Spatio-temporal analysis of forest fire events in the Margalla Hills, Islamabad, Pakistan using socio-economic and environmental variable data with machine learning methods
Most forest fires in the Margalla Hills are related to human activities and socioeconomic factors are essential to assess their likelihood of occurrence. This study considers both environmental (altitude, precipitation, forest type, terrain and humidity index) and socioeconomic (population density,...
Saved in:
Published in | Journal of forestry research Vol. 33; no. 1; pp. 183 - 194 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Singapore
01.02.2022
Springer Springer Nature B.V State Key Laboratory of Information,Engineering in Surveying,Mapping and Remote Sensing,Wuhan University,Wuhan 430079,Hubei,People's Republic of China%Department of Geography,University of the Punjab,Lahore,Punjab,Pakistan%Department of Surveying Engineering,Faculty of Civil Engineering,Shahid Rajaee Teacher Training University,Tehran,Iran%Airborne Remote Sensing Center,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,People's Republic of China%Key Laboratory of Digital Earth Science,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,People's Republic of China |
Subjects | |
Online Access | Get full text |
ISSN | 1007-662X 1993-0607 |
DOI | 10.1007/s11676-021-01354-4 |
Cover
Abstract | Most forest fires in the Margalla Hills are related to human activities and socioeconomic factors are essential to assess their likelihood of occurrence. This study considers both environmental (altitude, precipitation, forest type, terrain and humidity index) and socioeconomic (population density, distance from roads and urban areas) factors to analyze how human behavior affects the risk of forest fires. Maximum entropy (Maxent) modelling and random forest (RF) machine learning methods were used to predict the probability and spatial diffusion patterns of forest fires in the Margalla Hills. The receiver operating characteristic (ROC) curve and the area under the ROC curve (AUC) were used to compare the models. We studied the fire history from 1990 to 2019 to establish the relationship between the probability of forest fire and environmental and socioeconomic changes. Using Maxent, the AUC fire probability values for the 1999s, 2009s, and 2019s were 0.532, 0.569, and 0.518, respectively; using RF, they were 0.782, 0.825, and 0.789, respectively. Fires were mainly distributed in urban areas and their probability of occurrence was related to accessibility and human behaviour/activity. AUC principles for validation were greater in the random forest models than in the Maxent models. Our results can be used to establish preventive measures to reduce risks of forest fires by considering socio-economic and environmental conditions. |
---|---|
AbstractList | Most forest fires in the Margalla Hills are related to human activities and socioeconomic factors are essential to assess their likelihood of occurrence. This study considers both environmental (altitude, precipitation, forest type, terrain and humidity index) and socioeconomic (population density, distance from roads and urban areas) factors to analyze how human behavior affects the risk of forest fires. Maximum entropy (Maxent) modelling and random forest (RF) machine learning methods were used to predict the probability and spatial diffusion patterns of forest fires in the Margalla Hills. The receiver operating characteristic (ROC) curve and the area under the ROC curve (AUC) were used to compare the models. We studied the fire history from 1990 to 2019 to establish the relationship between the probability of forest fire and environmental and socioeconomic changes. Using Maxent, the AUC fire probability values for the 1999s, 2009s, and 2019s were 0.532, 0.569, and 0.518, respectively; using RF, they were 0.782, 0.825, and 0.789, respectively. Fires were mainly distributed in urban areas and their probability of occurrence was related to accessibility and human behaviour/activity. AUC principles for validation were greater in the random forest models than in the Maxent models. Our results can be used to establish preventive measures to reduce risks of forest fires by considering socio-economic and environmental conditions. Most forest fires in the Margalla Hills are related to human activities and socioeconomic factors are essential to assess their likelihood of occurrence.This study consid-ers both environmental (altitude,precipitation,forest type,terrain and humidity index) and socioeconomic (popula-tion density,distance from roads and urban areas) factors to analyze how human behavior affects the risk of forest fires.Maximum entropy (Maxent) modelling and random forest (RF) machine learning methods were used to predict the probability and spatial diffusion patterns of forest fires in the Margalla Hills.The receiver operating characteristic(ROC) curve and the area under the ROC curve (AUC) were used to compare the models.We studied the fire history from 1990 to 2019 to establish the relationship between the prob-ability of forest fire and environmental and socioeconomic changes.Using Maxent,the AUC fire probability values for the 1999s,2009s,and 2019s were 0.532,0.569,and 0.518,respectively;using RF,they were 0.782,0.825,and 0.789,respectively.Fires were mainly distributed in urban areas and their probability of occurrence was related to acces-sibility and human behaviour/activity.AUC principles for validation were greater in the random forest models than in the Maxent models.Our results can be used to establish preventive measures to reduce risks of forest fires by consid-ering socio-economic and environmental conditions. |
Audience | Academic |
Author | Munir, Iqra Lu, Linlin Shu, Hong Siddiqui, Saima Li, Qingting Tariq, Aqil Sharifi, Alireza |
AuthorAffiliation | State Key Laboratory of Information,Engineering in Surveying,Mapping and Remote Sensing,Wuhan University,Wuhan 430079,Hubei,People's Republic of China%Department of Geography,University of the Punjab,Lahore,Punjab,Pakistan%Department of Surveying Engineering,Faculty of Civil Engineering,Shahid Rajaee Teacher Training University,Tehran,Iran%Airborne Remote Sensing Center,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,People's Republic of China%Key Laboratory of Digital Earth Science,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,People's Republic of China |
AuthorAffiliation_xml | – name: State Key Laboratory of Information,Engineering in Surveying,Mapping and Remote Sensing,Wuhan University,Wuhan 430079,Hubei,People's Republic of China%Department of Geography,University of the Punjab,Lahore,Punjab,Pakistan%Department of Surveying Engineering,Faculty of Civil Engineering,Shahid Rajaee Teacher Training University,Tehran,Iran%Airborne Remote Sensing Center,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,People's Republic of China%Key Laboratory of Digital Earth Science,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,People's Republic of China |
Author_xml | – sequence: 1 givenname: Aqil surname: Tariq fullname: Tariq, Aqil organization: State Key Laboratory of Information, Engineering in Surveying, Mapping and Remote Sensing, Wuhan University – sequence: 2 givenname: Hong surname: Shu fullname: Shu, Hong organization: State Key Laboratory of Information, Engineering in Surveying, Mapping and Remote Sensing, Wuhan University – sequence: 3 givenname: Saima surname: Siddiqui fullname: Siddiqui, Saima organization: Department of Geography, University of the Punjab – sequence: 4 givenname: Iqra surname: Munir fullname: Munir, Iqra organization: State Key Laboratory of Information, Engineering in Surveying, Mapping and Remote Sensing, Wuhan University – sequence: 5 givenname: Alireza surname: Sharifi fullname: Sharifi, Alireza organization: Department of Surveying Engineering, Faculty of Civil Engineering, Shahid Rajaee Teacher Training University – sequence: 6 givenname: Qingting surname: Li fullname: Li, Qingting email: liqt@radi.ac.cn organization: Airborne Remote Sensing Center, Aerospace Information Research Institute, Chinese Academy of Sciences – sequence: 7 givenname: Linlin surname: Lu fullname: Lu, Linlin organization: Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences |
BookMark | eNp9kl9rFDEUxQepYLv6BXwKiOBDpyaZmczMYynVFloUVPAt3Mnc7GbNJGuS3bLfyQ9ppiv-KVLykBDO-YV7ck6KI-cdFsVLRs8Ype3byJhoRUk5KymrmrqsnxTHrO-rkgraHuVzVpVC8K_PipMY15Q2dVXVx8WPTxtIxpcJp40PYAk4sPtoIvGaaB8wJqJNQII7dCkS40haIbmFsARrgVwZa-MpuY4WJhhgPCUf4ZuJCRzZRuOWJHqV8ai885NRGT8SdDsTvJsyMD-4g2BgsEhGSEDuTFqRCdTKOCQWIbgZMmFa-TE-L55qsBFf_NoXxZd3l58vrsqbD--vL85vSlXXfSrZ0ENX80bU2NFRUBRj33DFNac4sBb1WPdUD93YcoBKt5UQivNGM2h1q4a6WhSvD9w7cBrcUq79NuRcorT7_ZpTzimjbNa9Oeg2wX_f5qjkZKLCnItDv42Si0rUtOP5HxbFqwfS30wuMq_v-uovVQ4XpXHapwBqhsrzlgohWF81WXX2H1VeI-aIczG0yff_GLqDQQUfY0AtlUnzt7tsNFYyKud-yEOLZG6RvG-RnEfkD6ybYCYI-8dN1cEUs9gtMfwZ9hHXT9ST3Ow |
CitedBy_id | crossref_primary_10_1007_s10342_023_01643_z crossref_primary_10_61186_ifej_12_2_88 crossref_primary_10_1007_s42398_022_00259_0 crossref_primary_10_1016_j_jclepro_2025_144800 crossref_primary_10_1007_s12145_022_00925_1 crossref_primary_10_1007_s12665_023_11190_w crossref_primary_10_1007_s12517_022_10867_z crossref_primary_10_1080_10106049_2023_2167005 crossref_primary_10_1080_17538947_2023_2243916 crossref_primary_10_1080_10106049_2022_2102231 crossref_primary_10_1016_j_asoc_2023_110362 crossref_primary_10_1109_JSTARS_2022_3188732 crossref_primary_10_1007_s10708_024_11217_0 crossref_primary_10_1007_s11069_024_06810_y crossref_primary_10_1080_13683500_2024_2336119 crossref_primary_10_1007_s12517_022_10442_6 crossref_primary_10_9719_EEG_2023_56_5_501 crossref_primary_10_1007_s12145_025_01782_4 crossref_primary_10_18182_tjf_1282768 crossref_primary_10_3389_fenvs_2022_1037547 crossref_primary_10_1080_19475705_2023_2250517 crossref_primary_10_3390_rs15030598 crossref_primary_10_1007_s41748_024_00439_4 crossref_primary_10_1016_j_rama_2024_02_008 crossref_primary_10_1080_10106049_2022_2134466 crossref_primary_10_1007_s11676_024_01734_6 crossref_primary_10_3390_f16020273 crossref_primary_10_3390_rs14225724 crossref_primary_10_1038_s41598_024_82433_4 crossref_primary_10_3390_su142013625 crossref_primary_10_1016_j_envc_2024_100930 crossref_primary_10_1007_s44415_025_00004_5 crossref_primary_10_1080_10106049_2023_2229952 crossref_primary_10_1007_s10661_024_13027_w crossref_primary_10_1016_j_ocecoaman_2023_106934 crossref_primary_10_1007_s11356_024_34664_1 crossref_primary_10_1080_13467581_2023_2298877 crossref_primary_10_1109_JSTARS_2022_3189528 crossref_primary_10_1007_s11042_023_15881_1 crossref_primary_10_1016_j_geosus_2023_05_001 crossref_primary_10_1016_j_asr_2025_01_050 crossref_primary_10_1016_j_foreco_2023_121057 crossref_primary_10_3390_math11204346 crossref_primary_10_1007_s12524_021_01475_7 crossref_primary_10_3390_rs15041144 crossref_primary_10_3390_f15040661 crossref_primary_10_1016_j_ecolind_2022_108980 crossref_primary_10_1007_s11600_024_01308_4 crossref_primary_10_2166_wcc_2024_675 crossref_primary_10_1016_j_enmm_2023_100838 crossref_primary_10_1016_j_heliyon_2024_e28525 crossref_primary_10_3390_f14010046 crossref_primary_10_1016_j_asr_2023_12_054 crossref_primary_10_3390_f14040704 crossref_primary_10_1007_s11676_022_01502_4 crossref_primary_10_1007_s10668_023_03312_y crossref_primary_10_3390_rs15174208 crossref_primary_10_1007_s11676_024_01737_3 |
Cites_doi | 10.5532/kjafm.2014.16.2.114(inKorean) 10.1080/19475705.2021.1920477 10.1016/j.foreco.2012.03.003 10.1016/j.rse.2014.02.001 10.1029/2006GL028946 10.1016/j.desal.2005.11.013 10.3390/rs8040347 10.1016/j.agrformet.2016.11.002 10.1007/978-0-387-84858-7_2 10.3390/rs10030460 10.1016/j.apgeog.2014.05.015 10.1071/WF11178 10.1093/bib/bbq011 10.1007/s12665-014-3502-4 10.1016/j.scitotenv.2011.05.032 10.1080/09523360802438983 10.5721/EuJRS20124535 10.1371/journal.pone.0161344 10.1016/j.jenvman.2018.03.080 10.3390/rs11010086 10.1590/s0103-90162006000100009 10.3390/rs12203402 10.1016/j.catena.2015.10.010 10.1080/17538947.2016.1208686 10.1890/07-0539.1 10.1007/s40808-019-00593-z 10.1016/j.scitotenv.2004.04.017 10.1016/S0168-1923(98)00102-6 10.1002/2015JD024326 10.1016/j.ecolmodel.2005.03.026 10.1016/j.ecolind.2015.12.030 10.4172/2157-7625.1000174 10.1111/j.2006.0906-7590.04596.x 10.1016/j.envsoft.2006.05.013 10.1080/19475705.2015.1084541 10.1002/ecs2.1528 10.1108/17568690910977483 10.1071/WF08187 10.1016/j.firesaf.2014.05.012 |
ContentType | Journal Article |
Copyright | Northeast Forestry University 2021 COPYRIGHT 2022 Springer Northeast Forestry University 2021. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Northeast Forestry University 2021 – notice: COPYRIGHT 2022 Springer – notice: Northeast Forestry University 2021. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 7S9 L.6 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1007/s11676-021-01354-4 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Forestry Economics |
EISSN | 1993-0607 |
EndPage | 194 |
ExternalDocumentID | lyyj202201014 A706661935 10_1007_s11676_021_01354_4 |
GeographicLocations | Pakistan |
GeographicLocations_xml | – name: Pakistan |
GroupedDBID | -04 -0D -4W -56 -5G -BR -EM -SD -S~ -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 188 199 1N0 2.D 29K 29~ 2B. 2B~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2XV 2~H 30V 3SX 4.4 406 408 40D 40E 5GY 5VR 5VS 5XA 67N 6NX 78A 8RM 8TC 8UJ 92G 92I 92M 93N 93Q 95- 95. 95~ 96X 9D9 9DD AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFRAH AFUIB AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BDATZ BGNMA CAG CAJED CCEZO CHBEP CHDYS COF CS3 CSCUP CW9 D-I DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG6 HMJXF HRMNR HVGLF HZ~ IAG IAO IEA IEP IGS IJ- IKXTQ ITC IWAJR IXD I~X I~Z J-C JBSCW JUIAU JZLTJ KOV LLZTM M4Y MA- N2Q NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 PF0 PT4 PT5 Q-- Q-3 QOK QOR QOS R-D R89 R9I RHV ROL RPX RSV RT4 S16 S1Z S26 S27 S28 S3A S3B SAP SBL SCL SCLPG SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 T8T TCJ TGD TSG TUC U1F U1G U2A U5D U5N U9L UG4 UOJIU UTJUX UZ3 UZXMN VC2 VFIZW W48 WK6 WK8 YLTOR ZMTXR ZOVNA ~A9 ~MM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION TGMPQ AEIIB ABRTQ 7S9 L.6 4A8 PSX |
ID | FETCH-LOGICAL-c449t-1b9a842564e80d60e6d952c2f20eb17efd490fb8d72aa3f7366c225f1a7f7cb43 |
IEDL.DBID | U2A |
ISSN | 1007-662X |
IngestDate | Thu May 29 04:11:31 EDT 2025 Fri Sep 05 07:43:48 EDT 2025 Fri Jul 25 23:15:46 EDT 2025 Tue Jun 17 21:30:26 EDT 2025 Tue Jun 10 20:32:43 EDT 2025 Thu Apr 24 23:08:33 EDT 2025 Tue Jul 01 01:12:20 EDT 2025 Fri Feb 21 02:46:20 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | GIS Random forest machine learning Maxent Disaster risk reduction Multi-temporal analysis Forest fires |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c449t-1b9a842564e80d60e6d952c2f20eb17efd490fb8d72aa3f7366c225f1a7f7cb43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2622098939 |
PQPubID | 2044294 |
PageCount | 12 |
ParticipantIDs | wanfang_journals_lyyj202201014 proquest_miscellaneous_2636408299 proquest_journals_2622098939 gale_infotracmisc_A706661935 gale_infotracacademiconefile_A706661935 crossref_citationtrail_10_1007_s11676_021_01354_4 crossref_primary_10_1007_s11676_021_01354_4 springer_journals_10_1007_s11676_021_01354_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Heidelberg |
PublicationTitle | Journal of forestry research |
PublicationTitleAbbrev | J. For. Res |
PublicationTitle_FL | Journal of Forestry Research |
PublicationYear | 2022 |
Publisher | Springer Singapore Springer Springer Nature B.V State Key Laboratory of Information,Engineering in Surveying,Mapping and Remote Sensing,Wuhan University,Wuhan 430079,Hubei,People's Republic of China%Department of Geography,University of the Punjab,Lahore,Punjab,Pakistan%Department of Surveying Engineering,Faculty of Civil Engineering,Shahid Rajaee Teacher Training University,Tehran,Iran%Airborne Remote Sensing Center,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,People's Republic of China%Key Laboratory of Digital Earth Science,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,People's Republic of China |
Publisher_xml | – name: Springer Singapore – name: Springer – name: Springer Nature B.V – name: State Key Laboratory of Information,Engineering in Surveying,Mapping and Remote Sensing,Wuhan University,Wuhan 430079,Hubei,People's Republic of China%Department of Geography,University of the Punjab,Lahore,Punjab,Pakistan%Department of Surveying Engineering,Faculty of Civil Engineering,Shahid Rajaee Teacher Training University,Tehran,Iran%Airborne Remote Sensing Center,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,People's Republic of China%Key Laboratory of Digital Earth Science,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,People's Republic of China |
References | TariqAShuHCA-Markov chain analysis of seasonal land surface temperature and land use landcover change using optical multi-temporal satellite data ofRemote Sens20201212310.3390/rs12203402 SatirOBerberogluSDonmezCMapping regional forest fire probability using artificial neural network model in a Mediterranean forest ecosystemGeomatics Nat Hazards Risk201671645165810.1080/19475705.2015.1084541 FlanniganMDKrawchukMAde GrootWJWottonBMGowmanLMImplications of changing climate for global wildland fireInt J Wildl Fire20091848310.1071/WF08187 SajjadSHShiraziSAAhmed KhanMRazaAUrbanization effects on temperature trends of Lahore during 1950–2007Int J Clim Chang Strateg Manag2009127428110.1108/17568690910977483 PourtaghiZSPourghasemiHRAretanoRSemeraroTInvestigation of general indicators influencing on forest fire and its susceptibility modeling using different data mining techniquesEcol Indic201664728410.1016/j.ecolind.2015.12.030 Abidi A, Syeda I, Noor J (2012) Economic analysis of forest management in Pakistan - a case study of changa Mange and Muree Forest, MPRA Paper 28086, University Library of Munich, Germany. https://ideas.repec.org/p/pra/mprapa/28086.html Malik RN, Husain SZ (2003) Evaluating deforestation using landsat TM and SPOT XS data in dry sub-tropical forest of Margalla Hills, northwest of Pakistan. Geoinf Eur Integr 429–434 SmakhtinVUHughesDAAutomated estimation and analyses of meteorological drought characteristics from monthly rainfall dataModel Softw20072288089010.1016/j.envsoft.2006.05.013 CalleMLUrreaVLetter to the editor: Stability of Random Forest importance measuresBrief Bioinform201112868910.1093/bib/bbq01120360022 TariqAShuHSaddiquiSMousaBGMunirINasriAWaqasHBaqaMFLuLForest fire monitoring using spatial-statistical and Geo-spatial analysis of factors determining forest fire in Margalla Hills, Islamabad, PakistanGeomatics Nat Hazards Risk202110.1080/19475705.2021.1920477 TimmLCPiresLFRoverattiRJacques ArthurRCReichardtKMartins De OliveiraJCSantos BacchiOOField spatial and temporal patterns of soil water content and bulk density changesSci Agric200663556410.1590/s0103-90162006000100009 HiroseKKimCKKimCSChangBWIgarashiYAoyamaMWet and dry deposition patterns of plutonium in Daejeon, KoreaSci Total Environ20043322432521:CAS:528:DC%2BD2cXntFWktr8%3D10.1016/j.scitotenv.2004.04.0171533690615336906 IqbalMFKhanMRMalikAHLand use change detection in the limestone exploitation area of Margalla Hills National Park (MHNP), Islamabad, Pakistan using geo-spatial techniquesJ Himal Earth Sci2013468998 AliSAKhatunRAhmadAAhmadSNApplication of GIS-based analytic hierarchy process and frequency ratio model to flood vulnerable mapping and risk area estimation at Sundarban region, IndiaModel Earth Syst Environ201951083110210.1007/s40808-019-00593-z Costafreda-AumedesSVega-GarciaCComasCImproving fire season definition by optimized temporal modelling of daily human-caused ignitionsJ Environ Manage201821790991:STN:280:DC%2BC1MnmvV2guw%3D%3D10.1016/j.jenvman.2018.03.0802959711129597111 WangRBalkanskiYBoucherOCiaisPSchusterGLChevallierFTaoSEstimation of global black carbon direct radiative forcing and its uncertainty constrained by observationsJ Geophy Res2016121105948597110.1002/2015JD024326 JenkinsMCollinsLPriceOPenmanTZylstraPHorseyBBradstockREnvironmental values and fire hazard of eucalypt plantingsEcosphere2016711410.1002/ecs2.1528 WonMKimKLeeSAnalysis of burn severity in large-fire area using SPOT5 images and field survey dataKorean J Agric For Meteorol20141611412410.5532/kjafm.2014.16.2.114(inKorean) KhalidNSaeed AhmadSMonitoring forest cover change of margalla hills over a period of two decades (1992–2011): a spatiotemporal perspectiveJ Ecosyst Ecography2015061810.4172/2157-7625.1000174 KhalidNSaeed AhmadSMonitoring forest cover change of Margalla hills over a period of two decades (1992–2011): a spatiotemporal perspectiveJ Ecosyst Ecography201610.4172/2157-7625.1000174 Bar MassadaASyphardADStewartSIRadeloffVCWildfire ignition-distribution modelling: A comparative study in the Huron-Manistee National Forest, Michigan, USAInt J Wildl Fire20132217418310.1071/WF11178 RoyDPKumarSSMulti-year MODIS active fire type classification over the Brazilian tropical Moist forest biomeInt J Digit Earth201710548410.1080/17538947.2016.1208686 Hastie T, Tibshirani R, Friedman J (2009) Overview of supervised learning. In The Elements of Statistical Learning. Springer: New York, NY, USA, pp. 9–41. ISBN 978-0-387-84858-7 PhillipsSBAnejaVPKangDAryaSPModelling and analysis of the atmospheric nitrogen deposition in North CarolinaInt J Glob Environ Issues2006623125210.1016/j.ecolmodel.2005.03.026 HislopSJonesSSoto-BerelovMSkidmoreAHaywoodANguyenTUsing landsat spectral indices in time-series to assess wildfire disturbance and recoveryRemote Sens201810.3390/rs10030460 KimSJLimCHKimGSLeeJGeigerTRahmatiOSonYLeeWMulti-temporal analysis of forest fire probability using socio-economic and environmental variablesRemote Sens201910.3390/rs11010086 ArpaciAMalowerschnigBSassOVacikHUsing multi variate data mining techniques for estimating fire susceptibility of Tyrolean forestsAppl Geogr20145325827010.1016/j.apgeog.2014.05.015 OliveiraSOehlerFSan-Miguel-AyanzJCamiaAPereiraJMCModeling spatial patterns of fire occurrence in Mediterranean Europe using multiple regression and random forestFor Ecol Manage201227511712910.1016/j.foreco.2012.03.003 PourtaghiZSPourghasemiHRRossiMForest fire susceptibility mapping in the Minudasht forests, Golestan provinceIran Environ Earth Sci2015731515153310.1007/s12665-014-3502-4 CutlerRLawlerJThomas EdwardsJBeardKHCutlerAHessKTGibsonJRandom forests for classification in ecologyEcology200788112783279210.1890/07-0539.118051647 VilarLGómezIMartínez-VegaJEchavarríaPRiañoDMartínMPMultitemporal modelling of socio-economic wildfire drivers in central spain between the 1980s and the 2000s: comparing generalized linear models to machine learning algorithmsPLoS One201611e016134410.1371/journal.pone.016134427557113 TanvirMSMujtabaIMNeural network based correlations for estimating temperature elevation for seawater in MSF desalination processDesalination20061952512721:CAS:528:DC%2BD28XnsFCqsL0%3D10.1016/j.desal.2005.11.013 RoyDPWulderMALovelandTRWulderCEAllenRGAndersonMCHelderDIronsJRJohnsonDMKennedyRScambosTASchaafCBSchottJRShengYVermoteEFBelwardASBindschadlerRCohenWBGaoFHippleJDHostertPHuntingtonJJusticeCOKilicAKovalskyyVLeeZPLymburnerLMasekJGMcCorkelJShuaiYTrezzaRVogelmannJWynneRHZhuZLandsat-8: Science and product vision for terrestrial global change researchRemote Sens Environ201414515417210.1016/j.rse.2014.02.001 PlucinskiMPThe timing of vegetation fire occurrence in a human landscapeFire Saf J201467425210.1016/j.firesaf.2014.05.012 RahmatiOPourghasemiHRMelesseAMApplication of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: a case study at Mehran RegionIran Catena201613736037210.1016/j.catena.2015.10.010 AldersleyAMurraySJCornellSEGlobal and regional analysis of climate and human drivers of wildfireSci Total Environ2011409347234811:CAS:528:DC%2BC3MXotlGhs7g%3D10.1016/j.scitotenv.2011.05.0322168984321689843 BridgesBThe Seoul Olympics: Economic miracle meets the worldInt J Hist Sport2008251939195210.1080/09523360802438983 ElithJGrahamCHAndersonRPDudíkMFerrierSGuisanAHijmansRJHuettmannFLeathwickJRLehmannALiJLohmannLGLoiselleBAManionGMoritzCNakamuraMNakazawaYOvertonJMPetersonATPhillipsSJRichardsonKScachetti-PereiraRSchapireRESoberónJWilliamsSWiszMSZimmermannNENovel methods improve prediction of species’ distributions from occurrence dataEcography (cop)20062912915110.1111/j.2006.0906-7590.04596.x OkAOAkarOGungorOEvaluation of random forest method for agricultural crop classificationEur J Remote Sens20124542143210.5721/EuJRS20124535 AragãoLEOCMalhiYRoman-CuestaRMSaatchiSAndersonLOShimabukuroYESpatial patterns and fire response of recent Amazonian droughtsGeophys Res Lett2007341510.1029/2006GL028946 BuiDTLeKTTNguyenVCLeHDRevhaugITropical forest fire susceptibility mapping at the Cat Ba National Park area, Hai Phong City, Vietnam, using GIS-based Kernel logistic regressionRemote Sens2016811510.3390/rs8040347 BuiDTBuiQTNguyenQPPradhanBNampakHTrinhPTA hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical areaAgric For Meteorol2017233324410.1016/j.agrformet.2016.11.002 NalderIAWeinRWSpatial interpolation of climatic normals: test of a new method in the Canadian boreal forestAgric for Meteorol19989221122510.1016/S0168-1923(98)00102-6 M Jenkins (1354_CR20) 2016; 7 N Khalid (1354_CR21) 2015; 06 A Bar Massada (1354_CR6) 2013; 22 J Elith (1354_CR13) 2006; 29 A Tariq (1354_CR40) 2021 M Won (1354_CR44) 2014; 16 MD Flannigan (1354_CR14) 2009; 18 S Hislop (1354_CR18) 2018 ZS Pourtaghi (1354_CR30) 2015; 73 L Vilar (1354_CR42) 2016; 11 DP Roy (1354_CR33) 2017; 10 VU Smakhtin (1354_CR37) 2007; 22 SA Ali (1354_CR3) 2019; 5 SH Sajjad (1354_CR35) 2009; 1 DT Bui (1354_CR9) 2017; 233 DP Roy (1354_CR34) 2014; 145 ZS Pourtaghi (1354_CR31) 2016; 64 1354_CR1 S Costafreda-Aumedes (1354_CR11) 2018; 217 LEOC Aragão (1354_CR4) 2007; 34 1354_CR24 AO Ok (1354_CR26) 2012; 45 LC Timm (1354_CR41) 2006; 63 MP Plucinski (1354_CR29) 2014; 67 MS Tanvir (1354_CR38) 2006; 195 K Hirose (1354_CR17) 2004; 332 N Khalid (1354_CR22) 2016 SJ Kim (1354_CR23) 2019 1354_CR16 R Cutler (1354_CR12) 2007; 88 IA Nalder (1354_CR25) 1998; 92 DT Bui (1354_CR8) 2016; 8 ML Calle (1354_CR10) 2011; 12 MF Iqbal (1354_CR19) 2013; 46 A Arpaci (1354_CR5) 2014; 53 A Aldersley (1354_CR2) 2011; 409 O Rahmati (1354_CR32) 2016; 137 B Bridges (1354_CR7) 2008; 25 SB Phillips (1354_CR28) 2006; 6 A Tariq (1354_CR39) 2020; 12 S Oliveira (1354_CR27) 2012; 275 O Satir (1354_CR36) 2016; 7 R Wang (1354_CR43) 2016; 121 |
References_xml | – reference: TariqAShuHCA-Markov chain analysis of seasonal land surface temperature and land use landcover change using optical multi-temporal satellite data ofRemote Sens20201212310.3390/rs12203402 – reference: RoyDPWulderMALovelandTRWulderCEAllenRGAndersonMCHelderDIronsJRJohnsonDMKennedyRScambosTASchaafCBSchottJRShengYVermoteEFBelwardASBindschadlerRCohenWBGaoFHippleJDHostertPHuntingtonJJusticeCOKilicAKovalskyyVLeeZPLymburnerLMasekJGMcCorkelJShuaiYTrezzaRVogelmannJWynneRHZhuZLandsat-8: Science and product vision for terrestrial global change researchRemote Sens Environ201414515417210.1016/j.rse.2014.02.001 – reference: SatirOBerberogluSDonmezCMapping regional forest fire probability using artificial neural network model in a Mediterranean forest ecosystemGeomatics Nat Hazards Risk201671645165810.1080/19475705.2015.1084541 – reference: Costafreda-AumedesSVega-GarciaCComasCImproving fire season definition by optimized temporal modelling of daily human-caused ignitionsJ Environ Manage201821790991:STN:280:DC%2BC1MnmvV2guw%3D%3D10.1016/j.jenvman.2018.03.0802959711129597111 – reference: BuiDTLeKTTNguyenVCLeHDRevhaugITropical forest fire susceptibility mapping at the Cat Ba National Park area, Hai Phong City, Vietnam, using GIS-based Kernel logistic regressionRemote Sens2016811510.3390/rs8040347 – reference: PourtaghiZSPourghasemiHRRossiMForest fire susceptibility mapping in the Minudasht forests, Golestan provinceIran Environ Earth Sci2015731515153310.1007/s12665-014-3502-4 – reference: TariqAShuHSaddiquiSMousaBGMunirINasriAWaqasHBaqaMFLuLForest fire monitoring using spatial-statistical and Geo-spatial analysis of factors determining forest fire in Margalla Hills, Islamabad, PakistanGeomatics Nat Hazards Risk202110.1080/19475705.2021.1920477 – reference: KimSJLimCHKimGSLeeJGeigerTRahmatiOSonYLeeWMulti-temporal analysis of forest fire probability using socio-economic and environmental variablesRemote Sens201910.3390/rs11010086 – reference: RoyDPKumarSSMulti-year MODIS active fire type classification over the Brazilian tropical Moist forest biomeInt J Digit Earth201710548410.1080/17538947.2016.1208686 – reference: SmakhtinVUHughesDAAutomated estimation and analyses of meteorological drought characteristics from monthly rainfall dataModel Softw20072288089010.1016/j.envsoft.2006.05.013 – reference: TanvirMSMujtabaIMNeural network based correlations for estimating temperature elevation for seawater in MSF desalination processDesalination20061952512721:CAS:528:DC%2BD28XnsFCqsL0%3D10.1016/j.desal.2005.11.013 – reference: BuiDTBuiQTNguyenQPPradhanBNampakHTrinhPTA hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical areaAgric For Meteorol2017233324410.1016/j.agrformet.2016.11.002 – reference: ElithJGrahamCHAndersonRPDudíkMFerrierSGuisanAHijmansRJHuettmannFLeathwickJRLehmannALiJLohmannLGLoiselleBAManionGMoritzCNakamuraMNakazawaYOvertonJMPetersonATPhillipsSJRichardsonKScachetti-PereiraRSchapireRESoberónJWilliamsSWiszMSZimmermannNENovel methods improve prediction of species’ distributions from occurrence dataEcography (cop)20062912915110.1111/j.2006.0906-7590.04596.x – reference: TimmLCPiresLFRoverattiRJacques ArthurRCReichardtKMartins De OliveiraJCSantos BacchiOOField spatial and temporal patterns of soil water content and bulk density changesSci Agric200663556410.1590/s0103-90162006000100009 – reference: WonMKimKLeeSAnalysis of burn severity in large-fire area using SPOT5 images and field survey dataKorean J Agric For Meteorol20141611412410.5532/kjafm.2014.16.2.114(inKorean) – reference: WangRBalkanskiYBoucherOCiaisPSchusterGLChevallierFTaoSEstimation of global black carbon direct radiative forcing and its uncertainty constrained by observationsJ Geophy Res2016121105948597110.1002/2015JD024326 – reference: JenkinsMCollinsLPriceOPenmanTZylstraPHorseyBBradstockREnvironmental values and fire hazard of eucalypt plantingsEcosphere2016711410.1002/ecs2.1528 – reference: HislopSJonesSSoto-BerelovMSkidmoreAHaywoodANguyenTUsing landsat spectral indices in time-series to assess wildfire disturbance and recoveryRemote Sens201810.3390/rs10030460 – reference: SajjadSHShiraziSAAhmed KhanMRazaAUrbanization effects on temperature trends of Lahore during 1950–2007Int J Clim Chang Strateg Manag2009127428110.1108/17568690910977483 – reference: AldersleyAMurraySJCornellSEGlobal and regional analysis of climate and human drivers of wildfireSci Total Environ2011409347234811:CAS:528:DC%2BC3MXotlGhs7g%3D10.1016/j.scitotenv.2011.05.0322168984321689843 – reference: FlanniganMDKrawchukMAde GrootWJWottonBMGowmanLMImplications of changing climate for global wildland fireInt J Wildl Fire20091848310.1071/WF08187 – reference: OkAOAkarOGungorOEvaluation of random forest method for agricultural crop classificationEur J Remote Sens20124542143210.5721/EuJRS20124535 – reference: CalleMLUrreaVLetter to the editor: Stability of Random Forest importance measuresBrief Bioinform201112868910.1093/bib/bbq01120360022 – reference: RahmatiOPourghasemiHRMelesseAMApplication of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: a case study at Mehran RegionIran Catena201613736037210.1016/j.catena.2015.10.010 – reference: OliveiraSOehlerFSan-Miguel-AyanzJCamiaAPereiraJMCModeling spatial patterns of fire occurrence in Mediterranean Europe using multiple regression and random forestFor Ecol Manage201227511712910.1016/j.foreco.2012.03.003 – reference: AragãoLEOCMalhiYRoman-CuestaRMSaatchiSAndersonLOShimabukuroYESpatial patterns and fire response of recent Amazonian droughtsGeophys Res Lett2007341510.1029/2006GL028946 – reference: BridgesBThe Seoul Olympics: Economic miracle meets the worldInt J Hist Sport2008251939195210.1080/09523360802438983 – reference: CutlerRLawlerJThomas EdwardsJBeardKHCutlerAHessKTGibsonJRandom forests for classification in ecologyEcology200788112783279210.1890/07-0539.118051647 – reference: PhillipsSBAnejaVPKangDAryaSPModelling and analysis of the atmospheric nitrogen deposition in North CarolinaInt J Glob Environ Issues2006623125210.1016/j.ecolmodel.2005.03.026 – reference: IqbalMFKhanMRMalikAHLand use change detection in the limestone exploitation area of Margalla Hills National Park (MHNP), Islamabad, Pakistan using geo-spatial techniquesJ Himal Earth Sci2013468998 – reference: KhalidNSaeed AhmadSMonitoring forest cover change of Margalla hills over a period of two decades (1992–2011): a spatiotemporal perspectiveJ Ecosyst Ecography201610.4172/2157-7625.1000174 – reference: Bar MassadaASyphardADStewartSIRadeloffVCWildfire ignition-distribution modelling: A comparative study in the Huron-Manistee National Forest, Michigan, USAInt J Wildl Fire20132217418310.1071/WF11178 – reference: PourtaghiZSPourghasemiHRAretanoRSemeraroTInvestigation of general indicators influencing on forest fire and its susceptibility modeling using different data mining techniquesEcol Indic201664728410.1016/j.ecolind.2015.12.030 – reference: Malik RN, Husain SZ (2003) Evaluating deforestation using landsat TM and SPOT XS data in dry sub-tropical forest of Margalla Hills, northwest of Pakistan. Geoinf Eur Integr 429–434 – reference: PlucinskiMPThe timing of vegetation fire occurrence in a human landscapeFire Saf J201467425210.1016/j.firesaf.2014.05.012 – reference: Hastie T, Tibshirani R, Friedman J (2009) Overview of supervised learning. In The Elements of Statistical Learning. Springer: New York, NY, USA, pp. 9–41. ISBN 978-0-387-84858-7 – reference: KhalidNSaeed AhmadSMonitoring forest cover change of margalla hills over a period of two decades (1992–2011): a spatiotemporal perspectiveJ Ecosyst Ecography2015061810.4172/2157-7625.1000174 – reference: AliSAKhatunRAhmadAAhmadSNApplication of GIS-based analytic hierarchy process and frequency ratio model to flood vulnerable mapping and risk area estimation at Sundarban region, IndiaModel Earth Syst Environ201951083110210.1007/s40808-019-00593-z – reference: VilarLGómezIMartínez-VegaJEchavarríaPRiañoDMartínMPMultitemporal modelling of socio-economic wildfire drivers in central spain between the 1980s and the 2000s: comparing generalized linear models to machine learning algorithmsPLoS One201611e016134410.1371/journal.pone.016134427557113 – reference: Abidi A, Syeda I, Noor J (2012) Economic analysis of forest management in Pakistan - a case study of changa Mange and Muree Forest, MPRA Paper 28086, University Library of Munich, Germany. https://ideas.repec.org/p/pra/mprapa/28086.html – reference: NalderIAWeinRWSpatial interpolation of climatic normals: test of a new method in the Canadian boreal forestAgric for Meteorol19989221122510.1016/S0168-1923(98)00102-6 – reference: ArpaciAMalowerschnigBSassOVacikHUsing multi variate data mining techniques for estimating fire susceptibility of Tyrolean forestsAppl Geogr20145325827010.1016/j.apgeog.2014.05.015 – reference: HiroseKKimCKKimCSChangBWIgarashiYAoyamaMWet and dry deposition patterns of plutonium in Daejeon, KoreaSci Total Environ20043322432521:CAS:528:DC%2BD2cXntFWktr8%3D10.1016/j.scitotenv.2004.04.0171533690615336906 – volume: 16 start-page: 114 year: 2014 ident: 1354_CR44 publication-title: Korean J Agric For Meteorol doi: 10.5532/kjafm.2014.16.2.114(inKorean) – year: 2021 ident: 1354_CR40 publication-title: Geomatics Nat Hazards Risk doi: 10.1080/19475705.2021.1920477 – volume: 275 start-page: 117 year: 2012 ident: 1354_CR27 publication-title: For Ecol Manage doi: 10.1016/j.foreco.2012.03.003 – volume: 145 start-page: 154 year: 2014 ident: 1354_CR34 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2014.02.001 – volume: 34 start-page: 1 year: 2007 ident: 1354_CR4 publication-title: Geophys Res Lett doi: 10.1029/2006GL028946 – volume: 195 start-page: 251 year: 2006 ident: 1354_CR38 publication-title: Desalination doi: 10.1016/j.desal.2005.11.013 – volume: 8 start-page: 1 year: 2016 ident: 1354_CR8 publication-title: Remote Sens doi: 10.3390/rs8040347 – volume: 233 start-page: 32 year: 2017 ident: 1354_CR9 publication-title: Agric For Meteorol doi: 10.1016/j.agrformet.2016.11.002 – ident: 1354_CR16 doi: 10.1007/978-0-387-84858-7_2 – year: 2018 ident: 1354_CR18 publication-title: Remote Sens doi: 10.3390/rs10030460 – volume: 53 start-page: 258 year: 2014 ident: 1354_CR5 publication-title: Appl Geogr doi: 10.1016/j.apgeog.2014.05.015 – volume: 22 start-page: 174 year: 2013 ident: 1354_CR6 publication-title: Int J Wildl Fire doi: 10.1071/WF11178 – volume: 12 start-page: 86 year: 2011 ident: 1354_CR10 publication-title: Brief Bioinform doi: 10.1093/bib/bbq011 – volume: 73 start-page: 1515 year: 2015 ident: 1354_CR30 publication-title: Iran Environ Earth Sci doi: 10.1007/s12665-014-3502-4 – volume: 409 start-page: 3472 year: 2011 ident: 1354_CR2 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2011.05.032 – volume: 25 start-page: 1939 year: 2008 ident: 1354_CR7 publication-title: Int J Hist Sport doi: 10.1080/09523360802438983 – volume: 45 start-page: 421 year: 2012 ident: 1354_CR26 publication-title: Eur J Remote Sens doi: 10.5721/EuJRS20124535 – volume: 11 start-page: e0161344 year: 2016 ident: 1354_CR42 publication-title: PLoS One doi: 10.1371/journal.pone.0161344 – volume: 217 start-page: 90 year: 2018 ident: 1354_CR11 publication-title: J Environ Manage doi: 10.1016/j.jenvman.2018.03.080 – year: 2019 ident: 1354_CR23 publication-title: Remote Sens doi: 10.3390/rs11010086 – ident: 1354_CR24 – volume: 63 start-page: 55 year: 2006 ident: 1354_CR41 publication-title: Sci Agric doi: 10.1590/s0103-90162006000100009 – volume: 12 start-page: 1 year: 2020 ident: 1354_CR39 publication-title: Remote Sens doi: 10.3390/rs12203402 – volume: 137 start-page: 360 year: 2016 ident: 1354_CR32 publication-title: Iran Catena doi: 10.1016/j.catena.2015.10.010 – volume: 10 start-page: 54 year: 2017 ident: 1354_CR33 publication-title: Int J Digit Earth doi: 10.1080/17538947.2016.1208686 – volume: 88 start-page: 2783 issue: 11 year: 2007 ident: 1354_CR12 publication-title: Ecology doi: 10.1890/07-0539.1 – volume: 5 start-page: 1083 year: 2019 ident: 1354_CR3 publication-title: Model Earth Syst Environ doi: 10.1007/s40808-019-00593-z – volume: 332 start-page: 243 year: 2004 ident: 1354_CR17 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2004.04.017 – volume: 92 start-page: 211 year: 1998 ident: 1354_CR25 publication-title: Agric for Meteorol doi: 10.1016/S0168-1923(98)00102-6 – volume: 121 start-page: 5948 issue: 10 year: 2016 ident: 1354_CR43 publication-title: J Geophy Res doi: 10.1002/2015JD024326 – volume: 6 start-page: 231 year: 2006 ident: 1354_CR28 publication-title: Int J Glob Environ Issues doi: 10.1016/j.ecolmodel.2005.03.026 – volume: 64 start-page: 72 year: 2016 ident: 1354_CR31 publication-title: Ecol Indic doi: 10.1016/j.ecolind.2015.12.030 – year: 2016 ident: 1354_CR22 publication-title: J Ecosyst Ecography doi: 10.4172/2157-7625.1000174 – ident: 1354_CR1 – volume: 29 start-page: 129 year: 2006 ident: 1354_CR13 publication-title: Ecography (cop) doi: 10.1111/j.2006.0906-7590.04596.x – volume: 22 start-page: 880 year: 2007 ident: 1354_CR37 publication-title: Model Softw doi: 10.1016/j.envsoft.2006.05.013 – volume: 06 start-page: 1 year: 2015 ident: 1354_CR21 publication-title: J Ecosyst Ecography doi: 10.4172/2157-7625.1000174 – volume: 46 start-page: 89 year: 2013 ident: 1354_CR19 publication-title: J Himal Earth Sci – volume: 7 start-page: 1645 year: 2016 ident: 1354_CR36 publication-title: Geomatics Nat Hazards Risk doi: 10.1080/19475705.2015.1084541 – volume: 7 start-page: 1 year: 2016 ident: 1354_CR20 publication-title: Ecosphere doi: 10.1002/ecs2.1528 – volume: 1 start-page: 274 year: 2009 ident: 1354_CR35 publication-title: Int J Clim Chang Strateg Manag doi: 10.1108/17568690910977483 – volume: 18 start-page: 483 year: 2009 ident: 1354_CR14 publication-title: Int J Wildl Fire doi: 10.1071/WF08187 – volume: 67 start-page: 42 year: 2014 ident: 1354_CR29 publication-title: Fire Saf J doi: 10.1016/j.firesaf.2014.05.012 |
SSID | ssj0054334 |
Score | 2.495371 |
Snippet | Most forest fires in the Margalla Hills are related to human activities and socioeconomic factors are essential to assess their likelihood of occurrence. This... Most forest fires in the Margalla Hills are related to human activities and socioeconomic factors are essential to assess their likelihood of occurrence.This... |
SourceID | wanfang proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 183 |
SubjectTerms | altitude Analysis Biomedical and Life Sciences Economics Entropy Environmental conditions fire history Forest & brush fires Forest fires forest types Forestry Hills Human acts Human behavior humans humidity landscapes Learning algorithms Life Sciences Machine learning Maximum entropy Methods Original Paper Pakistan Population density risk Risk reduction Risk taking Social factors Socioeconomic factors Socioeconomics Urban areas |
Title | Spatio-temporal analysis of forest fire events in the Margalla Hills, Islamabad, Pakistan using socio-economic and environmental variable data with machine learning methods |
URI | https://link.springer.com/article/10.1007/s11676-021-01354-4 https://www.proquest.com/docview/2622098939 https://www.proquest.com/docview/2636408299 https://d.wanfangdata.com.cn/periodical/lyyj202201014 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9QwEA56B-LL4U9cPZcRBB_cQJumafu4yJ2Loi-6sD6FNE2Wk9oVu3dw_5N_pDNpersrcuBzJ9OWmUxnmpnvY-y1y6z3qmy4TQhU22WSVz713JkM04eaunioUPz0WS2W8sMqX8WhsH7sdh-PJEOk3g27paqghlkqf7NccnmXHeeEJ4VevBTzMf7mMhvOkuknnFJiFUdl_q3j4HP0d1DeOx0NMz2dN9167_Nz_oCdxLwR5oOhH7I7rnvE7hGxJrG1PWa_v4TWaB6hplowEW0ENh58EAOP4Q0CYlMPFx1g6geB5xY9ARYXbdvPIHiIqU0zg5hbdkCt8WsgK264i3PMqL6BvSE5vOEVVt00hwXUdAr0fxd-hE5NB5GaYg0DX3X_hC3Pz76-W_DIxMCtlNWWp3Vl6LxOSVcmjUqcaqpcWOFFgrG-cL6RVeLrsimEMZkvMqUsBgqfmsIXtpbZU3bUbTr3jAGVaLktU9sUpcwFvhFmmKWzxvgcVSQTlo4G0TbClBNbRqt3AMtkRI1G1MGIWk7Y25s1PweQjlul35CdNe1g1GxNHETA5yMsLD0vqKbDxDafsNMDSdx59vDy6Ck67vxeCyVEUmEWWE3Yq5vLtJK62Tq3uSSZTAWib5SZjR62U3Hbo0-jF-6k2-vr74LmpYl1-fn_6XvB7tPSoQv9lB1tf126l5hkbespO56___bxbBr21h9rOx-6 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegk4AXvhGFMQ4JiQeaKXEcJ3ms0EZhHy-sUnmKHMeuBiFFpEUafxN_JHeOs7YTmrTnXC62fDnf2b_fHWNvTaytlVkV6JCKaptYBLmNbGBUjOFDSSgeShRPTuVkKj7PkpknhbU92r2_knSeek12i2RKgFlKf-NEBOI22xFRliUDtjP--PXooPfAiYi722Q6hpOSzzxZ5v9atjakq255437UsXoaq5r5xgZ0-IBN-6F3uJPv-6tlua__XKnqeNO5PWT3fUQK486EHrFbpnnM7lDLTuoD94T9_eJA14EvYlWD8nVMYGHBOjGw6DjB1YJq4bwBDCrBddBFG4PJeV23I3C2p0pVjcBHrQ0Q6H4OZB-LwHiGNKqvYIN-hx_8jfk8MbyA4KxAJ8fww2FADfimF3PoOmG3T9n08ODswyTwPR4CLUS-DKIyV3QTKIXJwkqGRlZ5wjW3PMRdJDW2Enloy6xKuVKxTWMpNbogG6nUproU8TM2aBaNec6Akr9EZ5Gu0kwkHGeEsWtmtFI2QRXhkEX9QhfaF0CnPhx1sS7dTMtQ4DIUbhkKMWTvL9_52ZX_uFb6HdlPQb4BNWvlKQ44PqqyVYxTyhYxZE6GbHdLEv9pvf24t8DC-5S24JLzMMf4Mh-yN5eP6U3CyTVmsSKZWLoW4igz6k1treK6oe95615L1xcX3zgxsamf84ub6XvN7k7OTo6L40-nRy_ZPVLTYd132WD5a2VeYSi3LPf8n_sPQEI-Aw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA96wuGL-Imr5zmC4INbrk3TtH1c1GX9OgRd2LeQpslyUrOHuyfc_-Qf6Uya3u6KHPjc6bRlJpOZ5vebYeylzY1zsmoTk1JTbZuLpHaZS6zOMX1oCMVDheLnUzmbiw-LYrHD4g9o9-FIsuc0UJcmvzk5b93JlviWyZLAs1QK54VIxE12S-BeTaCuOZ8MsbgQeX-uTD_kpOSLSJv5t469renvAL1zUhr4Pd5pv9zZiqZ32Z2YQ8KkN_o9dsP6--yQhmzS5LYH7PfXAJNOYtupDnTsPAIrBy6IgcNQB6F70xrOPGAaCGHmLXoFzM66bj2G4C260e0YYp7pgWDySyCLrhIbOc2ovoUdwhw-8BdW4MTJAgKgAv3rhR8BtWkhjqlYQj-7ev2Qzafvvr2ZJXEqQ2KEqDdJ1tSazu6ksFXaytTKti644Y6nGPdL61pRp66p2pJrnbsyl9Jg0HCZLl1pGpE_Ygd-5e1jBlSuFabKTFtWouD4RZhtVtZo7QpUkY5YNhhEmdiynCZndGrbbJmMqNCIKhhRiRF7fXXPed-w41rpV2RnRasZNRsdSQn4ftQXS01Kqu8wyS1G7GhPEleh2b88eIqKUWCtuOQ8rTEjrEfsxdVlupOQbd6uLkgml2HoN8qMBw_bqrju1Y-jF26lu8vL75y40zSB-cn_6XvODr-8napP708_PmW3SUsPTj9iB5ufF_YZ5l6b5jgsrz9B7SVO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatio-temporal+analysis+of+forest+fire+events+in+the+Margalla+Hills%2C+Islamabad%2C+Pakistan+using+socio-economic+and+environmental+variable+data+with+machine+learning+methods&rft.jtitle=Journal+of+forestry+research&rft.au=Aqil%2C+Tariq&rft.au=Shu%2C+Hong&rft.au=Siddiqui%2C+Saima&rft.au=Munir%2C+Iqra&rft.date=2022-02-01&rft.issn=1007-662X&rft.volume=33&rft.issue=1+p.183-194&rft.spage=183&rft.epage=194&rft_id=info:doi/10.1007%2Fs11676-021-01354-4&rft.externalDBID=NO_FULL_TEXT |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Flyyj%2Flyyj.jpg |