameter, and also a conical probe tip with a rounded end 0.01mm in diameter, which allows imaging with higher resolution (≈10µm). The microscope is calibrated using approach-curve data over a restricted range of gaps (typically between 1% and 10% of tip diameter) as this is found to give the best measurement accuracy. For both tips the uncertainty of scanned measurements of permittivity is estimated to be±10% (at coverage factor k=2) for permittivity ⪝10. Loss tangent can be resolved to approximately 0.001. Subject to this limit, the uncertainty of loss tangent measurements is estimated to be±20% (at k=2). The reported measurements inform studies of how microwave energy interacts with multiphase materials containing microwave absorbent phases.This paper describes traceable measurements of the dielectric permittivity and loss tangent of a multiphase material (particulate rock set in epoxy) at micron scales using a resonant Near-Field Scanning Microwave Microscope (NSMM) at 1.2GHz. Calibration and extraction of the permittivity and loss tangent is via an image charge analysis which has been modified by the use of the complex frequency to make it applicable for high loss materials. The results presented are obtained using a spherical probe tip, 0.1mm in diameter, and also a conical probe tip with a rounded end 0.01mm in diameter, which allows imaging with higher resolution (≈10µm). The microscope is calibrated using approach-curve data over a restricted range of gaps (typically between 1% and 10% of tip diameter) as this is found to give the best measurement accuracy. For both tips the uncertainty of scanned measurements of permittivity is estimated to be±10% (at coverage factor k=2) for permittivity ⪝10. Loss tangent can be resolved to approximately 0.001. Subject to this limit, the uncertainty of loss tangent measurements is estimated to be±20% (at k=2). The reported measurements inform studies of how microwave energy interacts with multiphase materials containing microwave absorbent phases. This paper describes traceable measurements of the dielectric permittivity and loss tangent of a multiphase material (particulate rock set in epoxy) at micron scales using a resonant Near-Field Scanning Microwave Microscope (NSMM) at 1.2GHz. Calibration and extraction of the permittivity and loss tangent is via an image charge analysis which has been modified by the use of the complex frequency to make it applicable for high loss materials. The results presented are obtained using a spherical probe tip, 0.1mm in diameter, and also a conical probe tip with a rounded end 0.01mm in diameter, which allows imaging with higher resolution (≈10µm). The microscope is calibrated using approach-curve data over a restricted range of gaps (typically between 1% and 10% of tip diameter) as this is found to give the best measurement accuracy. For both tips the uncertainty of scanned measurements of permittivity is estimated to be±10% (at coverage factor k=2) for permittivity ⪝10. Loss tangent can be resolved to approximately 0.001. Subject to this limit, the uncertainty of loss tangent measurements is estimated to be±20% (at k=2). The reported measurements inform studies of how microwave energy interacts with multiphase materials containing microwave absorbent phases. •Imaging of the dielectric permittivity and loss tangent of high loss materials.•Comparison of measurements with spherical and conical tips.•Studies effects of dielectric boundaries on measurements.•Measurements traceable to dielectric reference data for single crystals. This paper describes traceable measurements of the dielectric permittivity and loss tangent of a multiphase material (particulate rock set in epoxy) at micron scales using a resonant Near-Field Scanning Microwave Microscope (NSMM) at 1.2GHz. Calibration and extraction of the permittivity and loss tangent is via an image charge analysis which has been modified by the use of the complex frequency to make it applicable for high loss materials. The results presented are obtained using a spherical probe tip, 0.1mm in diameter, and also a conical probe tip with a rounded end 0.01mm in diameter, which allows imaging with higher resolution (≈10µm). The microscope is calibrated using approach-curve data over a restricted range of gaps (typically between 1% and 10% of tip diameter) as this is found to give the best measurement accuracy. For both tips the uncertainty of scanned measurements of permittivity is estimated to be±10% (at coverage factor k=2) for permittivity ⪝10. Loss tangent can be resolved to approximately 0.001. Subject to this limit, the uncertainty of loss tangent measurements is estimated to be±20% (at k=2). The reported measurements inform studies of how microwave energy interacts with multiphase materials containing microwave absorbent phases. This paper describes traceable measurements of the dielectric permittivity and loss tangent of a multiphase material (particulate rock set in epoxy) at micron scales using a resonant Near-Field Scanning Microwave Microscope (NSMM) at 1.2GHz. Calibration and extraction of the permittivity and loss tangent is via an image charge analysis which has been modified by the use of the complex frequency to make it applicable for high loss materials. The results presented are obtained using a spherical probe tip, 0.1mm in diameter, and also a conical probe tip with a rounded end 0.01mm in diameter, which allows imaging with higher resolution ( approximately 10 mu m). The microscope is calibrated using approach-curve data over a restricted range of gaps (typically between 1% and 10% of tip diameter) as this is found to give the best measurement accuracy. For both tips the uncertainty of scanned measurements of permittivity is estimated to be plus or minus 10% (at coverage factor k=2) for permittivity 10. Loss tangent can be resolved to approximately 0.001. Subject to this limit, the uncertainty of loss tangent measurements is estimated to be plus or minus 20% (at k=2). The reported measurements inform studies of how microwave energy interacts with multiphase materials containing microwave absorbent phases. |
Author | Dimitrakis, G.A. Hodgetts, T.E. Gregory, A.P. Clarke, R.N. Blackburn, J.F. Plint, S. Lees, K. |
Author_xml | – sequence: 1 givenname: A.P. surname: Gregory fullname: Gregory, A.P. email: andrew.gregory@npl.co.uk organization: National Physical Laboratory (NPL), Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom – sequence: 2 givenname: J.F. surname: Blackburn fullname: Blackburn, J.F. organization: National Physical Laboratory (NPL), Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom – sequence: 3 givenname: T.E. surname: Hodgetts fullname: Hodgetts, T.E. organization: Consultant to NPL, United Kingdom – sequence: 4 givenname: R.N. surname: Clarke fullname: Clarke, R.N. organization: National Physical Laboratory (NPL), Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom – sequence: 5 givenname: K. surname: Lees fullname: Lees, K. organization: National Physical Laboratory (NPL), Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom – sequence: 6 givenname: S. surname: Plint fullname: Plint, S. organization: Department of Chemical and Environmental Engineering, The University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom – sequence: 7 givenname: G.A. surname: Dimitrakis fullname: Dimitrakis, G.A. organization: Department of Chemical and Environmental Engineering, The University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27865149$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1u1TAQhS1URG8Lr1B5ySYX_-XHEgtQBS1SJTZlbU2cSeurxAm2c2nfgYfGUVoWbMrK9vg7Z-w5Z-TETx4JueBszxmvPhz2y5ACjM7uRT7vOd8zxl-RHW9qXYhayBOyY5KpQmrNT8lZjAeWCaaaN-RU1E1VcqV35PdtAIvQDkhHhLgEHNEnCr6jboQ75-_o1NN0j9RO4zzgA50xjC4ld3Tpcb0DOuanuPkeYvZwHgMMNM5oXXaikHLNhsnTaGHASJe4esJW_QVH3HbRTjO-Ja97GCK-e1rPyY-vX24vr4ub71ffLj_fFFYpnQrV1zVr27LHDkDKuuuVKCvV9xZkrbSupO56ZhsBpdLCcsFbUbdlC9BIrlgjz8n7zXcO088FYzKjixaHATxOSzS8aRiTFWuq_0Bz71KUTGf04gld2hE7M4c8wfBonoedgWoD1v_GgP1fhDOzpmoO5jlVs6ZqODc5syz8-I_QugTJTT7DbnhZ_mmTY57p0WEw0Tr0FjsX0CbTTe4liz-MqsUW |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3514707 |
Cites_doi | 10.1016/S0955-2219(01)00343-0 10.1088/0508-3443/18/6/305 10.1063/1.1759389 10.1063/1.4759253 10.1088/0957-0233/16/1/033 10.1364/OE.23.012144 10.1109/IRMMW-THz.2012.6380378 10.1109/MMM.2013.2288711 10.1088/0960-1317/15/1/026 10.1016/S0892-6875(98)00094-6 10.1023/B:JECR.0000015661.81386.e6 10.1088/0957-0233/26/10/105902 10.1016/j.ultramic.2004.09.007 10.1063/1.1150687 10.1063/1.1597984 10.1088/0957-0233/14/1/302 10.1063/1.1978972 10.4095/307078 10.1063/1.1149189 10.21236/ADA046172 10.1088/0957-4484/23/20/205703 10.1016/j.minpro.2016.04.003 10.1016/j.ultramic.2015.11.015 10.1109/ARFTG.2014.7013419 10.1088/0953-2048/7/9/001 10.1016/j.jeurceramsoc.2004.02.013 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. Copyright © 2016 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2016 Elsevier B.V. – notice: Copyright © 2016 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1016/j.ultramic.2016.11.001 |
DatabaseName | CrossRef PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1879-2723 |
EndPage | 74 |
ExternalDocumentID | 27865149 10_1016_j_ultramic_2016_11_001 S0304399116302984 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 3O- 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 8WZ 9JN A6W AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNCT ACNNM ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SPG SSM SSQ SSZ T5K WUQ XPP Y6R ZGI ZMT ZXP ~02 ~G- AATTM AAXKI AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 ACLOT EFKBS ~HD 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c449t-4f770bb5fedaa337df42564ffca37499639df0c82a5492c121b27b5baa8314083 |
IEDL.DBID | .~1 |
ISSN | 0304-3991 1879-2723 |
IngestDate | Thu Sep 04 19:08:45 EDT 2025 Sat Sep 27 22:32:57 EDT 2025 Wed Feb 19 02:41:05 EST 2025 Tue Jul 01 00:32:10 EDT 2025 Thu Apr 24 23:10:54 EDT 2025 Fri Feb 23 02:33:23 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Permittivity measurement Mineral characterisation Imaging Loss tangent measurement Microwave heating Scanning microscopes Multiphase materials |
Language | English |
License | Copyright © 2016 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c449t-4f770bb5fedaa337df42564ffca37499639df0c82a5492c121b27b5baa8314083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://eprints.nottingham.ac.uk/39243/ |
PMID | 27865149 |
PQID | 1842552509 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1880036086 proquest_miscellaneous_1842552509 pubmed_primary_27865149 crossref_primary_10_1016_j_ultramic_2016_11_001 crossref_citationtrail_10_1016_j_ultramic_2016_11_001 elsevier_sciencedirect_doi_10_1016_j_ultramic_2016_11_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2017 2017-01-00 20170101 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: January 2017 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Ultramicroscopy |
PublicationTitleAlternate | Ultramicroscopy |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Hollmann, Vendik, Zaitsev, Melekh (bib27) 1994; 7 Gao, Hu, Zhang, Huang, Liu, Takeuchi (bib37) 2004; 84 Salsman (bib9) 1991; 34 M.P. Jones, Applied mineralogy - A Quantitative Approach, Graham and Trotman, London, 1987. Gramse, Gomila, Fumagalli (bib14) 2012; 23 Park, Hyun, Kim, Kim, Char (bib5) 2005; 102 Tagantsev, Sherman, Astafiev, Venkatesh, Setter (bib3) 2003; 11 Talanov, Scherz, Moreland, Schwartz (bib17) 2006; 88 Petruk (bib32) 1988; 40 Kingman, Rowson (bib7) 1998; 11 Monti, Tselev, Udoudo, Ivanov, Kingman (bib6) 2016; 151 R.H. Church, W.E. Webb, J.B. Salsman, Dielectric properties of low-loss materials, Report of Investigations 9194, Bureau of Mines US Department of the Interior, 1988. Zhang, McGinn (bib28) 2005; 25 Harrop, Wanklyn (bib36) 1967; 18 Schmidt, Wilting, Gruse, Wagner (bib10) 2015; 26 Kim, Kim, Kim, Song, Lee, Friedman (bib13) 2003; 83 Omarouayache, Payet, Raoult, Chusseau (bib19) 2015; 23 Imtiaz, Wallis, Kabos (bib1) 2014; 15 Sheu (bib12) 2005; 15 Kim, Lee, Friedman, Cha (bib23) 2003; 83 Gao, Xiang (bib2) 1998; 69 Gregory (bib24) 2016 Krupka, Gregory, Rochard, Clarke, Riddle, Baker-Jarvis (bib29) 2001; 21 R.N. Clarke (Ed.), A Guide to the Characterisation of Dielectric Materials at RF and microwave Frequencies, The Institute of Measurement and Control (IMC), The National Physical Laboratory (NPL,) London, ISBN 0904457389, 2003. Steinhauer, Vlahacos, Wellstood, Anlage, Canedy, Ramesh (bib21) 2000; 71 Petruk (bib31) 2000 Gregory, Blackburn, Lees, Clarke, Hodgetts, Hanham, Klein (bib11) 2016; 161 Gao, Hu, Takeuchi, Chang, Xiang, Wang (bib4) 2005; 16 Kim, Kim, Lee, Lee, Cha, Friedman (bib20) 2003; 14 The expression of uncertainty and confidence in measurement, United Kingdom Accreditation Service document M3003, 3rd ed., 2012 S.M.Hanham, A.Gregory, S.A.Maier, N.Klein, A dielectric probe for near-field millimeter-wave imaging, infrared, millimeter, and terahertz waves (IRMMW-THz), in: Proceedings of the 37th International Conference Talanov, Scherz, Moreland, Schwartz (bib22) 2006; 88 W.B. Westphal, Dielectric Constant and Loss Data, Report AFML-TR-74-250 Part III Laboratory for Insulation Research, MIT, May,1977. Klein, Lahl, Poppe, Kadlec, Kužel (bib18) 2005; 98 W. Petruk, The MP-SEM-IPS Image Analysis System, Canmet Report 87-1E, Department Energy, Mines and Resources, Canada, 1986. Baker-Jarvis, Janezic, Riddle, Johnk, Kabos, Holloway, Geyer, Grosvenor (bib8) 2004; 1536 Balusek, Friedman, Luna, Oetiker, Babajanyan, Lee (bib15) 2012; 112 A.P.Gregory, J.F.Blackburn, K.Lees, R.N.Clarke, T.E.Hodgetts, S.M.Hanham, N.Klein A near-field scanning microwave microscope for measurement of the permittivity and loss of high-loss materials, in: Proceedings of the 84th Microwave Measurement Conference, (ARFTG) 2014. 2016. Steinhauer (10.1016/j.ultramic.2016.11.001_bib21) 2000; 71 10.1016/j.ultramic.2016.11.001_bib33 Gregory (10.1016/j.ultramic.2016.11.001_bib24) 2016 Hollmann (10.1016/j.ultramic.2016.11.001_bib27) 1994; 7 Park (10.1016/j.ultramic.2016.11.001_bib5) 2005; 102 Omarouayache (10.1016/j.ultramic.2016.11.001_bib19) 2015; 23 10.1016/j.ultramic.2016.11.001_bib30 Kim (10.1016/j.ultramic.2016.11.001_bib20) 2003; 14 Gregory (10.1016/j.ultramic.2016.11.001_bib11) 2016; 161 10.1016/j.ultramic.2016.11.001_bib16 10.1016/j.ultramic.2016.11.001_bib38 Kim (10.1016/j.ultramic.2016.11.001_bib13) 2003; 83 10.1016/j.ultramic.2016.11.001_bib35 10.1016/j.ultramic.2016.11.001_bib34 Petruk (10.1016/j.ultramic.2016.11.001_bib31) 2000 Harrop (10.1016/j.ultramic.2016.11.001_bib36) 1967; 18 Kim (10.1016/j.ultramic.2016.11.001_bib23) 2003; 83 Schmidt (10.1016/j.ultramic.2016.11.001_bib10) 2015; 26 Imtiaz (10.1016/j.ultramic.2016.11.001_bib1) 2014; 15 Krupka (10.1016/j.ultramic.2016.11.001_bib29) 2001; 21 Zhang (10.1016/j.ultramic.2016.11.001_bib28) 2005; 25 Kingman (10.1016/j.ultramic.2016.11.001_bib7) 1998; 11 Gao (10.1016/j.ultramic.2016.11.001_bib4) 2005; 16 Balusek (10.1016/j.ultramic.2016.11.001_bib15) 2012; 112 10.1016/j.ultramic.2016.11.001_bib26 Salsman (10.1016/j.ultramic.2016.11.001_bib9) 1991; 34 10.1016/j.ultramic.2016.11.001_bib25 Talanov (10.1016/j.ultramic.2016.11.001_bib22) 2006; 88 Gao (10.1016/j.ultramic.2016.11.001_bib37) 2004; 84 Monti (10.1016/j.ultramic.2016.11.001_bib6) 2016; 151 Gao (10.1016/j.ultramic.2016.11.001_bib2) 1998; 69 Gramse (10.1016/j.ultramic.2016.11.001_bib14) 2012; 23 Baker-Jarvis (10.1016/j.ultramic.2016.11.001_bib8) 2004; 1536 Tagantsev (10.1016/j.ultramic.2016.11.001_bib3) 2003; 11 Sheu (10.1016/j.ultramic.2016.11.001_bib12) 2005; 15 Petruk (10.1016/j.ultramic.2016.11.001_bib32) 1988; 40 Talanov (10.1016/j.ultramic.2016.11.001_bib17) 2006; 88 Klein (10.1016/j.ultramic.2016.11.001_bib18) 2005; 98 |
References_xml | – reference: W.B. Westphal, Dielectric Constant and Loss Data, Report AFML-TR-74-250 Part III Laboratory for Insulation Research, MIT, May,1977. – volume: 18 start-page: 739 year: 1967 end-page: 742 ident: bib36 article-title: The dielectric constant of zirconia publication-title: Br. J. Appl. Phys. – volume: 102 start-page: 101 year: 2005 end-page: 106 ident: bib5 article-title: Observation of biological samples using a scanning microwave microscope publication-title: Ultramicroscopy – volume: 151 start-page: 8 year: 2016 end-page: 21 ident: bib6 article-title: High-resolution dielectric characterization of minerals: a step towards understanding the basic interactions between microwaves and rocks publication-title: Int. J. Miner. Process. – volume: 112 year: 2012 ident: bib15 article-title: A three-dimensional finite element model of near-field scanning microwave microscopy publication-title: J. Appl. Phys. – volume: 16 start-page: 248 year: 2005 end-page: 260 ident: bib4 article-title: Quantitative scanning evanescent microwave microscopy and its applications in characterization of functional materials libraries publication-title: Meas. Sci. Tech. – volume: 11 start-page: 1081 year: 1998 end-page: 1087 ident: bib7 article-title: Microwave treatment of minerals-a review publication-title: Miner. Eng. – volume: 88 year: 2006 ident: bib17 article-title: Noncontact dielectric constant metrology of low-k interconnect films using a near-field scanned microwave probe publication-title: Appl. Phys. Lett. – reference: , 2014. – reference: The expression of uncertainty and confidence in measurement, United Kingdom Accreditation Service document M3003, 3rd ed., 2012 – year: 2000 ident: bib31 article-title: Applied Mineralogy in the Mining Industry – volume: 34 start-page: 203 year: 1991 end-page: 214 ident: bib9 article-title: Measurement of dielectric properties in the frequency range of 300MHz to 3GHz as a function of temperature and density publication-title: Proc. Symp. Microw. Theory Appl. Mater. Process. – volume: 23 year: 2012 ident: bib14 article-title: Quantifying the dielectric constant of thick insulators by electrostatic force microscopy: effects of the microscopic parts of the probe publication-title: Nanotechnology – volume: 40 start-page: 29 year: 1988 end-page: 31 ident: bib32 article-title: Automatic image analysis for mineral beneficiation publication-title: J. Met. – volume: 7 start-page: 609 year: 1994 end-page: 622 ident: bib27 article-title: Substrates for high-Tc superconductor microwave integrated circuits publication-title: Supercond. Sci. Technol. – volume: 15 start-page: 52 year: 2014 end-page: 64 ident: bib1 article-title: Near-field scanning microwave microscopy: an emerging research tool for nanoscale metrology publication-title: IEEE Microw. Mag. – volume: 161 start-page: p137 year: 2016 end-page: p145 ident: bib11 article-title: Measurement of the permittivity and loss of high-loss materials using a near-field scanning microwave microscope publication-title: Ultramicroscopy – volume: 83 start-page: 1032 year: 2003 end-page: 1034 ident: bib23 article-title: Near-field scanning microwave microscope using a dielectric resonator publication-title: Appl. Phys. Lett. – reference: W. Petruk, The MP-SEM-IPS Image Analysis System, Canmet Report 87-1E, Department Energy, Mines and Resources, Canada, 1986. – start-page: 58 year: 2016 ident: bib24 article-title: Q-factor measurement using a vector network analyser, National Physical publication-title: Lab. (UK), Rep. MAT – volume: 14 start-page: 7 year: 2003 end-page: 12 ident: bib20 article-title: Development of a near-field scanning microwave microscope using a tunable resonance cavity for high resolution publication-title: Meas. Sci. Technol. – volume: 11 start-page: 5 year: 2003 end-page: 66 ident: bib3 article-title: Ferroelectric materials for microwave tunable applications publication-title: J. Electroceram. – volume: 25 start-page: 407 year: 2005 end-page: 416 ident: bib28 article-title: Imaging of oxide dielectrics by near-field microwave microscopy publication-title: J. Eur. Ceram. Soc. – reference: R.N. Clarke (Ed.), A Guide to the Characterisation of Dielectric Materials at RF and microwave Frequencies, The Institute of Measurement and Control (IMC), The National Physical Laboratory (NPL,) London, ISBN 0904457389, 2003. – volume: 88 year: 2006 ident: bib22 article-title: A near-field scanned microwave probe for spatially localized electrical metrology publication-title: Appl. Phys. Lett. – volume: 26 start-page: 1390 year: 2015 end-page: 1398 ident: bib10 article-title: A cylindrical guarded capacitor for spectral permittivity measurements of hard rock samples in the MHz-range publication-title: Meas. Sci. Tech. – reference: R.H. Church, W.E. Webb, J.B. Salsman, Dielectric properties of low-loss materials, Report of Investigations 9194, Bureau of Mines US Department of the Interior, 1988. – volume: 83 start-page: 1026 year: 2003 end-page: 1028 ident: bib13 article-title: Improving images from a near-field scanning microwave microscope using a hybrid probe publication-title: APL – volume: 23 start-page: 12144 year: 2015 end-page: 12151 ident: bib19 article-title: Millimeter-wave near-field imaging with bow-tie antennas publication-title: Opt. Express – reference: M.P. Jones, Applied mineralogy - A Quantitative Approach, Graham and Trotman, London, 1987. – volume: 1536 year: 2004 ident: bib8 article-title: Measuring the permittivity and permeability of lossy materials: solids, liquids, metals, building materials and negative index materials publication-title: NIST Tech. Note – volume: 84 start-page: 4647 year: 2004 end-page: 4649 ident: bib37 article-title: Quantitative microwave evanescent microscopy of dielectric thin films using a recursive image charge approach publication-title: Appl. Phys. Lett. – volume: 15 start-page: 185 year: 2005 end-page: 189 ident: bib12 article-title: Micro-spherical probes machining by EDM publication-title: J. Micromech. Microeng. – reference: , 2016. – volume: 71 start-page: 2751 year: 2000 end-page: 2758 ident: bib21 article-title: Quantitative imaging of dielectric permittivity and tunability with a near-field scanning microwave microscope publication-title: Rev. Sci. Instrum. – volume: 98 year: 2005 ident: bib18 article-title: A metal-dielectric antenna for terahertz near-field imaging publication-title: J. Appl. Phys. – volume: 69 start-page: 3846 year: 1998 end-page: 3851 ident: bib2 article-title: Quantitative microwave near-field microscopy of dielectric properties publication-title: Rev. Sci. Instrum. – reference: S.M.Hanham, A.Gregory, S.A.Maier, N.Klein, A dielectric probe for near-field millimeter-wave imaging, infrared, millimeter, and terahertz waves (IRMMW-THz), in: Proceedings of the 37th International Conference, – reference: A.P.Gregory, J.F.Blackburn, K.Lees, R.N.Clarke, T.E.Hodgetts, S.M.Hanham, N.Klein A near-field scanning microwave microscope for measurement of the permittivity and loss of high-loss materials, in: Proceedings of the 84th Microwave Measurement Conference, (ARFTG) – volume: 21 start-page: 2673 year: 2001 end-page: 2676 ident: bib29 article-title: Uncertainty of complex permittivity measure-ments by split-post dielectric resonator technique publication-title: J. Eur. Ceram. Soc. – volume: 21 start-page: 2673 issue: 15 year: 2001 ident: 10.1016/j.ultramic.2016.11.001_bib29 article-title: Uncertainty of complex permittivity measure-ments by split-post dielectric resonator technique publication-title: J. Eur. Ceram. Soc. doi: 10.1016/S0955-2219(01)00343-0 – volume: 18 start-page: 739 year: 1967 ident: 10.1016/j.ultramic.2016.11.001_bib36 article-title: The dielectric constant of zirconia publication-title: Br. J. Appl. Phys. doi: 10.1088/0508-3443/18/6/305 – volume: 84 start-page: 4647 issue: 23 year: 2004 ident: 10.1016/j.ultramic.2016.11.001_bib37 article-title: Quantitative microwave evanescent microscopy of dielectric thin films using a recursive image charge approach publication-title: Appl. Phys. Lett. doi: 10.1063/1.1759389 – ident: 10.1016/j.ultramic.2016.11.001_bib38 – volume: 112 issue: 8 year: 2012 ident: 10.1016/j.ultramic.2016.11.001_bib15 article-title: A three-dimensional finite element model of near-field scanning microwave microscopy publication-title: J. Appl. Phys. doi: 10.1063/1.4759253 – ident: 10.1016/j.ultramic.2016.11.001_bib30 – volume: 16 start-page: 248 issue: 1 year: 2005 ident: 10.1016/j.ultramic.2016.11.001_bib4 article-title: Quantitative scanning evanescent microwave microscopy and its applications in characterization of functional materials libraries publication-title: Meas. Sci. Tech. doi: 10.1088/0957-0233/16/1/033 – volume: 23 start-page: 12144 issue: 9 year: 2015 ident: 10.1016/j.ultramic.2016.11.001_bib19 article-title: Millimeter-wave near-field imaging with bow-tie antennas publication-title: Opt. Express doi: 10.1364/OE.23.012144 – ident: 10.1016/j.ultramic.2016.11.001_bib16 doi: 10.1109/IRMMW-THz.2012.6380378 – volume: 88 year: 2006 ident: 10.1016/j.ultramic.2016.11.001_bib17 article-title: Noncontact dielectric constant metrology of low-k interconnect films using a near-field scanned microwave probe publication-title: Appl. Phys. Lett. – volume: 15 start-page: 52 issue: 1 year: 2014 ident: 10.1016/j.ultramic.2016.11.001_bib1 article-title: Near-field scanning microwave microscopy: an emerging research tool for nanoscale metrology publication-title: IEEE Microw. Mag. doi: 10.1109/MMM.2013.2288711 – volume: 15 start-page: 185 issue: 1 year: 2005 ident: 10.1016/j.ultramic.2016.11.001_bib12 article-title: Micro-spherical probes machining by EDM publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/15/1/026 – volume: 83 start-page: 1026 year: 2003 ident: 10.1016/j.ultramic.2016.11.001_bib13 article-title: Improving images from a near-field scanning microwave microscope using a hybrid probe publication-title: APL – ident: 10.1016/j.ultramic.2016.11.001_bib26 – year: 2000 ident: 10.1016/j.ultramic.2016.11.001_bib31 – volume: 11 start-page: 1081 issue: 11 year: 1998 ident: 10.1016/j.ultramic.2016.11.001_bib7 article-title: Microwave treatment of minerals-a review publication-title: Miner. Eng. doi: 10.1016/S0892-6875(98)00094-6 – volume: 11 start-page: 5 issue: 1 year: 2003 ident: 10.1016/j.ultramic.2016.11.001_bib3 article-title: Ferroelectric materials for microwave tunable applications publication-title: J. Electroceram. doi: 10.1023/B:JECR.0000015661.81386.e6 – volume: 26 start-page: 1390 issue: 10 year: 2015 ident: 10.1016/j.ultramic.2016.11.001_bib10 article-title: A cylindrical guarded capacitor for spectral permittivity measurements of hard rock samples in the MHz-range publication-title: Meas. Sci. Tech. doi: 10.1088/0957-0233/26/10/105902 – volume: 40 start-page: 29 year: 1988 ident: 10.1016/j.ultramic.2016.11.001_bib32 article-title: Automatic image analysis for mineral beneficiation publication-title: J. Met. – volume: 34 start-page: 203 year: 1991 ident: 10.1016/j.ultramic.2016.11.001_bib9 article-title: Measurement of dielectric properties in the frequency range of 300MHz to 3GHz as a function of temperature and density publication-title: Proc. Symp. Microw. Theory Appl. Mater. Process. – volume: 102 start-page: 101 issue: 2 year: 2005 ident: 10.1016/j.ultramic.2016.11.001_bib5 article-title: Observation of biological samples using a scanning microwave microscope publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2004.09.007 – volume: 71 start-page: 2751 issue: 7 year: 2000 ident: 10.1016/j.ultramic.2016.11.001_bib21 article-title: Quantitative imaging of dielectric permittivity and tunability with a near-field scanning microwave microscope publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1150687 – volume: 83 start-page: 1032 issue: 5 year: 2003 ident: 10.1016/j.ultramic.2016.11.001_bib23 article-title: Near-field scanning microwave microscope using a dielectric resonator publication-title: Appl. Phys. Lett. doi: 10.1063/1.1597984 – volume: 14 start-page: 7 year: 2003 ident: 10.1016/j.ultramic.2016.11.001_bib20 article-title: Development of a near-field scanning microwave microscope using a tunable resonance cavity for high resolution publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/14/1/302 – ident: 10.1016/j.ultramic.2016.11.001_bib35 – volume: 88 year: 2006 ident: 10.1016/j.ultramic.2016.11.001_bib22 article-title: A near-field scanned microwave probe for spatially localized electrical metrology publication-title: Appl. Phys. Lett. – volume: 98 year: 2005 ident: 10.1016/j.ultramic.2016.11.001_bib18 article-title: A metal-dielectric antenna for terahertz near-field imaging publication-title: J. Appl. Phys. doi: 10.1063/1.1978972 – ident: 10.1016/j.ultramic.2016.11.001_bib33 doi: 10.4095/307078 – start-page: 58 year: 2016 ident: 10.1016/j.ultramic.2016.11.001_bib24 article-title: Q-factor measurement using a vector network analyser, National Physical publication-title: Lab. (UK), Rep. MAT – volume: 69 start-page: 3846 issue: 11 year: 1998 ident: 10.1016/j.ultramic.2016.11.001_bib2 article-title: Quantitative microwave near-field microscopy of dielectric properties publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1149189 – volume: 1536 year: 2004 ident: 10.1016/j.ultramic.2016.11.001_bib8 article-title: Measuring the permittivity and permeability of lossy materials: solids, liquids, metals, building materials and negative index materials publication-title: NIST Tech. Note – ident: 10.1016/j.ultramic.2016.11.001_bib34 doi: 10.21236/ADA046172 – volume: 23 issue: 20 year: 2012 ident: 10.1016/j.ultramic.2016.11.001_bib14 article-title: Quantifying the dielectric constant of thick insulators by electrostatic force microscopy: effects of the microscopic parts of the probe publication-title: Nanotechnology doi: 10.1088/0957-4484/23/20/205703 – volume: 151 start-page: 8 year: 2016 ident: 10.1016/j.ultramic.2016.11.001_bib6 article-title: High-resolution dielectric characterization of minerals: a step towards understanding the basic interactions between microwaves and rocks publication-title: Int. J. Miner. Process. doi: 10.1016/j.minpro.2016.04.003 – volume: 161 start-page: p137 year: 2016 ident: 10.1016/j.ultramic.2016.11.001_bib11 article-title: Measurement of the permittivity and loss of high-loss materials using a near-field scanning microwave microscope publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2015.11.015 – ident: 10.1016/j.ultramic.2016.11.001_bib25 doi: 10.1109/ARFTG.2014.7013419 – volume: 7 start-page: 609 year: 1994 ident: 10.1016/j.ultramic.2016.11.001_bib27 article-title: Substrates for high-Tc superconductor microwave integrated circuits publication-title: Supercond. Sci. Technol. doi: 10.1088/0953-2048/7/9/001 – volume: 25 start-page: 407 issue: 4 year: 2005 ident: 10.1016/j.ultramic.2016.11.001_bib28 article-title: Imaging of oxide dielectrics by near-field microwave microscopy publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2004.02.013 |
SSID | ssj0001048 |
Score | 2.1791883 |
Snippet | This paper describes traceable measurements of the dielectric permittivity and loss tangent of a multiphase material (particulate rock set in epoxy) at micron... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 65 |
SubjectTerms | Balances (scales) Dielectric constant Imaging Loss tangent measurement Microscopes Microwave heating Microwaves Mineral characterisation Multiphase Multiphase materials Permittivity Permittivity measurement Scanning microscopes Tangents |
Title | Traceable measurement and imaging of the complex permittivity of a multiphase mineral specimen at micron scales using a microwave microscope |
URI | https://dx.doi.org/10.1016/j.ultramic.2016.11.001 https://www.ncbi.nlm.nih.gov/pubmed/27865149 https://www.proquest.com/docview/1842552509 https://www.proquest.com/docview/1880036086 |
Volume | 172 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001048 issn: 0304-3991 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Complete Freedom Collection customDbUrl: eissn: 1879-2723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001048 issn: 0304-3991 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1879-2723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001048 issn: 0304-3991 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-2723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001048 issn: 0304-3991 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001048 issn: 0304-3991 databaseCode: AKRWK dateStart: 19750701 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swELaqIiRe0Bjb6IDKSHtNWydO7DwiBOo20RdA4i06Jw5r1aYVTTd44Rfwo7mLE8qkbX3YW-TYkuWzfd_57r5j7EsWDjKIAvBSKYwnDX6ZzISeH0cWEE5ArinB-XIUDW_kt9vwtsXOmlwYCqus7353p1e3dd3Sr1ezvxiP-1fk1EP1KhBREI84cYIS-xfu6d7TOswDzQ3tPAnSo95vsoQnvdW0vKey7xTiFfWIzbMuDvMHBfU3AFopoot3bLdGkPzUTXKPtWzxnm27mpKP--wZtU9qKSGKz9bvfxyKjI9nVUkiPs85wj5eRZPbB76geJjSVZGgf8BdlOEPVHB8Nq5oqTllZFIhAA4ltuHUC75E8dolp8j5OxpErb_gp3VfVbrLB3ZzcX59NvTqkgsoKxmXnsyVGhgT5jYDCAKV5XimI5nnKQQKjSPEM1k-SLUPxOyWCl8YX5nQAOgATTUdfGTtYl7YA8bBCvwfKRVkqVQy1BBYhCcmtcJqYUWHhc06J2nNR05lMaZJE3g2SRr5JCQfNFYoAq_D-q_jFo6RY-OIuBFj8tveSlBtbBx70sg9wYNH3hQo7Hy1TAQ5MMkpHP-rjybCHzQbO-yT2zSvc_aVjhCtxp__Y3aHbMcnmFE9CR2xdnm_sscIkkrTrU5Bl22dfv0-HL0AkDIVLg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrRBcEG-Wp5G4prtOnNg5VhXVlrZ7oZV6s8aJQ7fqZlfdLC3_gR_NTJwsIAE9cLOcjGR57JlvPC-AD2U6LjFLMCqUdJFyNHKlS6M4zzwSnMDKcILz8TSbnKpPZ-nZFuz1uTAcVtnJ_iDTW2ndzYy63RwtZ7PRZ3bqkXqVhCi4jri6A9sqJZk8gO3dg8PJdCOQyeIwwZmgIib4JVH4Ymd92Vxx53eO8sp2uKBn1x_mDzrqbxi01UX7D-FBByLFbljnI9jy9WO4G9pKfnsC30kBFZ5zosT85xOgwLoUs3nblUgsKkHIT7QB5f5GLDkkpgmNJPgbihBoeE46TsxnbWVqwUmZ3AtAYENztPRarIjDfiU4eP4LE_HsNX71YdRmvDyF0_2PJ3uTqOu6QOxSeROpSuuxc2nlS8Qk0WVF1zpTVVVgosk-IkhTVuPCxMjF3QoZSxdrlzpEk5C1ZpJnMKgXtX8BAr2k75nWSVkorVKDiSeE4govvZFeDiHt99kWXUly7oxxafvYswvb88cyf8he4SC8IYw2dMtQlONWirxno_3teFnSHLfSvu_5bunusUMFa79Yr6xkHyb7hfN__WO45g9ZjkN4Hg7NZs2xNhkB1vzlf6zuHdybnBwf2aOD6eEruB8z6mhfiF7DoLla-zeEmRr3trsTPwDmkhfZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Traceable+measurement+and+imaging+of+the+complex+permittivity+of+a+multiphase+mineral+specimen+at+micron+scales+using+a+microwave+microscope&rft.jtitle=Ultramicroscopy&rft.au=Gregory%2C+A.P.&rft.au=Blackburn%2C+J.F.&rft.au=Hodgetts%2C+T.E.&rft.au=Clarke%2C+R.N.&rft.date=2017-01-01&rft.issn=0304-3991&rft.volume=172&rft.spage=65&rft.epage=74&rft_id=info:doi/10.1016%2Fj.ultramic.2016.11.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ultramic_2016_11_001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3991&client=summon |