Issues in the Mining of Heart Failure Datasets
This paper investigates the characteristics of a clinical dataset using a combination of feature selection and classification methods to handle missing values and understand the underlying statistical characteristics of a typical clinical dataset. Typically, when a large clinical dataset is presente...
Saved in:
| Published in | International journal of automation and computing Vol. 11; no. 2; pp. 162 - 179 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer-Verlag
01.04.2014
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1476-8186 2153-182X 1751-8520 1751-8520 2153-1838 |
| DOI | 10.1007/s11633-014-0778-5 |
Cover
| Abstract | This paper investigates the characteristics of a clinical dataset using a combination of feature selection and classification methods to handle missing values and understand the underlying statistical characteristics of a typical clinical dataset. Typically, when a large clinical dataset is presented, it consists of challenges such as missing values, high dimensionality, and unbalanced classes. These pose an inherent problem when implementing feature selection and classification algorithms. With most clinical datasets, an initial exploration of the dataset is carried out, and those attributes with more than a certain percentage of missing values are eliminated from the dataset. Later, with the help of missing value imputation, feature selection and classification algorithms, prognostic and diagnostic models are developed. This paper has two main conclusions: 1) Despite the nature of clinical datasets, and their large size, methods for missing value imputation do not affect the final performance. What is crucial is that the dataset is an accurate representation of the clinical problem and those methods of imputing missing values are not critical for developing classifiers and prognostic/diagnostic models. 2) Supervised learning has proven to be more suitable for mining clinical data than unsupervised methods. It is also shown that non-parametric classifiers such as decision trees give better results when compared to parametric classifiers such as radial basis function networks(RBFNs). |
|---|---|
| AbstractList | This paper investigates the characteristics of a clinical dataset using a combination of feature selection and classification methods to handle missing values and understand the underlying statistical characteristics of a typical clinical dataset. Typically, when a large clinical dataset is presented, it consists of challenges such as missing values, high dimensionality, and unbalanced classes. These pose an inherent problem when implementing feature selection and classification algorithms. With most clinical datasets, an initial exploration of the dataset is carried out, and those attributes with more than a certain percentage of missing values are eliminated from the dataset. Later, with the help of missing value imputation, feature selection and classification algorithms, prognostic and diagnostic models are developed. This paper has two main conclusions: 1) Despite the nature of clinical datasets, and their large size, methods for missing value imputation do not affect the final performance. What is crucial is that the dataset is an accurate representation of the clinical problem and those methods of imputing missing values are not critical for developing classifiers and prognostic/diagnostic models. 2) Supervised learning has proven to be more suitable for mining clinical data than unsupervised methods. It is also shown that non-parametric classifiers such as decision trees give better results when compared to parametric classifiers such as radial basis function networks (RBFNs). Issue Title: Special Issue on Big Data This paper investigates the characteristics of a clinical dataset using a combination of feature selection and classification methods to handle missing values and understand the underlying statistical characteristics of a typical clinical dataset. Typically, when a large clinical dataset is presented, it consists of challenges such as missing values, high dimensionality, and unbalanced classes. These pose an inherent problem when implementing feature selection and classification algorithms. With most clinical datasets, an initial exploration of the dataset is carried out, and those attributes with more than a certain percentage of missing values are eliminated from the dataset. Later, with the help of missing value imputation, feature selection and classification algorithms, prognostic and diagnostic models are developed. This paper has two main conclusions: 1) Despite the nature of clinical datasets, and their large size, methods for missing value imputation do not affect the final performance. What is crucial is that the dataset is an accurate representation of the clinical problem and those methods of imputing missing values are not critical for developing classifiers and prognostic/diagnostic models. 2) Supervised learning has proven to be more suitable for mining clinical data than unsupervised methods. It is also shown that non-parametric classifiers such as decision trees give better results when compared to parametric classifiers such as radial basis function networks (RBFNs).[PUBLICATION ABSTRACT] |
| Author | Nongnuch Poolsawad Lisa Moore Chandrasekhar Kambhampati John G.F.Cleland |
| AuthorAffiliation | Intelligent Systems Research Group(IS, Department of Computer Science), University of Hull Hull York Medical School,Department of Cardiology,University of Hull |
| Author_xml | – sequence: 1 givenname: Nongnuch surname: Poolsawad fullname: Poolsawad, Nongnuch email: N.Poolsawad@2008.hull.ac.uk organization: Intelligent Systems Research Group (IS, Department of Computer Science), University of Hull – sequence: 2 givenname: Lisa surname: Moore fullname: Moore, Lisa organization: Intelligent Systems Research Group (IS, Department of Computer Science), University of Hull – sequence: 3 givenname: Chandrasekhar surname: Kambhampati fullname: Kambhampati, Chandrasekhar organization: Intelligent Systems Research Group (IS, Department of Computer Science), University of Hull – sequence: 4 givenname: John G. F. surname: Cleland fullname: Cleland, John G. F. organization: Hull York Medical School, Department of Cardiology, University of Hull |
| BookMark | eNqNkD9PAjEchhujiYB-ALdLXFwO-7v-vdGoCAnGReemHC0cOXrQ9mL49pbAQBiIUzu8b_s8bx9du9YZhB4ADwFj8RwAOCE5BppjIWTOrlAPBINcsgJfpzsVPJcg-S3qh7DCmIuipD00nITQmZDVLotLk33WrnaLrLXZ2Ggfs5Gum86b7E1HHUwMd-jG6iaY--M5QD-j9-_XcT79-pi8vkzzilIZcytNxS3HszkjwGllqeXMcEkJlZqzOZ9bXM4MtUaWcpbAJeGYFaYSczpjoMkAFYd3O7fRu1_dNGrj67X2OwVY7Y3VwVglY7U3ViyVng6ljW-3SSqqdR0q0zTambYLChIMBsCSp-jjWXTVdt4lJVWUaSVJREEvpYABKUqxZxggcUhVvg3BG6uqOupYty76NN9FYDhr_kfyuExIWbcw_oTpQukoUi1bt9im3slPmBBKJAXyBxj0qxY |
| CitedBy_id | crossref_primary_10_1016_j_cmpb_2020_105635 crossref_primary_10_1007_s10916_018_1134_z crossref_primary_10_1097_TP_0000000000003623 crossref_primary_10_1016_j_asoc_2016_08_038 crossref_primary_10_3233_JIFS_220061 crossref_primary_10_1016_j_cmpb_2018_05_007 crossref_primary_10_1155_2015_708467 crossref_primary_10_1007_s11633_020_1221_8 crossref_primary_10_1186_s12911_020_1023_5 crossref_primary_10_1002_ehf2_14028 crossref_primary_10_1007_s00521_022_07201_9 crossref_primary_10_1109_ACCESS_2019_2941898 crossref_primary_10_2139_ssrn_3349586 crossref_primary_10_1371_journal_pone_0249338 |
| Cites_doi | 10.1161/CIRCULATIONAHA.111.019216 10.1109/TBME.2011.2113395 10.1177/009286150003400221 10.1186/1471-2105-6-148 10.1007/978-3-642-17103-1_60 10.1023/A:1010933404324 10.1016/j.bbrc.2010.01.076 10.1023/A:1009769707641 10.1109/TPAMI.2002.1017616 10.1001/jama.297.1.61 10.1136/hrt.2010.220426 10.1161/01.CIR.96.3.842 10.1001/jama.290.19.2581 10.1016/S1386-5056(00)00106-4 10.1016/S1672-0229(08)60011-X 10.1186/1471-2105-12-375 10.1007/978-94-007-6190-2_19 10.1016/j.patrec.2005.01.014 10.1016/j.patrec.2004.04.004 10.1186/1471-2288-11-12 10.1109/34.574797 10.1016/S1352-2310(97)00447-0 10.1201/9781420034912 10.1007/s10618-005-0361-3 10.1186/1471-2105-6-68 10.1016/j.neunet.2010.09.008 10.1016/j.neunet.2009.07.007 10.1109/TSMCB.2005.854499 10.1093/bioinformatics/btg179 10.1016/j.cmpb.2008.01.003 10.1097/00005650-200502000-00012 10.1056/NEJMsa0900592 10.1093/bioinformatics/17.2.126 10.1016/S0195-668X(02)00823-0 10.1109/TNSRE.2002.802875 10.1093/bioinformatics/btg210 10.1016/j.compbiomed.2006.05.001 10.1016/S0031-3203(02)00063-8 10.1093/eurjhf/hfp147 10.1109/TNANO.2007.910334 10.1109/3477.990877 10.1093/bioinformatics/btm528 10.1136/heartjnl-2011-300475 |
| ContentType | Journal Article |
| Copyright | Science in China Press 2014 Institute of Automation, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2014 Science in China Press 2014. |
| Copyright_xml | – notice: Science in China Press 2014 – notice: Institute of Automation, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2014 – notice: Science in China Press 2014. |
| DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION JQ2 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI 7SC 8FD L7M L~C L~D ADTOC UNPAY |
| DOI | 10.1007/s11633-014-0778-5 |
| DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef ProQuest Computer Science Collection ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Computer Science Database Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Computer and Information Systems Abstracts Technology Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection Computer and Information Systems Abstracts ProQuest Computer Science Collection |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| DocumentTitleAlternate | Issues in the Mining of Heart Failure Datasets |
| EISSN | 1751-8520 2153-1838 |
| EndPage | 179 |
| ExternalDocumentID | 10.1007/s11633-014-0778-5 3268410301 10_1007_s11633_014_0778_5 1003343841 |
| Genre | Feature |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 29~ 2B. 2C0 2J2 2JN 2KG 2KM 2LR 2RA 2VQ 2~H 30V 4.4 408 40D 40E 5VR 5VS 6NX 8TC 8UJ 92H 92I 92L 92R 93N 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AANZL AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABDZT ABECU ABFGW ABFTD ABFTV ABHQN ABJNI ABJOX ABKAS ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTMW ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHXU ACIGE ACIPQ ACKNC ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADRFC ADURQ ADYFF ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEOHA AEPYU AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMYQR AOCGG ARMRJ AXYYD B-. BA0 BDATZ BGNMA CAG CCEZO CHBEP COF CQIGP CS3 CSCUP CUBFJ CW9 DNIVK EBLON EBS EIOEI EJD ESBYG FA0 FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HG6 HLICF HMJXF HRMNR HZ~ IHE IJ- IXD I~X I~Z J-C JBSCW KOV M4Y MA- NQJWS NU0 O9- O9J P9O PF0 QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SCL SDH SEG SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TCJ TSG TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W48 W92 WK8 YLTOR Z7R Z7X Z83 Z88 ~A9 ~WA AEFQL H13 ZMTXR AAYXX ACSTC CITATION JQ2 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ K7- P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI 7SC 8FD L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c448t-f8ec6f60bd53164cf4f65e684348a65d6df09be4fe898b633836052ec7d4b51a3 |
| IEDL.DBID | UNPAY |
| ISSN | 1476-8186 2153-182X 1751-8520 |
| IngestDate | Sun Oct 26 04:09:46 EDT 2025 Fri Sep 05 06:31:57 EDT 2025 Fri Jul 25 23:33:29 EDT 2025 Fri Jul 25 03:23:21 EDT 2025 Thu Apr 24 23:08:33 EDT 2025 Wed Oct 01 01:49:15 EDT 2025 Fri Feb 21 02:35:01 EST 2025 Wed Feb 14 10:37:31 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Heart failure clinical dataset clustering classification feature selection missing values |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c448t-f8ec6f60bd53164cf4f65e684348a65d6df09be4fe898b633836052ec7d4b51a3 |
| Notes | Nongnuch Poolsawad;Lisa Moore;Chandrasekhar Kambhampati;John G. F. Cleland;Intelligent Systems Research Group(IS, Department of Computer Science), University of Hull;Hull York Medical School,Department of Cardiology,University of Hull 11-5350/TP SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 ObjectType-Article-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007%2Fs11633-014-0778-5.pdf |
| PQID | 2918683724 |
| PQPubID | 2029113 |
| PageCount | 18 |
| ParticipantIDs | unpaywall_primary_10_1007_s11633_014_0778_5 proquest_miscellaneous_1531011086 proquest_journals_2918683724 proquest_journals_1513297116 crossref_citationtrail_10_1007_s11633_014_0778_5 crossref_primary_10_1007_s11633_014_0778_5 springer_journals_10_1007_s11633_014_0778_5 chongqing_primary_1003343841 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2014-04-01 |
| PublicationDateYYYYMMDD | 2014-04-01 |
| PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg – name: Beijing |
| PublicationTitle | International journal of automation and computing |
| PublicationTitleAbbrev | Int. J. Autom. Comput |
| PublicationTitleAlternate | International Journal of Automation and computing |
| PublicationYear | 2014 |
| Publisher | Springer-Verlag Springer Nature B.V |
| Publisher_xml | – name: Springer-Verlag – name: Springer Nature B.V |
| References | LeeD SDonovanLAustinP CGongY YLiuP PRouleauJ LTuJ VComparison of coding of heart failure and comorbidities in administrative and clinical data for use in outcomes researchMedical Care200543218218810.1097/00005650-200502000-00012 Atherotech Diagnotics Lab. Atherotech Panels. [Online], Available: http://www.atherotech.com/athdiagtests/atherotechpanels.asp, 13 June 2011. VarshavskyRGottliebAHornDLinialMUnsupervised feature selection under perturbations: Meeting the challenges of biological dataBioinformatics200723243343334910.1093/bioinformatics/btm528 AcuñaERodriguezCBanksDHouseLMcMorrisF RArabiePGaulWThe treatment of missing values and its effect in the classifier accuracyClassification, Clustering, and Data Mining Applications2004Berlin, HeidelbergSpringer63964810.1007/978-3-642-17103-1_60 YuLLiuHFeature selection for high-dimensional data: A fast correlation-based filter solution2003Washington DC, USAAAAI856863 JäaegerJSenguptaRRuzzoW LImproved gene selection for classifcation of MicroarraysPacific Symposium on Biocomputing200385364 LevnerIFeature selection and nearest centroid classification for protein mass spectrometryBMC Bioinformatics200566810.1186/1471-2105-6-68 JhaA KDesRochesC MCampbellE GDonelanKRaoS RFerrisT GShieldsARosenbaumSBlumenthalDUse of electronic health records in U. S. hospitalsThe New England Journal of Medicine2009360161628163810.1056/NEJMsa0900592 SaeysYAbeelTVan de PeerYRobust feature selection using ensemble feature selection techniques2008Berlin, Heidelberg, GermanySpringer-Verlag313325 J. H. Lin, P. J. Haug. Data preparation framework for preprocessing clinical data in data mining. In Proceedings of AMIA Annual Symposium, AMIA, American, pp. 489–493, 2006. Yom-TovEInbarG FFeature selection for the classification of movements from single movement-related potentialsIEEE Transactions on Neural Systems and Rehabilitation Engineering200210317017710.1109/TNSRE.2002.802875 RahmanM MDavisD NMachine learning-based missing value imputation method for clinical datasetsIAENG Transactions on Engineering Technologies2013NetherlandsSpringer24525710.1007/978-94-007-6190-2_19 PoolsawadNKambhampatiCClelandJ G FFeature selection approaches with missing values handling for data mining — A case study of heart failure datasetWorld Academy of Science, Engineering and Technology201160828837 DashMLiuHYaoJDimensionality reduction of unsupervised data1997Newport Beach, CA, USAIEEE532539 ChiangJ HHoS HA combination of rough-based feature selection and RBF neural network for classification using gene expression dataIEEE Transactions on Nanotechnology200871919910.1109/TNANO.2007.910334 AcharyaU RBhatP SIyengarS SRaoADuaSClassification of heart rate data using artificial neural network and fuzzy equivalence relationPattern Recognition2003361616810.1016/S0031-3203(02)00063-81027.68655 HerreroJValenciaADopazoJA hierarchical unsupervised growing neural network for clustering gene expression patternsBioinformatics200017212613610.1093/bioinformatics/17.2.126 GrinsteadC MSnellJ LIntroduction to Probability1998Rhode IslandAmerican Mathematical Society PetersonP NRumsfeldJ SLiangLAlbertN MHernandezA FPetersonE DFonarowG CMasoudiF AA validated risk score for in-hospital mortality in patients with heart failure from the American Heart Association get with the guidelines programCirculation: Cardiovascular Quality and Outcomes2010312532 BohacikJDavisD NData mining applied to cardiovascular dataJournal of Information Technologies2010321421 MirkinBClustering for Data Mining: A Data Recovery Approach2005FloridaChapman and Hull/CRC10.1201/9781420034912 KelderJ CCowieM RMcDonaghT AHardmanS MGrobbeeD ECostBHoesA WQuantifying the added value of BNP in suspected heart failure in general practice: An individual patient data meta-analysisHeart2011971295996310.1136/hrt.2010.220426 CortesCVapnikVSupport-vector networksMachine Learning19952032732970831.68098 KelderJ CCramerM JVan WijngaardenJVan ToorenRMosterdAMoonsK GLammersJ WCowieM RGrobbeeD EHoesA WThe diagnostic value of physical examination and additional testing in primary care patients with suspected heart failureCirculation2011124251865287310.1161/CIRCULATIONAHA.111.019216 TanwaniA KAfridiJShafiqM ZFarooqMGuidelines to select machine learning scheme for classification of biomedical datasets2009Berlin, Heidelberg, GermanySpringer-Verlag128139 SridharASowndaryaSEfficiency of k-means clustering algorithm in mining outliers from large data setsInternational Journal on Computer Science and Engineering20102930433045 HoK K LMoodyG BPengC KMietusJ ELarsonM GLevyDGoldbergerA LPredicting survival in heart failure case and control subjects by use of fully automated methods for deriving nonlinear and conventional indices of heart rate dynamicsCirculation19979638424810.1161/01.CIR.96.3.842 Silva-RamírezE LPino-MejíasRLópez-CoelloMCubiles-de-la-VegaM DMissing value imputation on missing completely at random data using multilayer perceptronsNeural Networks201124112112910.1016/j.neunet.2010.09.008 WuB LAbbottTFishmanDMcMurrayWMorGStoneKWardDWilliamsKZhaoH YComparison of statistical methods for classification of ovarian cancer using mass spectrometry dataBioinformatics200319131636164310.1093/bioinformatics/btg210 FayyadU MIraniKMulti-interval discretization of continuous-valued attributes for classification learning1993San Francisco, CA, USAMorgan Kaufmann Publishers Inc.10221029 FrawleyW JPiatetsky-ShapiroGMatheusC JKnowledge discovery in databases: An overviewArtificial Intelligence Magazine20111335770 WangP YChowT W SA new feature selection scheme using data distribution factor for transactional data2007Bruges, BelgiumESANN169174 BeanC LKambhampatiCKnowledge-oriented clustering for decision support2003Portland, OR, USAIEEE32443249 The University of Waikato. WEKA: The Waikato Environment for Knowledge Acquisition. [Online], Available: http://www.cs.waikato.ac.nz/ml/weka, 30 August 2011. K. Alsabti, S. Ranka, V. Singh. An efficient k-means clustering algorithm. In Proceedings of IPPS/SPDP Workshop on High Performance Data Mining, pp. 1–7, 1998. GardnerM WDorlingS RArtificial neural networks (the multilayer perceptron) — A review of applications in the atmospheric sciencesAtmospheric Environment19983214–152627263610.1016/S1352-2310(97)00447-0 SafranCGoldbergHElectronic patient records and the impact of the internetInternational Journal of Medical Informatics2000602778310.1016/S1386-5056(00)00106-4 LiuHLiJWongLA comparative study on feature selection and classification methods using gene expression profiles and proteomic patternsGenome Informatics2002135160 LeeJ S JHwangJ NDavisD TNelsonA CIntegration of neural networks and decision tree classifiers for automated cytology screening1991Seattle, WA, USAIEEE257262vol. 1 Analysis Factor. EM Imputation and Missing Data: Is Mean Imputation Really so Terrible? [Online], Available: http://www.analysisfactor.com/statchat/tag/spss-missing-values-analysis, 30 August 2011. MarTZaunsederSMartinezJ PLlamedoMPollROptimization of ECG classification by means of feature selectionIEEE Transactions on Biomedical Engineering20115882168217710.1109/TBME.2011.2113395 Jirapech-UmpaiTAitkenSFeature selection and classification for microarray data analysis: Evolutionary methods for identifying predictive genesBMC Bioinformatics2005614810.1186/1471-2105-6-148 KhemphilaABoonjingVParkinsons disease classification using neural network and feature selectionWorld Academy of Science, Engineering and Technology2012641518 HuangZ XExtensions to the k-means algorithm for clustering large data sets with categorical valuesData Mining and Knowledge Discovery19982328330410.1023/A:1009769707641 BohacikJDavisD NAlert rules for remote monitoring of cardiovascular patientsJournal of Information Technologies2012511623 NapoleonDLakshmiG PAn efficient k-means clustering algorithm for reducing time complexity using uniform distribution data points2010Chennai, IndiaIEEE4245 YuLLiuHEfficient feature selection via analysis of relevance and redundancyJournal of Machine Learning Research20045120512241222.68340 FonarowG CAbrahamW TAlbertN MStoughW GGheorghiadeMGreenbergB HO’ConnorC MPieperKSunJ LYancyCYoungJ BAssociation between performance measures and clinical outcomes for patients hospitalized with heart failureJournal of the American Medical Association20072971617010.1001/jama.297.1.61 SugiyamaMKawanabeMChuiP LDimensionality reduction for density ratio estimation in high-dimensional spacesNeural Networks2010231445910.1016/j.neunet.2009.07.007 HolmeIPedersenT RBomanKEgstrupKGerdtsEKesäniemiY AMalbecqWRaySRossebøA BWachtellKWillenheimerRGohlke-BärwolfCA risk score for predicting mortality in patients with asymptomatic mild to moderate aortic stenosisHeart201198537738310.1136/heartjnl-2011-300475 ZhouNWangLA modified T-test feature selection method and its application on the HapMap genotype dataGenomics, Proteomics & Bioinformatics200753–424224910.1016/S1672-0229(08)60011-X ShiPRaySZhuQ FKonM ATop scoring pairs for feature selection in machine learning and applications to cancer outcome predictionBMC Bioinformatics20111237510.1186/1471-2105-12-375 D. W. Aha, R. L. Bankert. A comparative evaluation of sequential feature selection algorithms. In Proceedings of the 5th International Workshop on Artificial Intelligence and Statistics, pp. 1–7, 1995. Al-NajiarYGoodeK MZhangJClelandJ GClarkA LAndrewRed cell distribution width: An inexpensive and powerful prognostic marker in heart failureEuropean Journal Heart Failure200911121155116210.1093/eurjhf/hfp147 LeeD SAustinP CRouleauJ LLiuP PNaimarkDTuJ VPredicting mortality among patients hospitalizeed for heart failure, derivation and validation of a clinical modelJournal of the American Medical Association2003290192581258710.1001/jama.290.19.2581 BohacikJDavisD NBenedikovićMRisk estimation of cardiovascular patients using Weka2012Slovakia, Žilina, SlovakiaThe Society for Open Information Technologies — SOIT in Bratislava1520 KimW DLeeH KLeeDFuzzy clustering of categorical data using fuzzy centroidsPattern Recognit T Mar (778_CR7) 2011; 58 T Hastie (778_CR59) 1998 L Breiman (778_CR60) 2001; 45 M Sugiyama (778_CR8) 2010; 23 Y Su (778_CR52) 2003; 19 L Autio (778_CR55) 2007; 37 B L Wu (778_CR49) 2003; 19 P Shi (778_CR6) 2011; 12 778_CR53 Z G Yan (778_CR12) 2008; 90 E L Silva-Ramírez (778_CR43) 2011; 24 D S Lee (778_CR21) 2005; 43 M W Gardner (778_CR54) 1998; 32 A Khemphila (778_CR56) 2012; 64 J C Platt (778_CR58) 1998 U R Acharya (778_CR5) 2003; 36 J Han (778_CR44) 2006 Y Saeys (778_CR30) 2008 P N Peterson (778_CR18) 2010; 3 H Liu (778_CR34) 2002; 13 J S J Lee (778_CR71) 1991 L Yu (778_CR31) 2003 Z X Huang (778_CR64) 1998; 2 W R Myers (778_CR77) 2000; 34 M Dash (778_CR10) 1997 D P Muni (778_CR13) 2006; 36 C N Hsu (778_CR35) 2002; 32 C Safran (778_CR3) 2000; 60 R A Damarell (778_CR20) 2011; 11 J G F Cleland (778_CR4) 2003; 24 J Jäaeger (778_CR51) 2003; 8 N Zhou (778_CR32) 2007; 5 778_CR63 B Mirkin (778_CR67) 2005 778_CR66 K D Min (778_CR19) 2010; 393 C M Grinstead (778_CR78) 1998 N Poolsawad (778_CR40) 2012 Y Al-Najiar (778_CR73) 2009; 11 J Bohacik (778_CR27) 2012; 5 E Yom-Tov (778_CR14) 2002; 10 R Varshavsky (778_CR15) 2007; 23 J C Kelder (778_CR17) 2011; 97 E Acuña (778_CR37) 2004 J C Kelder (778_CR16) 2011; 124 J Bohacik (778_CR26) 2010; 3 A Jain (778_CR29) 1997; 19 C Cortes (778_CR57) 1995; 20 A K Jha (778_CR2) 2009; 360 G C Fonarow (778_CR25) 2007; 297 778_CR74 I Holme (778_CR23) 2011; 98 W J Frawley (778_CR41) 2011; 13 F M Coetzee (778_CR48) 2005; 26 K K L Ho (778_CR24) 1997; 96 T Jirapech-Umpai (778_CR47) 2005; 6 I Levner (778_CR50) 2005; 6 778_CR75 J Herrero (778_CR76) 2000; 17 D S Lee (778_CR22) 2003; 290 A K Tanwani (778_CR1) 2009 778_CR38 N Poolsawad (778_CR39) 2011; 60 T Kanungo (778_CR65) 2002; 24 D Napoleon (778_CR69) 2010 C L Bean (778_CR62) 2003 J Bohacik (778_CR36) 2012 L Yu (778_CR46) 2004; 5 M M Rahman (778_CR79) 2013 A Sridhar (778_CR68) 2010; 2 778_CR42 U M Fayyad (778_CR33) 1993 778_CR45 J Bohacik (778_CR28) 2011 J H Chiang (778_CR11) 2008; 7 P Y Wang (778_CR9) 2007 W D Kim (778_CR61) 2004; 25 Y Zhao (778_CR70) 2005; 10 Y Zhang (778_CR72) 2012 |
| References_xml | – reference: AcuñaERodriguezCBanksDHouseLMcMorrisF RArabiePGaulWThe treatment of missing values and its effect in the classifier accuracyClassification, Clustering, and Data Mining Applications2004Berlin, HeidelbergSpringer63964810.1007/978-3-642-17103-1_60 – reference: Silva-RamírezE LPino-MejíasRLópez-CoelloMCubiles-de-la-VegaM DMissing value imputation on missing completely at random data using multilayer perceptronsNeural Networks201124112112910.1016/j.neunet.2010.09.008 – reference: HolmeIPedersenT RBomanKEgstrupKGerdtsEKesäniemiY AMalbecqWRaySRossebøA BWachtellKWillenheimerRGohlke-BärwolfCA risk score for predicting mortality in patients with asymptomatic mild to moderate aortic stenosisHeart201198537738310.1136/heartjnl-2011-300475 – reference: Jirapech-UmpaiTAitkenSFeature selection and classification for microarray data analysis: Evolutionary methods for identifying predictive genesBMC Bioinformatics2005614810.1186/1471-2105-6-148 – reference: LiuHLiJWongLA comparative study on feature selection and classification methods using gene expression profiles and proteomic patternsGenome Informatics2002135160 – reference: KelderJ CCramerM JVan WijngaardenJVan ToorenRMosterdAMoonsK GLammersJ WCowieM RGrobbeeD EHoesA WThe diagnostic value of physical examination and additional testing in primary care patients with suspected heart failureCirculation2011124251865287310.1161/CIRCULATIONAHA.111.019216 – reference: Al-NajiarYGoodeK MZhangJClelandJ GClarkA LAndrewRed cell distribution width: An inexpensive and powerful prognostic marker in heart failureEuropean Journal Heart Failure200911121155116210.1093/eurjhf/hfp147 – reference: K. Alsabti, S. Ranka, V. Singh. An efficient k-means clustering algorithm. In Proceedings of IPPS/SPDP Workshop on High Performance Data Mining, pp. 1–7, 1998. – reference: WuB LAbbottTFishmanDMcMurrayWMorGStoneKWardDWilliamsKZhaoH YComparison of statistical methods for classification of ovarian cancer using mass spectrometry dataBioinformatics200319131636164310.1093/bioinformatics/btg210 – reference: SafranCGoldbergHElectronic patient records and the impact of the internetInternational Journal of Medical Informatics2000602778310.1016/S1386-5056(00)00106-4 – reference: KhemphilaABoonjingVParkinsons disease classification using neural network and feature selectionWorld Academy of Science, Engineering and Technology2012641518 – reference: M. Y. Mashor. Improving the performance of k-means clustering algorithm to position the centres of RBF network. International Journal of the Computer, the Internet and Management, vol. 6, no 2, 1998. – reference: PetersonP NRumsfeldJ SLiangLAlbertN MHernandezA FPetersonE DFonarowG CMasoudiF AA validated risk score for in-hospital mortality in patients with heart failure from the American Heart Association get with the guidelines programCirculation: Cardiovascular Quality and Outcomes2010312532 – reference: MyersW RHandling missing data in clinical trials: An overviewDrug Information Journal2000342525533 – reference: MinK DAsakuraMLiaoY LNakamaruKOkazakiHTakahashiTFujimotoKItoSTakahashiAAsanumaHYamazakiSMinaminoTSanadaSSequchiONakanoAAndoYOtsukaTFurukawaHIsomuraTTakashimaSMochizukiNKitakazeMIdentification of genes related to heart failure using global gene expression profiling of human failing myocardiumBiochemical Biophysical Research Communications20103931556010.1016/j.bbrc.2010.01.076 – reference: The University of Waikato. WEKA: The Waikato Environment for Knowledge Acquisition. [Online], Available: http://www.cs.waikato.ac.nz/ml/weka, 30 August 2011. – reference: HastieTTibshiraniRClassification by pairwise couplingAdvances in Neural Information Processing Systems1998Cambridge, MA, USAMIT Press507513 – reference: GrinsteadC MSnellJ LIntroduction to Probability1998Rhode IslandAmerican Mathematical Society – reference: D. W. Aha, R. L. Bankert. A comparative evaluation of sequential feature selection algorithms. In Proceedings of the 5th International Workshop on Artificial Intelligence and Statistics, pp. 1–7, 1995. – reference: MuniD PPalB RDasJGenetic programming for simultaneous feature selection and classifier designIEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics200636110611710.1109/TSMCB.2005.854499 – reference: BreimanLRandom forestsMachine Learning200145153210.1023/A:10109334043241007.68152 – reference: TanwaniA KAfridiJShafiqM ZFarooqMGuidelines to select machine learning scheme for classification of biomedical datasets2009Berlin, Heidelberg, GermanySpringer-Verlag128139 – reference: FayyadU MIraniKMulti-interval discretization of continuous-valued attributes for classification learning1993San Francisco, CA, USAMorgan Kaufmann Publishers Inc.10221029 – reference: AutioLJuholaMLaurikkalaJOn the neural network classification of medical data and an endeavour to balance non-uniform data sets with artificial data extensionComputers in Biology and Medicine200737338839710.1016/j.compbiomed.2006.05.001 – reference: PlattJ CSchoelkopfBBurgesCSmolaAFast training of support vector machines using sequential minimal optimizationAdvances in Kernel Methods — Support Vector Learning1998Cambridge, MA, USAMIT Press185208 – reference: J. H. Lin, P. J. Haug. Data preparation framework for preprocessing clinical data in data mining. In Proceedings of AMIA Annual Symposium, AMIA, American, pp. 489–493, 2006. – reference: SaeysYAbeelTVan de PeerYRobust feature selection using ensemble feature selection techniques2008Berlin, Heidelberg, GermanySpringer-Verlag313325 – reference: ClelandJ G FSwedbergKFollathFKomajdaMCohen-SolalAAguilarJ CDietzRGavazziAHobbsRKorewickiJMadeiraH CMoiseyevV SPredaIvan GilstW HWidimskyJFreemantleNEastaughJMasonJStudy Group on Diagnosis of the Working Group on Heart Failure of the European Society of CardiologyFreemantleNEastaughJMasonJThe EuroHeart Failure survey programme — A survey on the quality of care among patients with heart failure in Europe, Part 1: Patient characteristics and diagnosisEuropean Heart Journal200324544246310.1016/S0195-668X(02)00823-0 – reference: JainAZongkerDFeature selection: Evaluation, application, and small sample performanceIEEE Transactions on Pattern Analysis and Machine Intelligence199719215315810.1109/34.574797 – reference: PoolsawadNKambhampatiCClelandJ G FFeature selection approaches with missing values handling for data mining — A case study of heart failure datasetWorld Academy of Science, Engineering and Technology201160828837 – reference: JäaegerJSenguptaRRuzzoW LImproved gene selection for classifcation of MicroarraysPacific Symposium on Biocomputing200385364 – reference: LevnerIFeature selection and nearest centroid classification for protein mass spectrometryBMC Bioinformatics200566810.1186/1471-2105-6-68 – reference: CoetzeeF MCorrecting the Kullback-Leibler distance for feature selectionPattern Recognition Letters200526111675168310.1016/j.patrec.2005.01.014 – reference: SuYMuraliT MPavlovicVSchafferMKasifSRankGene: Identification of diagnostic genes based on expression dataBioinformatics200319121578157910.1093/bioinformatics/btg179 – reference: ShiPRaySZhuQ FKonM ATop scoring pairs for feature selection in machine learning and applications to cancer outcome predictionBMC Bioinformatics20111237510.1186/1471-2105-12-375 – reference: Yom-TovEInbarG FFeature selection for the classification of movements from single movement-related potentialsIEEE Transactions on Neural Systems and Rehabilitation Engineering200210317017710.1109/TNSRE.2002.802875 – reference: SridharASowndaryaSEfficiency of k-means clustering algorithm in mining outliers from large data setsInternational Journal on Computer Science and Engineering20102930433045 – reference: ZhaoYKarypisGFayyadUHierarchical clustering algorithms for document datasetsData Mining and Knowledge Discovery200510214116810.1007/s10618-005-0361-32138240 – reference: FonarowG CAbrahamW TAlbertN MStoughW GGheorghiadeMGreenbergB HO’ConnorC MPieperKSunJ LYancyCYoungJ BAssociation between performance measures and clinical outcomes for patients hospitalized with heart failureJournal of the American Medical Association20072971617010.1001/jama.297.1.61 – reference: MarTZaunsederSMartinezJ PLlamedoMPollROptimization of ECG classification by means of feature selectionIEEE Transactions on Biomedical Engineering20115882168217710.1109/TBME.2011.2113395 – reference: DamarellR ATiemanJSladekR MDavidsonP MDevelopment of a heart failure filter for Medline: An objective approach using evidence-based clinical practice guidelines as an alternative to hand searchingBMC Medical Research Methodology2011111210.1186/1471-2288-11-12 – reference: GardnerM WDorlingS RArtificial neural networks (the multilayer perceptron) — A review of applications in the atmospheric sciencesAtmospheric Environment19983214–152627263610.1016/S1352-2310(97)00447-0 – reference: JhaA KDesRochesC MCampbellE GDonelanKRaoS RFerrisT GShieldsARosenbaumSBlumenthalDUse of electronic health records in U. S. hospitalsThe New England Journal of Medicine2009360161628163810.1056/NEJMsa0900592 – reference: NapoleonDLakshmiG PAn efficient k-means clustering algorithm for reducing time complexity using uniform distribution data points2010Chennai, IndiaIEEE4245 – reference: ZhouNWangLA modified T-test feature selection method and its application on the HapMap genotype dataGenomics, Proteomics & Bioinformatics200753–424224910.1016/S1672-0229(08)60011-X – reference: FrawleyW JPiatetsky-ShapiroGMatheusC JKnowledge discovery in databases: An overviewArtificial Intelligence Magazine20111335770 – reference: LeeD SDonovanLAustinP CGongY YLiuP PRouleauJ LTuJ VComparison of coding of heart failure and comorbidities in administrative and clinical data for use in outcomes researchMedical Care200543218218810.1097/00005650-200502000-00012 – reference: WangP YChowT W SA new feature selection scheme using data distribution factor for transactional data2007Bruges, BelgiumESANN169174 – reference: CortesCVapnikVSupport-vector networksMachine Learning19952032732970831.68098 – reference: ChiangJ HHoS HA combination of rough-based feature selection and RBF neural network for classification using gene expression dataIEEE Transactions on Nanotechnology200871919910.1109/TNANO.2007.910334 – reference: YanZ GWangZ ZXieH BThe application of mutual information-based feature selection and fuzzy LS-SVM-based classifier in motion classificationComputer Methods and Programs in Biomedicine200890327528410.1016/j.cmpb.2008.01.003 – reference: HuangZ XExtensions to the k-means algorithm for clustering large data sets with categorical valuesData Mining and Knowledge Discovery19982328330410.1023/A:1009769707641 – reference: LeeJ S JHwangJ NDavisD TNelsonA CIntegration of neural networks and decision tree classifiers for automated cytology screening1991Seattle, WA, USAIEEE257262vol. 1 – reference: HsuC NHuangH JDietrichSThe ANNIGMA-wrapper approach to fast feature selection for neural netsIEEE Transactions Systems, Man, and Cybernetics, Part B200232220721210.1109/3477.990877 – reference: M. Steinbach, G. Karypis, V. Kumar. A comparison of document clustering techniques. In Proceedings of KDD Workshop on Text Mining, pp. 1–2, 2000. – reference: BohacikJDavisD NEstimation of cardiovascular patient risk with a Bayesian network2011Zilina, SlovakiaUniversity of Zilina3740 – reference: DashMLiuHYaoJDimensionality reduction of unsupervised data1997Newport Beach, CA, USAIEEE532539 – reference: KelderJ CCowieM RMcDonaghT AHardmanS MGrobbeeD ECostBHoesA WQuantifying the added value of BNP in suspected heart failure in general practice: An individual patient data meta-analysisHeart2011971295996310.1136/hrt.2010.220426 – reference: MirkinBClustering for Data Mining: A Data Recovery Approach2005FloridaChapman and Hull/CRC10.1201/9781420034912 – reference: VarshavskyRGottliebAHornDLinialMUnsupervised feature selection under perturbations: Meeting the challenges of biological dataBioinformatics200723243343334910.1093/bioinformatics/btm528 – reference: YuLLiuHEfficient feature selection via analysis of relevance and redundancyJournal of Machine Learning Research20045120512241222.68340 – reference: RahmanM MDavisD NMachine learning-based missing value imputation method for clinical datasetsIAENG Transactions on Engineering Technologies2013NetherlandsSpringer24525710.1007/978-94-007-6190-2_19 – reference: Analysis Factor. EM Imputation and Missing Data: Is Mean Imputation Really so Terrible? [Online], Available: http://www.analysisfactor.com/statchat/tag/spss-missing-values-analysis, 30 August 2011. – reference: HoK K LMoodyG BPengC KMietusJ ELarsonM GLevyDGoldbergerA LPredicting survival in heart failure case and control subjects by use of fully automated methods for deriving nonlinear and conventional indices of heart rate dynamicsCirculation19979638424810.1161/01.CIR.96.3.842 – reference: BohacikJDavisD NBenedikovićMRisk estimation of cardiovascular patients using Weka2012Slovakia, Žilina, SlovakiaThe Society for Open Information Technologies — SOIT in Bratislava1520 – reference: HerreroJValenciaADopazoJA hierarchical unsupervised growing neural network for clustering gene expression patternsBioinformatics200017212613610.1093/bioinformatics/17.2.126 – reference: PoolsawadNMooreLKambhampatiCClelandJ G FHandling missing values in data mining — A case study of heart failure dataset2012Chongqing, ChinaIEEE19342938 – reference: BohacikJDavisD NData mining applied to cardiovascular dataJournal of Information Technologies2010321421 – reference: BohacikJDavisD NAlert rules for remote monitoring of cardiovascular patientsJournal of Information Technologies2012511623 – reference: YuLLiuHFeature selection for high-dimensional data: A fast correlation-based filter solution2003Washington DC, USAAAAI856863 – reference: Atherotech Diagnotics Lab. Atherotech Panels. [Online], Available: http://www.atherotech.com/athdiagtests/atherotechpanels.asp, 13 June 2011. – reference: HanJKamberMData Mining: Concepts and Techniques20062San FranciscoMorgan Kaufman Publishers – reference: BeanC LKambhampatiCKnowledge-oriented clustering for decision support2003Portland, OR, USAIEEE32443249 – reference: AcharyaU RBhatP SIyengarS SRaoADuaSClassification of heart rate data using artificial neural network and fuzzy equivalence relationPattern Recognition2003361616810.1016/S0031-3203(02)00063-81027.68655 – reference: ZhangYKambhampatiCDavisD NGoodeKClelandJ G FA comparative study of missing value imputation with multiclass classification for clinical heart failure data2012Sichuan, ChinaIEEE28402844 – reference: SugiyamaMKawanabeMChuiP LDimensionality reduction for density ratio estimation in high-dimensional spacesNeural Networks2010231445910.1016/j.neunet.2009.07.007 – reference: LeeD SAustinP CRouleauJ LLiuP PNaimarkDTuJ VPredicting mortality among patients hospitalizeed for heart failure, derivation and validation of a clinical modelJournal of the American Medical Association2003290192581258710.1001/jama.290.19.2581 – reference: KimW DLeeH KLeeDFuzzy clustering of categorical data using fuzzy centroidsPattern Recognition Letters200425111263127110.1016/j.patrec.2004.04.004 – reference: KanungoTMountM DNetanyahuS NPiatkoD CSilvermanRWuY AAn efficient k-means clustering algorithm: Analysis and implementationIEEE Transactions on Pattern Analysis and Machine Intelligence200224788189210.1109/TPAMI.2002.1017616 – volume: 124 start-page: 1865 issue: 25 year: 2011 ident: 778_CR16 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.111.019216 – volume: 58 start-page: 2168 issue: 8 year: 2011 ident: 778_CR7 publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2011.2113395 – volume: 34 start-page: 525 issue: 2 year: 2000 ident: 778_CR77 publication-title: Drug Information Journal doi: 10.1177/009286150003400221 – start-page: 2840 volume-title: A comparative study of missing value imputation with multiclass classification for clinical heart failure data year: 2012 ident: 778_CR72 – volume: 6 start-page: 148 year: 2005 ident: 778_CR47 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-6-148 – start-page: 639 volume-title: Classification, Clustering, and Data Mining Applications year: 2004 ident: 778_CR37 doi: 10.1007/978-3-642-17103-1_60 – volume: 60 start-page: 828 year: 2011 ident: 778_CR39 publication-title: World Academy of Science, Engineering and Technology – volume-title: Data Mining: Concepts and Techniques year: 2006 ident: 778_CR44 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 778_CR60 publication-title: Machine Learning doi: 10.1023/A:1010933404324 – ident: 778_CR66 – volume: 13 start-page: 51 year: 2002 ident: 778_CR34 publication-title: Genome Informatics – ident: 778_CR75 – volume: 393 start-page: 55 issue: 1 year: 2010 ident: 778_CR19 publication-title: Biochemical Biophysical Research Communications doi: 10.1016/j.bbrc.2010.01.076 – volume: 2 start-page: 283 issue: 3 year: 1998 ident: 778_CR64 publication-title: Data Mining and Knowledge Discovery doi: 10.1023/A:1009769707641 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 778_CR57 publication-title: Machine Learning – volume: 24 start-page: 881 issue: 7 year: 2002 ident: 778_CR65 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2002.1017616 – volume: 297 start-page: 61 issue: 1 year: 2007 ident: 778_CR25 publication-title: Journal of the American Medical Association doi: 10.1001/jama.297.1.61 – volume: 97 start-page: 959 issue: 12 year: 2011 ident: 778_CR17 publication-title: Heart doi: 10.1136/hrt.2010.220426 – volume: 96 start-page: 842 issue: 3 year: 1997 ident: 778_CR24 publication-title: Circulation doi: 10.1161/01.CIR.96.3.842 – ident: 778_CR63 – start-page: 42 volume-title: An efficient k-means clustering algorithm for reducing time complexity using uniform distribution data points year: 2010 ident: 778_CR69 – volume: 3 start-page: 14 issue: 2 year: 2010 ident: 778_CR26 publication-title: Journal of Information Technologies – ident: 778_CR42 – volume: 290 start-page: 2581 issue: 19 year: 2003 ident: 778_CR22 publication-title: Journal of the American Medical Association doi: 10.1001/jama.290.19.2581 – volume: 60 start-page: 77 issue: 2 year: 2000 ident: 778_CR3 publication-title: International Journal of Medical Informatics doi: 10.1016/S1386-5056(00)00106-4 – volume: 5 start-page: 242 issue: 3–4 year: 2007 ident: 778_CR32 publication-title: Genomics, Proteomics & Bioinformatics doi: 10.1016/S1672-0229(08)60011-X – volume: 12 start-page: 375 year: 2011 ident: 778_CR6 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-375 – start-page: 245 volume-title: IAENG Transactions on Engineering Technologies year: 2013 ident: 778_CR79 doi: 10.1007/978-94-007-6190-2_19 – volume: 26 start-page: 1675 issue: 11 year: 2005 ident: 778_CR48 publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2005.01.014 – start-page: 507 volume-title: Advances in Neural Information Processing Systems year: 1998 ident: 778_CR59 – volume: 25 start-page: 1263 issue: 11 year: 2004 ident: 778_CR61 publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2004.04.004 – volume: 11 start-page: 12 year: 2011 ident: 778_CR20 publication-title: BMC Medical Research Methodology doi: 10.1186/1471-2288-11-12 – ident: 778_CR74 – ident: 778_CR53 – volume: 19 start-page: 153 issue: 2 year: 1997 ident: 778_CR29 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.574797 – volume: 32 start-page: 2627 issue: 14–15 year: 1998 ident: 778_CR54 publication-title: Atmospheric Environment doi: 10.1016/S1352-2310(97)00447-0 – start-page: 856 volume-title: Feature selection for high-dimensional data: A fast correlation-based filter solution year: 2003 ident: 778_CR31 – volume-title: Clustering for Data Mining: A Data Recovery Approach year: 2005 ident: 778_CR67 doi: 10.1201/9781420034912 – volume: 10 start-page: 141 issue: 2 year: 2005 ident: 778_CR70 publication-title: Data Mining and Knowledge Discovery doi: 10.1007/s10618-005-0361-3 – volume: 6 start-page: 68 year: 2005 ident: 778_CR50 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-6-68 – volume: 24 start-page: 121 issue: 1 year: 2011 ident: 778_CR43 publication-title: Neural Networks doi: 10.1016/j.neunet.2010.09.008 – start-page: 169 volume-title: A new feature selection scheme using data distribution factor for transactional data year: 2007 ident: 778_CR9 – volume: 23 start-page: 44 issue: 1 year: 2010 ident: 778_CR8 publication-title: Neural Networks doi: 10.1016/j.neunet.2009.07.007 – volume: 36 start-page: 106 issue: 1 year: 2006 ident: 778_CR13 publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics doi: 10.1109/TSMCB.2005.854499 – start-page: 1934 volume-title: Handling missing values in data mining — A case study of heart failure dataset year: 2012 ident: 778_CR40 – volume: 19 start-page: 1578 issue: 12 year: 2003 ident: 778_CR52 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg179 – volume: 90 start-page: 275 issue: 3 year: 2008 ident: 778_CR12 publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2008.01.003 – volume: 3 start-page: 25 issue: 1 year: 2010 ident: 778_CR18 publication-title: Circulation: Cardiovascular Quality and Outcomes – volume: 43 start-page: 182 issue: 2 year: 2005 ident: 778_CR21 publication-title: Medical Care doi: 10.1097/00005650-200502000-00012 – start-page: 1022 volume-title: Multi-interval discretization of continuous-valued attributes for classification learning year: 1993 ident: 778_CR33 – volume: 13 start-page: 57 issue: 3 year: 2011 ident: 778_CR41 publication-title: Artificial Intelligence Magazine – volume: 2 start-page: 3043 issue: 9 year: 2010 ident: 778_CR68 publication-title: International Journal on Computer Science and Engineering – volume: 360 start-page: 1628 issue: 16 year: 2009 ident: 778_CR2 publication-title: The New England Journal of Medicine doi: 10.1056/NEJMsa0900592 – volume: 5 start-page: 16 issue: 1 year: 2012 ident: 778_CR27 publication-title: Journal of Information Technologies – volume: 17 start-page: 126 issue: 2 year: 2000 ident: 778_CR76 publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.2.126 – volume: 24 start-page: 442 issue: 5 year: 2003 ident: 778_CR4 publication-title: European Heart Journal doi: 10.1016/S0195-668X(02)00823-0 – volume: 10 start-page: 170 issue: 3 year: 2002 ident: 778_CR14 publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2002.802875 – start-page: 313 volume-title: Robust feature selection using ensemble feature selection techniques year: 2008 ident: 778_CR30 – volume: 64 start-page: 15 year: 2012 ident: 778_CR56 publication-title: World Academy of Science, Engineering and Technology – ident: 778_CR38 – volume: 19 start-page: 1636 issue: 13 year: 2003 ident: 778_CR49 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg210 – volume: 37 start-page: 388 issue: 3 year: 2007 ident: 778_CR55 publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2006.05.001 – start-page: 3244 volume-title: Knowledge-oriented clustering for decision support year: 2003 ident: 778_CR62 – start-page: 128 volume-title: Guidelines to select machine learning scheme for classification of biomedical datasets year: 2009 ident: 778_CR1 – volume: 36 start-page: 61 issue: 1 year: 2003 ident: 778_CR5 publication-title: Pattern Recognition doi: 10.1016/S0031-3203(02)00063-8 – volume: 11 start-page: 1155 issue: 12 year: 2009 ident: 778_CR73 publication-title: European Journal Heart Failure doi: 10.1093/eurjhf/hfp147 – volume: 5 start-page: 1205 year: 2004 ident: 778_CR46 publication-title: Journal of Machine Learning Research – volume: 7 start-page: 91 issue: 1 year: 2008 ident: 778_CR11 publication-title: IEEE Transactions on Nanotechnology doi: 10.1109/TNANO.2007.910334 – start-page: 15 volume-title: Risk estimation of cardiovascular patients using Weka year: 2012 ident: 778_CR36 – ident: 778_CR45 – volume: 8 start-page: 53 year: 2003 ident: 778_CR51 publication-title: Pacific Symposium on Biocomputing – volume: 32 start-page: 207 issue: 2 year: 2002 ident: 778_CR35 publication-title: IEEE Transactions Systems, Man, and Cybernetics, Part B doi: 10.1109/3477.990877 – start-page: 532 volume-title: Dimensionality reduction of unsupervised data year: 1997 ident: 778_CR10 – volume-title: Introduction to Probability year: 1998 ident: 778_CR78 – start-page: 185 volume-title: Advances in Kernel Methods — Support Vector Learning year: 1998 ident: 778_CR58 – volume: 23 start-page: 3343 issue: 24 year: 2007 ident: 778_CR15 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm528 – start-page: 37 volume-title: Estimation of cardiovascular patient risk with a Bayesian network year: 2011 ident: 778_CR28 – start-page: 257 volume-title: Integration of neural networks and decision tree classifiers for automated cytology screening year: 1991 ident: 778_CR71 – volume: 98 start-page: 377 issue: 5 year: 2011 ident: 778_CR23 publication-title: Heart doi: 10.1136/heartjnl-2011-300475 |
| SSID | ssj0067294 ssj0003320693 |
| Score | 2.0690017 |
| Snippet | This paper investigates the characteristics of a clinical dataset using a combination of feature selection and classification methods to handle missing values... Issue Title: Special Issue on Big Data This paper investigates the characteristics of a clinical dataset using a combination of feature selection and... |
| SourceID | unpaywall proquest crossref springer chongqing |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 162 |
| SubjectTerms | Algorithms CAE) and Design Classification Classifiers clinical clustering Computer Applications Computer-Aided Engineering (CAD Control Data mining dataset Datasets Decision trees Diagnostic systems Engineering Exploration failure feature Feature selection Health care Heart Heart failure Human error Learning Machine learning Mechatronics Medical prognosis missing Missing data Patients Radial basis function Representations Robotics selection Supervised learning values Variables |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9swED-69KUvo2MdTZcOFfa0os6xZFl-GGNbG8KgoYwW8mZkfbSFYKerQ-l_vzvHdjpot2fJ8nE66e50d78D-JiQGil84M4EdFBM8FxbF_HM4OYXVvu0qXo_n6nplfw5T-ZbMOtqYSitsrsTm4vaVZbeyD_HGQG7izSWX5d3nLpGUXS1a6Fh2tYK7ksDMfYKtmNCxhrA9vez2cWv_tVFiDhSDRIv0ig4GtfzLtTZ1NOhdULpRZJHKXpXCQEu3FTl9R2qkb8V18Ya7QOoOHlVLs3jg1ksnuioyS68bo1L9m0tDW9gy5dv4WTdYI_dlgyNPXbedIRgVWBTFPKaTcwtZaazU1OjQqvv9-Bqcnb5Y8rbLgncomtV86C9VUFFhcPjpKQNMqjEKy2F1EYlTrkQZYWXwetMF4pcUnRhYm9TJ4tkbMQ7GJRV6feBjYUKTmVpQmYWfmC8jw0BJlJGmrR6CKOeHflyjYZBoMdCSKHleAhRx6Hctgjj1OhikW-wkYnBOTI4JwbnyRA-9Z9sFnxx8qhje96etPscRU3EWYpznx3eiM0QjvphPEIUFzGlr1a0BNq4VA6BSxx3u_nkDy_Tc9xv-P-pP_g3ee9hJ24Ej5KCRjCof6_8Ido7dfGhFeI_9uP2oQ priority: 102 providerName: ProQuest – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86X_RB_MTqlAg-OSpdm6Tp41DHEOaTg72FtE1UGN10HeJ_713Xjwkb4nOSS7i7JHfc3e8IueH4jcTGuqm24KBoa1yZpJ4baRB-nEgTFlXvw2cxGLGnMR-XddzzKtu9CkkWL3VT7AamA-b-MNcLwfXh22SHI5oXKPHI71XPrwBrsQgls1C4CNdWhTLXkUBAhbdp9voB2_3-mBprsw6QwuRFNtPfX3oyWfmD-gdkvzQeaW8p7UOyZbIjsrcCKXhM7pbt9Oh7RsG0o8Oi_wOdWjoAlc5pX79jHjp90Dl8X_n8hIz6jy_3A7fsieAm4EjlrpUmEVZ4cQqXR7DEMiu4EZIFTGrBU5FaL4oNs0ZGMhbogILD4pskTFnMuzo4Ja1smpkzQruBsKmIQo5GFSzQxvga4REx_4wl0iHtmjlqtsS-QIjjIGCBZF2HeBW_VFLiiWNbi4lqkJCR3QrYrZDdijvktl7SENw4uV0JQZX3aq5AsQI_CmHu2mE_QvT_IPSZQ67rYbgwGAXRmZkukARYtFj8ACQ6lWxXdth8nk4t_r9Pf_4v2hdk1y-0EjOC2qSVfy7MJRg7eXxVKPcPwajweA priority: 102 providerName: Springer Nature |
| Title | Issues in the Mining of Heart Failure Datasets |
| URI | http://lib.cqvip.com/qk/88433X/201402/1003343841.html https://link.springer.com/article/10.1007/s11633-014-0778-5 https://www.proquest.com/docview/1513297116 https://www.proquest.com/docview/2918683724 https://www.proquest.com/docview/1531011086 https://link.springer.com/content/pdf/10.1007%2Fs11633-014-0778-5.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1751-8520 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0003320693 issn: 1476-8186 databaseCode: BENPR dateStart: 20041001 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1751-8520 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0067294 issn: 1751-8520 databaseCode: AGYKE dateStart: 20040101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1751-8520 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0067294 issn: 1751-8520 databaseCode: U2A dateStart: 20041001 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9t7Qs8MD5FWamCxBOTSz5sx3ks0K4CrZoQlbanyEnsMVGl3ZoKbX89d_lqmZgQ4ilSbF8cn093p7v7HcBbQWokMZZl2qKDoq1hKs1cFmlkfpIqE5ZV7yczOZ3zz2fibA_GTS1Mme3ehCSrmgZCacqL96vM7kT11x4aEpQJxJkboiMkhji-D10p0CTvQHc-Ox2dl5VFoWSE2lYWRgqPKeG30c2yhO4OHcJY-L7ML65wB7_rqq0B2sZMcfImX-mbn3qx2FFLk4MqfWRdohlSNsqP4aZIhuntHazH__7jx_CoNlydUXXTnsCeyZ_Cwx04w2cwrFr5OZe5g2alc1L2nnCW1pmiOBXORF9SDrzzSReoOov1c5hPxt8-Tlndj4Gl6MQVzCqTSivdJEPBlTy13EphpOIBV1qKTGbWjRLDrVGRSiQ5v-gs-SYNM54ITwcvoJMvc_MSHC-QNpNRKMigwwXaGF8TNCPlvvFU9aDfciFeVbgbBK8cBDxQ3OuB2zAmTmssc2qpsYi3KMx0WjGeVkynFYsevGuXbAneO7nfcDuuZXod46UO_CjEuX8c9iPqPBCEPu_Bm3YYhZUiMDo3yw2RQGuaCi-QxFHD850v3L-fo_ae_X33r_5p9iE88MtLRdlIfegU1xvzGg2tIhnAvpocD6A7Oj7_Msbnh_Hs9Cu-nfujQS1ivwBuiB6X |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbG9gAvCASIQmFGghcmQ2o7jvMwobGt6thaIbRJfQuOf8CkKuloqmn_HH8bd2mSbhKDpz3bcazPZ9-dffcdIW9jVCO5D8yZAA6KCZ5p6yKWGlj83Gqf1Fnv44kanckv03i6QX63uTAYVtmeifVB7UqLd-QfeYrE7iLh8tP8gmHVKHxdbUtomKa0gtutKcaaxI5jf3UJLtxi9-gA1vsd58PD0_0Ra6oMMAuuScWC9lYFFeUOxFFJG2RQsVdaCqmNip1yIUpzL4PXqc4VunTgAnBvEyfzeGAEjHuPbEH3FJy_rc-Hk6_fulseIXikauZfwEQwMOan7dNqnb8H1hCGM0kWJeDNxUjw8LMsflyA2rqpKNfWb_dgC52XxdxcXZrZ7JpOHD4iDxtjlu6tpO8x2fDFE_JhVdCPnhcUjEs6ritQ0DLQEaBV0aE5x0h4emAqUKDV4ik5uxO8npHNoiz8c0IHQgWn0iRGsw4-MN5zgwSNGAEnre6RfgdHNl-xbyDJshBSaDnokahFKLMNozkW1phlay5mBDgDgDMEOIt75H33yXrAWzv3W9izZmcvMhBtwdME-v61eS2mPfKma4Yti-8wpvDlEocAmxrTL2CInXY1r_3h9vnsdAv-_9m_-Pf0tsn90en4JDs5mhy_JA94LYQYkNQnm9WvpX8FtlaVv24EmpLvd72H_gC0dDOy |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8NADA9-gOiD-InTqSf4pFS79nq9Poo65ic-OPDtuLZ3Koxuug7xvzfp2m6CIj7fNXckuSYhyS8AhwGZkdhYJ9UWAxRtjSOT1HUijcKPE2nCouv97l50uvz6KXgq55wOq2r3KiU57mkglKYsPx2k9nTS-IZuBNUBcccNMQwKZmGeE04CKnTXO6t-xQI9xyKtzEPhEHRbldb8iQSBK7z0s-c3PPq7kZp4nnWyFDePsoH-_NC93pQ9aq_AculIsrOx5FdhxmRrsDQFL7gOJ-PReuw1Y-jmsbtiFgTrW9ZB9c5ZW79STTq70Dmasny4Ad325eN5xynnIzgJBlW5Y6VJhBVunOJDEjyx3IrACMl9LrUIUpFaN4oNt0ZGMhYUjGLw4pkkTHkctLS_CXNZPzNbwFq-sKmIwoAcLPxAG-NpgkqkWjSeyAY0a-aowRgHg-COfZ_7krca4Fb8UkmJLU4jLnpqgopM7FbIbkXsVkEDjupPJgR_3dyshKDKNzZUqGS-F4W498dlL6JJAH7o8QYc1Mv4eCgjojPTHxEJ9G6pEQJJHFeynTrh9_sc1-L_-_bb_6K9DwsPF211e3V_swOLXqGgVCjUhLn8fWR20QfK471Cz78Aee_3oA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbxMxDLdG9wIPYwwQHR0KEk-bUu4jyeUeJ1hVIW3igUrj6ZTLJTBRXbv1qmn89dj31TIxIcRzHF8uthVbtn8GeCfpGcmd54XxGKAY77i2RcBTg8LPrXZJ3fV-fqGmM_HpUl7uwFnXC1NXu3cpyaangVCayur9svBbWf1ViI4EVQIJHiQYCMkxrj-CXSXRJR_A7uzi8-nXurMoUZxQ2-rGSBlyLaM-u1m30N3jQxgL3xflt2s8we9v1cYB7XOmSLwul-bu1sznW8_S5GlTPrKq0QypGuXHeF3lY_vzHtbjf__xPuy1jis7bTTtGey48gCebMEZPodxM8qPXZUM3Up2Xs-eYAvPpmhOFZuYK6qBZx9NhU9ntXoBs8nZlw9T3s5j4BaDuIp77azyKsgLNFwlrBdeSae0iIU2Shaq8EGaO-GdTnWuKPjFYClyNilELkMTv4RBuSjdK2BhrHyh0kSSQ4cbjHORIWhGqn0TVg9h1EshWza4GwSvHMci1iIcQtAJJrMtljmN1JhnGxRmuq0Mbyuj28rkEI77LRuGDxKPOmlnrU2vMlTqOEoTpP3jcpTS5IE4icQQ3vbLaKyUgTGlW6yJBXrT1HiBLE46mW994eHznPR69vfTH_4T9Wt4HNVKRdVIIxhUN2t3hI5Wlb9pzegXZicZmg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Issues+in+the+Mining+of+Heart+Failure+Datasets&rft.jtitle=International+journal+of+automation+and+computing&rft.au=Poolsawad%2C+Nongnuch&rft.au=Moore%2C+Lisa&rft.au=Kambhampati%2C+Chandrasekhar&rft.au=Cleland%2C+John+G.+F.&rft.date=2014-04-01&rft.pub=Springer-Verlag&rft.issn=1476-8186&rft.eissn=1751-8520&rft.volume=11&rft.issue=2&rft.spage=162&rft.epage=179&rft_id=info:doi/10.1007%2Fs11633-014-0778-5&rft.externalDocID=10_1007_s11633_014_0778_5 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F88433X%2F88433X.jpg |