A Convex Analysis-Based Minimum-Volume Enclosing Simplex Algorithm for Hyperspectral Unmixing
Hyperspectral unmixing aims at identifying the hidden spectral signatures (or endmembers) and their corresponding proportions (or abundances) from an observed hyperspectral scene. Many existing hyperspectral unmixing algorithms were developed under a commonly used assumption that pure pixels exist....
        Saved in:
      
    
          | Published in | IEEE transactions on signal processing Vol. 57; no. 11; pp. 4418 - 4432 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York, NY
          IEEE
    
        01.11.2009
     Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1053-587X 1941-0476  | 
| DOI | 10.1109/TSP.2009.2025802 | 
Cover
| Abstract | Hyperspectral unmixing aims at identifying the hidden spectral signatures (or endmembers) and their corresponding proportions (or abundances) from an observed hyperspectral scene. Many existing hyperspectral unmixing algorithms were developed under a commonly used assumption that pure pixels exist. However, the pure-pixel assumption may be seriously violated for highly mixed data. Based on intuitive grounds, Craig reported an unmixing criterion without requiring the pure-pixel assumption, which estimates the endmembers by vertices of a minimum-volume simplex enclosing all the observed pixels. In this paper, we incorporate convex analysis and Craig's criterion to develop a minimum-volume enclosing simplex (MVES) formulation for hyperspectral unmixing. A cyclic minimization algorithm for approximating the MVES problem is developed using linear programs (LPs), which can be practically implemented by readily available LP solvers. We also provide a non-heuristic guarantee of our MVES problem formulation, where the existence of pure pixels is proved to be a sufficient condition for MVES to perfectly identify the true endmembers. Some Monte Carlo simulations and real data experiments are presented to demonstrate the efficacy of the proposed MVES algorithm over several existing hyperspectral unmixing methods. | 
    
|---|---|
| AbstractList | Hyperspectral unmixing aims at identifying the hidden spectral signatures (or endmembers) and their corresponding proportions (or abundances) from an observed hyperspectral scene. Many existing hyperspectral unmixing algorithms were developed under a commonly used assumption that pure pixels exist. However, the pure-pixel assumption may be seriously violated for highly mixed data. Based on intuitive grounds, Craig reported an unmixing criterion without requiring the pure-pixel assumption, which estimates the endmembers by vertices of a minimum-volume simplex enclosing all the observed pixels. In this paper, we incorporate convex analysis and Craig's criterion to develop a minimum-volume enclosing simplex (MVES) formulation for hyperspectral unmixing. A cyclic minimization algorithm for approximating the MVES problem is developed using linear programs (LPs), which can be practically implemented by readily available LP solvers. We also provide a non-heuristic guarantee of our MVES problem formulation, where the existence of pure pixels is proved to be a sufficient condition for MVES to perfectly identify the true endmembers. Some Monte Carlo simulations and real data experiments are presented to demonstrate the efficacy of the proposed MVES algorithm over several existing hyperspectral unmixing methods. A cyclic minimization algorithm for approximating the MVES problem is developed using linear programs (LPs), which can be practically implemented by readily available LP solvers.  | 
    
| Author | Wing-Kin Ma Yu-Min Huang Chong-Yung Chi Tsung-Han Chan  | 
    
| Author_xml | – sequence: 1 givenname: Tsung-Han surname: CHAN fullname: CHAN, Tsung-Han organization: Institute of Communications Engineering, National Tsing Hua University, Hsinchu, Taiwan, Province of China – sequence: 2 givenname: Chong-Yung surname: CHI fullname: CHI, Chong-Yung organization: Institute of Communications Engineering, National Tsing Hua University, Hsinchu, Taiwan, Province of China – sequence: 3 givenname: Yu-Min surname: HUANG fullname: HUANG, Yu-Min organization: Institute of Communications Engineering, National Tsing Hua University, Hsinchu, Taiwan, Province of China – sequence: 4 givenname: Wing-Kin surname: MA fullname: MA, Wing-Kin organization: Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong-Kong  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22020660$$DView record in Pascal Francis | 
    
| BookMark | eNp9kc1r3DAQxUVJofnoPdCLKbQ5OR1JtmQdt0vaFFJaSFJyKUIrS6mCLDmSXbL_fbTdTQ855DIzh997DO8doL0Qg0HoGMMpxiA-XV3-PCUAogzSdkBeoX0sGlxDw9leuaGlddvxmzfoIOc7ANw0gu2j34tqGcNf81AtgvLr7HL9WWXTV99dcMM81L-inwdTnQXtY3bhtrp0w-g3vL-NyU1_hsrGVJ2vR5PyaPSUlK-uw-AeCnyEXlvls3m724fo-svZ1fK8vvjx9dtycVHr8sVUN4SsOOmttS0RjDcYuNaUUKY236-MEkYIS1TbUWx4r3SvtWXQKIt7gBWlh-hk6zumeD-bPMnBZW28V8HEOcuOt9AAB17Ijy-StKTSYYoL-P4ZeBfnVDIqbqwkzsU_tw87SGWtvE0qaJflmNyg0lqS0gUwBoVjW06nmHMyVmo3qcnFUOJyXmKQmxJlKVFuSpS7EosQngmfvF-QvNtKnDHmP95CJxpG6CMhKajn | 
    
| CODEN | ITPRED | 
    
| CitedBy_id | crossref_primary_10_1016_j_dsp_2024_104723 crossref_primary_10_1109_TIP_2015_2446196 crossref_primary_10_1080_01431161_2024_2305628 crossref_primary_10_1109_TGRS_2015_2421993 crossref_primary_10_1007_s00186_023_00815_2 crossref_primary_10_1080_01431161_2017_1375571 crossref_primary_10_1109_TGRS_2022_3196057 crossref_primary_10_1109_TGRS_2017_2669991 crossref_primary_10_1109_JSTARS_2016_2519498 crossref_primary_10_1137_21M1430613 crossref_primary_10_1109_TGRS_2011_2144605 crossref_primary_10_1109_TGRS_2018_2797200 crossref_primary_10_1109_TSP_2015_2508778 crossref_primary_10_1016_j_neucom_2021_07_041 crossref_primary_10_1109_JSTARS_2020_3003456 crossref_primary_10_1111_2041_210X_13553 crossref_primary_10_1109_TGRS_2021_3081101 crossref_primary_10_1109_TGRS_2022_3169228 crossref_primary_10_1109_JSTARS_2015_2427656 crossref_primary_10_1007_s11760_016_0877_6 crossref_primary_10_1109_TSP_2015_2404577 crossref_primary_10_1109_TGRS_2011_2140377 crossref_primary_10_1109_TGRS_2010_2091136 crossref_primary_10_1137_140994915 crossref_primary_10_1109_TSP_2021_3109380 crossref_primary_10_1109_TGRS_2011_2167193 crossref_primary_10_1137_17M114145X crossref_primary_10_1186_s12859_015_0694_x crossref_primary_10_1016_j_jprocont_2023_01_007 crossref_primary_10_1007_s00500_014_1507_2 crossref_primary_10_1109_TGRS_2011_2163941 crossref_primary_10_1109_MSP_2013_2279731 crossref_primary_10_3390_rs15041053 crossref_primary_10_1109_JSTARS_2012_2236821 crossref_primary_10_1109_TGRS_2023_3236677 crossref_primary_10_1109_TGRS_2020_2994260 crossref_primary_10_1109_TSP_2024_3406714 crossref_primary_10_1016_j_isprsjprs_2024_09_020 crossref_primary_10_1109_TGRS_2012_2191590 crossref_primary_10_1109_TIP_2016_2622401 crossref_primary_10_1109_TGRS_2021_3107151 crossref_primary_10_1109_TGRS_2014_2383440 crossref_primary_10_3390_rs8060464 crossref_primary_10_3390_rs9080841 crossref_primary_10_1109_TSP_2021_3133690 crossref_primary_10_1080_01431161_2016_1225176 crossref_primary_10_1109_TGRS_2015_2417162 crossref_primary_10_1016_j_isprsjprs_2013_02_020 crossref_primary_10_1109_TGRS_2011_2166766 crossref_primary_10_1109_TGRS_2023_3321839 crossref_primary_10_1093_bioinformatics_btq213 crossref_primary_10_3390_rs10040509 crossref_primary_10_3390_rs10071106 crossref_primary_10_1109_TGRS_2021_3074364 crossref_primary_10_1109_JSTARS_2020_2981402 crossref_primary_10_1109_JSTARS_2021_3065534 crossref_primary_10_1109_JSTARS_2016_2640274 crossref_primary_10_1016_j_chemolab_2020_104090 crossref_primary_10_1109_JSTARS_2011_2181340 crossref_primary_10_1016_j_lwt_2020_109247 crossref_primary_10_1016_j_patcog_2022_109102 crossref_primary_10_1109_TSP_2016_2602800 crossref_primary_10_1109_TIP_2015_2509258 crossref_primary_10_1109_TCI_2017_2693967 crossref_primary_10_1109_TGRS_2011_2151197 crossref_primary_10_1109_TGRS_2017_2728104 crossref_primary_10_1155_2014_947453 crossref_primary_10_1080_10106049_2021_1996642 crossref_primary_10_1109_LSP_2018_2789405 crossref_primary_10_1109_JSTARS_2015_2441699 crossref_primary_10_1109_JSTARS_2014_2328581 crossref_primary_10_1109_JSTARS_2022_3200733 crossref_primary_10_1109_LGRS_2024_3514888 crossref_primary_10_1109_TGRS_2022_3150263 crossref_primary_10_1109_TGRS_2011_2163160 crossref_primary_10_1109_TGRS_2014_2350771 crossref_primary_10_1002_cjs_11578 crossref_primary_10_1109_ACCESS_2018_2882187 crossref_primary_10_1016_j_ijleo_2019_163096 crossref_primary_10_1109_TGRS_2013_2272076 crossref_primary_10_1186_1687_6180_2012_54 crossref_primary_10_1109_TGRS_2019_2907567 crossref_primary_10_1109_TGRS_2023_3242364 crossref_primary_10_1109_JSTARS_2017_2694439 crossref_primary_10_1109_JSTARS_2012_2192472 crossref_primary_10_1134_S1054661820040124 crossref_primary_10_1080_10095020_2020_1860653 crossref_primary_10_1109_TGRS_2012_2226943 crossref_primary_10_1080_01431161_2022_2068358 crossref_primary_10_1109_JSTARS_2016_2539286 crossref_primary_10_1109_TNNLS_2017_2749279 crossref_primary_10_1021_ac902569e crossref_primary_10_1016_j_chemolab_2024_105252 crossref_primary_10_1109_MGRS_2013_2244672 crossref_primary_10_1109_JSTARS_2013_2242255 crossref_primary_10_1137_24M1650600 crossref_primary_10_1109_TGRS_2017_2683719 crossref_primary_10_1109_TGRS_2022_3146904 crossref_primary_10_1109_JSTARS_2018_2805779 crossref_primary_10_1109_TGRS_2019_2916296 crossref_primary_10_1109_TGRS_2024_3353259 crossref_primary_10_3390_rs13132550 crossref_primary_10_1109_TCI_2024_3402322 crossref_primary_10_1109_JSTARS_2017_2651063 crossref_primary_10_1109_TGRS_2023_3310982 crossref_primary_10_1109_TGRS_2011_2158829 crossref_primary_10_3390_ijgi7050195 crossref_primary_10_1109_TGRS_2014_2322862 crossref_primary_10_1109_TGRS_2013_2240001 crossref_primary_10_1109_TGRS_2015_2424719 crossref_primary_10_1109_TGRS_2016_2581180 crossref_primary_10_1109_MSP_2018_2877582 crossref_primary_10_1109_TGRS_2024_3505292 crossref_primary_10_1016_j_ultramic_2020_113116 crossref_primary_10_3390_rs10060816 crossref_primary_10_1109_LGRS_2014_2317352 crossref_primary_10_1080_10095020_2012_719684 crossref_primary_10_1117_1_JRS_10_045023 crossref_primary_10_32604_cmc_2022_027936 crossref_primary_10_1109_JSTARS_2013_2267204 crossref_primary_10_1109_TSP_2012_2222390 crossref_primary_10_1109_TGRS_2020_2988519 crossref_primary_10_1109_TGRS_2022_3187867 crossref_primary_10_1016_j_rse_2016_01_022 crossref_primary_10_1109_JSTARS_2014_2371615 crossref_primary_10_3390_rs13040713 crossref_primary_10_1109_TGRS_2012_2185056 crossref_primary_10_1109_TGRS_2017_2753847 crossref_primary_10_1007_s12518_021_00385_0 crossref_primary_10_1007_s11760_021_02032_y crossref_primary_10_1109_TSP_2021_3096806 crossref_primary_10_1109_MGRS_2017_2762087 crossref_primary_10_3390_e20030150 crossref_primary_10_1117_1_JRS_10_025024 crossref_primary_10_1109_TGRS_2024_3393570 crossref_primary_10_1109_JSTARS_2013_2268661 crossref_primary_10_1109_TGRS_2012_2230182 crossref_primary_10_1016_j_culher_2018_01_003 crossref_primary_10_1109_TIP_2012_2219546 crossref_primary_10_1080_01431161_2021_2018151 crossref_primary_10_1109_TNN_2011_2164621 crossref_primary_10_1016_j_ijleo_2018_07_060 crossref_primary_10_1016_j_isprsjprs_2017_03_004 crossref_primary_10_3390_rs10050801 crossref_primary_10_1109_JSTARS_2021_3086631 crossref_primary_10_1109_JSTARS_2019_2893621 crossref_primary_10_1109_TGRS_2014_2356556 crossref_primary_10_1109_LGRS_2012_2189934 crossref_primary_10_1109_JBHI_2013_2279335 crossref_primary_10_1080_01431161_2012_690084 crossref_primary_10_1002_asjc_1375 crossref_primary_10_1214_20_AOS2016 crossref_primary_10_1007_s12524_015_0546_1 crossref_primary_10_1109_JSTARS_2012_2194696 crossref_primary_10_1109_TGRS_2017_2724944 crossref_primary_10_1109_TGRS_2011_2170999 crossref_primary_10_1109_TGRS_2021_3131773 crossref_primary_10_1109_TIP_2020_2974062 crossref_primary_10_3390_app10010237 crossref_primary_10_1111_cgf_13903 crossref_primary_10_1109_TNNLS_2020_3002618 crossref_primary_10_1016_j_cam_2023_115708 crossref_primary_10_1109_TGRS_2018_2805340 crossref_primary_10_1109_TGRS_2019_2903875 crossref_primary_10_1016_j_neucom_2016_03_063 crossref_primary_10_1016_j_ins_2021_07_009 crossref_primary_10_1109_TIP_2011_2160189 crossref_primary_10_1109_TGRS_2012_2198826 crossref_primary_10_1109_TGRS_2013_2265322 crossref_primary_10_1109_TSP_2020_2989551 crossref_primary_10_1109_TGRS_2021_3066474 crossref_primary_10_1109_TGRS_2022_3152782 crossref_primary_10_1007_s41870_023_01226_6 crossref_primary_10_1109_JSTARS_2014_2373491 crossref_primary_10_1109_TSP_2011_2180718 crossref_primary_10_1137_19M1279472 crossref_primary_10_1109_TGRS_2012_2195185 crossref_primary_10_1016_j_isprsjprs_2016_04_008 crossref_primary_10_1007_s10851_011_0276_0 crossref_primary_10_1109_LGRS_2019_2961502 crossref_primary_10_3390_rs70912160 crossref_primary_10_1109_TCI_2015_2465161 crossref_primary_10_1109_TSP_2013_2287683 crossref_primary_10_1109_LGRS_2013_2288093 crossref_primary_10_1109_TGRS_2012_2213261 crossref_primary_10_1109_TGRS_2018_2852745 crossref_primary_10_3390_s18103528 crossref_primary_10_1109_TGRS_2016_2616161 crossref_primary_10_1029_2011JB008859 crossref_primary_10_1080_01431161_2024_2408038 crossref_primary_10_1109_TSP_2011_2174052 crossref_primary_10_1016_j_patrec_2014_04_005 crossref_primary_10_1007_s10044_015_0517_8 crossref_primary_10_1109_JSTARS_2017_2682281 crossref_primary_10_1117_1_JRS_10_042009 crossref_primary_10_1109_JSTARS_2016_2580178 crossref_primary_10_3390_rs12172834 crossref_primary_10_1109_TGRS_2022_3199261 crossref_primary_10_1109_TGRS_2017_2751060 crossref_primary_10_1109_JSTARS_2016_2528339 crossref_primary_10_1007_s00034_022_01969_w crossref_primary_10_1366_10_06079 crossref_primary_10_1109_TGRS_2019_2929776 crossref_primary_10_1155_2015_842017 crossref_primary_10_1109_JSTARS_2024_3465227 crossref_primary_10_1080_10798587_2015_1022994 crossref_primary_10_1109_TSP_2016_2614491 crossref_primary_10_1109_TGRS_2016_2580702 crossref_primary_10_1109_TIP_2014_2300822 crossref_primary_10_1038_nmeth_3254 crossref_primary_10_1109_LGRS_2013_2285926 crossref_primary_10_1109_TGRS_2011_2174443 crossref_primary_10_1080_01431161_2021_1933245 crossref_primary_10_1109_JSTARS_2015_2403254 crossref_primary_10_1109_TGRS_2019_2946751 crossref_primary_10_1007_s11075_020_00985_8 crossref_primary_10_1109_TGRS_2012_2227757 crossref_primary_10_1007_s11265_010_0533_2 crossref_primary_10_1109_TGRS_2011_2141672 crossref_primary_10_1109_JSTARS_2021_3116698 crossref_primary_10_1109_JSTARS_2023_3333955 crossref_primary_10_2200_S00392ED1V01Y201107IVM012 crossref_primary_10_1016_j_sigpro_2016_07_016 crossref_primary_10_1109_TSP_2016_2560142 crossref_primary_10_1109_JSTARS_2023_3238653 crossref_primary_10_1038_s41598_017_15952_y crossref_primary_10_1109_JSTARS_2012_2199282 crossref_primary_10_3390_rs10050737 crossref_primary_10_1016_j_sigpro_2012_05_019 crossref_primary_10_1109_JSTARS_2022_3190027 crossref_primary_10_1109_TGRS_2022_3232570 crossref_primary_10_1631_FITEE_1600028 crossref_primary_10_1109_TGRS_2019_2899826 crossref_primary_10_3390_rs15112898  | 
    
| Cites_doi | 10.1109/IGARSS.1994.399740 10.1109/IGARSS.2008.4779330 10.1287/ijoc.6.1.1 10.1109/79.974718 10.1109/36.911111 10.1109/TGRS.2004.835299 10.1109/TGRS.2006.874135 10.1109/79.974730 10.1117/12.366289 10.1109/36.752192 10.1016/j.laa.2005.06.025 10.1002/nav.3800020109 10.1029/2002JE001847 10.1109/79.974715 10.1109/TSP.2008.928937 10.1137/S0097539799363992 10.1109/TSP.2009.2025797 10.1038/44565 10.1201/b11656-24 10.1109/36.3001 10.1109/TGRS.2005.844293 10.1109/36.297973 10.1109/79.974727 10.1109/TGRS.2004.839806 10.1016/0012-365X(94)00111-U 10.1080/10556789908805766 10.1109/TGRS.2006.888466 10.1029/JB090iS02p0C797 10.1017/CBO9780511804441 10.1109/TGRS.2004.837326 10.1002/0470845899 10.1109/TGRS.2003.819189 10.3133/ofr93592  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2009 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009  | 
    
| Copyright_xml | – notice: 2009 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009  | 
    
| DBID | 97E RIA RIE AAYXX CITATION IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3  | 
    
| DOI | 10.1109/TSP.2009.2025802 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database  | 
    
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering  | 
    
| DatabaseTitleList | Technology Research Database Technology Research Database Technology Research Database  | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Applied Sciences  | 
    
| EISSN | 1941-0476 | 
    
| EndPage | 4432 | 
    
| ExternalDocumentID | 2315461181 22020660 10_1109_TSP_2009_2025802 5089462  | 
    
| Genre | orig-research | 
    
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 53G 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AJQPL AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION IQODW RIG 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3  | 
    
| ID | FETCH-LOGICAL-c449t-422b72dfff529674107cc3236a0476bea9e99f2a5831e7dacdccf604af1d00b33 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1053-587X | 
    
| IngestDate | Thu Oct 02 03:36:46 EDT 2025 Sun Sep 28 02:01:01 EDT 2025 Mon Jun 30 10:21:36 EDT 2025 Mon Jul 21 09:17:20 EDT 2025 Wed Oct 01 03:33:57 EDT 2025 Thu Apr 24 22:50:54 EDT 2025 Tue Aug 26 16:37:03 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 11 | 
    
| Keywords | Monte Carlo method minimum-volume enclosing simplex Linear programming Algorithm Convex programming Implementation Spectral signature Sufficient condition Volume Simplex method Heuristic method Signal processing Numerical simulation convex optimization hyperspectral unmixing Convex analysis  | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c449t-422b72dfff529674107cc3236a0476bea9e99f2a5831e7dacdccf604af1d00b33 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23  | 
    
| PQID | 861107907 | 
    
| PQPubID | 23500 | 
    
| PageCount | 15 | 
    
| ParticipantIDs | crossref_citationtrail_10_1109_TSP_2009_2025802 proquest_miscellaneous_875040707 ieee_primary_5089462 proquest_journals_861107907 proquest_miscellaneous_34968131 pascalfrancis_primary_22020660 crossref_primary_10_1109_TSP_2009_2025802  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2009-11-01 | 
    
| PublicationDateYYYYMMDD | 2009-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2009 text: 2009-11-01 day: 01  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | New York, NY | 
    
| PublicationPlace_xml | – name: New York, NY – name: New York  | 
    
| PublicationTitle | IEEE transactions on signal processing | 
    
| PublicationTitleAbbrev | TSP | 
    
| PublicationYear | 2009 | 
    
| Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref35 ref13 (ref43) 0 ref34 ref12 ref36 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref39 strang (ref37) 2006 ref17 ref19 ref18 swayze (ref44) 1992; 2 lillesand (ref1) 2004 boardman (ref14) 1995; 1 lee (ref22) 1999; 401 keshava (ref9) 2003; 14 ref24 ref23 ref26 ref25 ref41 ref21 swayze (ref45) 1997 winter (ref15) 1999 wang (ref38) 2009 ref28 clark (ref46) 1993 zymnis (ref20) 2007 ref29 ref8 ref7 ref4 ref6 ref5 winter (ref16) 2004; 5425 ref40 boardman (ref27) 1993; 1 campbell (ref3) 2002 (ref42) 0  | 
    
| References_xml | – ident: ref28 doi: 10.1109/IGARSS.1994.399740 – ident: ref30 doi: 10.1109/IGARSS.2008.4779330 – ident: ref39 doi: 10.1287/ijoc.6.1.1 – year: 2009 ident: ref38 article-title: non-negative least-correlated component analysis for separation of dependent sources by volume maximization publication-title: IEEE Trans Pattern Anal Mach Intell – ident: ref6 doi: 10.1109/79.974718 – ident: ref19 doi: 10.1109/36.911111 – volume: 14 start-page: 55 year: 2003 ident: ref9 article-title: a survey of spectral unmixing algorithms publication-title: Lincoln Lab J – ident: ref21 doi: 10.1109/TGRS.2004.835299 – ident: ref33 doi: 10.1109/TGRS.2006.874135 – ident: ref8 doi: 10.1109/79.974730 – start-page: 266 year: 1999 ident: ref15 article-title: n-findr: an algorithm for fast autonomous spectral end-member determination in hyperspectral data publication-title: Proc SPIE Conf Imaging Spectrometry V doi: 10.1117/12.366289 – ident: ref18 doi: 10.1109/36.752192 – year: 2004 ident: ref1 publication-title: Remote Sensing and Image Interpretation – ident: ref23 doi: 10.1016/j.laa.2005.06.025 – ident: ref41 doi: 10.1002/nav.3800020109 – ident: ref4 doi: 10.1029/2002JE001847 – ident: ref5 doi: 10.1109/79.974715 – ident: ref29 doi: 10.1109/TSP.2008.928937 – ident: ref36 doi: 10.1137/S0097539799363992 – volume: 5425 start-page: 31 year: 2004 ident: ref16 article-title: a proof of the n-findr algorithm for the automated detection of endmembers in a hyperspectral image publication-title: Proc SPIE Conf Algorithms and Technol Multispect Hyperspect Data – ident: ref24 doi: 10.1109/TSP.2009.2025797 – year: 0 ident: ref43 publication-title: AVIRIS Free Standard Data Products – volume: 401 start-page: 788 year: 1999 ident: ref22 article-title: learning the parts of objects by non-negative matrix factorization publication-title: Nature doi: 10.1038/44565 – year: 0 ident: ref42 – ident: ref13 doi: 10.1201/b11656-24 – volume: 1 start-page: 23 year: 1995 ident: ref14 article-title: mapping target signatures via partial unmixing of aviris data publication-title: Proc Summ JPL Airborne Earth Sci Workshop – volume: 2 start-page: 47 year: 1992 ident: ref44 article-title: ground-truthing aviris mineral mapping at cuprite, nevada publication-title: Proc Summaries 4th JPL Airborne Geosci Workshop – year: 2006 ident: ref37 publication-title: Linear Algebra and its Applications – ident: ref11 doi: 10.1109/36.3001 – ident: ref17 doi: 10.1109/TGRS.2005.844293 – year: 1997 ident: ref45 publication-title: The hydrothermal and structural history of the cuprite mining district Southwestern Nevada An integrated geological and geophysical approach – ident: ref25 doi: 10.1109/36.297973 – ident: ref7 doi: 10.1109/79.974727 – year: 2007 ident: ref20 article-title: hyperspectral image unmixing via alternating projected subgradients publication-title: Proc Asilomar Conf Signals and Syst – ident: ref32 doi: 10.1109/TGRS.2004.839806 – ident: ref35 doi: 10.1016/0012-365X(94)00111-U – ident: ref40 doi: 10.1080/10556789908805766 – ident: ref26 doi: 10.1109/TGRS.2006.888466 – ident: ref10 doi: 10.1029/JB090iS02p0C797 – ident: ref34 doi: 10.1017/CBO9780511804441 – ident: ref2 doi: 10.1109/TGRS.2004.837326 – ident: ref31 doi: 10.1002/0470845899 – ident: ref12 doi: 10.1109/TGRS.2003.819189 – volume: 1 start-page: 11 year: 1993 ident: ref27 article-title: automating spectral unmixing of aviris data using convex geometry concepts publication-title: Proc Summ 4th Annu JPL Airborne Geosci Workshop – year: 1993 ident: ref46 article-title: the u.s. geological survey digital spectral library: version 1: 0.2 to 3.0 <formula formulatype="inline"> <tex notation="tex">$\mu {\rm m}$</tex></formula> publication-title: Open File Rep 93-592 U S Geol Surv doi: 10.3133/ofr93592 – year: 2002 ident: ref3 publication-title: Radar Remote Sensing of Planetary Surfaces  | 
    
| SSID | ssj0014496 | 
    
| Score | 2.4753096 | 
    
| Snippet | Hyperspectral unmixing aims at identifying the hidden spectral signatures (or endmembers) and their corresponding proportions (or abundances) from an observed... A cyclic minimization algorithm for approximating the MVES problem is developed using linear programs (LPs), which can be practically implemented by readily...  | 
    
| SourceID | proquest pascalfrancis crossref ieee  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 4418 | 
    
| SubjectTerms | Algorithm design and analysis Algorithms Applied sciences Approximation Computer simulation Convex analysis convex optimization Councils Criteria Data mining Exact sciences and technology Formulations Hyperspectral imaging Hyperspectral sensors hyperspectral unmixing Information, signal and communications theory Layout linear programming Minimization methods minimum-volume enclosing simplex Miscellaneous Monitoring Monte Carlo methods Pixels Principal component analysis Signal processing Signal processing algorithms Solvers Studies Telecommunications and information theory  | 
    
| Title | A Convex Analysis-Based Minimum-Volume Enclosing Simplex Algorithm for Hyperspectral Unmixing | 
    
| URI | https://ieeexplore.ieee.org/document/5089462 https://www.proquest.com/docview/861107907 https://www.proquest.com/docview/34968131 https://www.proquest.com/docview/875040707  | 
    
| Volume | 57 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014496 issn: 1053-587X databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKT3CgQEGEQvGBCxLedWLHsY-larVCWoTULtoLihzHhojdBO0mUtVfz9h5iLe4RfJYSTy257Nn5huEXikZG2eZIUWaCsLBBhLlEkacok6lqWXO-Nzh5XuxWPF363R9gN5MuTDW2hB8Zmf-Mfjyy8Z0_qpsDmBCcb_h3smk6HO1Jo8B56EWF8AFRlKZrUeXJFXz66sPPTElHPRTOVygjCYo1FTxEZF6D4Pi-moWv23MwdpcHqHl-J19kMnXWdcWM3P7C4Xj__7IA3R_gJ34rJ8nD9GBrR-hez-QER6jT2f43Ieg3-CRqIS8BRNX4mVVV9tuSz6GjQxf1GbT-BsGfFV5amGQ33xudlX7ZYsBAeMFnGz7BM4dvHFVb6sbEH6MVpcX1-cLMhRfIAaGsiU8SYosKZ1z3jMLuINmxrCECU15JgqrlVWgVZ1KFtus1KY0xgnKtYtLSgvGnqDDuqntU4Rp4lhmZCFKCXhFCl0aVVguNJOySLiN0HzUR24GZnJfIGOThxMKVTlo0NfLVPmgwQi9nnp861k5_iF77BUwyQ1jH6HTn1Q-tSfQD3AYjdDJOAfyYV3vcyn8eVnRLEIvp1ZYkN7LomvbdPvcM_DLmMURwn-RkJ5S39MsPfvzp52gu8FnFTIen6PDdtfZFwB92uI0zPnvapgBHA | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5QAceBVEKLQ-cEHCu05sJ_axVK0W6FZI3UV7QVHi2CViN0G7iVTx67Gdh3iLWySPlcRjez57Zr4BeClFqIymCuecx5hZG4iliSg2khjJuaZGudzh-WU8W7J3K77ag9djLozW2gef6Yl79L78olatuyqbWjAhmdtwb3HGGO-ytUafAWO-GpcFDBRzkawGpySR08XVh46a0h71ueivUAYj5KuquJjIbGeHxXT1LH7bmr29Ob8P8-FLuzCTL5O2ySfq2y8kjv_7Kw_gXg880Uk3Ux7Cnq4ewd0f6AgP4NMJOnVB6DdooCrBb6yRK9C8rMpNu8Ef_VaGziq1rt0dA7oqHbmwlV9f19uy-bxBFgOjmT3bdimcW_vGZbUpb6zwY1ieny1OZ7gvv4CVHcoGsyjKk6gwxjjfrEUeJFGKRjTOCEviXGdSS6vXjAsa6qTIVKGUiQnLTFgQklP6BParutJPAZHI0ESJPC6ERSwizgolc83ijAqRR0wHMB30kaqem9yVyFin_oxCZGo16CpmyrTXYACvxh5fO16Of8geOAWMcv3YB3D0k8rH9sj2s0iMBHA4zIG0X9m7VMTuxCxJEsDx2GqXpPOzZJWu213qOPhFSMMA0F8khCPVd0RLz_78acdwe7aYX6QXby_fH8Id78Hy-Y_PYb_ZtvqFBUJNfuTn_3f-MARp | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Convex+Analysis-Based+Minimum-Volume+Enclosing+Simplex+Algorithm+for+Hyperspectral+Unmixing&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Tsung-Han+Chan&rft.au=Chong-Yung+Chi&rft.au=Yu-Min+Huang&rft.au=Wing-Kin+Ma&rft.date=2009-11-01&rft.pub=IEEE&rft.issn=1053-587X&rft.volume=57&rft.issue=11&rft.spage=4418&rft.epage=4432&rft_id=info:doi/10.1109%2FTSP.2009.2025802&rft.externalDocID=5089462 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |