Spatio-temporal analysis of forest fire events in the Margalla Hills, Islamabad, Pakistan using socio-economic and environmental variable data with machine learning methods

Most forest fires in the Margalla Hills are related to human activities and socioeconomic factors are essential to assess their likelihood of occurrence. This study considers both environmental (altitude, precipitation, forest type, terrain and humidity index) and socioeconomic (population density,...

Full description

Saved in:
Bibliographic Details
Published inJournal of forestry research Vol. 33; no. 1; pp. 183 - 194
Main Authors Tariq, Aqil, Shu, Hong, Siddiqui, Saima, Munir, Iqra, Sharifi, Alireza, Li, Qingting, Lu, Linlin
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.02.2022
Springer
Springer Nature B.V
State Key Laboratory of Information,Engineering in Surveying,Mapping and Remote Sensing,Wuhan University,Wuhan 430079,Hubei,People's Republic of China%Department of Geography,University of the Punjab,Lahore,Punjab,Pakistan%Department of Surveying Engineering,Faculty of Civil Engineering,Shahid Rajaee Teacher Training University,Tehran,Iran%Airborne Remote Sensing Center,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,People's Republic of China%Key Laboratory of Digital Earth Science,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,People's Republic of China
Subjects
Online AccessGet full text
ISSN1007-662X
1993-0607
DOI10.1007/s11676-021-01354-4

Cover

Abstract Most forest fires in the Margalla Hills are related to human activities and socioeconomic factors are essential to assess their likelihood of occurrence. This study considers both environmental (altitude, precipitation, forest type, terrain and humidity index) and socioeconomic (population density, distance from roads and urban areas) factors to analyze how human behavior affects the risk of forest fires. Maximum entropy (Maxent) modelling and random forest (RF) machine learning methods were used to predict the probability and spatial diffusion patterns of forest fires in the Margalla Hills. The receiver operating characteristic (ROC) curve and the area under the ROC curve (AUC) were used to compare the models. We studied the fire history from 1990 to 2019 to establish the relationship between the probability of forest fire and environmental and socioeconomic changes. Using Maxent, the AUC fire probability values for the 1999s, 2009s, and 2019s were 0.532, 0.569, and 0.518, respectively; using RF, they were 0.782, 0.825, and 0.789, respectively. Fires were mainly distributed in urban areas and their probability of occurrence was related to accessibility and human behaviour/activity. AUC principles for validation were greater in the random forest models than in the Maxent models. Our results can be used to establish preventive measures to reduce risks of forest fires by considering socio-economic and environmental conditions.
AbstractList Most forest fires in the Margalla Hills are related to human activities and socioeconomic factors are essential to assess their likelihood of occurrence. This study considers both environmental (altitude, precipitation, forest type, terrain and humidity index) and socioeconomic (population density, distance from roads and urban areas) factors to analyze how human behavior affects the risk of forest fires. Maximum entropy (Maxent) modelling and random forest (RF) machine learning methods were used to predict the probability and spatial diffusion patterns of forest fires in the Margalla Hills. The receiver operating characteristic (ROC) curve and the area under the ROC curve (AUC) were used to compare the models. We studied the fire history from 1990 to 2019 to establish the relationship between the probability of forest fire and environmental and socioeconomic changes. Using Maxent, the AUC fire probability values for the 1999s, 2009s, and 2019s were 0.532, 0.569, and 0.518, respectively; using RF, they were 0.782, 0.825, and 0.789, respectively. Fires were mainly distributed in urban areas and their probability of occurrence was related to accessibility and human behaviour/activity. AUC principles for validation were greater in the random forest models than in the Maxent models. Our results can be used to establish preventive measures to reduce risks of forest fires by considering socio-economic and environmental conditions.
Most forest fires in the Margalla Hills are related to human activities and socioeconomic factors are essential to assess their likelihood of occurrence.This study consid-ers both environmental (altitude,precipitation,forest type,terrain and humidity index) and socioeconomic (popula-tion density,distance from roads and urban areas) factors to analyze how human behavior affects the risk of forest fires.Maximum entropy (Maxent) modelling and random forest (RF) machine learning methods were used to predict the probability and spatial diffusion patterns of forest fires in the Margalla Hills.The receiver operating characteristic(ROC) curve and the area under the ROC curve (AUC) were used to compare the models.We studied the fire history from 1990 to 2019 to establish the relationship between the prob-ability of forest fire and environmental and socioeconomic changes.Using Maxent,the AUC fire probability values for the 1999s,2009s,and 2019s were 0.532,0.569,and 0.518,respectively;using RF,they were 0.782,0.825,and 0.789,respectively.Fires were mainly distributed in urban areas and their probability of occurrence was related to acces-sibility and human behaviour/activity.AUC principles for validation were greater in the random forest models than in the Maxent models.Our results can be used to establish preventive measures to reduce risks of forest fires by consid-ering socio-economic and environmental conditions.
Audience Academic
Author Munir, Iqra
Lu, Linlin
Shu, Hong
Siddiqui, Saima
Li, Qingting
Tariq, Aqil
Sharifi, Alireza
AuthorAffiliation State Key Laboratory of Information,Engineering in Surveying,Mapping and Remote Sensing,Wuhan University,Wuhan 430079,Hubei,People's Republic of China%Department of Geography,University of the Punjab,Lahore,Punjab,Pakistan%Department of Surveying Engineering,Faculty of Civil Engineering,Shahid Rajaee Teacher Training University,Tehran,Iran%Airborne Remote Sensing Center,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,People's Republic of China%Key Laboratory of Digital Earth Science,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,People's Republic of China
AuthorAffiliation_xml – name: State Key Laboratory of Information,Engineering in Surveying,Mapping and Remote Sensing,Wuhan University,Wuhan 430079,Hubei,People's Republic of China%Department of Geography,University of the Punjab,Lahore,Punjab,Pakistan%Department of Surveying Engineering,Faculty of Civil Engineering,Shahid Rajaee Teacher Training University,Tehran,Iran%Airborne Remote Sensing Center,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,People's Republic of China%Key Laboratory of Digital Earth Science,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,People's Republic of China
Author_xml – sequence: 1
  givenname: Aqil
  surname: Tariq
  fullname: Tariq, Aqil
  organization: State Key Laboratory of Information, Engineering in Surveying, Mapping and Remote Sensing, Wuhan University
– sequence: 2
  givenname: Hong
  surname: Shu
  fullname: Shu, Hong
  organization: State Key Laboratory of Information, Engineering in Surveying, Mapping and Remote Sensing, Wuhan University
– sequence: 3
  givenname: Saima
  surname: Siddiqui
  fullname: Siddiqui, Saima
  organization: Department of Geography, University of the Punjab
– sequence: 4
  givenname: Iqra
  surname: Munir
  fullname: Munir, Iqra
  organization: State Key Laboratory of Information, Engineering in Surveying, Mapping and Remote Sensing, Wuhan University
– sequence: 5
  givenname: Alireza
  surname: Sharifi
  fullname: Sharifi, Alireza
  organization: Department of Surveying Engineering, Faculty of Civil Engineering, Shahid Rajaee Teacher Training University
– sequence: 6
  givenname: Qingting
  surname: Li
  fullname: Li, Qingting
  email: liqt@radi.ac.cn
  organization: Airborne Remote Sensing Center, Aerospace Information Research Institute, Chinese Academy of Sciences
– sequence: 7
  givenname: Linlin
  surname: Lu
  fullname: Lu, Linlin
  organization: Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences
BookMark eNp9kl9rFDEUxQepYLv6BXwKiOBDpyaZmczMYynVFloUVPAt3Mnc7GbNJGuS3bLfyQ9ppiv-KVLykBDO-YV7ck6KI-cdFsVLRs8Ype3byJhoRUk5KymrmrqsnxTHrO-rkgraHuVzVpVC8K_PipMY15Q2dVXVx8WPTxtIxpcJp40PYAk4sPtoIvGaaB8wJqJNQII7dCkS40haIbmFsARrgVwZa-MpuY4WJhhgPCUf4ZuJCRzZRuOWJHqV8ai885NRGT8SdDsTvJsyMD-4g2BgsEhGSEDuTFqRCdTKOCQWIbgZMmFa-TE-L55qsBFf_NoXxZd3l58vrsqbD--vL85vSlXXfSrZ0ENX80bU2NFRUBRj33DFNac4sBb1WPdUD93YcoBKt5UQivNGM2h1q4a6WhSvD9w7cBrcUq79NuRcorT7_ZpTzimjbNa9Oeg2wX_f5qjkZKLCnItDv42Si0rUtOP5HxbFqwfS30wuMq_v-uovVQ4XpXHapwBqhsrzlgohWF81WXX2H1VeI-aIczG0yff_GLqDQQUfY0AtlUnzt7tsNFYyKud-yEOLZG6RvG-RnEfkD6ybYCYI-8dN1cEUs9gtMfwZ9hHXT9ST3Ow
CitedBy_id crossref_primary_10_1007_s10342_023_01643_z
crossref_primary_10_61186_ifej_12_2_88
crossref_primary_10_1007_s42398_022_00259_0
crossref_primary_10_1016_j_jclepro_2025_144800
crossref_primary_10_1007_s12145_022_00925_1
crossref_primary_10_1007_s12665_023_11190_w
crossref_primary_10_1007_s12517_022_10867_z
crossref_primary_10_1080_10106049_2023_2167005
crossref_primary_10_1080_17538947_2023_2243916
crossref_primary_10_1080_10106049_2022_2102231
crossref_primary_10_1016_j_asoc_2023_110362
crossref_primary_10_1109_JSTARS_2022_3188732
crossref_primary_10_1007_s10708_024_11217_0
crossref_primary_10_1007_s11069_024_06810_y
crossref_primary_10_1080_13683500_2024_2336119
crossref_primary_10_1007_s12517_022_10442_6
crossref_primary_10_9719_EEG_2023_56_5_501
crossref_primary_10_1007_s12145_025_01782_4
crossref_primary_10_18182_tjf_1282768
crossref_primary_10_3389_fenvs_2022_1037547
crossref_primary_10_1080_19475705_2023_2250517
crossref_primary_10_3390_rs15030598
crossref_primary_10_1007_s41748_024_00439_4
crossref_primary_10_1016_j_rama_2024_02_008
crossref_primary_10_1080_10106049_2022_2134466
crossref_primary_10_1007_s11676_024_01734_6
crossref_primary_10_3390_f16020273
crossref_primary_10_3390_rs14225724
crossref_primary_10_1038_s41598_024_82433_4
crossref_primary_10_3390_su142013625
crossref_primary_10_1016_j_envc_2024_100930
crossref_primary_10_1007_s44415_025_00004_5
crossref_primary_10_1080_10106049_2023_2229952
crossref_primary_10_1007_s10661_024_13027_w
crossref_primary_10_1016_j_ocecoaman_2023_106934
crossref_primary_10_1007_s11356_024_34664_1
crossref_primary_10_1080_13467581_2023_2298877
crossref_primary_10_1109_JSTARS_2022_3189528
crossref_primary_10_1007_s11042_023_15881_1
crossref_primary_10_1016_j_geosus_2023_05_001
crossref_primary_10_1016_j_asr_2025_01_050
crossref_primary_10_1016_j_foreco_2023_121057
crossref_primary_10_3390_math11204346
crossref_primary_10_1007_s12524_021_01475_7
crossref_primary_10_3390_rs15041144
crossref_primary_10_3390_f15040661
crossref_primary_10_1016_j_ecolind_2022_108980
crossref_primary_10_1007_s11600_024_01308_4
crossref_primary_10_2166_wcc_2024_675
crossref_primary_10_1016_j_enmm_2023_100838
crossref_primary_10_1016_j_heliyon_2024_e28525
crossref_primary_10_3390_f14010046
crossref_primary_10_1016_j_asr_2023_12_054
crossref_primary_10_3390_f14040704
crossref_primary_10_1007_s11676_022_01502_4
crossref_primary_10_1007_s10668_023_03312_y
crossref_primary_10_3390_rs15174208
crossref_primary_10_1007_s11676_024_01737_3
Cites_doi 10.5532/kjafm.2014.16.2.114(inKorean)
10.1080/19475705.2021.1920477
10.1016/j.foreco.2012.03.003
10.1016/j.rse.2014.02.001
10.1029/2006GL028946
10.1016/j.desal.2005.11.013
10.3390/rs8040347
10.1016/j.agrformet.2016.11.002
10.1007/978-0-387-84858-7_2
10.3390/rs10030460
10.1016/j.apgeog.2014.05.015
10.1071/WF11178
10.1093/bib/bbq011
10.1007/s12665-014-3502-4
10.1016/j.scitotenv.2011.05.032
10.1080/09523360802438983
10.5721/EuJRS20124535
10.1371/journal.pone.0161344
10.1016/j.jenvman.2018.03.080
10.3390/rs11010086
10.1590/s0103-90162006000100009
10.3390/rs12203402
10.1016/j.catena.2015.10.010
10.1080/17538947.2016.1208686
10.1890/07-0539.1
10.1007/s40808-019-00593-z
10.1016/j.scitotenv.2004.04.017
10.1016/S0168-1923(98)00102-6
10.1002/2015JD024326
10.1016/j.ecolmodel.2005.03.026
10.1016/j.ecolind.2015.12.030
10.4172/2157-7625.1000174
10.1111/j.2006.0906-7590.04596.x
10.1016/j.envsoft.2006.05.013
10.1080/19475705.2015.1084541
10.1002/ecs2.1528
10.1108/17568690910977483
10.1071/WF08187
10.1016/j.firesaf.2014.05.012
ContentType Journal Article
Copyright Northeast Forestry University 2021
COPYRIGHT 2022 Springer
Northeast Forestry University 2021.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Northeast Forestry University 2021
– notice: COPYRIGHT 2022 Springer
– notice: Northeast Forestry University 2021.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
7S9
L.6
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s11676-021-01354-4
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA



DeliveryMethod fulltext_linktorsrc
Discipline Forestry
Economics
EISSN 1993-0607
EndPage 194
ExternalDocumentID lyyj202201014
A706661935
10_1007_s11676_021_01354_4
GeographicLocations Pakistan
GeographicLocations_xml – name: Pakistan
GroupedDBID -04
-0D
-4W
-56
-5G
-BR
-EM
-SD
-S~
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
188
199
1N0
2.D
29K
29~
2B.
2B~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2XV
2~H
30V
3SX
4.4
406
408
40D
40E
5GY
5VR
5VS
5XA
67N
6NX
78A
8RM
8TC
8UJ
92G
92I
92M
93N
93Q
95-
95.
95~
96X
9D9
9DD
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFRAH
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BDATZ
BGNMA
CAG
CAJED
CCEZO
CHBEP
CHDYS
COF
CS3
CSCUP
CW9
D-I
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IAG
IAO
IEA
IEP
IGS
IJ-
IKXTQ
ITC
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JUIAU
JZLTJ
KOV
LLZTM
M4Y
MA-
N2Q
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
PF0
PT4
PT5
Q--
Q-3
QOK
QOR
QOS
R-D
R89
R9I
RHV
ROL
RPX
RSV
RT4
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SCL
SCLPG
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
T8T
TCJ
TGD
TSG
TUC
U1F
U1G
U2A
U5D
U5N
U9L
UG4
UOJIU
UTJUX
UZ3
UZXMN
VC2
VFIZW
W48
WK6
WK8
YLTOR
ZMTXR
ZOVNA
~A9
~MM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
TGMPQ
AEIIB
ABRTQ
7S9
L.6
4A8
PSX
ID FETCH-LOGICAL-c449t-1b9a842564e80d60e6d952c2f20eb17efd490fb8d72aa3f7366c225f1a7f7cb43
IEDL.DBID U2A
ISSN 1007-662X
IngestDate Thu May 29 04:11:31 EDT 2025
Fri Sep 05 07:43:48 EDT 2025
Fri Jul 25 23:15:46 EDT 2025
Tue Jun 17 21:30:26 EDT 2025
Tue Jun 10 20:32:43 EDT 2025
Thu Apr 24 23:08:33 EDT 2025
Tue Jul 01 01:12:20 EDT 2025
Fri Feb 21 02:46:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords GIS
Random forest machine learning
Maxent
Disaster risk reduction
Multi-temporal analysis
Forest fires
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c449t-1b9a842564e80d60e6d952c2f20eb17efd490fb8d72aa3f7366c225f1a7f7cb43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2622098939
PQPubID 2044294
PageCount 12
ParticipantIDs wanfang_journals_lyyj202201014
proquest_miscellaneous_2636408299
proquest_journals_2622098939
gale_infotracmisc_A706661935
gale_infotracacademiconefile_A706661935
crossref_citationtrail_10_1007_s11676_021_01354_4
crossref_primary_10_1007_s11676_021_01354_4
springer_journals_10_1007_s11676_021_01354_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Heidelberg
PublicationTitle Journal of forestry research
PublicationTitleAbbrev J. For. Res
PublicationTitle_FL Journal of Forestry Research
PublicationYear 2022
Publisher Springer Singapore
Springer
Springer Nature B.V
State Key Laboratory of Information,Engineering in Surveying,Mapping and Remote Sensing,Wuhan University,Wuhan 430079,Hubei,People's Republic of China%Department of Geography,University of the Punjab,Lahore,Punjab,Pakistan%Department of Surveying Engineering,Faculty of Civil Engineering,Shahid Rajaee Teacher Training University,Tehran,Iran%Airborne Remote Sensing Center,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,People's Republic of China%Key Laboratory of Digital Earth Science,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,People's Republic of China
Publisher_xml – name: Springer Singapore
– name: Springer
– name: Springer Nature B.V
– name: State Key Laboratory of Information,Engineering in Surveying,Mapping and Remote Sensing,Wuhan University,Wuhan 430079,Hubei,People's Republic of China%Department of Geography,University of the Punjab,Lahore,Punjab,Pakistan%Department of Surveying Engineering,Faculty of Civil Engineering,Shahid Rajaee Teacher Training University,Tehran,Iran%Airborne Remote Sensing Center,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,People's Republic of China%Key Laboratory of Digital Earth Science,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,People's Republic of China
References TariqAShuHCA-Markov chain analysis of seasonal land surface temperature and land use landcover change using optical multi-temporal satellite data ofRemote Sens20201212310.3390/rs12203402
SatirOBerberogluSDonmezCMapping regional forest fire probability using artificial neural network model in a Mediterranean forest ecosystemGeomatics Nat Hazards Risk201671645165810.1080/19475705.2015.1084541
FlanniganMDKrawchukMAde GrootWJWottonBMGowmanLMImplications of changing climate for global wildland fireInt J Wildl Fire20091848310.1071/WF08187
SajjadSHShiraziSAAhmed KhanMRazaAUrbanization effects on temperature trends of Lahore during 1950–2007Int J Clim Chang Strateg Manag2009127428110.1108/17568690910977483
PourtaghiZSPourghasemiHRAretanoRSemeraroTInvestigation of general indicators influencing on forest fire and its susceptibility modeling using different data mining techniquesEcol Indic201664728410.1016/j.ecolind.2015.12.030
Abidi A, Syeda I, Noor J (2012) Economic analysis of forest management in Pakistan - a case study of changa Mange and Muree Forest, MPRA Paper 28086, University Library of Munich, Germany. https://ideas.repec.org/p/pra/mprapa/28086.html
Malik RN, Husain SZ (2003) Evaluating deforestation using landsat TM and SPOT XS data in dry sub-tropical forest of Margalla Hills, northwest of Pakistan. Geoinf Eur Integr 429–434
SmakhtinVUHughesDAAutomated estimation and analyses of meteorological drought characteristics from monthly rainfall dataModel Softw20072288089010.1016/j.envsoft.2006.05.013
CalleMLUrreaVLetter to the editor: Stability of Random Forest importance measuresBrief Bioinform201112868910.1093/bib/bbq01120360022
TariqAShuHSaddiquiSMousaBGMunirINasriAWaqasHBaqaMFLuLForest fire monitoring using spatial-statistical and Geo-spatial analysis of factors determining forest fire in Margalla Hills, Islamabad, PakistanGeomatics Nat Hazards Risk202110.1080/19475705.2021.1920477
TimmLCPiresLFRoverattiRJacques ArthurRCReichardtKMartins De OliveiraJCSantos BacchiOOField spatial and temporal patterns of soil water content and bulk density changesSci Agric200663556410.1590/s0103-90162006000100009
HiroseKKimCKKimCSChangBWIgarashiYAoyamaMWet and dry deposition patterns of plutonium in Daejeon, KoreaSci Total Environ20043322432521:CAS:528:DC%2BD2cXntFWktr8%3D10.1016/j.scitotenv.2004.04.0171533690615336906
IqbalMFKhanMRMalikAHLand use change detection in the limestone exploitation area of Margalla Hills National Park (MHNP), Islamabad, Pakistan using geo-spatial techniquesJ Himal Earth Sci2013468998
AliSAKhatunRAhmadAAhmadSNApplication of GIS-based analytic hierarchy process and frequency ratio model to flood vulnerable mapping and risk area estimation at Sundarban region, IndiaModel Earth Syst Environ201951083110210.1007/s40808-019-00593-z
Costafreda-AumedesSVega-GarciaCComasCImproving fire season definition by optimized temporal modelling of daily human-caused ignitionsJ Environ Manage201821790991:STN:280:DC%2BC1MnmvV2guw%3D%3D10.1016/j.jenvman.2018.03.0802959711129597111
WangRBalkanskiYBoucherOCiaisPSchusterGLChevallierFTaoSEstimation of global black carbon direct radiative forcing and its uncertainty constrained by observationsJ Geophy Res2016121105948597110.1002/2015JD024326
JenkinsMCollinsLPriceOPenmanTZylstraPHorseyBBradstockREnvironmental values and fire hazard of eucalypt plantingsEcosphere2016711410.1002/ecs2.1528
WonMKimKLeeSAnalysis of burn severity in large-fire area using SPOT5 images and field survey dataKorean J Agric For Meteorol20141611412410.5532/kjafm.2014.16.2.114(inKorean)
KhalidNSaeed AhmadSMonitoring forest cover change of margalla hills over a period of two decades (1992–2011): a spatiotemporal perspectiveJ Ecosyst Ecography2015061810.4172/2157-7625.1000174
KhalidNSaeed AhmadSMonitoring forest cover change of Margalla hills over a period of two decades (1992–2011): a spatiotemporal perspectiveJ Ecosyst Ecography201610.4172/2157-7625.1000174
Bar MassadaASyphardADStewartSIRadeloffVCWildfire ignition-distribution modelling: A comparative study in the Huron-Manistee National Forest, Michigan, USAInt J Wildl Fire20132217418310.1071/WF11178
RoyDPKumarSSMulti-year MODIS active fire type classification over the Brazilian tropical Moist forest biomeInt J Digit Earth201710548410.1080/17538947.2016.1208686
Hastie T, Tibshirani R, Friedman J (2009) Overview of supervised learning. In The Elements of Statistical Learning. Springer: New York, NY, USA, pp. 9–41. ISBN 978-0-387-84858-7
PhillipsSBAnejaVPKangDAryaSPModelling and analysis of the atmospheric nitrogen deposition in North CarolinaInt J Glob Environ Issues2006623125210.1016/j.ecolmodel.2005.03.026
HislopSJonesSSoto-BerelovMSkidmoreAHaywoodANguyenTUsing landsat spectral indices in time-series to assess wildfire disturbance and recoveryRemote Sens201810.3390/rs10030460
KimSJLimCHKimGSLeeJGeigerTRahmatiOSonYLeeWMulti-temporal analysis of forest fire probability using socio-economic and environmental variablesRemote Sens201910.3390/rs11010086
ArpaciAMalowerschnigBSassOVacikHUsing multi variate data mining techniques for estimating fire susceptibility of Tyrolean forestsAppl Geogr20145325827010.1016/j.apgeog.2014.05.015
OliveiraSOehlerFSan-Miguel-AyanzJCamiaAPereiraJMCModeling spatial patterns of fire occurrence in Mediterranean Europe using multiple regression and random forestFor Ecol Manage201227511712910.1016/j.foreco.2012.03.003
PourtaghiZSPourghasemiHRRossiMForest fire susceptibility mapping in the Minudasht forests, Golestan provinceIran Environ Earth Sci2015731515153310.1007/s12665-014-3502-4
CutlerRLawlerJThomas EdwardsJBeardKHCutlerAHessKTGibsonJRandom forests for classification in ecologyEcology200788112783279210.1890/07-0539.118051647
VilarLGómezIMartínez-VegaJEchavarríaPRiañoDMartínMPMultitemporal modelling of socio-economic wildfire drivers in central spain between the 1980s and the 2000s: comparing generalized linear models to machine learning algorithmsPLoS One201611e016134410.1371/journal.pone.016134427557113
TanvirMSMujtabaIMNeural network based correlations for estimating temperature elevation for seawater in MSF desalination processDesalination20061952512721:CAS:528:DC%2BD28XnsFCqsL0%3D10.1016/j.desal.2005.11.013
RoyDPWulderMALovelandTRWulderCEAllenRGAndersonMCHelderDIronsJRJohnsonDMKennedyRScambosTASchaafCBSchottJRShengYVermoteEFBelwardASBindschadlerRCohenWBGaoFHippleJDHostertPHuntingtonJJusticeCOKilicAKovalskyyVLeeZPLymburnerLMasekJGMcCorkelJShuaiYTrezzaRVogelmannJWynneRHZhuZLandsat-8: Science and product vision for terrestrial global change researchRemote Sens Environ201414515417210.1016/j.rse.2014.02.001
PlucinskiMPThe timing of vegetation fire occurrence in a human landscapeFire Saf J201467425210.1016/j.firesaf.2014.05.012
RahmatiOPourghasemiHRMelesseAMApplication of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: a case study at Mehran RegionIran Catena201613736037210.1016/j.catena.2015.10.010
AldersleyAMurraySJCornellSEGlobal and regional analysis of climate and human drivers of wildfireSci Total Environ2011409347234811:CAS:528:DC%2BC3MXotlGhs7g%3D10.1016/j.scitotenv.2011.05.0322168984321689843
BridgesBThe Seoul Olympics: Economic miracle meets the worldInt J Hist Sport2008251939195210.1080/09523360802438983
ElithJGrahamCHAndersonRPDudíkMFerrierSGuisanAHijmansRJHuettmannFLeathwickJRLehmannALiJLohmannLGLoiselleBAManionGMoritzCNakamuraMNakazawaYOvertonJMPetersonATPhillipsSJRichardsonKScachetti-PereiraRSchapireRESoberónJWilliamsSWiszMSZimmermannNENovel methods improve prediction of species’ distributions from occurrence dataEcography (cop)20062912915110.1111/j.2006.0906-7590.04596.x
OkAOAkarOGungorOEvaluation of random forest method for agricultural crop classificationEur J Remote Sens20124542143210.5721/EuJRS20124535
AragãoLEOCMalhiYRoman-CuestaRMSaatchiSAndersonLOShimabukuroYESpatial patterns and fire response of recent Amazonian droughtsGeophys Res Lett2007341510.1029/2006GL028946
BuiDTLeKTTNguyenVCLeHDRevhaugITropical forest fire susceptibility mapping at the Cat Ba National Park area, Hai Phong City, Vietnam, using GIS-based Kernel logistic regressionRemote Sens2016811510.3390/rs8040347
BuiDTBuiQTNguyenQPPradhanBNampakHTrinhPTA hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical areaAgric For Meteorol2017233324410.1016/j.agrformet.2016.11.002
NalderIAWeinRWSpatial interpolation of climatic normals: test of a new method in the Canadian boreal forestAgric for Meteorol19989221122510.1016/S0168-1923(98)00102-6
M Jenkins (1354_CR20) 2016; 7
N Khalid (1354_CR21) 2015; 06
A Bar Massada (1354_CR6) 2013; 22
J Elith (1354_CR13) 2006; 29
A Tariq (1354_CR40) 2021
M Won (1354_CR44) 2014; 16
MD Flannigan (1354_CR14) 2009; 18
S Hislop (1354_CR18) 2018
ZS Pourtaghi (1354_CR30) 2015; 73
L Vilar (1354_CR42) 2016; 11
DP Roy (1354_CR33) 2017; 10
VU Smakhtin (1354_CR37) 2007; 22
SA Ali (1354_CR3) 2019; 5
SH Sajjad (1354_CR35) 2009; 1
DT Bui (1354_CR9) 2017; 233
DP Roy (1354_CR34) 2014; 145
ZS Pourtaghi (1354_CR31) 2016; 64
1354_CR1
S Costafreda-Aumedes (1354_CR11) 2018; 217
LEOC Aragão (1354_CR4) 2007; 34
1354_CR24
AO Ok (1354_CR26) 2012; 45
LC Timm (1354_CR41) 2006; 63
MP Plucinski (1354_CR29) 2014; 67
MS Tanvir (1354_CR38) 2006; 195
K Hirose (1354_CR17) 2004; 332
N Khalid (1354_CR22) 2016
SJ Kim (1354_CR23) 2019
1354_CR16
R Cutler (1354_CR12) 2007; 88
IA Nalder (1354_CR25) 1998; 92
DT Bui (1354_CR8) 2016; 8
ML Calle (1354_CR10) 2011; 12
MF Iqbal (1354_CR19) 2013; 46
A Arpaci (1354_CR5) 2014; 53
A Aldersley (1354_CR2) 2011; 409
O Rahmati (1354_CR32) 2016; 137
B Bridges (1354_CR7) 2008; 25
SB Phillips (1354_CR28) 2006; 6
A Tariq (1354_CR39) 2020; 12
S Oliveira (1354_CR27) 2012; 275
O Satir (1354_CR36) 2016; 7
R Wang (1354_CR43) 2016; 121
References_xml – reference: TariqAShuHCA-Markov chain analysis of seasonal land surface temperature and land use landcover change using optical multi-temporal satellite data ofRemote Sens20201212310.3390/rs12203402
– reference: RoyDPWulderMALovelandTRWulderCEAllenRGAndersonMCHelderDIronsJRJohnsonDMKennedyRScambosTASchaafCBSchottJRShengYVermoteEFBelwardASBindschadlerRCohenWBGaoFHippleJDHostertPHuntingtonJJusticeCOKilicAKovalskyyVLeeZPLymburnerLMasekJGMcCorkelJShuaiYTrezzaRVogelmannJWynneRHZhuZLandsat-8: Science and product vision for terrestrial global change researchRemote Sens Environ201414515417210.1016/j.rse.2014.02.001
– reference: SatirOBerberogluSDonmezCMapping regional forest fire probability using artificial neural network model in a Mediterranean forest ecosystemGeomatics Nat Hazards Risk201671645165810.1080/19475705.2015.1084541
– reference: Costafreda-AumedesSVega-GarciaCComasCImproving fire season definition by optimized temporal modelling of daily human-caused ignitionsJ Environ Manage201821790991:STN:280:DC%2BC1MnmvV2guw%3D%3D10.1016/j.jenvman.2018.03.0802959711129597111
– reference: BuiDTLeKTTNguyenVCLeHDRevhaugITropical forest fire susceptibility mapping at the Cat Ba National Park area, Hai Phong City, Vietnam, using GIS-based Kernel logistic regressionRemote Sens2016811510.3390/rs8040347
– reference: PourtaghiZSPourghasemiHRRossiMForest fire susceptibility mapping in the Minudasht forests, Golestan provinceIran Environ Earth Sci2015731515153310.1007/s12665-014-3502-4
– reference: TariqAShuHSaddiquiSMousaBGMunirINasriAWaqasHBaqaMFLuLForest fire monitoring using spatial-statistical and Geo-spatial analysis of factors determining forest fire in Margalla Hills, Islamabad, PakistanGeomatics Nat Hazards Risk202110.1080/19475705.2021.1920477
– reference: KimSJLimCHKimGSLeeJGeigerTRahmatiOSonYLeeWMulti-temporal analysis of forest fire probability using socio-economic and environmental variablesRemote Sens201910.3390/rs11010086
– reference: RoyDPKumarSSMulti-year MODIS active fire type classification over the Brazilian tropical Moist forest biomeInt J Digit Earth201710548410.1080/17538947.2016.1208686
– reference: SmakhtinVUHughesDAAutomated estimation and analyses of meteorological drought characteristics from monthly rainfall dataModel Softw20072288089010.1016/j.envsoft.2006.05.013
– reference: TanvirMSMujtabaIMNeural network based correlations for estimating temperature elevation for seawater in MSF desalination processDesalination20061952512721:CAS:528:DC%2BD28XnsFCqsL0%3D10.1016/j.desal.2005.11.013
– reference: BuiDTBuiQTNguyenQPPradhanBNampakHTrinhPTA hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical areaAgric For Meteorol2017233324410.1016/j.agrformet.2016.11.002
– reference: ElithJGrahamCHAndersonRPDudíkMFerrierSGuisanAHijmansRJHuettmannFLeathwickJRLehmannALiJLohmannLGLoiselleBAManionGMoritzCNakamuraMNakazawaYOvertonJMPetersonATPhillipsSJRichardsonKScachetti-PereiraRSchapireRESoberónJWilliamsSWiszMSZimmermannNENovel methods improve prediction of species’ distributions from occurrence dataEcography (cop)20062912915110.1111/j.2006.0906-7590.04596.x
– reference: TimmLCPiresLFRoverattiRJacques ArthurRCReichardtKMartins De OliveiraJCSantos BacchiOOField spatial and temporal patterns of soil water content and bulk density changesSci Agric200663556410.1590/s0103-90162006000100009
– reference: WonMKimKLeeSAnalysis of burn severity in large-fire area using SPOT5 images and field survey dataKorean J Agric For Meteorol20141611412410.5532/kjafm.2014.16.2.114(inKorean)
– reference: WangRBalkanskiYBoucherOCiaisPSchusterGLChevallierFTaoSEstimation of global black carbon direct radiative forcing and its uncertainty constrained by observationsJ Geophy Res2016121105948597110.1002/2015JD024326
– reference: JenkinsMCollinsLPriceOPenmanTZylstraPHorseyBBradstockREnvironmental values and fire hazard of eucalypt plantingsEcosphere2016711410.1002/ecs2.1528
– reference: HislopSJonesSSoto-BerelovMSkidmoreAHaywoodANguyenTUsing landsat spectral indices in time-series to assess wildfire disturbance and recoveryRemote Sens201810.3390/rs10030460
– reference: SajjadSHShiraziSAAhmed KhanMRazaAUrbanization effects on temperature trends of Lahore during 1950–2007Int J Clim Chang Strateg Manag2009127428110.1108/17568690910977483
– reference: AldersleyAMurraySJCornellSEGlobal and regional analysis of climate and human drivers of wildfireSci Total Environ2011409347234811:CAS:528:DC%2BC3MXotlGhs7g%3D10.1016/j.scitotenv.2011.05.0322168984321689843
– reference: FlanniganMDKrawchukMAde GrootWJWottonBMGowmanLMImplications of changing climate for global wildland fireInt J Wildl Fire20091848310.1071/WF08187
– reference: OkAOAkarOGungorOEvaluation of random forest method for agricultural crop classificationEur J Remote Sens20124542143210.5721/EuJRS20124535
– reference: CalleMLUrreaVLetter to the editor: Stability of Random Forest importance measuresBrief Bioinform201112868910.1093/bib/bbq01120360022
– reference: RahmatiOPourghasemiHRMelesseAMApplication of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: a case study at Mehran RegionIran Catena201613736037210.1016/j.catena.2015.10.010
– reference: OliveiraSOehlerFSan-Miguel-AyanzJCamiaAPereiraJMCModeling spatial patterns of fire occurrence in Mediterranean Europe using multiple regression and random forestFor Ecol Manage201227511712910.1016/j.foreco.2012.03.003
– reference: AragãoLEOCMalhiYRoman-CuestaRMSaatchiSAndersonLOShimabukuroYESpatial patterns and fire response of recent Amazonian droughtsGeophys Res Lett2007341510.1029/2006GL028946
– reference: BridgesBThe Seoul Olympics: Economic miracle meets the worldInt J Hist Sport2008251939195210.1080/09523360802438983
– reference: CutlerRLawlerJThomas EdwardsJBeardKHCutlerAHessKTGibsonJRandom forests for classification in ecologyEcology200788112783279210.1890/07-0539.118051647
– reference: PhillipsSBAnejaVPKangDAryaSPModelling and analysis of the atmospheric nitrogen deposition in North CarolinaInt J Glob Environ Issues2006623125210.1016/j.ecolmodel.2005.03.026
– reference: IqbalMFKhanMRMalikAHLand use change detection in the limestone exploitation area of Margalla Hills National Park (MHNP), Islamabad, Pakistan using geo-spatial techniquesJ Himal Earth Sci2013468998
– reference: KhalidNSaeed AhmadSMonitoring forest cover change of Margalla hills over a period of two decades (1992–2011): a spatiotemporal perspectiveJ Ecosyst Ecography201610.4172/2157-7625.1000174
– reference: Bar MassadaASyphardADStewartSIRadeloffVCWildfire ignition-distribution modelling: A comparative study in the Huron-Manistee National Forest, Michigan, USAInt J Wildl Fire20132217418310.1071/WF11178
– reference: PourtaghiZSPourghasemiHRAretanoRSemeraroTInvestigation of general indicators influencing on forest fire and its susceptibility modeling using different data mining techniquesEcol Indic201664728410.1016/j.ecolind.2015.12.030
– reference: Malik RN, Husain SZ (2003) Evaluating deforestation using landsat TM and SPOT XS data in dry sub-tropical forest of Margalla Hills, northwest of Pakistan. Geoinf Eur Integr 429–434
– reference: PlucinskiMPThe timing of vegetation fire occurrence in a human landscapeFire Saf J201467425210.1016/j.firesaf.2014.05.012
– reference: Hastie T, Tibshirani R, Friedman J (2009) Overview of supervised learning. In The Elements of Statistical Learning. Springer: New York, NY, USA, pp. 9–41. ISBN 978-0-387-84858-7
– reference: KhalidNSaeed AhmadSMonitoring forest cover change of margalla hills over a period of two decades (1992–2011): a spatiotemporal perspectiveJ Ecosyst Ecography2015061810.4172/2157-7625.1000174
– reference: AliSAKhatunRAhmadAAhmadSNApplication of GIS-based analytic hierarchy process and frequency ratio model to flood vulnerable mapping and risk area estimation at Sundarban region, IndiaModel Earth Syst Environ201951083110210.1007/s40808-019-00593-z
– reference: VilarLGómezIMartínez-VegaJEchavarríaPRiañoDMartínMPMultitemporal modelling of socio-economic wildfire drivers in central spain between the 1980s and the 2000s: comparing generalized linear models to machine learning algorithmsPLoS One201611e016134410.1371/journal.pone.016134427557113
– reference: Abidi A, Syeda I, Noor J (2012) Economic analysis of forest management in Pakistan - a case study of changa Mange and Muree Forest, MPRA Paper 28086, University Library of Munich, Germany. https://ideas.repec.org/p/pra/mprapa/28086.html
– reference: NalderIAWeinRWSpatial interpolation of climatic normals: test of a new method in the Canadian boreal forestAgric for Meteorol19989221122510.1016/S0168-1923(98)00102-6
– reference: ArpaciAMalowerschnigBSassOVacikHUsing multi variate data mining techniques for estimating fire susceptibility of Tyrolean forestsAppl Geogr20145325827010.1016/j.apgeog.2014.05.015
– reference: HiroseKKimCKKimCSChangBWIgarashiYAoyamaMWet and dry deposition patterns of plutonium in Daejeon, KoreaSci Total Environ20043322432521:CAS:528:DC%2BD2cXntFWktr8%3D10.1016/j.scitotenv.2004.04.0171533690615336906
– volume: 16
  start-page: 114
  year: 2014
  ident: 1354_CR44
  publication-title: Korean J Agric For Meteorol
  doi: 10.5532/kjafm.2014.16.2.114(inKorean)
– year: 2021
  ident: 1354_CR40
  publication-title: Geomatics Nat Hazards Risk
  doi: 10.1080/19475705.2021.1920477
– volume: 275
  start-page: 117
  year: 2012
  ident: 1354_CR27
  publication-title: For Ecol Manage
  doi: 10.1016/j.foreco.2012.03.003
– volume: 145
  start-page: 154
  year: 2014
  ident: 1354_CR34
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2014.02.001
– volume: 34
  start-page: 1
  year: 2007
  ident: 1354_CR4
  publication-title: Geophys Res Lett
  doi: 10.1029/2006GL028946
– volume: 195
  start-page: 251
  year: 2006
  ident: 1354_CR38
  publication-title: Desalination
  doi: 10.1016/j.desal.2005.11.013
– volume: 8
  start-page: 1
  year: 2016
  ident: 1354_CR8
  publication-title: Remote Sens
  doi: 10.3390/rs8040347
– volume: 233
  start-page: 32
  year: 2017
  ident: 1354_CR9
  publication-title: Agric For Meteorol
  doi: 10.1016/j.agrformet.2016.11.002
– ident: 1354_CR16
  doi: 10.1007/978-0-387-84858-7_2
– year: 2018
  ident: 1354_CR18
  publication-title: Remote Sens
  doi: 10.3390/rs10030460
– volume: 53
  start-page: 258
  year: 2014
  ident: 1354_CR5
  publication-title: Appl Geogr
  doi: 10.1016/j.apgeog.2014.05.015
– volume: 22
  start-page: 174
  year: 2013
  ident: 1354_CR6
  publication-title: Int J Wildl Fire
  doi: 10.1071/WF11178
– volume: 12
  start-page: 86
  year: 2011
  ident: 1354_CR10
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbq011
– volume: 73
  start-page: 1515
  year: 2015
  ident: 1354_CR30
  publication-title: Iran Environ Earth Sci
  doi: 10.1007/s12665-014-3502-4
– volume: 409
  start-page: 3472
  year: 2011
  ident: 1354_CR2
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2011.05.032
– volume: 25
  start-page: 1939
  year: 2008
  ident: 1354_CR7
  publication-title: Int J Hist Sport
  doi: 10.1080/09523360802438983
– volume: 45
  start-page: 421
  year: 2012
  ident: 1354_CR26
  publication-title: Eur J Remote Sens
  doi: 10.5721/EuJRS20124535
– volume: 11
  start-page: e0161344
  year: 2016
  ident: 1354_CR42
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0161344
– volume: 217
  start-page: 90
  year: 2018
  ident: 1354_CR11
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2018.03.080
– year: 2019
  ident: 1354_CR23
  publication-title: Remote Sens
  doi: 10.3390/rs11010086
– ident: 1354_CR24
– volume: 63
  start-page: 55
  year: 2006
  ident: 1354_CR41
  publication-title: Sci Agric
  doi: 10.1590/s0103-90162006000100009
– volume: 12
  start-page: 1
  year: 2020
  ident: 1354_CR39
  publication-title: Remote Sens
  doi: 10.3390/rs12203402
– volume: 137
  start-page: 360
  year: 2016
  ident: 1354_CR32
  publication-title: Iran Catena
  doi: 10.1016/j.catena.2015.10.010
– volume: 10
  start-page: 54
  year: 2017
  ident: 1354_CR33
  publication-title: Int J Digit Earth
  doi: 10.1080/17538947.2016.1208686
– volume: 88
  start-page: 2783
  issue: 11
  year: 2007
  ident: 1354_CR12
  publication-title: Ecology
  doi: 10.1890/07-0539.1
– volume: 5
  start-page: 1083
  year: 2019
  ident: 1354_CR3
  publication-title: Model Earth Syst Environ
  doi: 10.1007/s40808-019-00593-z
– volume: 332
  start-page: 243
  year: 2004
  ident: 1354_CR17
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2004.04.017
– volume: 92
  start-page: 211
  year: 1998
  ident: 1354_CR25
  publication-title: Agric for Meteorol
  doi: 10.1016/S0168-1923(98)00102-6
– volume: 121
  start-page: 5948
  issue: 10
  year: 2016
  ident: 1354_CR43
  publication-title: J Geophy Res
  doi: 10.1002/2015JD024326
– volume: 6
  start-page: 231
  year: 2006
  ident: 1354_CR28
  publication-title: Int J Glob Environ Issues
  doi: 10.1016/j.ecolmodel.2005.03.026
– volume: 64
  start-page: 72
  year: 2016
  ident: 1354_CR31
  publication-title: Ecol Indic
  doi: 10.1016/j.ecolind.2015.12.030
– year: 2016
  ident: 1354_CR22
  publication-title: J Ecosyst Ecography
  doi: 10.4172/2157-7625.1000174
– ident: 1354_CR1
– volume: 29
  start-page: 129
  year: 2006
  ident: 1354_CR13
  publication-title: Ecography (cop)
  doi: 10.1111/j.2006.0906-7590.04596.x
– volume: 22
  start-page: 880
  year: 2007
  ident: 1354_CR37
  publication-title: Model Softw
  doi: 10.1016/j.envsoft.2006.05.013
– volume: 06
  start-page: 1
  year: 2015
  ident: 1354_CR21
  publication-title: J Ecosyst Ecography
  doi: 10.4172/2157-7625.1000174
– volume: 46
  start-page: 89
  year: 2013
  ident: 1354_CR19
  publication-title: J Himal Earth Sci
– volume: 7
  start-page: 1645
  year: 2016
  ident: 1354_CR36
  publication-title: Geomatics Nat Hazards Risk
  doi: 10.1080/19475705.2015.1084541
– volume: 7
  start-page: 1
  year: 2016
  ident: 1354_CR20
  publication-title: Ecosphere
  doi: 10.1002/ecs2.1528
– volume: 1
  start-page: 274
  year: 2009
  ident: 1354_CR35
  publication-title: Int J Clim Chang Strateg Manag
  doi: 10.1108/17568690910977483
– volume: 18
  start-page: 483
  year: 2009
  ident: 1354_CR14
  publication-title: Int J Wildl Fire
  doi: 10.1071/WF08187
– volume: 67
  start-page: 42
  year: 2014
  ident: 1354_CR29
  publication-title: Fire Saf J
  doi: 10.1016/j.firesaf.2014.05.012
SSID ssj0054334
Score 2.495371
Snippet Most forest fires in the Margalla Hills are related to human activities and socioeconomic factors are essential to assess their likelihood of occurrence. This...
Most forest fires in the Margalla Hills are related to human activities and socioeconomic factors are essential to assess their likelihood of occurrence.This...
SourceID wanfang
proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 183
SubjectTerms altitude
Analysis
Biomedical and Life Sciences
Economics
Entropy
Environmental conditions
fire history
Forest & brush fires
Forest fires
forest types
Forestry
Hills
Human acts
Human behavior
humans
humidity
landscapes
Learning algorithms
Life Sciences
Machine learning
Maximum entropy
Methods
Original Paper
Pakistan
Population density
risk
Risk reduction
Risk taking
Social factors
Socioeconomic factors
Socioeconomics
Urban areas
Title Spatio-temporal analysis of forest fire events in the Margalla Hills, Islamabad, Pakistan using socio-economic and environmental variable data with machine learning methods
URI https://link.springer.com/article/10.1007/s11676-021-01354-4
https://www.proquest.com/docview/2622098939
https://www.proquest.com/docview/2636408299
https://d.wanfangdata.com.cn/periodical/lyyj202201014
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9QwEA56B-LL4U9cPZcRBB_cQJumafu4yJ2Loi-6sD6FNE2Wk9oVu3dw_5N_pDNpersrcuBzJ9OWmUxnmpnvY-y1y6z3qmy4TQhU22WSVz713JkM04eaunioUPz0WS2W8sMqX8WhsH7sdh-PJEOk3g27paqghlkqf7NccnmXHeeEJ4VevBTzMf7mMhvOkuknnFJiFUdl_q3j4HP0d1DeOx0NMz2dN9167_Nz_oCdxLwR5oOhH7I7rnvE7hGxJrG1PWa_v4TWaB6hplowEW0ENh58EAOP4Q0CYlMPFx1g6geB5xY9ARYXbdvPIHiIqU0zg5hbdkCt8WsgK264i3PMqL6BvSE5vOEVVt00hwXUdAr0fxd-hE5NB5GaYg0DX3X_hC3Pz76-W_DIxMCtlNWWp3Vl6LxOSVcmjUqcaqpcWOFFgrG-cL6RVeLrsimEMZkvMqUsBgqfmsIXtpbZU3bUbTr3jAGVaLktU9sUpcwFvhFmmKWzxvgcVSQTlo4G0TbClBNbRqt3AMtkRI1G1MGIWk7Y25s1PweQjlul35CdNe1g1GxNHETA5yMsLD0vqKbDxDafsNMDSdx59vDy6Ck67vxeCyVEUmEWWE3Yq5vLtJK62Tq3uSSZTAWib5SZjR62U3Hbo0-jF-6k2-vr74LmpYl1-fn_6XvB7tPSoQv9lB1tf126l5hkbespO56___bxbBr21h9rOx-6
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegk4AXvhGFMQ4JiQeaKXEcJ3ms0EZhHy-sUnmKHMeuBiFFpEUafxN_JHeOs7YTmrTnXC62fDnf2b_fHWNvTaytlVkV6JCKaptYBLmNbGBUjOFDSSgeShRPTuVkKj7PkpknhbU92r2_knSeek12i2RKgFlKf-NEBOI22xFRliUDtjP--PXooPfAiYi722Q6hpOSzzxZ5v9atjakq255437UsXoaq5r5xgZ0-IBN-6F3uJPv-6tlua__XKnqeNO5PWT3fUQK486EHrFbpnnM7lDLTuoD94T9_eJA14EvYlWD8nVMYGHBOjGw6DjB1YJq4bwBDCrBddBFG4PJeV23I3C2p0pVjcBHrQ0Q6H4OZB-LwHiGNKqvYIN-hx_8jfk8MbyA4KxAJ8fww2FADfimF3PoOmG3T9n08ODswyTwPR4CLUS-DKIyV3QTKIXJwkqGRlZ5wjW3PMRdJDW2Enloy6xKuVKxTWMpNbogG6nUproU8TM2aBaNec6Akr9EZ5Gu0kwkHGeEsWtmtFI2QRXhkEX9QhfaF0CnPhx1sS7dTMtQ4DIUbhkKMWTvL9_52ZX_uFb6HdlPQb4BNWvlKQ44PqqyVYxTyhYxZE6GbHdLEv9pvf24t8DC-5S24JLzMMf4Mh-yN5eP6U3CyTVmsSKZWLoW4igz6k1treK6oe95615L1xcX3zgxsamf84ub6XvN7k7OTo6L40-nRy_ZPVLTYd132WD5a2VeYSi3LPf8n_sPQEI-Aw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA96wuGL-Imr5zmC4INbrk3TtH1c1GX9OgRd2LeQpslyUrOHuyfc_-Qf6Uya3u6KHPjc6bRlJpOZ5vebYeylzY1zsmoTk1JTbZuLpHaZS6zOMX1oCMVDheLnUzmbiw-LYrHD4g9o9-FIsuc0UJcmvzk5b93JlviWyZLAs1QK54VIxE12S-BeTaCuOZ8MsbgQeX-uTD_kpOSLSJv5t469renvAL1zUhr4Pd5pv9zZiqZ32Z2YQ8KkN_o9dsP6--yQhmzS5LYH7PfXAJNOYtupDnTsPAIrBy6IgcNQB6F70xrOPGAaCGHmLXoFzM66bj2G4C260e0YYp7pgWDySyCLrhIbOc2ovoUdwhw-8BdW4MTJAgKgAv3rhR8BtWkhjqlYQj-7ev2Qzafvvr2ZJXEqQ2KEqDdJ1tSazu6ksFXaytTKti644Y6nGPdL61pRp66p2pJrnbsyl9Jg0HCZLl1pGpE_Ygd-5e1jBlSuFabKTFtWouD4RZhtVtZo7QpUkY5YNhhEmdiynCZndGrbbJmMqNCIKhhRiRF7fXXPed-w41rpV2RnRasZNRsdSQn4ftQXS01Kqu8wyS1G7GhPEleh2b88eIqKUWCtuOQ8rTEjrEfsxdVlupOQbd6uLkgml2HoN8qMBw_bqrju1Y-jF26lu8vL75y40zSB-cn_6XvODr-8napP708_PmW3SUsPTj9iB5ufF_YZ5l6b5jgsrz9B7SVO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatio-temporal+analysis+of+forest+fire+events+in+the+Margalla+Hills%2C+Islamabad%2C+Pakistan+using+socio-economic+and+environmental+variable+data+with+machine+learning+methods&rft.jtitle=Journal+of+forestry+research&rft.au=Aqil%2C+Tariq&rft.au=Shu%2C+Hong&rft.au=Siddiqui%2C+Saima&rft.au=Munir%2C+Iqra&rft.date=2022-02-01&rft.issn=1007-662X&rft.volume=33&rft.issue=1+p.183-194&rft.spage=183&rft.epage=194&rft_id=info:doi/10.1007%2Fs11676-021-01354-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Flyyj%2Flyyj.jpg