Random Error Reduction Algorithms for MEMS Inertial Sensor Accuracy Improvement—A Review

Research and industrial studies have indicated that small size, low cost, high precision, and ease of integration are vital features that characterize microelectromechanical systems (MEMS) inertial sensors for mass production and diverse applications. In recent times, sensors like MEMS accelerometer...

Full description

Saved in:
Bibliographic Details
Published inMicromachines (Basel) Vol. 11; no. 11; p. 1021
Main Authors Han, Shipeng, Meng, Zhen, Omisore, Olatunji, Akinyemi, Toluwanimi, Yan, Yuepeng
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 21.11.2020
MDPI
Subjects
Online AccessGet full text
ISSN2072-666X
2072-666X
DOI10.3390/mi11111021

Cover

Abstract Research and industrial studies have indicated that small size, low cost, high precision, and ease of integration are vital features that characterize microelectromechanical systems (MEMS) inertial sensors for mass production and diverse applications. In recent times, sensors like MEMS accelerometers and MEMS gyroscopes have been sought in an increased application range such as medical devices for health care to defense and military weapons. An important limitation of MEMS inertial sensors is repeatedly documented as the ease of being influenced by environmental noise from random sources, along with mechanical and electronic artifacts in the underlying systems, and other random noise. Thus, random error processing is essential for proper elimination of artifact signals and improvement of the accuracy and reliability from such sensors. In this paper, a systematic review is carried out by investigating different random error signal processing models that have been recently developed for MEMS inertial sensor precision improvement. For this purpose, an in-depth literature search was performed on several databases viz., Web of Science, IEEE Xplore, Science Direct, and Association for Computing Machinery Digital Library. Forty-nine representative papers that focused on the processing of signals from MEMS accelerometers, MEMS gyroscopes, and MEMS inertial measuring units, published in journal or conference formats, and indexed on the databases within the last 10 years, were downloaded and carefully reviewed. From this literature overview, 30 mainstream algorithms were extracted and categorized into seven groups, which were analyzed to present the contributions, strengths, and weaknesses of the literature. Additionally, a summary of the models developed in the studies was presented, along with their working principles viz., application domain, and the conclusions made in the studies. Finally, the development trend of MEMS inertial sensor technology and its application prospects were presented.
AbstractList Research and industrial studies have indicated that small size, low cost, high precision, and ease of integration are vital features that characterize microelectromechanical systems (MEMS) inertial sensors for mass production and diverse applications. In recent times, sensors like MEMS accelerometers and MEMS gyroscopes have been sought in an increased application range such as medical devices for health care to defense and military weapons. An important limitation of MEMS inertial sensors is repeatedly documented as the ease of being influenced by environmental noise from random sources, along with mechanical and electronic artifacts in the underlying systems, and other random noise. Thus, random error processing is essential for proper elimination of artifact signals and improvement of the accuracy and reliability from such sensors. In this paper, a systematic review is carried out by investigating different random error signal processing models that have been recently developed for MEMS inertial sensor precision improvement. For this purpose, an in-depth literature search was performed on several databases viz., Web of Science, IEEE Xplore, Science Direct, and Association for Computing Machinery Digital Library. Forty-nine representative papers that focused on the processing of signals from MEMS accelerometers, MEMS gyroscopes, and MEMS inertial measuring units, published in journal or conference formats, and indexed on the databases within the last 10 years, were downloaded and carefully reviewed. From this literature overview, 30 mainstream algorithms were extracted and categorized into seven groups, which were analyzed to present the contributions, strengths, and weaknesses of the literature. Additionally, a summary of the models developed in the studies was presented, along with their working principles viz., application domain, and the conclusions made in the studies. Finally, the development trend of MEMS inertial sensor technology and its application prospects were presented.
Research and industrial studies have indicated that small size, low cost, high precision, and ease of integration are vital features that characterize microelectromechanical systems (MEMS) inertial sensors for mass production and diverse applications. In recent times, sensors like MEMS accelerometers and MEMS gyroscopes have been sought in an increased application range such as medical devices for health care to defense and military weapons. An important limitation of MEMS inertial sensors is repeatedly documented as the ease of being influenced by environmental noise from random sources, along with mechanical and electronic artifacts in the underlying systems, and other random noise. Thus, random error processing is essential for proper elimination of artifact signals and improvement of the accuracy and reliability from such sensors. In this paper, a systematic review is carried out by investigating different random error signal processing models that have been recently developed for MEMS inertial sensor precision improvement. For this purpose, an in-depth literature search was performed on several databases viz., Web of Science, IEEE Xplore, Science Direct, and Association for Computing Machinery Digital Library. Forty-nine representative papers that focused on the processing of signals from MEMS accelerometers, MEMS gyroscopes, and MEMS inertial measuring units, published in journal or conference formats, and indexed on the databases within the last 10 years, were downloaded and carefully reviewed. From this literature overview, 30 mainstream algorithms were extracted and categorized into seven groups, which were analyzed to present the contributions, strengths, and weaknesses of the literature. Additionally, a summary of the models developed in the studies was presented, along with their working principles viz., application domain, and the conclusions made in the studies. Finally, the development trend of MEMS inertial sensor technology and its application prospects were presented.Research and industrial studies have indicated that small size, low cost, high precision, and ease of integration are vital features that characterize microelectromechanical systems (MEMS) inertial sensors for mass production and diverse applications. In recent times, sensors like MEMS accelerometers and MEMS gyroscopes have been sought in an increased application range such as medical devices for health care to defense and military weapons. An important limitation of MEMS inertial sensors is repeatedly documented as the ease of being influenced by environmental noise from random sources, along with mechanical and electronic artifacts in the underlying systems, and other random noise. Thus, random error processing is essential for proper elimination of artifact signals and improvement of the accuracy and reliability from such sensors. In this paper, a systematic review is carried out by investigating different random error signal processing models that have been recently developed for MEMS inertial sensor precision improvement. For this purpose, an in-depth literature search was performed on several databases viz., Web of Science, IEEE Xplore, Science Direct, and Association for Computing Machinery Digital Library. Forty-nine representative papers that focused on the processing of signals from MEMS accelerometers, MEMS gyroscopes, and MEMS inertial measuring units, published in journal or conference formats, and indexed on the databases within the last 10 years, were downloaded and carefully reviewed. From this literature overview, 30 mainstream algorithms were extracted and categorized into seven groups, which were analyzed to present the contributions, strengths, and weaknesses of the literature. Additionally, a summary of the models developed in the studies was presented, along with their working principles viz., application domain, and the conclusions made in the studies. Finally, the development trend of MEMS inertial sensor technology and its application prospects were presented.
Author Meng, Zhen
Omisore, Olatunji
Yan, Yuepeng
Han, Shipeng
Akinyemi, Toluwanimi
AuthorAffiliation 1 Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; hanshipeng@ime.ac.cn (S.H.); yanyuepeng@ime.ac.cn (Y.Y.)
3 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; omisore@siat.ac.cn (O.O.); tolu@siat.ac.cn (T.A.)
2 University of Chinese Academy of Sciences, Beijing 100049, China
AuthorAffiliation_xml – name: 1 Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; hanshipeng@ime.ac.cn (S.H.); yanyuepeng@ime.ac.cn (Y.Y.)
– name: 3 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; omisore@siat.ac.cn (O.O.); tolu@siat.ac.cn (T.A.)
– name: 2 University of Chinese Academy of Sciences, Beijing 100049, China
Author_xml – sequence: 1
  givenname: Shipeng
  surname: Han
  fullname: Han, Shipeng
– sequence: 2
  givenname: Zhen
  surname: Meng
  fullname: Meng, Zhen
– sequence: 3
  givenname: Olatunji
  orcidid: 0000-0002-9740-5471
  surname: Omisore
  fullname: Omisore, Olatunji
– sequence: 4
  givenname: Toluwanimi
  orcidid: 0000-0002-5598-8971
  surname: Akinyemi
  fullname: Akinyemi, Toluwanimi
– sequence: 5
  givenname: Yuepeng
  surname: Yan
  fullname: Yan, Yuepeng
BookMark eNp9kd1qFDEUx4NUbK298QkGvBFlNV-bmdwIS1l1oUVoFcSbcPYks50lk2wzM1v2zofwCX0SM92itojnIgnn_M_vfOQpOQgxOEKeM_pGCE3ftg0bjXL2iBxxWvKJUurrwV_vQ3LSdWuarSx1Pp6QQyG4EHJaHpFvFxBsbIt5SjEVF84O2DcxFDO_iqnpr9quqHPgfH5-WSyCS30Dvrh0ocvOGeKQAHfFot2kuHWtC_3P7z9mGbNt3M0z8rgG37mTu_uYfHk__3z6cXL26cPidHY2QSl1P2G84rwSgjnQglZU1YpzrEox1XaJIBERhAUNKColBdoKkFoHFJyiHJk4Jos910ZYm01qWkg7E6Ext46YVgZy3-idEdqhYjXKUlJpOQcrneIWra55vZxWmfV6zxrCBnY34P1vIKNmXLj5s_CsfrdXb4Zl6yzm-RP4ey3cj4Tmyqzi1pQlpUqN5V7eAVK8HlzXZ3qHznsILg6d4VJJphVnOktfPJCu45BCXuytSlZcq7Ejuldhil2XXG2w6WH80Vy_8f8e4tWDlP9M_AsfssJc
CitedBy_id crossref_primary_10_3390_drones6100287
crossref_primary_10_1016_j_measurement_2023_114001
crossref_primary_10_1109_JSEN_2022_3226478
crossref_primary_10_1556_606_2022_00612
crossref_primary_10_3390_robotics13110156
crossref_primary_10_26467_2079_0619_2024_27_6_82_93
crossref_primary_10_3390_s21113940
crossref_primary_10_3390_s23052508
crossref_primary_10_3390_s23125417
crossref_primary_10_3390_s24196283
crossref_primary_10_1109_LSENS_2024_3484527
crossref_primary_10_1109_JSEN_2023_3294508
crossref_primary_10_3390_machines9080151
crossref_primary_10_3390_mi13060879
crossref_primary_10_1016_j_oceaneng_2024_117280
crossref_primary_10_1109_ACCESS_2023_3240518
crossref_primary_10_3390_s22114226
crossref_primary_10_7498_aps_71_20211437
crossref_primary_10_1016_j_eswa_2023_121358
crossref_primary_10_1016_j_mee_2023_111979
crossref_primary_10_1142_S225123732430002X
crossref_primary_10_3390_s23136127
crossref_primary_10_1016_j_geog_2022_11_005
crossref_primary_10_1088_1361_6501_ad727f
crossref_primary_10_1109_ACCESS_2023_3343638
crossref_primary_10_3390_s22145225
crossref_primary_10_1016_j_measurement_2024_116538
crossref_primary_10_3390_mi14020419
crossref_primary_10_3390_mi12020214
crossref_primary_10_3390_s25010289
crossref_primary_10_32603_1993_8985_2023_26_2_101_119
crossref_primary_10_1007_s00542_024_05757_1
crossref_primary_10_3390_app11062633
crossref_primary_10_1088_1361_6501_ad00d3
crossref_primary_10_1088_1742_6596_2216_1_012027
crossref_primary_10_3390_s25051315
crossref_primary_10_3390_s21165479
crossref_primary_10_3390_app12073645
crossref_primary_10_1002_batt_202300514
crossref_primary_10_1051_itmconf_20224702010
Cites_doi 10.4028/www.scientific.net/AMR.255-260.2077
10.1109/ICECA.2018.8474917
10.1109/TNNLS.2019.2919931
10.3390/mi5041034
10.1155/2019/5491243
10.2514/1.A34403
10.1109/RCAR.2017.8311851
10.1016/j.measurement.2012.01.015
10.3390/s17102284
10.1108/SR-05-2017-0084
10.3390/mi10020134
10.1109/JOE.2018.2832878
10.1142/S0217979217410089
10.1109/ACCESS.2020.3018130
10.3390/app9040695
10.1063/1.5027850
10.1109/ICNSC.2011.5874871
10.1007/s00542-020-04793-x
10.1109/JSEN.2016.2597292
10.3390/s19143093
10.3390/s151127590
10.3390/electronics8020181
10.3390/s17010152
10.1177/1729881417744570
10.1016/j.ijleo.2014.03.037
10.3390/s17102335
10.1177/0142331212455451
10.1016/j.sna.2019.06.051
10.3390/s150203282
10.1109/ICEMI.2009.5273998
10.1162/neco.1997.9.8.1735
10.1007/s12200-015-0474-2
10.1109/JSEN.2017.2751572
10.1109/5.704269
10.1007/978-3-319-46535-7
10.1109/ICIAFS.2010.5715699
10.1007/s00542-017-3285-0
10.1007/s00542-019-04584-z
10.1016/j.isatra.2017.11.009
10.1038/s41586-019-1424-8
10.3390/s18124471
10.3390/mi10090608
10.1109/7361.983473
10.1016/j.measurement.2012.02.001
10.1177/0142331217708237
10.3390/mi6020266
10.1109/IBCAST.2016.7429889
10.3390/s140101394
10.1109/ITAIC.2011.6030374
10.1109/JSSC.2009.2016996
10.1007/s00542-017-3700-6
10.1109/MCOM.2013.6495768
10.1109/JSEN.2019.2941273
10.3390/mi9050246
10.3390/s18103470
10.1007/s00170-008-1591-5
10.1016/j.isatra.2020.01.030
10.3390/mi9120675
10.3390/mi11090862
10.1109/JSSC.2002.804345
10.3390/s19143240
10.1016/j.measurement.2020.107734
10.1109/PLANS.2016.7479676
10.1088/1361-6439/ab4bad
10.1109/TSMC.2016.2598782
10.1155/2016/1572303
10.3390/mi8030077
10.3390/electronics8060648
10.1080/1064119X.2018.1453567
10.1109/TNSRE.2020.2971762
10.1115/1.3662552
10.4028/www.scientific.net/AMM.433-435.1558
10.1109/MEMSYS.2018.8346494
10.3390/s120709448
10.1109/CGNCC.2014.7007378
10.1038/micronano.2015.5
10.1007/s42452-019-0867-8
10.1017/S0373463318000140
10.1109/ChiCC.2015.7259955
10.1155/2018/2830686
10.3390/s20061662
10.1109/ACCESS.2019.2895919
10.1007/s00542-015-2645-x
10.1109/JSEN.2016.2582198
10.1109/78.875477
10.1109/DSMP.2018.8478613
10.1016/j.sna.2006.06.043
10.3390/s150511222
10.1038/nature17397
10.3390/s18113943
10.4028/www.scientific.net/AMR.466-467.986
10.1109/ISISS.2017.7935653
10.3390/mi11060586
10.3390/mi11110968
10.1109/ICISCE.2018.00226
10.1016/j.sna.2016.09.019
10.1109/CICC.2019.8780183
10.1115/DETC2011-47180
10.1007/s00542-018-4212-8
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
7SP
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
L6V
L7M
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/mi11111021
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
SciTech Premium Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2072-666X
ExternalDocumentID oai_doaj_org_article_39ec61fc47404d22ad4e62dcd9f2fb58
10.3390/mi11111021
PMC7700668
10_3390_mi11111021
GroupedDBID 53G
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
KQ8
L6V
M7S
MM.
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RPM
TR2
TUS
7SP
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
L7M
PKEHL
PQEST
PQQKQ
PQUKI
7X8
PUEGO
5PM
ADTOC
C1A
IAO
IPNFZ
ITC
RIG
UNPAY
ID FETCH-LOGICAL-c449t-128228331ea930806f622c87359dbca4ccca3da9ac38643cd8ac0dea0ae602c13
IEDL.DBID UNPAY
ISSN 2072-666X
IngestDate Tue Oct 14 19:04:04 EDT 2025
Sun Oct 26 03:51:32 EDT 2025
Tue Sep 30 15:32:28 EDT 2025
Fri Sep 05 09:02:14 EDT 2025
Fri Jul 25 11:55:42 EDT 2025
Thu Oct 16 04:35:01 EDT 2025
Thu Apr 24 23:01:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c449t-128228331ea930806f622c87359dbca4ccca3da9ac38643cd8ac0dea0ae602c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-9740-5471
0000-0002-5598-8971
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2072-666X/11/11/1021/pdf?version=1605955993
PMID 33233457
PQID 2464482961
PQPubID 2032359
ParticipantIDs doaj_primary_oai_doaj_org_article_39ec61fc47404d22ad4e62dcd9f2fb58
unpaywall_primary_10_3390_mi11111021
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7700668
proquest_miscellaneous_2464196219
proquest_journals_2464482961
crossref_citationtrail_10_3390_mi11111021
crossref_primary_10_3390_mi11111021
PublicationCentury 2000
PublicationDate 20201121
PublicationDateYYYYMMDD 2020-11-21
PublicationDate_xml – month: 11
  year: 2020
  text: 20201121
  day: 21
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Micromachines (Basel)
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Sebald (ref_61) 2000; 48
ref_94
ref_92
Pavol (ref_113) 2017; 14
Gill (ref_23) 2020; 26
Feng (ref_42) 2015; 15
Bhatt (ref_64) 2012; 12
ref_11
ref_10
Hsu (ref_69) 2019; 7
ref_96
Gerlici (ref_114) 2020; 17
ref_95
ref_18
ref_17
ref_16
Sasiadek (ref_15) 1993; 93
Zhang (ref_26) 2019; 296
Ren (ref_108) 2016; 2016
Babaei (ref_99) 2017; 23
Guo (ref_38) 2018; 38
Liu (ref_121) 2020; 28
Nemec (ref_54) 2016; 16
Hu (ref_43) 2016; 250
Shiau (ref_57) 2011; 255
Zhang (ref_65) 2012; 45
Babaei (ref_97) 2019; 1
ref_25
ref_24
Qureshi (ref_7) 2017; 17
ref_120
Fischer (ref_91) 2015; 1
Platz (ref_88) 2019; 29
ref_27
Yuan (ref_53) 2015; 15
Middlemiss (ref_28) 2016; 531
Bhardwaj (ref_29) 2018; 40
Alam (ref_39) 2015; 15
Barbour (ref_30) 2001; 1
Zhu (ref_71) 2019; 2019
ref_70
Geen (ref_4) 2002; 37
Hochreiter (ref_72) 1997; 9
Bulej (ref_110) 2020; 17
Ferlito (ref_122) 2020; 8
ref_79
Ghanbari (ref_101) 2015; 9
ref_78
ref_77
ref_76
Fei (ref_81) 2013; 35
ref_75
ref_74
ref_73
Tipping (ref_66) 2001; 1
Bai (ref_83) 2020; 101
Rahmani (ref_107) 2020; 26
Narasimhappa (ref_84) 2020; 20
Sparks (ref_13) 2016; 12
Yang (ref_50) 2012; 466
ref_80
ref_87
ref_86
ref_85
Shi (ref_49) 2013; 433
Rahmani (ref_104) 2018; 24
Aydemir (ref_3) 2012; 45
Kepper (ref_22) 2019; 44
Miller (ref_89) 2018; 5
Rahmani (ref_103) 2018; 72
Sharma (ref_19) 2009; 44
Fei (ref_82) 2009; 42
ref_58
Chen (ref_90) 2016; 16
Cao (ref_59) 2018; 2018
ref_56
ref_55
Xia (ref_8) 2014; 14
ref_51
Capriglione (ref_119) 2020; 158
Yuan (ref_47) 2015; 8
Xu (ref_109) 2020; 31
Xue (ref_52) 2014; 5
Nazemipour (ref_33) 2018; 77
ref_60
Kenshi (ref_34) 2015; 35
Kalman (ref_40) 1960; 82
Feng (ref_35) 2014; 125
ref_68
Nokhodberiz (ref_12) 2017; 47
ref_67
Pei (ref_93) 2019; 572
ref_63
ref_62
Emami (ref_118) 2018; 71
Vedachalam (ref_117) 2018; 37
Huang (ref_1) 2017; 31
Braun (ref_116) 2019; 56
Shaeffer (ref_32) 2013; 51
Kilin (ref_112) 2017; 14
Rahmani (ref_105) 2019; 25
Xue (ref_46) 2015; 6
ref_115
Yazdi (ref_14) 1998; 86
ref_36
ref_111
ref_31
Alper (ref_20) 2007; 135
ref_37
Babaei (ref_100) 2020; 4
ref_106
ref_45
ref_44
ref_41
ref_102
Guo (ref_21) 2015; 21
ref_2
Babaei (ref_98) 2020; 1
ref_48
ref_9
ref_5
ref_6
References_xml – volume: 255
  start-page: 2077
  year: 2011
  ident: ref_57
  article-title: MEMS Gyroscope Null Drift and Compensation Based on Neural Network
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.255-260.2077
– ident: ref_11
  doi: 10.1109/ICECA.2018.8474917
– volume: 31
  start-page: 1375
  year: 2020
  ident: ref_109
  article-title: Composite Neural Learning-Based Nonsingular Terminal Sliding Mode Control of MEMS Gyroscopes
  publication-title: IEEE Trans Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2019.2919931
– volume: 5
  start-page: 1034
  year: 2014
  ident: ref_52
  article-title: Analysis of Dynamic Performance of a Kalman Filter for Combining Multiple MEMS Gyroscopes
  publication-title: Micromachines
  doi: 10.3390/mi5041034
– ident: ref_80
– volume: 2019
  start-page: 5491243
  year: 2019
  ident: ref_71
  article-title: A MEMS Gyroscope Noise Suppressing Method Using Neural Architecture Search Neural Network
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2019/5491243
– volume: 56
  start-page: 1624
  year: 2019
  ident: ref_116
  article-title: Performance Analysis of GNSS-Aided Inertial Navigation Systems on Spinning Flight Vehicles
  publication-title: J. Spacecr. Rockets
  doi: 10.2514/1.A34403
– ident: ref_78
  doi: 10.1109/RCAR.2017.8311851
– volume: 45
  start-page: 1210
  year: 2012
  ident: ref_3
  article-title: Characterization and calibration of MEMS inertial sensors for state and parameter estimation applications
  publication-title: Measurement
  doi: 10.1016/j.measurement.2012.01.015
– ident: ref_18
  doi: 10.3390/s17102284
– volume: 38
  start-page: 517
  year: 2018
  ident: ref_38
  article-title: A hybrid method for MEMS gyroscope signal error compensation
  publication-title: Sens. Rev.
  doi: 10.1108/SR-05-2017-0084
– ident: ref_51
  doi: 10.3390/mi10020134
– volume: 44
  start-page: 664
  year: 2019
  ident: ref_22
  article-title: A Navigation Solution Using a MEMS IMU, Model-Based Dead-Reckoning, and One-Way-Travel-Time Acoustic Range Measurements for Autonomous Underwater Vehicles
  publication-title: IEEE J. Ocean. Eng.
  doi: 10.1109/JOE.2018.2832878
– volume: 31
  start-page: 1741008
  year: 2017
  ident: ref_1
  article-title: Analysis and design of the system of a total digital Si-gyroscope
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979217410089
– volume: 8
  start-page: 153969
  year: 2020
  ident: ref_122
  article-title: Sub-femto-Farad Resolution Electronic Inter faces for Integrated Capacitive Sensors: A Review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3018130
– ident: ref_94
– ident: ref_60
  doi: 10.3390/app9040695
– volume: 77
  start-page: 553
  year: 2018
  ident: ref_33
  article-title: MEMS Gyroscope Raw Data Noise Reduction Using Fading Memory Filter
  publication-title: J. Sci. Ind. Res.
– volume: 5
  start-page: 041307
  year: 2018
  ident: ref_89
  article-title: Effective quality factor tuning mechanisms in micromechanical resonators
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.5027850
– ident: ref_85
  doi: 10.1109/ICNSC.2011.5874871
– volume: 26
  start-page: 2527
  year: 2020
  ident: ref_23
  article-title: MEMS multi-vibrating ring gyroscope for space applications
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-020-04793-x
– ident: ref_56
– volume: 16
  start-page: 7150
  year: 2016
  ident: ref_54
  article-title: Intelligent Real-Time MEMS Sensor Fusion and Calibration
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2016.2597292
– ident: ref_27
  doi: 10.3390/s19143093
– volume: 15
  start-page: 27590
  year: 2015
  ident: ref_53
  article-title: Dynamic Performance Comparison of Two Kalman Filters for Rate Signal Direct Modeling and Differencing Modeling for Combining a MEMS Gyroscope Array to Improve Accuracy
  publication-title: Sensors
  doi: 10.3390/s151127590
– ident: ref_74
  doi: 10.3390/electronics8020181
– ident: ref_44
  doi: 10.3390/s17010152
– volume: 14
  start-page: 1729881417744570
  year: 2017
  ident: ref_112
  article-title: Experimental investigations of a highly maneuverable mobile omniwheel robot
  publication-title: Int. J. Adv. Robot. Syst.
  doi: 10.1177/1729881417744570
– volume: 125
  start-page: 4288
  year: 2014
  ident: ref_35
  article-title: Decision-based adaptive morphological filter for fixed-value impulse noise removal
  publication-title: Optik
  doi: 10.1016/j.ijleo.2014.03.037
– ident: ref_63
  doi: 10.3390/s17102335
– ident: ref_62
– volume: 35
  start-page: 551
  year: 2013
  ident: ref_81
  article-title: Adaptive fuzzy sliding mode control using adaptive sliding gain for MEMS gyroscope
  publication-title: Trans Inst. Meas. Control
  doi: 10.1177/0142331212455451
– volume: 296
  start-page: 79
  year: 2019
  ident: ref_26
  article-title: A low noise capacitive MEMS accelerometer with anti-spring structure
  publication-title: Sens. Actuators A Phys
  doi: 10.1016/j.sna.2019.06.051
– volume: 15
  start-page: 3282
  year: 2015
  ident: ref_39
  article-title: Adaptive Data Filtering of Inertial Sensors with Variable Bandwidth
  publication-title: Sensors
  doi: 10.3390/s150203282
– ident: ref_25
  doi: 10.1109/ICEMI.2009.5273998
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_72
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 8
  start-page: 413
  year: 2015
  ident: ref_47
  article-title: An improved noise reduction algorithm based on wavelet transformation for MEMS gyroscope
  publication-title: Front. Optoelectron.
  doi: 10.1007/s12200-015-0474-2
– volume: 17
  start-page: 7479
  year: 2017
  ident: ref_7
  article-title: An Algorithm for the In-Field Calibration of a MEMS IMU
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2017.2751572
– volume: 86
  start-page: 1640
  year: 1998
  ident: ref_14
  article-title: Micromachined inertial sensors
  publication-title: Proc. IEEE
  doi: 10.1109/5.704269
– ident: ref_111
  doi: 10.1007/978-3-319-46535-7
– volume: 17
  start-page: 1729881420906290
  year: 2020
  ident: ref_114
  article-title: Design of a robotic manipulator for handling products of automotive industry
  publication-title: Int. J. Adv. Robot. Syst.
– ident: ref_79
  doi: 10.1109/ICIAFS.2010.5715699
– ident: ref_92
– volume: 23
  start-page: 4599
  year: 2017
  ident: ref_99
  article-title: Temperature-dependent free vibration analysis of functionally graded micro-beams based on the modified couple stress theory
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-017-3285-0
– volume: 26
  start-page: 853
  year: 2020
  ident: ref_107
  article-title: A new hybrid robust control of MEMS gyroscope
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-019-04584-z
– volume: 72
  start-page: 37
  year: 2018
  ident: ref_103
  article-title: MEMS gyroscope control using a novel compound robust control
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2017.11.009
– volume: 572
  start-page: 106
  year: 2019
  ident: ref_93
  article-title: Towards artificial general intelligence with hybrid Tianjic chip architecture
  publication-title: Nature
  doi: 10.1038/s41586-019-1424-8
– ident: ref_75
– ident: ref_77
  doi: 10.3390/s18124471
– ident: ref_48
  doi: 10.3390/mi10090608
– volume: 1
  start-page: 332
  year: 2001
  ident: ref_30
  article-title: Inertial Sensor Technology Trends
  publication-title: IEEE Sens. J.
  doi: 10.1109/7361.983473
– volume: 45
  start-page: 922
  year: 2012
  ident: ref_65
  article-title: Modeling and compensation of MEMS gyroscope output data based on support vector machine
  publication-title: Measurement
  doi: 10.1016/j.measurement.2012.02.001
– ident: ref_70
– volume: 40
  start-page: 2843
  year: 2018
  ident: ref_29
  article-title: Errors in micro-electro-mechanical systems inertial measurement and a review on present practices of error modelling
  publication-title: Trans. Inst. Meas. Control
  doi: 10.1177/0142331217708237
– volume: 6
  start-page: 266
  year: 2015
  ident: ref_46
  article-title: Noise Reduction of MEMS Gyroscope Based on Direct Modeling for an Angular Rate Signal
  publication-title: Micromachines
  doi: 10.3390/mi6020266
– ident: ref_58
  doi: 10.1109/IBCAST.2016.7429889
– volume: 14
  start-page: 1394
  year: 2014
  ident: ref_8
  article-title: The Development of Micromachined Gyroscope Structure and Circuitry Technology
  publication-title: Sensors
  doi: 10.3390/s140101394
– ident: ref_10
  doi: 10.1109/ITAIC.2011.6030374
– volume: 44
  start-page: 1593
  year: 2009
  ident: ref_19
  article-title: A Sub-0.2 degrees/hr Bias Drift Micromechanical Silicon Gyroscope With Automatic CMOS Mode-Matching
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/JSSC.2009.2016996
– volume: 1
  start-page: 211
  year: 2001
  ident: ref_66
  article-title: Sparse Bayesian learning and the relevance vector machine
  publication-title: J. Mach. Learn. Res.
– volume: 24
  start-page: 2835
  year: 2018
  ident: ref_104
  article-title: Optimal novel super-twisting PID sliding mode control of a MEMS gyroscope based on multi-objective bat algorithm
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-017-3700-6
– ident: ref_5
– ident: ref_55
– volume: 51
  start-page: 100
  year: 2013
  ident: ref_32
  article-title: MEMS inertial sensors: A tutorial overview
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2013.6495768
– volume: 14
  start-page: 1729881417738103
  year: 2017
  ident: ref_113
  article-title: Navigation control and stability investigation of a mobile robot based on a hexacopter equipped with an integrated manipulator
  publication-title: Int. J. Adv. Robot. Syst.
– volume: 20
  start-page: 250
  year: 2020
  ident: ref_84
  article-title: MEMS-Based IMU Drift Minimization: Sage Husa Adaptive Robust Kalman Filtering
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2941273
– ident: ref_36
  doi: 10.3390/mi9050246
– ident: ref_73
  doi: 10.3390/s18103470
– volume: 42
  start-page: 293
  year: 2009
  ident: ref_82
  article-title: Robust adaptive control for a MEMS vibratory gyroscope
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-008-1591-5
– volume: 101
  start-page: 430
  year: 2020
  ident: ref_83
  article-title: Adaptive filtering for MEMS gyroscope with dynamic noise model
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2020.01.030
– ident: ref_2
  doi: 10.3390/mi9120675
– ident: ref_102
  doi: 10.3390/mi11090862
– volume: 9
  start-page: 274
  year: 2015
  ident: ref_101
  article-title: The New Boundary Condition Effect on The Free Vibration Analysis of Micro-beams Based on The Modified Couple Stress Theory
  publication-title: Int. Res. J. Appl. Basic Sci.
– volume: 35
  start-page: 1
  year: 2015
  ident: ref_34
  article-title: Performance analysis of α–β–γ tracking filters using position and velocity measurements
  publication-title: EURASIP J. Adv. Signal Process.
– volume: 37
  start-page: 1860
  year: 2002
  ident: ref_4
  article-title: Single-chip surface micromachined integrated gyroscope with 50 degrees/h allan deviation
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/JSSC.2002.804345
– ident: ref_120
  doi: 10.3390/s19143240
– volume: 158
  start-page: 107734
  year: 2020
  ident: ref_119
  article-title: Development of a Test plan and a Testbed for Performance Analysis of MEMS-based IMUs Under Vibration Conditions
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107734
– ident: ref_31
  doi: 10.1109/PLANS.2016.7479676
– volume: 29
  start-page: 1
  year: 2019
  ident: ref_88
  article-title: Vibrational modes in MEMS resonators
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/1361-6439/ab4bad
– volume: 47
  start-page: 1383
  year: 2017
  ident: ref_12
  article-title: Distributed Interacting Multiple Filters for Fault Diagnosis of Navigation Sensors in a Robotic System
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2016.2598782
– volume: 2016
  start-page: 1572303
  year: 2016
  ident: ref_108
  article-title: Adaptive Fuzzy Sliding Mode Control of MEMS Gyroscope with Finite Time Convergence
  publication-title: J. Sens.
  doi: 10.1155/2016/1572303
– volume: 17
  start-page: 1729881420923997
  year: 2020
  ident: ref_110
  article-title: Case study: Performance analysis and development of robotized screwing application with integrated vision sensing system for automotive industry
  publication-title: Int. J. Adv. Robot. Syst.
– ident: ref_6
  doi: 10.3390/mi8030077
– ident: ref_87
  doi: 10.3390/electronics8060648
– volume: 37
  start-page: 525
  year: 2018
  ident: ref_117
  article-title: Autonomous underwater vehicles—Challenging developments and technological maturity towards strategic swarm robotics systems
  publication-title: Mar. Georesour. Geotechnol.
  doi: 10.1080/1064119X.2018.1453567
– volume: 28
  start-page: 637
  year: 2020
  ident: ref_121
  article-title: A Wearable Flow-MIMU Device for Monitoring Human Dynamic Motion
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2020.2971762
– volume: 82
  start-page: 35
  year: 1960
  ident: ref_40
  article-title: A New Approach to Linear Filtering and Prediction Problems
  publication-title: J. Basic Eng.
  doi: 10.1115/1.3662552
– volume: 433
  start-page: 1558
  year: 2013
  ident: ref_49
  article-title: Study on MEMS Gyro Signal De-Noising Based on Improved Wavelet Threshold Method
  publication-title: Appl. Mech. Mater.
  doi: 10.4028/www.scientific.net/AMM.433-435.1558
– ident: ref_16
  doi: 10.1109/MEMSYS.2018.8346494
– ident: ref_76
– volume: 12
  start-page: 9448
  year: 2012
  ident: ref_64
  article-title: An Enhanced MEMS Error Modeling Approach Based on Nu-Support Vector Regression
  publication-title: Sensors
  doi: 10.3390/s120709448
– ident: ref_24
– ident: ref_67
  doi: 10.1109/CGNCC.2014.7007378
– volume: 1
  start-page: 1
  year: 2015
  ident: ref_91
  article-title: Integrating MEMS and ICs
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/micronano.2015.5
– volume: 1
  start-page: 831
  year: 2019
  ident: ref_97
  article-title: Longitudinal vibration responses of axially functionally graded optimized MEMS gyroscope using Rayleigh-Ritz method, determination of discernible patterns and chaotic regimes
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-019-0867-8
– volume: 71
  start-page: 1161
  year: 2018
  ident: ref_118
  article-title: A Low Complexity Integrated Navigation System for Underwater Vehicles
  publication-title: J. Navig.
  doi: 10.1017/S0373463318000140
– ident: ref_37
– ident: ref_41
  doi: 10.1109/ChiCC.2015.7259955
– volume: 2018
  start-page: 2830686
  year: 2018
  ident: ref_59
  article-title: Temperature Energy Influence Compensation for MEMS Vibration Gyroscope Based on RBF NN-GA-KF Method
  publication-title: Shock Vib.
  doi: 10.1155/2018/2830686
– ident: ref_96
  doi: 10.3390/s20061662
– volume: 7
  start-page: 17551
  year: 2019
  ident: ref_69
  article-title: Random Drift Modeling and Compensation for MEMS-Based Gyroscopes and Its Application in Handwriting Trajectory Reconstruction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2895919
– volume: 21
  start-page: 2053
  year: 2015
  ident: ref_21
  article-title: Research development of silicon MEMS gyroscopes: A review
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-015-2645-x
– volume: 4
  start-page: 1
  year: 2020
  ident: ref_100
  article-title: Forced vibration analysis of non-local strain gradient rod subjected to harmonic excitations
  publication-title: Microsyst. Technol.
– volume: 16
  start-page: 6476
  year: 2016
  ident: ref_90
  article-title: Electromechanical sigma-delta modulators (Σ∆M) force feedback interfaces for capacitive MEMS inertial sensors: A review
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2016.2582198
– volume: 48
  start-page: 3217
  year: 2000
  ident: ref_61
  article-title: Support vector machine techniques for nonlinear equalization
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.875477
– ident: ref_9
  doi: 10.1109/DSMP.2018.8478613
– volume: 135
  start-page: 34
  year: 2007
  ident: ref_20
  article-title: A high-performance silicon-on-insulator MEMS gyroscope operating at atmospheric pressure
  publication-title: Sens. Actuators A Phys
  doi: 10.1016/j.sna.2006.06.043
– volume: 12
  start-page: 39
  year: 2016
  ident: ref_13
  article-title: MEMS Inertial Sensors for Automotive and Consumer Applications
  publication-title: Equip. Electron. Prod. Manuf.
– volume: 15
  start-page: 11222
  year: 2015
  ident: ref_42
  article-title: An Adaptive Compensation Algorithm for Temperature Drift of Micro-Electro-Mechanical Systems Gyroscopes Using a Strong Tracking Kalman Filter
  publication-title: Sensors
  doi: 10.3390/s150511222
– volume: 531
  start-page: 614
  year: 2016
  ident: ref_28
  article-title: Measurement of the Earth tides with a MEMS gravimeter
  publication-title: Nature
  doi: 10.1038/nature17397
– ident: ref_86
  doi: 10.3390/s18113943
– volume: 466
  start-page: 986
  year: 2012
  ident: ref_50
  article-title: MEMS Gyro Signal De-Noising Based on Adaptive Stationary Wavelet Threshold
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.466-467.986
– ident: ref_68
  doi: 10.1109/ISISS.2017.7935653
– volume: 1
  start-page: 1
  year: 2020
  ident: ref_98
  article-title: Vibration analysis of rotating thermally-stressed gyroscope, based on modified coupled displacement field method
  publication-title: Mech. Based Des. Struct.
– ident: ref_95
  doi: 10.3390/mi11060586
– ident: ref_106
  doi: 10.3390/mi11110968
– ident: ref_45
  doi: 10.1109/ICISCE.2018.00226
– volume: 250
  start-page: 96
  year: 2016
  ident: ref_43
  article-title: Extended Kalman filtering based parameter estimation and drift compensation for a MEMS rate integrating gyroscope
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2016.09.019
– ident: ref_17
  doi: 10.1109/CICC.2019.8780183
– ident: ref_115
  doi: 10.1115/DETC2011-47180
– volume: 25
  start-page: 3409
  year: 2019
  ident: ref_105
  article-title: A new adaptive fractional sliding mode control of a MEMS gyroscope
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-018-4212-8
– volume: 93
  start-page: 296
  year: 1993
  ident: ref_15
  article-title: Modern inertial technology: Navigation, guidance, and control
  publication-title: Control Eng. Pract.
SSID ssj0000779007
Score 2.390907
SecondaryResourceType review_article
Snippet Research and industrial studies have indicated that small size, low cost, high precision, and ease of integration are vital features that characterize...
SourceID doaj
unpaywall
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1021
SubjectTerms Accelerometers
Accuracy
Algorithms
Background noise
Digital systems
Error analysis
Error reduction
Error signals
Gyroscopes
Inertial platforms
Inertial sensing devices
Mass production
MEMS accelerometer
MEMS gyroscope
Microelectromechanical systems
Noise
random error reduction
Random errors
Random noise
Review
Sensors
Signal processing
signal processing algorithms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQL8AB8SsWCjKiFw5R45_EznFBWxWk5dBSqeISOWObVtpNqnRXqLc-RJ-QJ2EmSZcNQnDhaluxMx6P57PH3zC2J2PQwQhI8hDo6EaoxKJaJTpU2oSqslX3PHr-OT880Z9Os9OtVF8UE9bTA_eC21dFgFxE0Ean2kvpvA659OCLKGOVdc98U1tsganOBhONXmp6PlKFuH5_eU7GgRJZj3agjqh_5F3-Hht5d11fuKvvbrHY2ngOHrIHg8fIp_1IH7E7oX7M7m_xCD5hX49c7Zsln7Vt0_IjYmMlefPp4luD4P9secnRN-Xz2fyYf6wpkho_eIwAFgunAOvWwRXvjxe608If1zdT3t8aPGUnB7MvHw6TIWlCAloXq0RQXKhVSgRXKHQH85hLCdaorPAVOA04Zcq7woGy6I2Atw5SH1zqQp5KEOoZ26mbOjxn3FhdZTlEi3u8FjGzKaIrSjMkYgSVugl7dyvIEgZGcUpssSgRWZDQy19Cn7C3m7YXPY_GH1u9p_nYtCDu664ANaIcNKL8l0ZM2O7tbJbDgrwspSYgKosc-3izqcalRPcjrg7Num-DBglt-ISZkRaMBjSuqc_POlJuY8h7w873Nvrylx998T9-9CW7Jwn9C5FIsct2Vu06vEIXaVW97lbDT5vAEUU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbK9gAcEE81UCojeuEQNX4kcQ4IbautCtKu0JZKFZfIGTttpd1kSXeFeuNH8Av5JXjyaoNQr_YosT3j8cx4_A0h-zy30sYM_MhaDN0w4SsnVr60mYxtlqmsfh49nUUnZ_LLeXi-RWbdWxhMq-x0Yq2oTQkYIz_gEj0JnkTs0-qHj1Wj8Ha1K6Gh29IK5mMNMfaAbHNExhqR7cPJ7Ou8j7oECK8XxA1OqXD-_sHyCpUGFrgenEw1gP_A6vw3Z_Lhpljpm596sbhzIB0_JU9aS5KOG9Y_I1u2eE4e38EXfEG-z3VhyiWdVFVZ0TmitCIf6Hhx4aa2vlxeU2ez0ulkeko_F5hh7T546hxb1zgG2FQabmgTdqijiH9-_R7T5jbhJTk7nnw7OvHbYgo-SJmsfYb5okoIZnUinJkY5RHnoGIRJiYDLcGxUhidaBDKWSlglIbAWB1oGwUcmHhFRkVZ2B1CYyWzMIJcubNfsjxUgfO6sPwQy3MQgfbIh24hU2iRxrHgxSJ1Hgcuenq76B5539OuGnyN_1IdIj96CsTErhvK6iJtt1gqEgsRy0HGMpCGc22kjbgBk-Q8z0Llkd2Om2m7Ua_TW7HyyLu-220xvDfRhS03DY1TVE63eyQeSMFgQMOe4uqyBuuOY7Tq3M_3e3m5Z6Kv7x_jG_KIo7_PmM_ZLhmtq41964yidbbXSvpfRGQObg
  priority: 102
  providerName: ProQuest
Title Random Error Reduction Algorithms for MEMS Inertial Sensor Accuracy Improvement—A Review
URI https://www.proquest.com/docview/2464482961
https://www.proquest.com/docview/2464196219
https://pubmed.ncbi.nlm.nih.gov/PMC7700668
https://www.mdpi.com/2072-666X/11/11/1021/pdf?version=1605955993
https://doaj.org/article/39ec61fc47404d22ad4e62dcd9f2fb58
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2072-666X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000779007
  issn: 2072-666X
  databaseCode: KQ8
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-666X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000779007
  issn: 2072-666X
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2072-666X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000779007
  issn: 2072-666X
  databaseCode: ADMLS
  dateStart: 20110901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-666X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000779007
  issn: 2072-666X
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central (ODIN)
  customDbUrl:
  eissn: 2072-666X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000779007
  issn: 2072-666X
  databaseCode: RPM
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2072-666X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000779007
  issn: 2072-666X
  databaseCode: BENPR
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2072-666X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000779007
  issn: 2072-666X
  databaseCode: 8FG
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Pb9MwFLdYewAO47_oGFUQu3DIGv9J4pxQhloGUqupo1LhEjm2s1W0SZUloHHiQ_AJ-SQ8J2lpJoSQkHJyXhxb79n-vefnnxE6Iolm2sfS9rQ2oRtMbQ5mZTMdM1_HMY-r49HjiXc6Y-_n7nznFL9JqwRXfFFN0sTxiQ34ej7AuHpgQRqsVfL6SxNLwgDGDYVaQPdQ13MBjXdQdzY5Cz-aO-U2X9espBS8-8FqYaYIU09rHaro-lsY82aG5O0yXYvrr2K53Fl-RveQ2DS8zjr5fFwW8bH8doPT8X96dh_tN9jUCmtjeoBu6fQhurvDWPgIfZqKVGUra5jnWW5NDe-r0awVLi-yfFFcrq4sQMHWeDg-t96lJmcbKjwHVxkKQynLXMhrqw5kVHHJn99_hFa9P_EYzUbDD29O7eZ6BlsyFhQ2NhmonFKsRUABeHqJR4jkPnUDFUvBJBgHVSIQknLAPVJxIR2lhSO05xCJ6RPUSbNUP0WWz1nsejLhgCYYTlzugB9nLjTCSSKpI3ro1UZZkWy4y80VGssIfBij2Oi3Ynvo5VZ2XTN2_FHqxOh8K2FYtquCLL-ImkEb0UBLDyeS-cxhihChmPaIkipISBK7vIcONxYTNUP_KiLMuLwk8OAfL7avYdCanRiR6qysZWDqg9Wih_yWpbUa1H6TLi4r-m_fNzgRfn60tcm_dPTg38SeoTvERBIwtgk-RJ0iL_VzgFtF3Ed7fPS2j7onw8nZtF8FLfrNKPsFFtAplw
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKeygcEE8RKGBEOXBYdf3Y16FCKaRKaBOhtJUqLluv7W0rJbthk6jKjR_B7-HH8EuY2d1sG4R669Ueeb3j8bxsf0PINk-ttAHTjm8tpm6YcEIQK0faRAY2ScKkfB7dH_jdE_n11DtdI7-Xb2HwWuVSJ5aK2uQac-Q7XGIkwSOffZr8cLBqFJ6uLktoqLq0gtktIcbqhx0HdnEFIdx0t_cF1vsD5_ud489dp64y4Ggpo5nD8CJlKASzKhLgP_mpz7kOA-FFJtFKavhHYVSktAjBfGsTKu0aq1xlfZdrJmDce2RDChlB8Lex1xl8GzZZHhfh_NygwkUVInJ3xpeopLCg9oolLAsGrHi5_97R3JxnE7W4UqPRDQO4_4g8rD1X2q5E7TFZs9kT8uAGnuFT8n2oMpOPaaco8oIOERUW1522R-fAytnFeErBR6b9Tv-I9jK80Q0DHkEgDY1treeF0gtapTnKrOWfn7_atDq9eEZO7oStz8l6lmf2BaFBKBPP12kIvoZkqRe6EOVhuSOWplq4qkU-LhkZ6xrZHAtsjGKIcJDp8TXTW-R9Qzup8Dz-S7WH69FQIAZ32ZAX53G9pWMRWe2zVMtAutJwroy0PjfaRClPEy9ska3lasa1YpjG12LcIu-abtjSeE6jMpvPKxpQjGBLWiRYkYKVCa32ZJcXJTh4EKAXCR_fbuTllh99efsc35LN7nH_MD7sDQ5ekfsccw2MOZxtkfVZMbevwSGbJW9qqafk7K432l_m90u2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkaAcEE-RUsCIcuAQbfzI64DQQnfpUrZCLZUqLsFxnLbSbrJkd1XtjR_Br-Hn8EuYyasNQr31aluOMzMez4zH3xCyzVMjjc-07RmDoRsm7ADEypYmlr6J4yAun0eP973dI_np2D1eI7-btzCYVtnoxFJRJ7nGGHmPS_QkeOixXlqnRXzZGb6b_bCxghTetDblNCoR2TOrc3Df5m9HO8Dr15wPB18_7Np1hQFbSxkubIZJlIEQzKhQgO3kpR7nOvCFGyaxVlLD_4lEhUqLAI5unQRKO4lRjjKewzUTMO8NctNHFHd8pT782MZ3HATyc_wKEVWI0OlNz1A9YSntzhlYlgro2Lf_ZmfeXmYztTpXk8mlo294j9ytbVbar4TsPlkz2QNy5xKS4UPy7UBlST6lg6LIC3qAeLDIcdqfnADhFqfTOQXrmI4H40M6yjCXGyY8BBcaGvtaLwulV7QKcJTxyj8_f_VpdW_xiBxdC1Efk_Usz8wTQv1Axq6n0wCsDMlSN3DAv8NCRyxNtXCURd40hIx0jWmOpTUmEfg2SPTogugWedWOnVVIHv8d9R750Y5A9O2yIS9OonozRyI02mOplr50ZMK5SqTxeKKTMOVp7AYW2Wq4GdUqYR5dCLBFXrbdsJnxhkZlJl9WY0AlwiliEb8jBZ0FdXuys9MSFtz30X6Ej2-38nLFj25evcYX5BZsr-jzaH_vKdngGGRgzOZsi6wviqV5BpbYIn5eijwl3697j_0F4mRJUA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgewAOvCsWCjKiFw7pxo84yQkFtFVB2gq1rLRwiRw_2hW7ySpNQOXEj-AX8ksYJ9llUyGEhJSTPbETzdj-ZjL5BqF9ag03IVGeMMaFbgjzIjArj5uMhybLoqz5PXpyLI6m_N0smG39xe_SKsEVnzebNPVD6gG-no0IaS44kEYrbV996WJJBMC4o1CL2XW0IwJA4wO0Mz1-n3x0NeXWd7espAy8-9Fy7rYIN07vHGro-nsY82qG5I06X8nLr3Kx2Dp-Du8guX7wNuvk80FdZQfq2xVOx_95s7vododNcdIa0z10zeT30a0txsIH6NOJzHWxxOOyLEp84nhfnWZxsjgrynl1vrzAgILxZDw5xW9zl7MNA56CqwyNiVJ1KdUlbgMZTVzy5_cfCW6_TzxE08PxhzdHXleewVOcx5VHXAZqxBgxMmYAPIUVlKooZEGsMyW5AuNgWsZSsQhwj9KRVL420pdG-FQRtosGeZGbRwiHEc8CoWwEaIITG0Q--HGuoBGxVjFfDtHLtbJS1XGXuxIaixR8GKfY9Ldih-jFRnbVMnb8Ueq10_lGwrFsNw1FeZZ2izZlsVGCWMVD7nNNqdTcCKqVji21WRAN0d7aYtJu6V-klDuXl8YC5ni-6YZF677EyNwUdSsDWx-cFkMU9iyt90D9nnx-3tB_h6HDiTD5_sYm__Kij_9N7Am6SV0kgRCPkj00qMraPAW4VWXPuhX1CwH1JiI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Random+Error+Reduction+Algorithms+for+MEMS+Inertial+Sensor+Accuracy+Improvement%E2%80%94A+Review&rft.jtitle=Micromachines+%28Basel%29&rft.au=Han%2C+Shipeng&rft.au=Meng%2C+Zhen&rft.au=Omisore%2C+Olatunji&rft.au=Akinyemi%2C+Toluwanimi&rft.date=2020-11-21&rft.pub=MDPI&rft.eissn=2072-666X&rft.volume=11&rft.issue=11&rft_id=info:doi/10.3390%2Fmi11111021&rft_id=info%3Apmid%2F33233457&rft.externalDocID=PMC7700668
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-666X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-666X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-666X&client=summon