Traceable measurement and imaging of the complex permittivity of a multiphase mineral specimen at micron scales using a microwave microscope

This paper describes traceable measurements of the dielectric permittivity and loss tangent of a multiphase material (particulate rock set in epoxy) at micron scales using a resonant Near-Field Scanning Microwave Microscope (NSMM) at 1.2GHz. Calibration and extraction of the permittivity and loss ta...

Full description

Saved in:
Bibliographic Details
Published inUltramicroscopy Vol. 172; pp. 65 - 74
Main Authors Gregory, A.P., Blackburn, J.F., Hodgetts, T.E., Clarke, R.N., Lees, K., Plint, S., Dimitrakis, G.A.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.01.2017
Subjects
Online AccessGet full text
ISSN0304-3991
1879-2723
1879-2723
DOI10.1016/j.ultramic.2016.11.001

Cover

Abstract This paper describes traceable measurements of the dielectric permittivity and loss tangent of a multiphase material (particulate rock set in epoxy) at micron scales using a resonant Near-Field Scanning Microwave Microscope (NSMM) at 1.2GHz. Calibration and extraction of the permittivity and loss tangent is via an image charge analysis which has been modified by the use of the complex frequency to make it applicable for high loss materials. The results presented are obtained using a spherical probe tip, 0.1mm in diameter, and also a conical probe tip with a rounded end 0.01mm in diameter, which allows imaging with higher resolution (≈10µm). The microscope is calibrated using approach-curve data over a restricted range of gaps (typically between 1% and 10% of tip diameter) as this is found to give the best measurement accuracy. For both tips the uncertainty of scanned measurements of permittivity is estimated to be±10% (at coverage factor k=2) for permittivity ⪝10. Loss tangent can be resolved to approximately 0.001. Subject to this limit, the uncertainty of loss tangent measurements is estimated to be±20% (at k=2). The reported measurements inform studies of how microwave energy interacts with multiphase materials containing microwave absorbent phases. •Imaging of the dielectric permittivity and loss tangent of high loss materials.•Comparison of measurements with spherical and conical tips.•Studies effects of dielectric boundaries on measurements.•Measurements traceable to dielectric reference data for single crystals.
AbstractList This paper describes traceable measurements of the dielectric permittivity and loss tangent of a multiphase material (particulate rock set in epoxy) at micron scales using a resonant Near-Field Scanning Microwave Microscope (NSMM) at 1.2GHz. Calibration and extraction of the permittivity and loss tangent is via an image charge analysis which has been modified by the use of the complex frequency to make it applicable for high loss materials. The results presented are obtained using a spherical probe tip, 0.1mm in diameter, and also a conical probe tip with a rounded end 0.01mm in diameter, which allows imaging with higher resolution (≈10µm). The microscope is calibrated using approach-curve data over a restricted range of gaps (typically between 1% and 10% of tip diameter) as this is found to give the best measurement accuracy. For both tips the uncertainty of scanned measurements of permittivity is estimated to be±10% (at coverage factor k=2) for permittivity ⪝10. Loss tangent can be resolved to approximately 0.001. Subject to this limit, the uncertainty of loss tangent measurements is estimated to be±20% (at k=2). The reported measurements inform studies of how microwave energy interacts with multiphase materials containing microwave absorbent phases.This paper describes traceable measurements of the dielectric permittivity and loss tangent of a multiphase material (particulate rock set in epoxy) at micron scales using a resonant Near-Field Scanning Microwave Microscope (NSMM) at 1.2GHz. Calibration and extraction of the permittivity and loss tangent is via an image charge analysis which has been modified by the use of the complex frequency to make it applicable for high loss materials. The results presented are obtained using a spherical probe tip, 0.1mm in diameter, and also a conical probe tip with a rounded end 0.01mm in diameter, which allows imaging with higher resolution (≈10µm). The microscope is calibrated using approach-curve data over a restricted range of gaps (typically between 1% and 10% of tip diameter) as this is found to give the best measurement accuracy. For both tips the uncertainty of scanned measurements of permittivity is estimated to be±10% (at coverage factor k=2) for permittivity ⪝10. Loss tangent can be resolved to approximately 0.001. Subject to this limit, the uncertainty of loss tangent measurements is estimated to be±20% (at k=2). The reported measurements inform studies of how microwave energy interacts with multiphase materials containing microwave absorbent phases.
This paper describes traceable measurements of the dielectric permittivity and loss tangent of a multiphase material (particulate rock set in epoxy) at micron scales using a resonant Near-Field Scanning Microwave Microscope (NSMM) at 1.2GHz. Calibration and extraction of the permittivity and loss tangent is via an image charge analysis which has been modified by the use of the complex frequency to make it applicable for high loss materials. The results presented are obtained using a spherical probe tip, 0.1mm in diameter, and also a conical probe tip with a rounded end 0.01mm in diameter, which allows imaging with higher resolution (≈10µm). The microscope is calibrated using approach-curve data over a restricted range of gaps (typically between 1% and 10% of tip diameter) as this is found to give the best measurement accuracy. For both tips the uncertainty of scanned measurements of permittivity is estimated to be±10% (at coverage factor k=2) for permittivity ⪝10. Loss tangent can be resolved to approximately 0.001. Subject to this limit, the uncertainty of loss tangent measurements is estimated to be±20% (at k=2). The reported measurements inform studies of how microwave energy interacts with multiphase materials containing microwave absorbent phases. •Imaging of the dielectric permittivity and loss tangent of high loss materials.•Comparison of measurements with spherical and conical tips.•Studies effects of dielectric boundaries on measurements.•Measurements traceable to dielectric reference data for single crystals.
This paper describes traceable measurements of the dielectric permittivity and loss tangent of a multiphase material (particulate rock set in epoxy) at micron scales using a resonant Near-Field Scanning Microwave Microscope (NSMM) at 1.2GHz. Calibration and extraction of the permittivity and loss tangent is via an image charge analysis which has been modified by the use of the complex frequency to make it applicable for high loss materials. The results presented are obtained using a spherical probe tip, 0.1mm in diameter, and also a conical probe tip with a rounded end 0.01mm in diameter, which allows imaging with higher resolution (≈10µm). The microscope is calibrated using approach-curve data over a restricted range of gaps (typically between 1% and 10% of tip diameter) as this is found to give the best measurement accuracy. For both tips the uncertainty of scanned measurements of permittivity is estimated to be±10% (at coverage factor k=2) for permittivity ⪝10. Loss tangent can be resolved to approximately 0.001. Subject to this limit, the uncertainty of loss tangent measurements is estimated to be±20% (at k=2). The reported measurements inform studies of how microwave energy interacts with multiphase materials containing microwave absorbent phases.
This paper describes traceable measurements of the dielectric permittivity and loss tangent of a multiphase material (particulate rock set in epoxy) at micron scales using a resonant Near-Field Scanning Microwave Microscope (NSMM) at 1.2GHz. Calibration and extraction of the permittivity and loss tangent is via an image charge analysis which has been modified by the use of the complex frequency to make it applicable for high loss materials. The results presented are obtained using a spherical probe tip, 0.1mm in diameter, and also a conical probe tip with a rounded end 0.01mm in diameter, which allows imaging with higher resolution ( approximately 10 mu m). The microscope is calibrated using approach-curve data over a restricted range of gaps (typically between 1% and 10% of tip diameter) as this is found to give the best measurement accuracy. For both tips the uncertainty of scanned measurements of permittivity is estimated to be plus or minus 10% (at coverage factor k=2) for permittivity 10. Loss tangent can be resolved to approximately 0.001. Subject to this limit, the uncertainty of loss tangent measurements is estimated to be plus or minus 20% (at k=2). The reported measurements inform studies of how microwave energy interacts with multiphase materials containing microwave absorbent phases.
Author Dimitrakis, G.A.
Hodgetts, T.E.
Gregory, A.P.
Clarke, R.N.
Blackburn, J.F.
Plint, S.
Lees, K.
Author_xml – sequence: 1
  givenname: A.P.
  surname: Gregory
  fullname: Gregory, A.P.
  email: andrew.gregory@npl.co.uk
  organization: National Physical Laboratory (NPL), Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom
– sequence: 2
  givenname: J.F.
  surname: Blackburn
  fullname: Blackburn, J.F.
  organization: National Physical Laboratory (NPL), Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom
– sequence: 3
  givenname: T.E.
  surname: Hodgetts
  fullname: Hodgetts, T.E.
  organization: Consultant to NPL, United Kingdom
– sequence: 4
  givenname: R.N.
  surname: Clarke
  fullname: Clarke, R.N.
  organization: National Physical Laboratory (NPL), Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom
– sequence: 5
  givenname: K.
  surname: Lees
  fullname: Lees, K.
  organization: National Physical Laboratory (NPL), Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom
– sequence: 6
  givenname: S.
  surname: Plint
  fullname: Plint, S.
  organization: Department of Chemical and Environmental Engineering, The University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
– sequence: 7
  givenname: G.A.
  surname: Dimitrakis
  fullname: Dimitrakis, G.A.
  organization: Department of Chemical and Environmental Engineering, The University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27865149$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1TAQhS1URG8Lr1B5ySYX_-XHEgtQBS1SJTZlbU2cSeurxAm2c2nfgYfGUVoWbMrK9vg7Z-w5Z-TETx4JueBszxmvPhz2y5ACjM7uRT7vOd8zxl-RHW9qXYhayBOyY5KpQmrNT8lZjAeWCaaaN-RU1E1VcqV35PdtAIvQDkhHhLgEHNEnCr6jboQ75-_o1NN0j9RO4zzgA50xjC4ld3Tpcb0DOuanuPkeYvZwHgMMNM5oXXaikHLNhsnTaGHASJe4esJW_QVH3HbRTjO-Ja97GCK-e1rPyY-vX24vr4ub71ffLj_fFFYpnQrV1zVr27LHDkDKuuuVKCvV9xZkrbSupO56ZhsBpdLCcsFbUbdlC9BIrlgjz8n7zXcO088FYzKjixaHATxOSzS8aRiTFWuq_0Bz71KUTGf04gld2hE7M4c8wfBonoedgWoD1v_GgP1fhDOzpmoO5jlVs6ZqODc5syz8-I_QugTJTT7DbnhZ_mmTY57p0WEw0Tr0FjsX0CbTTe4liz-MqsUW
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3514707
Cites_doi 10.1016/S0955-2219(01)00343-0
10.1088/0508-3443/18/6/305
10.1063/1.1759389
10.1063/1.4759253
10.1088/0957-0233/16/1/033
10.1364/OE.23.012144
10.1109/IRMMW-THz.2012.6380378
10.1109/MMM.2013.2288711
10.1088/0960-1317/15/1/026
10.1016/S0892-6875(98)00094-6
10.1023/B:JECR.0000015661.81386.e6
10.1088/0957-0233/26/10/105902
10.1016/j.ultramic.2004.09.007
10.1063/1.1150687
10.1063/1.1597984
10.1088/0957-0233/14/1/302
10.1063/1.1978972
10.4095/307078
10.1063/1.1149189
10.21236/ADA046172
10.1088/0957-4484/23/20/205703
10.1016/j.minpro.2016.04.003
10.1016/j.ultramic.2015.11.015
10.1109/ARFTG.2014.7013419
10.1088/0953-2048/7/9/001
10.1016/j.jeurceramsoc.2004.02.013
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright © 2016 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2016 Elsevier B.V.
– notice: Copyright © 2016 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.ultramic.2016.11.001
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList MEDLINE - Academic

PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1879-2723
EndPage 74
ExternalDocumentID 27865149
10_1016_j_ultramic_2016_11_001
S0304399116302984
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
3O-
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
8WZ
9JN
A6W
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSM
SSQ
SSZ
T5K
WUQ
XPP
Y6R
ZGI
ZMT
ZXP
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
ACLOT
EFKBS
~HD
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c449t-4f770bb5fedaa337df42564ffca37499639df0c82a5492c121b27b5baa8314083
IEDL.DBID .~1
ISSN 0304-3991
1879-2723
IngestDate Thu Sep 04 19:08:45 EDT 2025
Sat Sep 27 22:32:57 EDT 2025
Wed Feb 19 02:41:05 EST 2025
Tue Jul 01 00:32:10 EDT 2025
Thu Apr 24 23:10:54 EDT 2025
Fri Feb 23 02:33:23 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Permittivity measurement
Mineral characterisation
Imaging
Loss tangent measurement
Microwave heating
Scanning microscopes
Multiphase materials
Language English
License Copyright © 2016 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c449t-4f770bb5fedaa337df42564ffca37499639df0c82a5492c121b27b5baa8314083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://eprints.nottingham.ac.uk/39243/
PMID 27865149
PQID 1842552509
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1880036086
proquest_miscellaneous_1842552509
pubmed_primary_27865149
crossref_primary_10_1016_j_ultramic_2016_11_001
crossref_citationtrail_10_1016_j_ultramic_2016_11_001
elsevier_sciencedirect_doi_10_1016_j_ultramic_2016_11_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2017
2017-01-00
20170101
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: January 2017
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Ultramicroscopy
PublicationTitleAlternate Ultramicroscopy
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hollmann, Vendik, Zaitsev, Melekh (bib27) 1994; 7
Gao, Hu, Zhang, Huang, Liu, Takeuchi (bib37) 2004; 84
Salsman (bib9) 1991; 34
M.P. Jones, Applied mineralogy - A Quantitative Approach, Graham and Trotman, London, 1987.
Gramse, Gomila, Fumagalli (bib14) 2012; 23
Park, Hyun, Kim, Kim, Char (bib5) 2005; 102
Tagantsev, Sherman, Astafiev, Venkatesh, Setter (bib3) 2003; 11
Talanov, Scherz, Moreland, Schwartz (bib17) 2006; 88
Petruk (bib32) 1988; 40
Kingman, Rowson (bib7) 1998; 11
Monti, Tselev, Udoudo, Ivanov, Kingman (bib6) 2016; 151
R.H. Church, W.E. Webb, J.B. Salsman, Dielectric properties of low-loss materials, Report of Investigations 9194, Bureau of Mines US Department of the Interior, 1988.
Zhang, McGinn (bib28) 2005; 25
Harrop, Wanklyn (bib36) 1967; 18
Schmidt, Wilting, Gruse, Wagner (bib10) 2015; 26
Kim, Kim, Kim, Song, Lee, Friedman (bib13) 2003; 83
Omarouayache, Payet, Raoult, Chusseau (bib19) 2015; 23
Imtiaz, Wallis, Kabos (bib1) 2014; 15
Sheu (bib12) 2005; 15
Kim, Lee, Friedman, Cha (bib23) 2003; 83
Gao, Xiang (bib2) 1998; 69
Gregory (bib24) 2016
Krupka, Gregory, Rochard, Clarke, Riddle, Baker-Jarvis (bib29) 2001; 21
R.N. Clarke (Ed.), A Guide to the Characterisation of Dielectric Materials at RF and microwave Frequencies, The Institute of Measurement and Control (IMC), The National Physical Laboratory (NPL,) London, ISBN 0904457389, 2003.
Steinhauer, Vlahacos, Wellstood, Anlage, Canedy, Ramesh (bib21) 2000; 71
Petruk (bib31) 2000
Gregory, Blackburn, Lees, Clarke, Hodgetts, Hanham, Klein (bib11) 2016; 161
Gao, Hu, Takeuchi, Chang, Xiang, Wang (bib4) 2005; 16
Kim, Kim, Lee, Lee, Cha, Friedman (bib20) 2003; 14
The expression of uncertainty and confidence in measurement, United Kingdom Accreditation Service document M3003, 3rd ed., 2012
S.M.Hanham, A.Gregory, S.A.Maier, N.Klein, A dielectric probe for near-field millimeter-wave imaging, infrared, millimeter, and terahertz waves (IRMMW-THz), in: Proceedings of the 37th International Conference
Talanov, Scherz, Moreland, Schwartz (bib22) 2006; 88
W.B. Westphal, Dielectric Constant and Loss Data, Report AFML-TR-74-250 Part III Laboratory for Insulation Research, MIT, May,1977.
Klein, Lahl, Poppe, Kadlec, Kužel (bib18) 2005; 98
W. Petruk, The MP-SEM-IPS Image Analysis System, Canmet Report 87-1E, Department Energy, Mines and Resources, Canada, 1986.
Baker-Jarvis, Janezic, Riddle, Johnk, Kabos, Holloway, Geyer, Grosvenor (bib8) 2004; 1536
Balusek, Friedman, Luna, Oetiker, Babajanyan, Lee (bib15) 2012; 112
A.P.Gregory, J.F.Blackburn, K.Lees, R.N.Clarke, T.E.Hodgetts, S.M.Hanham, N.Klein A near-field scanning microwave microscope for measurement of the permittivity and loss of high-loss materials, in: Proceedings of the 84th Microwave Measurement Conference, (ARFTG)
2014.
2016.
Steinhauer (10.1016/j.ultramic.2016.11.001_bib21) 2000; 71
10.1016/j.ultramic.2016.11.001_bib33
Gregory (10.1016/j.ultramic.2016.11.001_bib24) 2016
Hollmann (10.1016/j.ultramic.2016.11.001_bib27) 1994; 7
Park (10.1016/j.ultramic.2016.11.001_bib5) 2005; 102
Omarouayache (10.1016/j.ultramic.2016.11.001_bib19) 2015; 23
10.1016/j.ultramic.2016.11.001_bib30
Kim (10.1016/j.ultramic.2016.11.001_bib20) 2003; 14
Gregory (10.1016/j.ultramic.2016.11.001_bib11) 2016; 161
10.1016/j.ultramic.2016.11.001_bib16
10.1016/j.ultramic.2016.11.001_bib38
Kim (10.1016/j.ultramic.2016.11.001_bib13) 2003; 83
10.1016/j.ultramic.2016.11.001_bib35
10.1016/j.ultramic.2016.11.001_bib34
Petruk (10.1016/j.ultramic.2016.11.001_bib31) 2000
Harrop (10.1016/j.ultramic.2016.11.001_bib36) 1967; 18
Kim (10.1016/j.ultramic.2016.11.001_bib23) 2003; 83
Schmidt (10.1016/j.ultramic.2016.11.001_bib10) 2015; 26
Imtiaz (10.1016/j.ultramic.2016.11.001_bib1) 2014; 15
Krupka (10.1016/j.ultramic.2016.11.001_bib29) 2001; 21
Zhang (10.1016/j.ultramic.2016.11.001_bib28) 2005; 25
Kingman (10.1016/j.ultramic.2016.11.001_bib7) 1998; 11
Gao (10.1016/j.ultramic.2016.11.001_bib4) 2005; 16
Balusek (10.1016/j.ultramic.2016.11.001_bib15) 2012; 112
10.1016/j.ultramic.2016.11.001_bib26
Salsman (10.1016/j.ultramic.2016.11.001_bib9) 1991; 34
10.1016/j.ultramic.2016.11.001_bib25
Talanov (10.1016/j.ultramic.2016.11.001_bib22) 2006; 88
Gao (10.1016/j.ultramic.2016.11.001_bib37) 2004; 84
Monti (10.1016/j.ultramic.2016.11.001_bib6) 2016; 151
Gao (10.1016/j.ultramic.2016.11.001_bib2) 1998; 69
Gramse (10.1016/j.ultramic.2016.11.001_bib14) 2012; 23
Baker-Jarvis (10.1016/j.ultramic.2016.11.001_bib8) 2004; 1536
Tagantsev (10.1016/j.ultramic.2016.11.001_bib3) 2003; 11
Sheu (10.1016/j.ultramic.2016.11.001_bib12) 2005; 15
Petruk (10.1016/j.ultramic.2016.11.001_bib32) 1988; 40
Talanov (10.1016/j.ultramic.2016.11.001_bib17) 2006; 88
Klein (10.1016/j.ultramic.2016.11.001_bib18) 2005; 98
References_xml – reference: W.B. Westphal, Dielectric Constant and Loss Data, Report AFML-TR-74-250 Part III Laboratory for Insulation Research, MIT, May,1977.
– volume: 18
  start-page: 739
  year: 1967
  end-page: 742
  ident: bib36
  article-title: The dielectric constant of zirconia
  publication-title: Br. J. Appl. Phys.
– volume: 102
  start-page: 101
  year: 2005
  end-page: 106
  ident: bib5
  article-title: Observation of biological samples using a scanning microwave microscope
  publication-title: Ultramicroscopy
– volume: 151
  start-page: 8
  year: 2016
  end-page: 21
  ident: bib6
  article-title: High-resolution dielectric characterization of minerals: a step towards understanding the basic interactions between microwaves and rocks
  publication-title: Int. J. Miner. Process.
– volume: 112
  year: 2012
  ident: bib15
  article-title: A three-dimensional finite element model of near-field scanning microwave microscopy
  publication-title: J. Appl. Phys.
– volume: 16
  start-page: 248
  year: 2005
  end-page: 260
  ident: bib4
  article-title: Quantitative scanning evanescent microwave microscopy and its applications in characterization of functional materials libraries
  publication-title: Meas. Sci. Tech.
– volume: 11
  start-page: 1081
  year: 1998
  end-page: 1087
  ident: bib7
  article-title: Microwave treatment of minerals-a review
  publication-title: Miner. Eng.
– volume: 88
  year: 2006
  ident: bib17
  article-title: Noncontact dielectric constant metrology of low-k interconnect films using a near-field scanned microwave probe
  publication-title: Appl. Phys. Lett.
– reference: , 2014.
– reference: The expression of uncertainty and confidence in measurement, United Kingdom Accreditation Service document M3003, 3rd ed., 2012
– year: 2000
  ident: bib31
  article-title: Applied Mineralogy in the Mining Industry
– volume: 34
  start-page: 203
  year: 1991
  end-page: 214
  ident: bib9
  article-title: Measurement of dielectric properties in the frequency range of 300MHz to 3GHz as a function of temperature and density
  publication-title: Proc. Symp. Microw. Theory Appl. Mater. Process.
– volume: 23
  year: 2012
  ident: bib14
  article-title: Quantifying the dielectric constant of thick insulators by electrostatic force microscopy: effects of the microscopic parts of the probe
  publication-title: Nanotechnology
– volume: 40
  start-page: 29
  year: 1988
  end-page: 31
  ident: bib32
  article-title: Automatic image analysis for mineral beneficiation
  publication-title: J. Met.
– volume: 7
  start-page: 609
  year: 1994
  end-page: 622
  ident: bib27
  article-title: Substrates for high-Tc superconductor microwave integrated circuits
  publication-title: Supercond. Sci. Technol.
– volume: 15
  start-page: 52
  year: 2014
  end-page: 64
  ident: bib1
  article-title: Near-field scanning microwave microscopy: an emerging research tool for nanoscale metrology
  publication-title: IEEE Microw. Mag.
– volume: 161
  start-page: p137
  year: 2016
  end-page: p145
  ident: bib11
  article-title: Measurement of the permittivity and loss of high-loss materials using a near-field scanning microwave microscope
  publication-title: Ultramicroscopy
– volume: 83
  start-page: 1032
  year: 2003
  end-page: 1034
  ident: bib23
  article-title: Near-field scanning microwave microscope using a dielectric resonator
  publication-title: Appl. Phys. Lett.
– reference: W. Petruk, The MP-SEM-IPS Image Analysis System, Canmet Report 87-1E, Department Energy, Mines and Resources, Canada, 1986.
– start-page: 58
  year: 2016
  ident: bib24
  article-title: Q-factor measurement using a vector network analyser, National Physical
  publication-title: Lab. (UK), Rep. MAT
– volume: 14
  start-page: 7
  year: 2003
  end-page: 12
  ident: bib20
  article-title: Development of a near-field scanning microwave microscope using a tunable resonance cavity for high resolution
  publication-title: Meas. Sci. Technol.
– volume: 11
  start-page: 5
  year: 2003
  end-page: 66
  ident: bib3
  article-title: Ferroelectric materials for microwave tunable applications
  publication-title: J. Electroceram.
– volume: 25
  start-page: 407
  year: 2005
  end-page: 416
  ident: bib28
  article-title: Imaging of oxide dielectrics by near-field microwave microscopy
  publication-title: J. Eur. Ceram. Soc.
– reference: R.N. Clarke (Ed.), A Guide to the Characterisation of Dielectric Materials at RF and microwave Frequencies, The Institute of Measurement and Control (IMC), The National Physical Laboratory (NPL,) London, ISBN 0904457389, 2003.
– volume: 88
  year: 2006
  ident: bib22
  article-title: A near-field scanned microwave probe for spatially localized electrical metrology
  publication-title: Appl. Phys. Lett.
– volume: 26
  start-page: 1390
  year: 2015
  end-page: 1398
  ident: bib10
  article-title: A cylindrical guarded capacitor for spectral permittivity measurements of hard rock samples in the MHz-range
  publication-title: Meas. Sci. Tech.
– reference: R.H. Church, W.E. Webb, J.B. Salsman, Dielectric properties of low-loss materials, Report of Investigations 9194, Bureau of Mines US Department of the Interior, 1988.
– volume: 83
  start-page: 1026
  year: 2003
  end-page: 1028
  ident: bib13
  article-title: Improving images from a near-field scanning microwave microscope using a hybrid probe
  publication-title: APL
– volume: 23
  start-page: 12144
  year: 2015
  end-page: 12151
  ident: bib19
  article-title: Millimeter-wave near-field imaging with bow-tie antennas
  publication-title: Opt. Express
– reference: M.P. Jones, Applied mineralogy - A Quantitative Approach, Graham and Trotman, London, 1987.
– volume: 1536
  year: 2004
  ident: bib8
  article-title: Measuring the permittivity and permeability of lossy materials: solids, liquids, metals, building materials and negative index materials
  publication-title: NIST Tech. Note
– volume: 84
  start-page: 4647
  year: 2004
  end-page: 4649
  ident: bib37
  article-title: Quantitative microwave evanescent microscopy of dielectric thin films using a recursive image charge approach
  publication-title: Appl. Phys. Lett.
– volume: 15
  start-page: 185
  year: 2005
  end-page: 189
  ident: bib12
  article-title: Micro-spherical probes machining by EDM
  publication-title: J. Micromech. Microeng.
– reference: , 2016.
– volume: 71
  start-page: 2751
  year: 2000
  end-page: 2758
  ident: bib21
  article-title: Quantitative imaging of dielectric permittivity and tunability with a near-field scanning microwave microscope
  publication-title: Rev. Sci. Instrum.
– volume: 98
  year: 2005
  ident: bib18
  article-title: A metal-dielectric antenna for terahertz near-field imaging
  publication-title: J. Appl. Phys.
– volume: 69
  start-page: 3846
  year: 1998
  end-page: 3851
  ident: bib2
  article-title: Quantitative microwave near-field microscopy of dielectric properties
  publication-title: Rev. Sci. Instrum.
– reference: S.M.Hanham, A.Gregory, S.A.Maier, N.Klein, A dielectric probe for near-field millimeter-wave imaging, infrared, millimeter, and terahertz waves (IRMMW-THz), in: Proceedings of the 37th International Conference,
– reference: A.P.Gregory, J.F.Blackburn, K.Lees, R.N.Clarke, T.E.Hodgetts, S.M.Hanham, N.Klein A near-field scanning microwave microscope for measurement of the permittivity and loss of high-loss materials, in: Proceedings of the 84th Microwave Measurement Conference, (ARFTG)
– volume: 21
  start-page: 2673
  year: 2001
  end-page: 2676
  ident: bib29
  article-title: Uncertainty of complex permittivity measure-ments by split-post dielectric resonator technique
  publication-title: J. Eur. Ceram. Soc.
– volume: 21
  start-page: 2673
  issue: 15
  year: 2001
  ident: 10.1016/j.ultramic.2016.11.001_bib29
  article-title: Uncertainty of complex permittivity measure-ments by split-post dielectric resonator technique
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/S0955-2219(01)00343-0
– volume: 18
  start-page: 739
  year: 1967
  ident: 10.1016/j.ultramic.2016.11.001_bib36
  article-title: The dielectric constant of zirconia
  publication-title: Br. J. Appl. Phys.
  doi: 10.1088/0508-3443/18/6/305
– volume: 84
  start-page: 4647
  issue: 23
  year: 2004
  ident: 10.1016/j.ultramic.2016.11.001_bib37
  article-title: Quantitative microwave evanescent microscopy of dielectric thin films using a recursive image charge approach
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1759389
– ident: 10.1016/j.ultramic.2016.11.001_bib38
– volume: 112
  issue: 8
  year: 2012
  ident: 10.1016/j.ultramic.2016.11.001_bib15
  article-title: A three-dimensional finite element model of near-field scanning microwave microscopy
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4759253
– ident: 10.1016/j.ultramic.2016.11.001_bib30
– volume: 16
  start-page: 248
  issue: 1
  year: 2005
  ident: 10.1016/j.ultramic.2016.11.001_bib4
  article-title: Quantitative scanning evanescent microwave microscopy and its applications in characterization of functional materials libraries
  publication-title: Meas. Sci. Tech.
  doi: 10.1088/0957-0233/16/1/033
– volume: 23
  start-page: 12144
  issue: 9
  year: 2015
  ident: 10.1016/j.ultramic.2016.11.001_bib19
  article-title: Millimeter-wave near-field imaging with bow-tie antennas
  publication-title: Opt. Express
  doi: 10.1364/OE.23.012144
– ident: 10.1016/j.ultramic.2016.11.001_bib16
  doi: 10.1109/IRMMW-THz.2012.6380378
– volume: 88
  year: 2006
  ident: 10.1016/j.ultramic.2016.11.001_bib17
  article-title: Noncontact dielectric constant metrology of low-k interconnect films using a near-field scanned microwave probe
  publication-title: Appl. Phys. Lett.
– volume: 15
  start-page: 52
  issue: 1
  year: 2014
  ident: 10.1016/j.ultramic.2016.11.001_bib1
  article-title: Near-field scanning microwave microscopy: an emerging research tool for nanoscale metrology
  publication-title: IEEE Microw. Mag.
  doi: 10.1109/MMM.2013.2288711
– volume: 15
  start-page: 185
  issue: 1
  year: 2005
  ident: 10.1016/j.ultramic.2016.11.001_bib12
  article-title: Micro-spherical probes machining by EDM
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/15/1/026
– volume: 83
  start-page: 1026
  year: 2003
  ident: 10.1016/j.ultramic.2016.11.001_bib13
  article-title: Improving images from a near-field scanning microwave microscope using a hybrid probe
  publication-title: APL
– ident: 10.1016/j.ultramic.2016.11.001_bib26
– year: 2000
  ident: 10.1016/j.ultramic.2016.11.001_bib31
– volume: 11
  start-page: 1081
  issue: 11
  year: 1998
  ident: 10.1016/j.ultramic.2016.11.001_bib7
  article-title: Microwave treatment of minerals-a review
  publication-title: Miner. Eng.
  doi: 10.1016/S0892-6875(98)00094-6
– volume: 11
  start-page: 5
  issue: 1
  year: 2003
  ident: 10.1016/j.ultramic.2016.11.001_bib3
  article-title: Ferroelectric materials for microwave tunable applications
  publication-title: J. Electroceram.
  doi: 10.1023/B:JECR.0000015661.81386.e6
– volume: 26
  start-page: 1390
  issue: 10
  year: 2015
  ident: 10.1016/j.ultramic.2016.11.001_bib10
  article-title: A cylindrical guarded capacitor for spectral permittivity measurements of hard rock samples in the MHz-range
  publication-title: Meas. Sci. Tech.
  doi: 10.1088/0957-0233/26/10/105902
– volume: 40
  start-page: 29
  year: 1988
  ident: 10.1016/j.ultramic.2016.11.001_bib32
  article-title: Automatic image analysis for mineral beneficiation
  publication-title: J. Met.
– volume: 34
  start-page: 203
  year: 1991
  ident: 10.1016/j.ultramic.2016.11.001_bib9
  article-title: Measurement of dielectric properties in the frequency range of 300MHz to 3GHz as a function of temperature and density
  publication-title: Proc. Symp. Microw. Theory Appl. Mater. Process.
– volume: 102
  start-page: 101
  issue: 2
  year: 2005
  ident: 10.1016/j.ultramic.2016.11.001_bib5
  article-title: Observation of biological samples using a scanning microwave microscope
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2004.09.007
– volume: 71
  start-page: 2751
  issue: 7
  year: 2000
  ident: 10.1016/j.ultramic.2016.11.001_bib21
  article-title: Quantitative imaging of dielectric permittivity and tunability with a near-field scanning microwave microscope
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1150687
– volume: 83
  start-page: 1032
  issue: 5
  year: 2003
  ident: 10.1016/j.ultramic.2016.11.001_bib23
  article-title: Near-field scanning microwave microscope using a dielectric resonator
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1597984
– volume: 14
  start-page: 7
  year: 2003
  ident: 10.1016/j.ultramic.2016.11.001_bib20
  article-title: Development of a near-field scanning microwave microscope using a tunable resonance cavity for high resolution
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/14/1/302
– ident: 10.1016/j.ultramic.2016.11.001_bib35
– volume: 88
  year: 2006
  ident: 10.1016/j.ultramic.2016.11.001_bib22
  article-title: A near-field scanned microwave probe for spatially localized electrical metrology
  publication-title: Appl. Phys. Lett.
– volume: 98
  year: 2005
  ident: 10.1016/j.ultramic.2016.11.001_bib18
  article-title: A metal-dielectric antenna for terahertz near-field imaging
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1978972
– ident: 10.1016/j.ultramic.2016.11.001_bib33
  doi: 10.4095/307078
– start-page: 58
  year: 2016
  ident: 10.1016/j.ultramic.2016.11.001_bib24
  article-title: Q-factor measurement using a vector network analyser, National Physical
  publication-title: Lab. (UK), Rep. MAT
– volume: 69
  start-page: 3846
  issue: 11
  year: 1998
  ident: 10.1016/j.ultramic.2016.11.001_bib2
  article-title: Quantitative microwave near-field microscopy of dielectric properties
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1149189
– volume: 1536
  year: 2004
  ident: 10.1016/j.ultramic.2016.11.001_bib8
  article-title: Measuring the permittivity and permeability of lossy materials: solids, liquids, metals, building materials and negative index materials
  publication-title: NIST Tech. Note
– ident: 10.1016/j.ultramic.2016.11.001_bib34
  doi: 10.21236/ADA046172
– volume: 23
  issue: 20
  year: 2012
  ident: 10.1016/j.ultramic.2016.11.001_bib14
  article-title: Quantifying the dielectric constant of thick insulators by electrostatic force microscopy: effects of the microscopic parts of the probe
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/20/205703
– volume: 151
  start-page: 8
  year: 2016
  ident: 10.1016/j.ultramic.2016.11.001_bib6
  article-title: High-resolution dielectric characterization of minerals: a step towards understanding the basic interactions between microwaves and rocks
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/j.minpro.2016.04.003
– volume: 161
  start-page: p137
  year: 2016
  ident: 10.1016/j.ultramic.2016.11.001_bib11
  article-title: Measurement of the permittivity and loss of high-loss materials using a near-field scanning microwave microscope
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2015.11.015
– ident: 10.1016/j.ultramic.2016.11.001_bib25
  doi: 10.1109/ARFTG.2014.7013419
– volume: 7
  start-page: 609
  year: 1994
  ident: 10.1016/j.ultramic.2016.11.001_bib27
  article-title: Substrates for high-Tc superconductor microwave integrated circuits
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/7/9/001
– volume: 25
  start-page: 407
  issue: 4
  year: 2005
  ident: 10.1016/j.ultramic.2016.11.001_bib28
  article-title: Imaging of oxide dielectrics by near-field microwave microscopy
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2004.02.013
SSID ssj0001048
Score 2.1791883
Snippet This paper describes traceable measurements of the dielectric permittivity and loss tangent of a multiphase material (particulate rock set in epoxy) at micron...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 65
SubjectTerms Balances (scales)
Dielectric constant
Imaging
Loss tangent measurement
Microscopes
Microwave heating
Microwaves
Mineral characterisation
Multiphase
Multiphase materials
Permittivity
Permittivity measurement
Scanning microscopes
Tangents
Title Traceable measurement and imaging of the complex permittivity of a multiphase mineral specimen at micron scales using a microwave microscope
URI https://dx.doi.org/10.1016/j.ultramic.2016.11.001
https://www.ncbi.nlm.nih.gov/pubmed/27865149
https://www.proquest.com/docview/1842552509
https://www.proquest.com/docview/1880036086
Volume 172
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2723
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001048
  issn: 0304-3991
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Complete Freedom Collection
  customDbUrl:
  eissn: 1879-2723
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001048
  issn: 0304-3991
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 1879-2723
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001048
  issn: 0304-3991
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-2723
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001048
  issn: 0304-3991
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2723
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001048
  issn: 0304-3991
  databaseCode: AKRWK
  dateStart: 19750701
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swELaqIiRe0Bjb6IDKSHtNWydO7DwiBOo20RdA4i06Jw5r1aYVTTd44Rfwo7mLE8qkbX3YW-TYkuWzfd_57r5j7EsWDjKIAvBSKYwnDX6ZzISeH0cWEE5ArinB-XIUDW_kt9vwtsXOmlwYCqus7353p1e3dd3Sr1ezvxiP-1fk1EP1KhBREI84cYIS-xfu6d7TOswDzQ3tPAnSo95vsoQnvdW0vKey7xTiFfWIzbMuDvMHBfU3AFopoot3bLdGkPzUTXKPtWzxnm27mpKP--wZtU9qKSGKz9bvfxyKjI9nVUkiPs85wj5eRZPbB76geJjSVZGgf8BdlOEPVHB8Nq5oqTllZFIhAA4ltuHUC75E8dolp8j5OxpErb_gp3VfVbrLB3ZzcX59NvTqkgsoKxmXnsyVGhgT5jYDCAKV5XimI5nnKQQKjSPEM1k-SLUPxOyWCl8YX5nQAOgATTUdfGTtYl7YA8bBCvwfKRVkqVQy1BBYhCcmtcJqYUWHhc06J2nNR05lMaZJE3g2SRr5JCQfNFYoAq_D-q_jFo6RY-OIuBFj8tveSlBtbBx70sg9wYNH3hQo7Hy1TAQ5MMkpHP-rjybCHzQbO-yT2zSvc_aVjhCtxp__Y3aHbMcnmFE9CR2xdnm_sscIkkrTrU5Bl22dfv0-HL0AkDIVLg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrRBcEG-Wp5G4prtOnNg5VhXVlrZ7oZV6s8aJQ7fqZlfdLC3_gR_NTJwsIAE9cLOcjGR57JlvPC-AD2U6LjFLMCqUdJFyNHKlS6M4zzwSnMDKcILz8TSbnKpPZ-nZFuz1uTAcVtnJ_iDTW2ndzYy63RwtZ7PRZ3bqkXqVhCi4jri6A9sqJZk8gO3dg8PJdCOQyeIwwZmgIib4JVH4Ymd92Vxx53eO8sp2uKBn1x_mDzrqbxi01UX7D-FBByLFbljnI9jy9WO4G9pKfnsC30kBFZ5zosT85xOgwLoUs3nblUgsKkHIT7QB5f5GLDkkpgmNJPgbihBoeE46TsxnbWVqwUmZ3AtAYENztPRarIjDfiU4eP4LE_HsNX71YdRmvDyF0_2PJ3uTqOu6QOxSeROpSuuxc2nlS8Qk0WVF1zpTVVVgosk-IkhTVuPCxMjF3QoZSxdrlzpEk5C1ZpJnMKgXtX8BAr2k75nWSVkorVKDiSeE4govvZFeDiHt99kWXUly7oxxafvYswvb88cyf8he4SC8IYw2dMtQlONWirxno_3teFnSHLfSvu_5bunusUMFa79Yr6xkHyb7hfN__WO45g9ZjkN4Hg7NZs2xNhkB1vzlf6zuHdybnBwf2aOD6eEruB8z6mhfiF7DoLla-zeEmRr3trsTPwDmkhfZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Traceable+measurement+and+imaging+of+the+complex+permittivity+of+a+multiphase+mineral+specimen+at+micron+scales+using+a+microwave+microscope&rft.jtitle=Ultramicroscopy&rft.au=Gregory%2C+A.P.&rft.au=Blackburn%2C+J.F.&rft.au=Hodgetts%2C+T.E.&rft.au=Clarke%2C+R.N.&rft.date=2017-01-01&rft.issn=0304-3991&rft.volume=172&rft.spage=65&rft.epage=74&rft_id=info:doi/10.1016%2Fj.ultramic.2016.11.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ultramic_2016_11_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3991&client=summon