Random Error Reduction Algorithms for MEMS Inertial Sensor Accuracy Improvement—A Review
Research and industrial studies have indicated that small size, low cost, high precision, and ease of integration are vital features that characterize microelectromechanical systems (MEMS) inertial sensors for mass production and diverse applications. In recent times, sensors like MEMS accelerometer...
Saved in:
| Published in | Micromachines (Basel) Vol. 11; no. 11; p. 1021 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
21.11.2020
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2072-666X 2072-666X |
| DOI | 10.3390/mi11111021 |
Cover
| Abstract | Research and industrial studies have indicated that small size, low cost, high precision, and ease of integration are vital features that characterize microelectromechanical systems (MEMS) inertial sensors for mass production and diverse applications. In recent times, sensors like MEMS accelerometers and MEMS gyroscopes have been sought in an increased application range such as medical devices for health care to defense and military weapons. An important limitation of MEMS inertial sensors is repeatedly documented as the ease of being influenced by environmental noise from random sources, along with mechanical and electronic artifacts in the underlying systems, and other random noise. Thus, random error processing is essential for proper elimination of artifact signals and improvement of the accuracy and reliability from such sensors. In this paper, a systematic review is carried out by investigating different random error signal processing models that have been recently developed for MEMS inertial sensor precision improvement. For this purpose, an in-depth literature search was performed on several databases viz., Web of Science, IEEE Xplore, Science Direct, and Association for Computing Machinery Digital Library. Forty-nine representative papers that focused on the processing of signals from MEMS accelerometers, MEMS gyroscopes, and MEMS inertial measuring units, published in journal or conference formats, and indexed on the databases within the last 10 years, were downloaded and carefully reviewed. From this literature overview, 30 mainstream algorithms were extracted and categorized into seven groups, which were analyzed to present the contributions, strengths, and weaknesses of the literature. Additionally, a summary of the models developed in the studies was presented, along with their working principles viz., application domain, and the conclusions made in the studies. Finally, the development trend of MEMS inertial sensor technology and its application prospects were presented. |
|---|---|
| AbstractList | Research and industrial studies have indicated that small size, low cost, high precision, and ease of integration are vital features that characterize microelectromechanical systems (MEMS) inertial sensors for mass production and diverse applications. In recent times, sensors like MEMS accelerometers and MEMS gyroscopes have been sought in an increased application range such as medical devices for health care to defense and military weapons. An important limitation of MEMS inertial sensors is repeatedly documented as the ease of being influenced by environmental noise from random sources, along with mechanical and electronic artifacts in the underlying systems, and other random noise. Thus, random error processing is essential for proper elimination of artifact signals and improvement of the accuracy and reliability from such sensors. In this paper, a systematic review is carried out by investigating different random error signal processing models that have been recently developed for MEMS inertial sensor precision improvement. For this purpose, an in-depth literature search was performed on several databases viz., Web of Science, IEEE Xplore, Science Direct, and Association for Computing Machinery Digital Library. Forty-nine representative papers that focused on the processing of signals from MEMS accelerometers, MEMS gyroscopes, and MEMS inertial measuring units, published in journal or conference formats, and indexed on the databases within the last 10 years, were downloaded and carefully reviewed. From this literature overview, 30 mainstream algorithms were extracted and categorized into seven groups, which were analyzed to present the contributions, strengths, and weaknesses of the literature. Additionally, a summary of the models developed in the studies was presented, along with their working principles viz., application domain, and the conclusions made in the studies. Finally, the development trend of MEMS inertial sensor technology and its application prospects were presented. Research and industrial studies have indicated that small size, low cost, high precision, and ease of integration are vital features that characterize microelectromechanical systems (MEMS) inertial sensors for mass production and diverse applications. In recent times, sensors like MEMS accelerometers and MEMS gyroscopes have been sought in an increased application range such as medical devices for health care to defense and military weapons. An important limitation of MEMS inertial sensors is repeatedly documented as the ease of being influenced by environmental noise from random sources, along with mechanical and electronic artifacts in the underlying systems, and other random noise. Thus, random error processing is essential for proper elimination of artifact signals and improvement of the accuracy and reliability from such sensors. In this paper, a systematic review is carried out by investigating different random error signal processing models that have been recently developed for MEMS inertial sensor precision improvement. For this purpose, an in-depth literature search was performed on several databases viz., Web of Science, IEEE Xplore, Science Direct, and Association for Computing Machinery Digital Library. Forty-nine representative papers that focused on the processing of signals from MEMS accelerometers, MEMS gyroscopes, and MEMS inertial measuring units, published in journal or conference formats, and indexed on the databases within the last 10 years, were downloaded and carefully reviewed. From this literature overview, 30 mainstream algorithms were extracted and categorized into seven groups, which were analyzed to present the contributions, strengths, and weaknesses of the literature. Additionally, a summary of the models developed in the studies was presented, along with their working principles viz., application domain, and the conclusions made in the studies. Finally, the development trend of MEMS inertial sensor technology and its application prospects were presented.Research and industrial studies have indicated that small size, low cost, high precision, and ease of integration are vital features that characterize microelectromechanical systems (MEMS) inertial sensors for mass production and diverse applications. In recent times, sensors like MEMS accelerometers and MEMS gyroscopes have been sought in an increased application range such as medical devices for health care to defense and military weapons. An important limitation of MEMS inertial sensors is repeatedly documented as the ease of being influenced by environmental noise from random sources, along with mechanical and electronic artifacts in the underlying systems, and other random noise. Thus, random error processing is essential for proper elimination of artifact signals and improvement of the accuracy and reliability from such sensors. In this paper, a systematic review is carried out by investigating different random error signal processing models that have been recently developed for MEMS inertial sensor precision improvement. For this purpose, an in-depth literature search was performed on several databases viz., Web of Science, IEEE Xplore, Science Direct, and Association for Computing Machinery Digital Library. Forty-nine representative papers that focused on the processing of signals from MEMS accelerometers, MEMS gyroscopes, and MEMS inertial measuring units, published in journal or conference formats, and indexed on the databases within the last 10 years, were downloaded and carefully reviewed. From this literature overview, 30 mainstream algorithms were extracted and categorized into seven groups, which were analyzed to present the contributions, strengths, and weaknesses of the literature. Additionally, a summary of the models developed in the studies was presented, along with their working principles viz., application domain, and the conclusions made in the studies. Finally, the development trend of MEMS inertial sensor technology and its application prospects were presented. |
| Author | Meng, Zhen Omisore, Olatunji Yan, Yuepeng Han, Shipeng Akinyemi, Toluwanimi |
| AuthorAffiliation | 1 Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; hanshipeng@ime.ac.cn (S.H.); yanyuepeng@ime.ac.cn (Y.Y.) 3 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; omisore@siat.ac.cn (O.O.); tolu@siat.ac.cn (T.A.) 2 University of Chinese Academy of Sciences, Beijing 100049, China |
| AuthorAffiliation_xml | – name: 1 Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; hanshipeng@ime.ac.cn (S.H.); yanyuepeng@ime.ac.cn (Y.Y.) – name: 3 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; omisore@siat.ac.cn (O.O.); tolu@siat.ac.cn (T.A.) – name: 2 University of Chinese Academy of Sciences, Beijing 100049, China |
| Author_xml | – sequence: 1 givenname: Shipeng surname: Han fullname: Han, Shipeng – sequence: 2 givenname: Zhen surname: Meng fullname: Meng, Zhen – sequence: 3 givenname: Olatunji orcidid: 0000-0002-9740-5471 surname: Omisore fullname: Omisore, Olatunji – sequence: 4 givenname: Toluwanimi orcidid: 0000-0002-5598-8971 surname: Akinyemi fullname: Akinyemi, Toluwanimi – sequence: 5 givenname: Yuepeng surname: Yan fullname: Yan, Yuepeng |
| BookMark | eNp9kd1qFDEUx4NUbK298QkGvBFlNV-bmdwIS1l1oUVoFcSbcPYks50lk2wzM1v2zofwCX0SM92itojnIgnn_M_vfOQpOQgxOEKeM_pGCE3ftg0bjXL2iBxxWvKJUurrwV_vQ3LSdWuarSx1Pp6QQyG4EHJaHpFvFxBsbIt5SjEVF84O2DcxFDO_iqnpr9quqHPgfH5-WSyCS30Dvrh0ocvOGeKQAHfFot2kuHWtC_3P7z9mGbNt3M0z8rgG37mTu_uYfHk__3z6cXL26cPidHY2QSl1P2G84rwSgjnQglZU1YpzrEox1XaJIBERhAUNKColBdoKkFoHFJyiHJk4Jos910ZYm01qWkg7E6Ext46YVgZy3-idEdqhYjXKUlJpOQcrneIWra55vZxWmfV6zxrCBnY34P1vIKNmXLj5s_CsfrdXb4Zl6yzm-RP4ey3cj4Tmyqzi1pQlpUqN5V7eAVK8HlzXZ3qHznsILg6d4VJJphVnOktfPJCu45BCXuytSlZcq7Ejuldhil2XXG2w6WH80Vy_8f8e4tWDlP9M_AsfssJc |
| CitedBy_id | crossref_primary_10_3390_drones6100287 crossref_primary_10_1016_j_measurement_2023_114001 crossref_primary_10_1109_JSEN_2022_3226478 crossref_primary_10_1556_606_2022_00612 crossref_primary_10_3390_robotics13110156 crossref_primary_10_26467_2079_0619_2024_27_6_82_93 crossref_primary_10_3390_s21113940 crossref_primary_10_3390_s23052508 crossref_primary_10_3390_s23125417 crossref_primary_10_3390_s24196283 crossref_primary_10_1109_LSENS_2024_3484527 crossref_primary_10_1109_JSEN_2023_3294508 crossref_primary_10_3390_machines9080151 crossref_primary_10_3390_mi13060879 crossref_primary_10_1016_j_oceaneng_2024_117280 crossref_primary_10_1109_ACCESS_2023_3240518 crossref_primary_10_3390_s22114226 crossref_primary_10_7498_aps_71_20211437 crossref_primary_10_1016_j_eswa_2023_121358 crossref_primary_10_1016_j_mee_2023_111979 crossref_primary_10_1142_S225123732430002X crossref_primary_10_3390_s23136127 crossref_primary_10_1016_j_geog_2022_11_005 crossref_primary_10_1088_1361_6501_ad727f crossref_primary_10_1109_ACCESS_2023_3343638 crossref_primary_10_3390_s22145225 crossref_primary_10_1016_j_measurement_2024_116538 crossref_primary_10_3390_mi14020419 crossref_primary_10_3390_mi12020214 crossref_primary_10_3390_s25010289 crossref_primary_10_32603_1993_8985_2023_26_2_101_119 crossref_primary_10_1007_s00542_024_05757_1 crossref_primary_10_3390_app11062633 crossref_primary_10_1088_1361_6501_ad00d3 crossref_primary_10_1088_1742_6596_2216_1_012027 crossref_primary_10_3390_s25051315 crossref_primary_10_3390_s21165479 crossref_primary_10_3390_app12073645 crossref_primary_10_1002_batt_202300514 crossref_primary_10_1051_itmconf_20224702010 |
| Cites_doi | 10.4028/www.scientific.net/AMR.255-260.2077 10.1109/ICECA.2018.8474917 10.1109/TNNLS.2019.2919931 10.3390/mi5041034 10.1155/2019/5491243 10.2514/1.A34403 10.1109/RCAR.2017.8311851 10.1016/j.measurement.2012.01.015 10.3390/s17102284 10.1108/SR-05-2017-0084 10.3390/mi10020134 10.1109/JOE.2018.2832878 10.1142/S0217979217410089 10.1109/ACCESS.2020.3018130 10.3390/app9040695 10.1063/1.5027850 10.1109/ICNSC.2011.5874871 10.1007/s00542-020-04793-x 10.1109/JSEN.2016.2597292 10.3390/s19143093 10.3390/s151127590 10.3390/electronics8020181 10.3390/s17010152 10.1177/1729881417744570 10.1016/j.ijleo.2014.03.037 10.3390/s17102335 10.1177/0142331212455451 10.1016/j.sna.2019.06.051 10.3390/s150203282 10.1109/ICEMI.2009.5273998 10.1162/neco.1997.9.8.1735 10.1007/s12200-015-0474-2 10.1109/JSEN.2017.2751572 10.1109/5.704269 10.1007/978-3-319-46535-7 10.1109/ICIAFS.2010.5715699 10.1007/s00542-017-3285-0 10.1007/s00542-019-04584-z 10.1016/j.isatra.2017.11.009 10.1038/s41586-019-1424-8 10.3390/s18124471 10.3390/mi10090608 10.1109/7361.983473 10.1016/j.measurement.2012.02.001 10.1177/0142331217708237 10.3390/mi6020266 10.1109/IBCAST.2016.7429889 10.3390/s140101394 10.1109/ITAIC.2011.6030374 10.1109/JSSC.2009.2016996 10.1007/s00542-017-3700-6 10.1109/MCOM.2013.6495768 10.1109/JSEN.2019.2941273 10.3390/mi9050246 10.3390/s18103470 10.1007/s00170-008-1591-5 10.1016/j.isatra.2020.01.030 10.3390/mi9120675 10.3390/mi11090862 10.1109/JSSC.2002.804345 10.3390/s19143240 10.1016/j.measurement.2020.107734 10.1109/PLANS.2016.7479676 10.1088/1361-6439/ab4bad 10.1109/TSMC.2016.2598782 10.1155/2016/1572303 10.3390/mi8030077 10.3390/electronics8060648 10.1080/1064119X.2018.1453567 10.1109/TNSRE.2020.2971762 10.1115/1.3662552 10.4028/www.scientific.net/AMM.433-435.1558 10.1109/MEMSYS.2018.8346494 10.3390/s120709448 10.1109/CGNCC.2014.7007378 10.1038/micronano.2015.5 10.1007/s42452-019-0867-8 10.1017/S0373463318000140 10.1109/ChiCC.2015.7259955 10.1155/2018/2830686 10.3390/s20061662 10.1109/ACCESS.2019.2895919 10.1007/s00542-015-2645-x 10.1109/JSEN.2016.2582198 10.1109/78.875477 10.1109/DSMP.2018.8478613 10.1016/j.sna.2006.06.043 10.3390/s150511222 10.1038/nature17397 10.3390/s18113943 10.4028/www.scientific.net/AMR.466-467.986 10.1109/ISISS.2017.7935653 10.3390/mi11060586 10.3390/mi11110968 10.1109/ICISCE.2018.00226 10.1016/j.sna.2016.09.019 10.1109/CICC.2019.8780183 10.1115/DETC2011-47180 10.1007/s00542-018-4212-8 |
| ContentType | Journal Article |
| Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
| Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
| DBID | AAYXX CITATION 7SP 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ L6V L7M M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/mi11111021 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Central Engineering Research Database SciTech Premium Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2072-666X |
| ExternalDocumentID | oai_doaj_org_article_39ec61fc47404d22ad4e62dcd9f2fb58 10.3390/mi11111021 PMC7700668 10_3390_mi11111021 |
| GroupedDBID | 53G 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ HYE KQ8 L6V M7S MM. MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RPM TR2 TUS 7SP 7TB 8FD ABUWG AZQEC DWQXO FR3 L7M PKEHL PQEST PQQKQ PQUKI 7X8 PUEGO 5PM ADTOC C1A IAO IPNFZ ITC RIG UNPAY |
| ID | FETCH-LOGICAL-c449t-128228331ea930806f622c87359dbca4ccca3da9ac38643cd8ac0dea0ae602c13 |
| IEDL.DBID | UNPAY |
| ISSN | 2072-666X |
| IngestDate | Tue Oct 14 19:04:04 EDT 2025 Sun Oct 26 03:51:32 EDT 2025 Tue Sep 30 15:32:28 EDT 2025 Fri Sep 05 09:02:14 EDT 2025 Fri Jul 25 11:55:42 EDT 2025 Thu Oct 16 04:35:01 EDT 2025 Thu Apr 24 23:01:57 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c449t-128228331ea930806f622c87359dbca4ccca3da9ac38643cd8ac0dea0ae602c13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-9740-5471 0000-0002-5598-8971 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2072-666X/11/11/1021/pdf?version=1605955993 |
| PMID | 33233457 |
| PQID | 2464482961 |
| PQPubID | 2032359 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_39ec61fc47404d22ad4e62dcd9f2fb58 unpaywall_primary_10_3390_mi11111021 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7700668 proquest_miscellaneous_2464196219 proquest_journals_2464482961 crossref_citationtrail_10_3390_mi11111021 crossref_primary_10_3390_mi11111021 |
| PublicationCentury | 2000 |
| PublicationDate | 20201121 |
| PublicationDateYYYYMMDD | 2020-11-21 |
| PublicationDate_xml | – month: 11 year: 2020 text: 20201121 day: 21 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Micromachines (Basel) |
| PublicationYear | 2020 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Sebald (ref_61) 2000; 48 ref_94 ref_92 Pavol (ref_113) 2017; 14 Gill (ref_23) 2020; 26 Feng (ref_42) 2015; 15 Bhatt (ref_64) 2012; 12 ref_11 ref_10 Hsu (ref_69) 2019; 7 ref_96 Gerlici (ref_114) 2020; 17 ref_95 ref_18 ref_17 ref_16 Sasiadek (ref_15) 1993; 93 Zhang (ref_26) 2019; 296 Ren (ref_108) 2016; 2016 Babaei (ref_99) 2017; 23 Guo (ref_38) 2018; 38 Liu (ref_121) 2020; 28 Nemec (ref_54) 2016; 16 Hu (ref_43) 2016; 250 Shiau (ref_57) 2011; 255 Zhang (ref_65) 2012; 45 Babaei (ref_97) 2019; 1 ref_25 ref_24 Qureshi (ref_7) 2017; 17 ref_120 Fischer (ref_91) 2015; 1 Platz (ref_88) 2019; 29 ref_27 Yuan (ref_53) 2015; 15 Middlemiss (ref_28) 2016; 531 Bhardwaj (ref_29) 2018; 40 Alam (ref_39) 2015; 15 Barbour (ref_30) 2001; 1 Zhu (ref_71) 2019; 2019 ref_70 Geen (ref_4) 2002; 37 Hochreiter (ref_72) 1997; 9 Bulej (ref_110) 2020; 17 Ferlito (ref_122) 2020; 8 ref_79 Ghanbari (ref_101) 2015; 9 ref_78 ref_77 ref_76 Fei (ref_81) 2013; 35 ref_75 ref_74 ref_73 Tipping (ref_66) 2001; 1 Bai (ref_83) 2020; 101 Rahmani (ref_107) 2020; 26 Narasimhappa (ref_84) 2020; 20 Sparks (ref_13) 2016; 12 Yang (ref_50) 2012; 466 ref_80 ref_87 ref_86 ref_85 Shi (ref_49) 2013; 433 Rahmani (ref_104) 2018; 24 Aydemir (ref_3) 2012; 45 Kepper (ref_22) 2019; 44 Miller (ref_89) 2018; 5 Rahmani (ref_103) 2018; 72 Sharma (ref_19) 2009; 44 Fei (ref_82) 2009; 42 ref_58 Chen (ref_90) 2016; 16 Cao (ref_59) 2018; 2018 ref_56 ref_55 Xia (ref_8) 2014; 14 ref_51 Capriglione (ref_119) 2020; 158 Yuan (ref_47) 2015; 8 Xu (ref_109) 2020; 31 Xue (ref_52) 2014; 5 Nazemipour (ref_33) 2018; 77 ref_60 Kenshi (ref_34) 2015; 35 Kalman (ref_40) 1960; 82 Feng (ref_35) 2014; 125 ref_68 Nokhodberiz (ref_12) 2017; 47 ref_67 Pei (ref_93) 2019; 572 ref_63 ref_62 Emami (ref_118) 2018; 71 Vedachalam (ref_117) 2018; 37 Huang (ref_1) 2017; 31 Braun (ref_116) 2019; 56 Shaeffer (ref_32) 2013; 51 Kilin (ref_112) 2017; 14 Rahmani (ref_105) 2019; 25 Xue (ref_46) 2015; 6 ref_115 Yazdi (ref_14) 1998; 86 ref_36 ref_111 ref_31 Alper (ref_20) 2007; 135 ref_37 Babaei (ref_100) 2020; 4 ref_106 ref_45 ref_44 ref_41 ref_102 Guo (ref_21) 2015; 21 ref_2 Babaei (ref_98) 2020; 1 ref_48 ref_9 ref_5 ref_6 |
| References_xml | – volume: 255 start-page: 2077 year: 2011 ident: ref_57 article-title: MEMS Gyroscope Null Drift and Compensation Based on Neural Network publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.255-260.2077 – ident: ref_11 doi: 10.1109/ICECA.2018.8474917 – volume: 31 start-page: 1375 year: 2020 ident: ref_109 article-title: Composite Neural Learning-Based Nonsingular Terminal Sliding Mode Control of MEMS Gyroscopes publication-title: IEEE Trans Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2019.2919931 – volume: 5 start-page: 1034 year: 2014 ident: ref_52 article-title: Analysis of Dynamic Performance of a Kalman Filter for Combining Multiple MEMS Gyroscopes publication-title: Micromachines doi: 10.3390/mi5041034 – ident: ref_80 – volume: 2019 start-page: 5491243 year: 2019 ident: ref_71 article-title: A MEMS Gyroscope Noise Suppressing Method Using Neural Architecture Search Neural Network publication-title: Math. Probl. Eng. doi: 10.1155/2019/5491243 – volume: 56 start-page: 1624 year: 2019 ident: ref_116 article-title: Performance Analysis of GNSS-Aided Inertial Navigation Systems on Spinning Flight Vehicles publication-title: J. Spacecr. Rockets doi: 10.2514/1.A34403 – ident: ref_78 doi: 10.1109/RCAR.2017.8311851 – volume: 45 start-page: 1210 year: 2012 ident: ref_3 article-title: Characterization and calibration of MEMS inertial sensors for state and parameter estimation applications publication-title: Measurement doi: 10.1016/j.measurement.2012.01.015 – ident: ref_18 doi: 10.3390/s17102284 – volume: 38 start-page: 517 year: 2018 ident: ref_38 article-title: A hybrid method for MEMS gyroscope signal error compensation publication-title: Sens. Rev. doi: 10.1108/SR-05-2017-0084 – ident: ref_51 doi: 10.3390/mi10020134 – volume: 44 start-page: 664 year: 2019 ident: ref_22 article-title: A Navigation Solution Using a MEMS IMU, Model-Based Dead-Reckoning, and One-Way-Travel-Time Acoustic Range Measurements for Autonomous Underwater Vehicles publication-title: IEEE J. Ocean. Eng. doi: 10.1109/JOE.2018.2832878 – volume: 31 start-page: 1741008 year: 2017 ident: ref_1 article-title: Analysis and design of the system of a total digital Si-gyroscope publication-title: Int. J. Mod. Phys. B doi: 10.1142/S0217979217410089 – volume: 8 start-page: 153969 year: 2020 ident: ref_122 article-title: Sub-femto-Farad Resolution Electronic Inter faces for Integrated Capacitive Sensors: A Review publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3018130 – ident: ref_94 – ident: ref_60 doi: 10.3390/app9040695 – volume: 77 start-page: 553 year: 2018 ident: ref_33 article-title: MEMS Gyroscope Raw Data Noise Reduction Using Fading Memory Filter publication-title: J. Sci. Ind. Res. – volume: 5 start-page: 041307 year: 2018 ident: ref_89 article-title: Effective quality factor tuning mechanisms in micromechanical resonators publication-title: Appl. Phys. Rev. doi: 10.1063/1.5027850 – ident: ref_85 doi: 10.1109/ICNSC.2011.5874871 – volume: 26 start-page: 2527 year: 2020 ident: ref_23 article-title: MEMS multi-vibrating ring gyroscope for space applications publication-title: Microsyst. Technol. doi: 10.1007/s00542-020-04793-x – ident: ref_56 – volume: 16 start-page: 7150 year: 2016 ident: ref_54 article-title: Intelligent Real-Time MEMS Sensor Fusion and Calibration publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2016.2597292 – ident: ref_27 doi: 10.3390/s19143093 – volume: 15 start-page: 27590 year: 2015 ident: ref_53 article-title: Dynamic Performance Comparison of Two Kalman Filters for Rate Signal Direct Modeling and Differencing Modeling for Combining a MEMS Gyroscope Array to Improve Accuracy publication-title: Sensors doi: 10.3390/s151127590 – ident: ref_74 doi: 10.3390/electronics8020181 – ident: ref_44 doi: 10.3390/s17010152 – volume: 14 start-page: 1729881417744570 year: 2017 ident: ref_112 article-title: Experimental investigations of a highly maneuverable mobile omniwheel robot publication-title: Int. J. Adv. Robot. Syst. doi: 10.1177/1729881417744570 – volume: 125 start-page: 4288 year: 2014 ident: ref_35 article-title: Decision-based adaptive morphological filter for fixed-value impulse noise removal publication-title: Optik doi: 10.1016/j.ijleo.2014.03.037 – ident: ref_63 doi: 10.3390/s17102335 – ident: ref_62 – volume: 35 start-page: 551 year: 2013 ident: ref_81 article-title: Adaptive fuzzy sliding mode control using adaptive sliding gain for MEMS gyroscope publication-title: Trans Inst. Meas. Control doi: 10.1177/0142331212455451 – volume: 296 start-page: 79 year: 2019 ident: ref_26 article-title: A low noise capacitive MEMS accelerometer with anti-spring structure publication-title: Sens. Actuators A Phys doi: 10.1016/j.sna.2019.06.051 – volume: 15 start-page: 3282 year: 2015 ident: ref_39 article-title: Adaptive Data Filtering of Inertial Sensors with Variable Bandwidth publication-title: Sensors doi: 10.3390/s150203282 – ident: ref_25 doi: 10.1109/ICEMI.2009.5273998 – volume: 9 start-page: 1735 year: 1997 ident: ref_72 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 8 start-page: 413 year: 2015 ident: ref_47 article-title: An improved noise reduction algorithm based on wavelet transformation for MEMS gyroscope publication-title: Front. Optoelectron. doi: 10.1007/s12200-015-0474-2 – volume: 17 start-page: 7479 year: 2017 ident: ref_7 article-title: An Algorithm for the In-Field Calibration of a MEMS IMU publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2017.2751572 – volume: 86 start-page: 1640 year: 1998 ident: ref_14 article-title: Micromachined inertial sensors publication-title: Proc. IEEE doi: 10.1109/5.704269 – ident: ref_111 doi: 10.1007/978-3-319-46535-7 – volume: 17 start-page: 1729881420906290 year: 2020 ident: ref_114 article-title: Design of a robotic manipulator for handling products of automotive industry publication-title: Int. J. Adv. Robot. Syst. – ident: ref_79 doi: 10.1109/ICIAFS.2010.5715699 – ident: ref_92 – volume: 23 start-page: 4599 year: 2017 ident: ref_99 article-title: Temperature-dependent free vibration analysis of functionally graded micro-beams based on the modified couple stress theory publication-title: Microsyst. Technol. doi: 10.1007/s00542-017-3285-0 – volume: 26 start-page: 853 year: 2020 ident: ref_107 article-title: A new hybrid robust control of MEMS gyroscope publication-title: Microsyst. Technol. doi: 10.1007/s00542-019-04584-z – volume: 72 start-page: 37 year: 2018 ident: ref_103 article-title: MEMS gyroscope control using a novel compound robust control publication-title: ISA Trans. doi: 10.1016/j.isatra.2017.11.009 – volume: 572 start-page: 106 year: 2019 ident: ref_93 article-title: Towards artificial general intelligence with hybrid Tianjic chip architecture publication-title: Nature doi: 10.1038/s41586-019-1424-8 – ident: ref_75 – ident: ref_77 doi: 10.3390/s18124471 – ident: ref_48 doi: 10.3390/mi10090608 – volume: 1 start-page: 332 year: 2001 ident: ref_30 article-title: Inertial Sensor Technology Trends publication-title: IEEE Sens. J. doi: 10.1109/7361.983473 – volume: 45 start-page: 922 year: 2012 ident: ref_65 article-title: Modeling and compensation of MEMS gyroscope output data based on support vector machine publication-title: Measurement doi: 10.1016/j.measurement.2012.02.001 – ident: ref_70 – volume: 40 start-page: 2843 year: 2018 ident: ref_29 article-title: Errors in micro-electro-mechanical systems inertial measurement and a review on present practices of error modelling publication-title: Trans. Inst. Meas. Control doi: 10.1177/0142331217708237 – volume: 6 start-page: 266 year: 2015 ident: ref_46 article-title: Noise Reduction of MEMS Gyroscope Based on Direct Modeling for an Angular Rate Signal publication-title: Micromachines doi: 10.3390/mi6020266 – ident: ref_58 doi: 10.1109/IBCAST.2016.7429889 – volume: 14 start-page: 1394 year: 2014 ident: ref_8 article-title: The Development of Micromachined Gyroscope Structure and Circuitry Technology publication-title: Sensors doi: 10.3390/s140101394 – ident: ref_10 doi: 10.1109/ITAIC.2011.6030374 – volume: 44 start-page: 1593 year: 2009 ident: ref_19 article-title: A Sub-0.2 degrees/hr Bias Drift Micromechanical Silicon Gyroscope With Automatic CMOS Mode-Matching publication-title: IEEE J. Solid-State Circuits doi: 10.1109/JSSC.2009.2016996 – volume: 1 start-page: 211 year: 2001 ident: ref_66 article-title: Sparse Bayesian learning and the relevance vector machine publication-title: J. Mach. Learn. Res. – volume: 24 start-page: 2835 year: 2018 ident: ref_104 article-title: Optimal novel super-twisting PID sliding mode control of a MEMS gyroscope based on multi-objective bat algorithm publication-title: Microsyst. Technol. doi: 10.1007/s00542-017-3700-6 – ident: ref_5 – ident: ref_55 – volume: 51 start-page: 100 year: 2013 ident: ref_32 article-title: MEMS inertial sensors: A tutorial overview publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2013.6495768 – volume: 14 start-page: 1729881417738103 year: 2017 ident: ref_113 article-title: Navigation control and stability investigation of a mobile robot based on a hexacopter equipped with an integrated manipulator publication-title: Int. J. Adv. Robot. Syst. – volume: 20 start-page: 250 year: 2020 ident: ref_84 article-title: MEMS-Based IMU Drift Minimization: Sage Husa Adaptive Robust Kalman Filtering publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2941273 – ident: ref_36 doi: 10.3390/mi9050246 – ident: ref_73 doi: 10.3390/s18103470 – volume: 42 start-page: 293 year: 2009 ident: ref_82 article-title: Robust adaptive control for a MEMS vibratory gyroscope publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-008-1591-5 – volume: 101 start-page: 430 year: 2020 ident: ref_83 article-title: Adaptive filtering for MEMS gyroscope with dynamic noise model publication-title: ISA Trans. doi: 10.1016/j.isatra.2020.01.030 – ident: ref_2 doi: 10.3390/mi9120675 – ident: ref_102 doi: 10.3390/mi11090862 – volume: 9 start-page: 274 year: 2015 ident: ref_101 article-title: The New Boundary Condition Effect on The Free Vibration Analysis of Micro-beams Based on The Modified Couple Stress Theory publication-title: Int. Res. J. Appl. Basic Sci. – volume: 35 start-page: 1 year: 2015 ident: ref_34 article-title: Performance analysis of α–β–γ tracking filters using position and velocity measurements publication-title: EURASIP J. Adv. Signal Process. – volume: 37 start-page: 1860 year: 2002 ident: ref_4 article-title: Single-chip surface micromachined integrated gyroscope with 50 degrees/h allan deviation publication-title: IEEE J. Solid-State Circuits doi: 10.1109/JSSC.2002.804345 – ident: ref_120 doi: 10.3390/s19143240 – volume: 158 start-page: 107734 year: 2020 ident: ref_119 article-title: Development of a Test plan and a Testbed for Performance Analysis of MEMS-based IMUs Under Vibration Conditions publication-title: Measurement doi: 10.1016/j.measurement.2020.107734 – ident: ref_31 doi: 10.1109/PLANS.2016.7479676 – volume: 29 start-page: 1 year: 2019 ident: ref_88 article-title: Vibrational modes in MEMS resonators publication-title: J. Micromech. Microeng. doi: 10.1088/1361-6439/ab4bad – volume: 47 start-page: 1383 year: 2017 ident: ref_12 article-title: Distributed Interacting Multiple Filters for Fault Diagnosis of Navigation Sensors in a Robotic System publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2016.2598782 – volume: 2016 start-page: 1572303 year: 2016 ident: ref_108 article-title: Adaptive Fuzzy Sliding Mode Control of MEMS Gyroscope with Finite Time Convergence publication-title: J. Sens. doi: 10.1155/2016/1572303 – volume: 17 start-page: 1729881420923997 year: 2020 ident: ref_110 article-title: Case study: Performance analysis and development of robotized screwing application with integrated vision sensing system for automotive industry publication-title: Int. J. Adv. Robot. Syst. – ident: ref_6 doi: 10.3390/mi8030077 – ident: ref_87 doi: 10.3390/electronics8060648 – volume: 37 start-page: 525 year: 2018 ident: ref_117 article-title: Autonomous underwater vehicles—Challenging developments and technological maturity towards strategic swarm robotics systems publication-title: Mar. Georesour. Geotechnol. doi: 10.1080/1064119X.2018.1453567 – volume: 28 start-page: 637 year: 2020 ident: ref_121 article-title: A Wearable Flow-MIMU Device for Monitoring Human Dynamic Motion publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2020.2971762 – volume: 82 start-page: 35 year: 1960 ident: ref_40 article-title: A New Approach to Linear Filtering and Prediction Problems publication-title: J. Basic Eng. doi: 10.1115/1.3662552 – volume: 433 start-page: 1558 year: 2013 ident: ref_49 article-title: Study on MEMS Gyro Signal De-Noising Based on Improved Wavelet Threshold Method publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/AMM.433-435.1558 – ident: ref_16 doi: 10.1109/MEMSYS.2018.8346494 – ident: ref_76 – volume: 12 start-page: 9448 year: 2012 ident: ref_64 article-title: An Enhanced MEMS Error Modeling Approach Based on Nu-Support Vector Regression publication-title: Sensors doi: 10.3390/s120709448 – ident: ref_24 – ident: ref_67 doi: 10.1109/CGNCC.2014.7007378 – volume: 1 start-page: 1 year: 2015 ident: ref_91 article-title: Integrating MEMS and ICs publication-title: Microsyst. Nanoeng. doi: 10.1038/micronano.2015.5 – volume: 1 start-page: 831 year: 2019 ident: ref_97 article-title: Longitudinal vibration responses of axially functionally graded optimized MEMS gyroscope using Rayleigh-Ritz method, determination of discernible patterns and chaotic regimes publication-title: SN Appl. Sci. doi: 10.1007/s42452-019-0867-8 – volume: 71 start-page: 1161 year: 2018 ident: ref_118 article-title: A Low Complexity Integrated Navigation System for Underwater Vehicles publication-title: J. Navig. doi: 10.1017/S0373463318000140 – ident: ref_37 – ident: ref_41 doi: 10.1109/ChiCC.2015.7259955 – volume: 2018 start-page: 2830686 year: 2018 ident: ref_59 article-title: Temperature Energy Influence Compensation for MEMS Vibration Gyroscope Based on RBF NN-GA-KF Method publication-title: Shock Vib. doi: 10.1155/2018/2830686 – ident: ref_96 doi: 10.3390/s20061662 – volume: 7 start-page: 17551 year: 2019 ident: ref_69 article-title: Random Drift Modeling and Compensation for MEMS-Based Gyroscopes and Its Application in Handwriting Trajectory Reconstruction publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2895919 – volume: 21 start-page: 2053 year: 2015 ident: ref_21 article-title: Research development of silicon MEMS gyroscopes: A review publication-title: Microsyst. Technol. doi: 10.1007/s00542-015-2645-x – volume: 4 start-page: 1 year: 2020 ident: ref_100 article-title: Forced vibration analysis of non-local strain gradient rod subjected to harmonic excitations publication-title: Microsyst. Technol. – volume: 16 start-page: 6476 year: 2016 ident: ref_90 article-title: Electromechanical sigma-delta modulators (Σ∆M) force feedback interfaces for capacitive MEMS inertial sensors: A review publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2016.2582198 – volume: 48 start-page: 3217 year: 2000 ident: ref_61 article-title: Support vector machine techniques for nonlinear equalization publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.875477 – ident: ref_9 doi: 10.1109/DSMP.2018.8478613 – volume: 135 start-page: 34 year: 2007 ident: ref_20 article-title: A high-performance silicon-on-insulator MEMS gyroscope operating at atmospheric pressure publication-title: Sens. Actuators A Phys doi: 10.1016/j.sna.2006.06.043 – volume: 12 start-page: 39 year: 2016 ident: ref_13 article-title: MEMS Inertial Sensors for Automotive and Consumer Applications publication-title: Equip. Electron. Prod. Manuf. – volume: 15 start-page: 11222 year: 2015 ident: ref_42 article-title: An Adaptive Compensation Algorithm for Temperature Drift of Micro-Electro-Mechanical Systems Gyroscopes Using a Strong Tracking Kalman Filter publication-title: Sensors doi: 10.3390/s150511222 – volume: 531 start-page: 614 year: 2016 ident: ref_28 article-title: Measurement of the Earth tides with a MEMS gravimeter publication-title: Nature doi: 10.1038/nature17397 – ident: ref_86 doi: 10.3390/s18113943 – volume: 466 start-page: 986 year: 2012 ident: ref_50 article-title: MEMS Gyro Signal De-Noising Based on Adaptive Stationary Wavelet Threshold publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.466-467.986 – ident: ref_68 doi: 10.1109/ISISS.2017.7935653 – volume: 1 start-page: 1 year: 2020 ident: ref_98 article-title: Vibration analysis of rotating thermally-stressed gyroscope, based on modified coupled displacement field method publication-title: Mech. Based Des. Struct. – ident: ref_95 doi: 10.3390/mi11060586 – ident: ref_106 doi: 10.3390/mi11110968 – ident: ref_45 doi: 10.1109/ICISCE.2018.00226 – volume: 250 start-page: 96 year: 2016 ident: ref_43 article-title: Extended Kalman filtering based parameter estimation and drift compensation for a MEMS rate integrating gyroscope publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2016.09.019 – ident: ref_17 doi: 10.1109/CICC.2019.8780183 – ident: ref_115 doi: 10.1115/DETC2011-47180 – volume: 25 start-page: 3409 year: 2019 ident: ref_105 article-title: A new adaptive fractional sliding mode control of a MEMS gyroscope publication-title: Microsyst. Technol. doi: 10.1007/s00542-018-4212-8 – volume: 93 start-page: 296 year: 1993 ident: ref_15 article-title: Modern inertial technology: Navigation, guidance, and control publication-title: Control Eng. Pract. |
| SSID | ssj0000779007 |
| Score | 2.390907 |
| SecondaryResourceType | review_article |
| Snippet | Research and industrial studies have indicated that small size, low cost, high precision, and ease of integration are vital features that characterize... |
| SourceID | doaj unpaywall pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 1021 |
| SubjectTerms | Accelerometers Accuracy Algorithms Background noise Digital systems Error analysis Error reduction Error signals Gyroscopes Inertial platforms Inertial sensing devices Mass production MEMS accelerometer MEMS gyroscope Microelectromechanical systems Noise random error reduction Random errors Random noise Review Sensors Signal processing signal processing algorithms |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQL8AB8SsWCjKiFw5R45_EznFBWxWk5dBSqeISOWObVtpNqnRXqLc-RJ-QJ2EmSZcNQnDhaluxMx6P57PH3zC2J2PQwQhI8hDo6EaoxKJaJTpU2oSqslX3PHr-OT880Z9Os9OtVF8UE9bTA_eC21dFgFxE0Ean2kvpvA659OCLKGOVdc98U1tsganOBhONXmp6PlKFuH5_eU7GgRJZj3agjqh_5F3-Hht5d11fuKvvbrHY2ngOHrIHg8fIp_1IH7E7oX7M7m_xCD5hX49c7Zsln7Vt0_IjYmMlefPp4luD4P9secnRN-Xz2fyYf6wpkho_eIwAFgunAOvWwRXvjxe608If1zdT3t8aPGUnB7MvHw6TIWlCAloXq0RQXKhVSgRXKHQH85hLCdaorPAVOA04Zcq7woGy6I2Atw5SH1zqQp5KEOoZ26mbOjxn3FhdZTlEi3u8FjGzKaIrSjMkYgSVugl7dyvIEgZGcUpssSgRWZDQy19Cn7C3m7YXPY_GH1u9p_nYtCDu664ANaIcNKL8l0ZM2O7tbJbDgrwspSYgKosc-3izqcalRPcjrg7Num-DBglt-ISZkRaMBjSuqc_POlJuY8h7w873Nvrylx998T9-9CW7Jwn9C5FIsct2Vu06vEIXaVW97lbDT5vAEUU priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbK9gAcEE81UCojeuEQNX4kcQ4IbautCtKu0JZKFZfIGTttpd1kSXeFeuNH8Av5JXjyaoNQr_YosT3j8cx4_A0h-zy30sYM_MhaDN0w4SsnVr60mYxtlqmsfh49nUUnZ_LLeXi-RWbdWxhMq-x0Yq2oTQkYIz_gEj0JnkTs0-qHj1Wj8Ha1K6Gh29IK5mMNMfaAbHNExhqR7cPJ7Ou8j7oECK8XxA1OqXD-_sHyCpUGFrgenEw1gP_A6vw3Z_Lhpljpm596sbhzIB0_JU9aS5KOG9Y_I1u2eE4e38EXfEG-z3VhyiWdVFVZ0TmitCIf6Hhx4aa2vlxeU2ez0ulkeko_F5hh7T546hxb1zgG2FQabmgTdqijiH9-_R7T5jbhJTk7nnw7OvHbYgo-SJmsfYb5okoIZnUinJkY5RHnoGIRJiYDLcGxUhidaBDKWSlglIbAWB1oGwUcmHhFRkVZ2B1CYyWzMIJcubNfsjxUgfO6sPwQy3MQgfbIh24hU2iRxrHgxSJ1Hgcuenq76B5539OuGnyN_1IdIj96CsTErhvK6iJtt1gqEgsRy0HGMpCGc22kjbgBk-Q8z0Llkd2Om2m7Ua_TW7HyyLu-220xvDfRhS03DY1TVE63eyQeSMFgQMOe4uqyBuuOY7Tq3M_3e3m5Z6Kv7x_jG_KIo7_PmM_ZLhmtq41964yidbbXSvpfRGQObg priority: 102 providerName: ProQuest |
| Title | Random Error Reduction Algorithms for MEMS Inertial Sensor Accuracy Improvement—A Review |
| URI | https://www.proquest.com/docview/2464482961 https://www.proquest.com/docview/2464196219 https://pubmed.ncbi.nlm.nih.gov/PMC7700668 https://www.mdpi.com/2072-666X/11/11/1021/pdf?version=1605955993 https://doaj.org/article/39ec61fc47404d22ad4e62dcd9f2fb58 |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2072-666X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000779007 issn: 2072-666X databaseCode: KQ8 dateStart: 20100101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-666X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000779007 issn: 2072-666X databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2072-666X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000779007 issn: 2072-666X databaseCode: ADMLS dateStart: 20110901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-666X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000779007 issn: 2072-666X databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central (ODIN) customDbUrl: eissn: 2072-666X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000779007 issn: 2072-666X databaseCode: RPM dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2072-666X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000779007 issn: 2072-666X databaseCode: BENPR dateStart: 20100301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2072-666X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000779007 issn: 2072-666X databaseCode: 8FG dateStart: 20100301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Pb9MwFLdYewAO47_oGFUQu3DIGv9J4pxQhloGUqupo1LhEjm2s1W0SZUloHHiQ_AJ-SQ8J2lpJoSQkHJyXhxb79n-vefnnxE6Iolm2sfS9rQ2oRtMbQ5mZTMdM1_HMY-r49HjiXc6Y-_n7nznFL9JqwRXfFFN0sTxiQ34ej7AuHpgQRqsVfL6SxNLwgDGDYVaQPdQ13MBjXdQdzY5Cz-aO-U2X9espBS8-8FqYaYIU09rHaro-lsY82aG5O0yXYvrr2K53Fl-RveQ2DS8zjr5fFwW8bH8doPT8X96dh_tN9jUCmtjeoBu6fQhurvDWPgIfZqKVGUra5jnWW5NDe-r0awVLi-yfFFcrq4sQMHWeDg-t96lJmcbKjwHVxkKQynLXMhrqw5kVHHJn99_hFa9P_EYzUbDD29O7eZ6BlsyFhQ2NhmonFKsRUABeHqJR4jkPnUDFUvBJBgHVSIQknLAPVJxIR2lhSO05xCJ6RPUSbNUP0WWz1nsejLhgCYYTlzugB9nLjTCSSKpI3ro1UZZkWy4y80VGssIfBij2Oi3Ynvo5VZ2XTN2_FHqxOh8K2FYtquCLL-ImkEb0UBLDyeS-cxhihChmPaIkipISBK7vIcONxYTNUP_KiLMuLwk8OAfL7avYdCanRiR6qysZWDqg9Wih_yWpbUa1H6TLi4r-m_fNzgRfn60tcm_dPTg38SeoTvERBIwtgk-RJ0iL_VzgFtF3Ed7fPS2j7onw8nZtF8FLfrNKPsFFtAplw |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKeygcEE8RKGBEOXBYdf3Y16FCKaRKaBOhtJUqLluv7W0rJbthk6jKjR_B7-HH8EuY2d1sG4R669Ueeb3j8bxsf0PINk-ttAHTjm8tpm6YcEIQK0faRAY2ScKkfB7dH_jdE_n11DtdI7-Xb2HwWuVSJ5aK2uQac-Q7XGIkwSOffZr8cLBqFJ6uLktoqLq0gtktIcbqhx0HdnEFIdx0t_cF1vsD5_ud489dp64y4Ggpo5nD8CJlKASzKhLgP_mpz7kOA-FFJtFKavhHYVSktAjBfGsTKu0aq1xlfZdrJmDce2RDChlB8Lex1xl8GzZZHhfh_NygwkUVInJ3xpeopLCg9oolLAsGrHi5_97R3JxnE7W4UqPRDQO4_4g8rD1X2q5E7TFZs9kT8uAGnuFT8n2oMpOPaaco8oIOERUW1522R-fAytnFeErBR6b9Tv-I9jK80Q0DHkEgDY1treeF0gtapTnKrOWfn7_atDq9eEZO7oStz8l6lmf2BaFBKBPP12kIvoZkqRe6EOVhuSOWplq4qkU-LhkZ6xrZHAtsjGKIcJDp8TXTW-R9Qzup8Dz-S7WH69FQIAZ32ZAX53G9pWMRWe2zVMtAutJwroy0PjfaRClPEy9ska3lasa1YpjG12LcIu-abtjSeE6jMpvPKxpQjGBLWiRYkYKVCa32ZJcXJTh4EKAXCR_fbuTllh99efsc35LN7nH_MD7sDQ5ekfsccw2MOZxtkfVZMbevwSGbJW9qqafk7K432l_m90u2 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkaAcEE-RUsCIcuAQbfzI64DQQnfpUrZCLZUqLsFxnLbSbrJkd1XtjR_Br-Hn8EuYyasNQr31aluOMzMez4zH3xCyzVMjjc-07RmDoRsm7ADEypYmlr6J4yAun0eP973dI_np2D1eI7-btzCYVtnoxFJRJ7nGGHmPS_QkeOixXlqnRXzZGb6b_bCxghTetDblNCoR2TOrc3Df5m9HO8Dr15wPB18_7Np1hQFbSxkubIZJlIEQzKhQgO3kpR7nOvCFGyaxVlLD_4lEhUqLAI5unQRKO4lRjjKewzUTMO8NctNHFHd8pT782MZ3HATyc_wKEVWI0OlNz1A9YSntzhlYlgro2Lf_ZmfeXmYztTpXk8mlo294j9ytbVbar4TsPlkz2QNy5xKS4UPy7UBlST6lg6LIC3qAeLDIcdqfnADhFqfTOQXrmI4H40M6yjCXGyY8BBcaGvtaLwulV7QKcJTxyj8_f_VpdW_xiBxdC1Efk_Usz8wTQv1Axq6n0wCsDMlSN3DAv8NCRyxNtXCURd40hIx0jWmOpTUmEfg2SPTogugWedWOnVVIHv8d9R750Y5A9O2yIS9OonozRyI02mOplr50ZMK5SqTxeKKTMOVp7AYW2Wq4GdUqYR5dCLBFXrbdsJnxhkZlJl9WY0AlwiliEb8jBZ0FdXuys9MSFtz30X6Ej2-38nLFj25evcYX5BZsr-jzaH_vKdngGGRgzOZsi6wviqV5BpbYIn5eijwl3697j_0F4mRJUA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgewAOvCsWCjKiFw7pxo84yQkFtFVB2gq1rLRwiRw_2hW7ySpNQOXEj-AX8ksYJ9llUyGEhJSTPbETzdj-ZjL5BqF9ag03IVGeMMaFbgjzIjArj5uMhybLoqz5PXpyLI6m_N0smG39xe_SKsEVnzebNPVD6gG-no0IaS44kEYrbV996WJJBMC4o1CL2XW0IwJA4wO0Mz1-n3x0NeXWd7espAy8-9Fy7rYIN07vHGro-nsY82qG5I06X8nLr3Kx2Dp-Du8guX7wNuvk80FdZQfq2xVOx_95s7vododNcdIa0z10zeT30a0txsIH6NOJzHWxxOOyLEp84nhfnWZxsjgrynl1vrzAgILxZDw5xW9zl7MNA56CqwyNiVJ1KdUlbgMZTVzy5_cfCW6_TzxE08PxhzdHXleewVOcx5VHXAZqxBgxMmYAPIUVlKooZEGsMyW5AuNgWsZSsQhwj9KRVL420pdG-FQRtosGeZGbRwiHEc8CoWwEaIITG0Q--HGuoBGxVjFfDtHLtbJS1XGXuxIaixR8GKfY9Ldih-jFRnbVMnb8Ueq10_lGwrFsNw1FeZZ2izZlsVGCWMVD7nNNqdTcCKqVji21WRAN0d7aYtJu6V-klDuXl8YC5ni-6YZF677EyNwUdSsDWx-cFkMU9iyt90D9nnx-3tB_h6HDiTD5_sYm__Kij_9N7Am6SV0kgRCPkj00qMraPAW4VWXPuhX1CwH1JiI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Random+Error+Reduction+Algorithms+for+MEMS+Inertial+Sensor+Accuracy+Improvement%E2%80%94A+Review&rft.jtitle=Micromachines+%28Basel%29&rft.au=Han%2C+Shipeng&rft.au=Meng%2C+Zhen&rft.au=Omisore%2C+Olatunji&rft.au=Akinyemi%2C+Toluwanimi&rft.date=2020-11-21&rft.pub=MDPI&rft.eissn=2072-666X&rft.volume=11&rft.issue=11&rft_id=info:doi/10.3390%2Fmi11111021&rft_id=info%3Apmid%2F33233457&rft.externalDocID=PMC7700668 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-666X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-666X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-666X&client=summon |