Issues in the Mining of Heart Failure Datasets

This paper investigates the characteristics of a clinical dataset using a combination of feature selection and classification methods to handle missing values and understand the underlying statistical characteristics of a typical clinical dataset. Typically, when a large clinical dataset is presente...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of automation and computing Vol. 11; no. 2; pp. 162 - 179
Main Authors Poolsawad, Nongnuch, Moore, Lisa, Kambhampati, Chandrasekhar, Cleland, John G. F.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer-Verlag 01.04.2014
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1476-8186
2153-182X
1751-8520
1751-8520
2153-1838
DOI10.1007/s11633-014-0778-5

Cover

Abstract This paper investigates the characteristics of a clinical dataset using a combination of feature selection and classification methods to handle missing values and understand the underlying statistical characteristics of a typical clinical dataset. Typically, when a large clinical dataset is presented, it consists of challenges such as missing values, high dimensionality, and unbalanced classes. These pose an inherent problem when implementing feature selection and classification algorithms. With most clinical datasets, an initial exploration of the dataset is carried out, and those attributes with more than a certain percentage of missing values are eliminated from the dataset. Later, with the help of missing value imputation, feature selection and classification algorithms, prognostic and diagnostic models are developed. This paper has two main conclusions: 1) Despite the nature of clinical datasets, and their large size, methods for missing value imputation do not affect the final performance. What is crucial is that the dataset is an accurate representation of the clinical problem and those methods of imputing missing values are not critical for developing classifiers and prognostic/diagnostic models. 2) Supervised learning has proven to be more suitable for mining clinical data than unsupervised methods. It is also shown that non-parametric classifiers such as decision trees give better results when compared to parametric classifiers such as radial basis function networks(RBFNs).
AbstractList This paper investigates the characteristics of a clinical dataset using a combination of feature selection and classification methods to handle missing values and understand the underlying statistical characteristics of a typical clinical dataset. Typically, when a large clinical dataset is presented, it consists of challenges such as missing values, high dimensionality, and unbalanced classes. These pose an inherent problem when implementing feature selection and classification algorithms. With most clinical datasets, an initial exploration of the dataset is carried out, and those attributes with more than a certain percentage of missing values are eliminated from the dataset. Later, with the help of missing value imputation, feature selection and classification algorithms, prognostic and diagnostic models are developed. This paper has two main conclusions: 1) Despite the nature of clinical datasets, and their large size, methods for missing value imputation do not affect the final performance. What is crucial is that the dataset is an accurate representation of the clinical problem and those methods of imputing missing values are not critical for developing classifiers and prognostic/diagnostic models. 2) Supervised learning has proven to be more suitable for mining clinical data than unsupervised methods. It is also shown that non-parametric classifiers such as decision trees give better results when compared to parametric classifiers such as radial basis function networks (RBFNs).
Issue Title: Special Issue on Big Data This paper investigates the characteristics of a clinical dataset using a combination of feature selection and classification methods to handle missing values and understand the underlying statistical characteristics of a typical clinical dataset. Typically, when a large clinical dataset is presented, it consists of challenges such as missing values, high dimensionality, and unbalanced classes. These pose an inherent problem when implementing feature selection and classification algorithms. With most clinical datasets, an initial exploration of the dataset is carried out, and those attributes with more than a certain percentage of missing values are eliminated from the dataset. Later, with the help of missing value imputation, feature selection and classification algorithms, prognostic and diagnostic models are developed. This paper has two main conclusions: 1) Despite the nature of clinical datasets, and their large size, methods for missing value imputation do not affect the final performance. What is crucial is that the dataset is an accurate representation of the clinical problem and those methods of imputing missing values are not critical for developing classifiers and prognostic/diagnostic models. 2) Supervised learning has proven to be more suitable for mining clinical data than unsupervised methods. It is also shown that non-parametric classifiers such as decision trees give better results when compared to parametric classifiers such as radial basis function networks (RBFNs).[PUBLICATION ABSTRACT]
Author Nongnuch Poolsawad Lisa Moore Chandrasekhar Kambhampati John G.F.Cleland
AuthorAffiliation Intelligent Systems Research Group(IS, Department of Computer Science), University of Hull Hull York Medical School,Department of Cardiology,University of Hull
Author_xml – sequence: 1
  givenname: Nongnuch
  surname: Poolsawad
  fullname: Poolsawad, Nongnuch
  email: N.Poolsawad@2008.hull.ac.uk
  organization: Intelligent Systems Research Group (IS, Department of Computer Science), University of Hull
– sequence: 2
  givenname: Lisa
  surname: Moore
  fullname: Moore, Lisa
  organization: Intelligent Systems Research Group (IS, Department of Computer Science), University of Hull
– sequence: 3
  givenname: Chandrasekhar
  surname: Kambhampati
  fullname: Kambhampati, Chandrasekhar
  organization: Intelligent Systems Research Group (IS, Department of Computer Science), University of Hull
– sequence: 4
  givenname: John G. F.
  surname: Cleland
  fullname: Cleland, John G. F.
  organization: Hull York Medical School, Department of Cardiology, University of Hull
BookMark eNqNkD9PAjEchhujiYB-ALdLXFwO-7v-vdGoCAnGReemHC0cOXrQ9mL49pbAQBiIUzu8b_s8bx9du9YZhB4ADwFj8RwAOCE5BppjIWTOrlAPBINcsgJfpzsVPJcg-S3qh7DCmIuipD00nITQmZDVLotLk33WrnaLrLXZ2Ggfs5Gum86b7E1HHUwMd-jG6iaY--M5QD-j9-_XcT79-pi8vkzzilIZcytNxS3HszkjwGllqeXMcEkJlZqzOZ9bXM4MtUaWcpbAJeGYFaYSczpjoMkAFYd3O7fRu1_dNGrj67X2OwVY7Y3VwVglY7U3ViyVng6ljW-3SSqqdR0q0zTambYLChIMBsCSp-jjWXTVdt4lJVWUaSVJREEvpYABKUqxZxggcUhVvg3BG6uqOupYty76NN9FYDhr_kfyuExIWbcw_oTpQukoUi1bt9im3slPmBBKJAXyBxj0qxY
CitedBy_id crossref_primary_10_1016_j_cmpb_2020_105635
crossref_primary_10_1007_s10916_018_1134_z
crossref_primary_10_1097_TP_0000000000003623
crossref_primary_10_1016_j_asoc_2016_08_038
crossref_primary_10_3233_JIFS_220061
crossref_primary_10_1016_j_cmpb_2018_05_007
crossref_primary_10_1155_2015_708467
crossref_primary_10_1007_s11633_020_1221_8
crossref_primary_10_1186_s12911_020_1023_5
crossref_primary_10_1002_ehf2_14028
crossref_primary_10_1007_s00521_022_07201_9
crossref_primary_10_1109_ACCESS_2019_2941898
crossref_primary_10_2139_ssrn_3349586
crossref_primary_10_1371_journal_pone_0249338
Cites_doi 10.1161/CIRCULATIONAHA.111.019216
10.1109/TBME.2011.2113395
10.1177/009286150003400221
10.1186/1471-2105-6-148
10.1007/978-3-642-17103-1_60
10.1023/A:1010933404324
10.1016/j.bbrc.2010.01.076
10.1023/A:1009769707641
10.1109/TPAMI.2002.1017616
10.1001/jama.297.1.61
10.1136/hrt.2010.220426
10.1161/01.CIR.96.3.842
10.1001/jama.290.19.2581
10.1016/S1386-5056(00)00106-4
10.1016/S1672-0229(08)60011-X
10.1186/1471-2105-12-375
10.1007/978-94-007-6190-2_19
10.1016/j.patrec.2005.01.014
10.1016/j.patrec.2004.04.004
10.1186/1471-2288-11-12
10.1109/34.574797
10.1016/S1352-2310(97)00447-0
10.1201/9781420034912
10.1007/s10618-005-0361-3
10.1186/1471-2105-6-68
10.1016/j.neunet.2010.09.008
10.1016/j.neunet.2009.07.007
10.1109/TSMCB.2005.854499
10.1093/bioinformatics/btg179
10.1016/j.cmpb.2008.01.003
10.1097/00005650-200502000-00012
10.1056/NEJMsa0900592
10.1093/bioinformatics/17.2.126
10.1016/S0195-668X(02)00823-0
10.1109/TNSRE.2002.802875
10.1093/bioinformatics/btg210
10.1016/j.compbiomed.2006.05.001
10.1016/S0031-3203(02)00063-8
10.1093/eurjhf/hfp147
10.1109/TNANO.2007.910334
10.1109/3477.990877
10.1093/bioinformatics/btm528
10.1136/heartjnl-2011-300475
ContentType Journal Article
Copyright Science in China Press 2014
Institute of Automation, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2014
Science in China Press 2014.
Copyright_xml – notice: Science in China Press 2014
– notice: Institute of Automation, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2014
– notice: Science in China Press 2014.
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
JQ2
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7SC
8FD
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1007/s11633-014-0778-5
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
ProQuest Computer Science Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Computer Science Database
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Computer and Information Systems Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
ProQuest Computer Science Collection
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Advanced Technologies & Aerospace Collection
Computer and Information Systems Abstracts
ProQuest Computer Science Collection


Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Issues in the Mining of Heart Failure Datasets
EISSN 1751-8520
2153-1838
EndPage 179
ExternalDocumentID 10.1007/s11633-014-0778-5
3268410301
10_1007_s11633_014_0778_5
1003343841
Genre Feature
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
29~
2B.
2C0
2J2
2JN
2KG
2KM
2LR
2RA
2VQ
2~H
30V
4.4
408
40D
40E
5VR
5VS
6NX
8TC
8UJ
92H
92I
92L
92R
93N
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTMW
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHXU
ACIGE
ACIPQ
ACKNC
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEOHA
AEPYU
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMYQR
AOCGG
ARMRJ
AXYYD
B-.
BA0
BDATZ
BGNMA
CAG
CCEZO
CHBEP
COF
CQIGP
CS3
CSCUP
CUBFJ
CW9
DNIVK
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IHE
IJ-
IXD
I~X
I~Z
J-C
JBSCW
KOV
M4Y
MA-
NQJWS
NU0
O9-
O9J
P9O
PF0
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCL
SDH
SEG
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TCJ
TSG
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
W92
WK8
YLTOR
Z7R
Z7X
Z83
Z88
~A9
~WA
AEFQL
H13
ZMTXR
AAYXX
ACSTC
CITATION
JQ2
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
K7-
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7SC
8FD
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c448t-f8ec6f60bd53164cf4f65e684348a65d6df09be4fe898b633836052ec7d4b51a3
IEDL.DBID UNPAY
ISSN 1476-8186
2153-182X
1751-8520
IngestDate Sun Oct 26 04:09:46 EDT 2025
Fri Sep 05 06:31:57 EDT 2025
Fri Jul 25 23:33:29 EDT 2025
Fri Jul 25 03:23:21 EDT 2025
Thu Apr 24 23:08:33 EDT 2025
Wed Oct 01 01:49:15 EDT 2025
Fri Feb 21 02:35:01 EST 2025
Wed Feb 14 10:37:31 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Heart failure
clinical dataset
clustering
classification
feature selection
missing values
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c448t-f8ec6f60bd53164cf4f65e684348a65d6df09be4fe898b633836052ec7d4b51a3
Notes Nongnuch Poolsawad;Lisa Moore;Chandrasekhar Kambhampati;John G. F. Cleland;Intelligent Systems Research Group(IS, Department of Computer Science), University of Hull;Hull York Medical School,Department of Cardiology,University of Hull
11-5350/TP
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
ObjectType-Article-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007%2Fs11633-014-0778-5.pdf
PQID 2918683724
PQPubID 2029113
PageCount 18
ParticipantIDs unpaywall_primary_10_1007_s11633_014_0778_5
proquest_miscellaneous_1531011086
proquest_journals_2918683724
proquest_journals_1513297116
crossref_citationtrail_10_1007_s11633_014_0778_5
crossref_primary_10_1007_s11633_014_0778_5
springer_journals_10_1007_s11633_014_0778_5
chongqing_primary_1003343841
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-04-01
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
– name: Beijing
PublicationTitle International journal of automation and computing
PublicationTitleAbbrev Int. J. Autom. Comput
PublicationTitleAlternate International Journal of Automation and computing
PublicationYear 2014
Publisher Springer-Verlag
Springer Nature B.V
Publisher_xml – name: Springer-Verlag
– name: Springer Nature B.V
References LeeD SDonovanLAustinP CGongY YLiuP PRouleauJ LTuJ VComparison of coding of heart failure and comorbidities in administrative and clinical data for use in outcomes researchMedical Care200543218218810.1097/00005650-200502000-00012
Atherotech Diagnotics Lab. Atherotech Panels. [Online], Available: http://www.atherotech.com/athdiagtests/atherotechpanels.asp, 13 June 2011.
VarshavskyRGottliebAHornDLinialMUnsupervised feature selection under perturbations: Meeting the challenges of biological dataBioinformatics200723243343334910.1093/bioinformatics/btm528
AcuñaERodriguezCBanksDHouseLMcMorrisF RArabiePGaulWThe treatment of missing values and its effect in the classifier accuracyClassification, Clustering, and Data Mining Applications2004Berlin, HeidelbergSpringer63964810.1007/978-3-642-17103-1_60
YuLLiuHFeature selection for high-dimensional data: A fast correlation-based filter solution2003Washington DC, USAAAAI856863
JäaegerJSenguptaRRuzzoW LImproved gene selection for classifcation of MicroarraysPacific Symposium on Biocomputing200385364
LevnerIFeature selection and nearest centroid classification for protein mass spectrometryBMC Bioinformatics200566810.1186/1471-2105-6-68
JhaA KDesRochesC MCampbellE GDonelanKRaoS RFerrisT GShieldsARosenbaumSBlumenthalDUse of electronic health records in U. S. hospitalsThe New England Journal of Medicine2009360161628163810.1056/NEJMsa0900592
SaeysYAbeelTVan de PeerYRobust feature selection using ensemble feature selection techniques2008Berlin, Heidelberg, GermanySpringer-Verlag313325
J. H. Lin, P. J. Haug. Data preparation framework for preprocessing clinical data in data mining. In Proceedings of AMIA Annual Symposium, AMIA, American, pp. 489–493, 2006.
Yom-TovEInbarG FFeature selection for the classification of movements from single movement-related potentialsIEEE Transactions on Neural Systems and Rehabilitation Engineering200210317017710.1109/TNSRE.2002.802875
RahmanM MDavisD NMachine learning-based missing value imputation method for clinical datasetsIAENG Transactions on Engineering Technologies2013NetherlandsSpringer24525710.1007/978-94-007-6190-2_19
PoolsawadNKambhampatiCClelandJ G FFeature selection approaches with missing values handling for data mining — A case study of heart failure datasetWorld Academy of Science, Engineering and Technology201160828837
DashMLiuHYaoJDimensionality reduction of unsupervised data1997Newport Beach, CA, USAIEEE532539
ChiangJ HHoS HA combination of rough-based feature selection and RBF neural network for classification using gene expression dataIEEE Transactions on Nanotechnology200871919910.1109/TNANO.2007.910334
AcharyaU RBhatP SIyengarS SRaoADuaSClassification of heart rate data using artificial neural network and fuzzy equivalence relationPattern Recognition2003361616810.1016/S0031-3203(02)00063-81027.68655
HerreroJValenciaADopazoJA hierarchical unsupervised growing neural network for clustering gene expression patternsBioinformatics200017212613610.1093/bioinformatics/17.2.126
GrinsteadC MSnellJ LIntroduction to Probability1998Rhode IslandAmerican Mathematical Society
PetersonP NRumsfeldJ SLiangLAlbertN MHernandezA FPetersonE DFonarowG CMasoudiF AA validated risk score for in-hospital mortality in patients with heart failure from the American Heart Association get with the guidelines programCirculation: Cardiovascular Quality and Outcomes2010312532
BohacikJDavisD NData mining applied to cardiovascular dataJournal of Information Technologies2010321421
MirkinBClustering for Data Mining: A Data Recovery Approach2005FloridaChapman and Hull/CRC10.1201/9781420034912
KelderJ CCowieM RMcDonaghT AHardmanS MGrobbeeD ECostBHoesA WQuantifying the added value of BNP in suspected heart failure in general practice: An individual patient data meta-analysisHeart2011971295996310.1136/hrt.2010.220426
CortesCVapnikVSupport-vector networksMachine Learning19952032732970831.68098
KelderJ CCramerM JVan WijngaardenJVan ToorenRMosterdAMoonsK GLammersJ WCowieM RGrobbeeD EHoesA WThe diagnostic value of physical examination and additional testing in primary care patients with suspected heart failureCirculation2011124251865287310.1161/CIRCULATIONAHA.111.019216
TanwaniA KAfridiJShafiqM ZFarooqMGuidelines to select machine learning scheme for classification of biomedical datasets2009Berlin, Heidelberg, GermanySpringer-Verlag128139
SridharASowndaryaSEfficiency of k-means clustering algorithm in mining outliers from large data setsInternational Journal on Computer Science and Engineering20102930433045
HoK K LMoodyG BPengC KMietusJ ELarsonM GLevyDGoldbergerA LPredicting survival in heart failure case and control subjects by use of fully automated methods for deriving nonlinear and conventional indices of heart rate dynamicsCirculation19979638424810.1161/01.CIR.96.3.842
Silva-RamírezE LPino-MejíasRLópez-CoelloMCubiles-de-la-VegaM DMissing value imputation on missing completely at random data using multilayer perceptronsNeural Networks201124112112910.1016/j.neunet.2010.09.008
WuB LAbbottTFishmanDMcMurrayWMorGStoneKWardDWilliamsKZhaoH YComparison of statistical methods for classification of ovarian cancer using mass spectrometry dataBioinformatics200319131636164310.1093/bioinformatics/btg210
FayyadU MIraniKMulti-interval discretization of continuous-valued attributes for classification learning1993San Francisco, CA, USAMorgan Kaufmann Publishers Inc.10221029
FrawleyW JPiatetsky-ShapiroGMatheusC JKnowledge discovery in databases: An overviewArtificial Intelligence Magazine20111335770
WangP YChowT W SA new feature selection scheme using data distribution factor for transactional data2007Bruges, BelgiumESANN169174
BeanC LKambhampatiCKnowledge-oriented clustering for decision support2003Portland, OR, USAIEEE32443249
The University of Waikato. WEKA: The Waikato Environment for Knowledge Acquisition. [Online], Available: http://www.cs.waikato.ac.nz/ml/weka, 30 August 2011.
K. Alsabti, S. Ranka, V. Singh. An efficient k-means clustering algorithm. In Proceedings of IPPS/SPDP Workshop on High Performance Data Mining, pp. 1–7, 1998.
GardnerM WDorlingS RArtificial neural networks (the multilayer perceptron) — A review of applications in the atmospheric sciencesAtmospheric Environment19983214–152627263610.1016/S1352-2310(97)00447-0
SafranCGoldbergHElectronic patient records and the impact of the internetInternational Journal of Medical Informatics2000602778310.1016/S1386-5056(00)00106-4
LiuHLiJWongLA comparative study on feature selection and classification methods using gene expression profiles and proteomic patternsGenome Informatics2002135160
LeeJ S JHwangJ NDavisD TNelsonA CIntegration of neural networks and decision tree classifiers for automated cytology screening1991Seattle, WA, USAIEEE257262vol. 1
Analysis Factor. EM Imputation and Missing Data: Is Mean Imputation Really so Terrible? [Online], Available: http://www.analysisfactor.com/statchat/tag/spss-missing-values-analysis, 30 August 2011.
MarTZaunsederSMartinezJ PLlamedoMPollROptimization of ECG classification by means of feature selectionIEEE Transactions on Biomedical Engineering20115882168217710.1109/TBME.2011.2113395
Jirapech-UmpaiTAitkenSFeature selection and classification for microarray data analysis: Evolutionary methods for identifying predictive genesBMC Bioinformatics2005614810.1186/1471-2105-6-148
KhemphilaABoonjingVParkinsons disease classification using neural network and feature selectionWorld Academy of Science, Engineering and Technology2012641518
HuangZ XExtensions to the k-means algorithm for clustering large data sets with categorical valuesData Mining and Knowledge Discovery19982328330410.1023/A:1009769707641
BohacikJDavisD NAlert rules for remote monitoring of cardiovascular patientsJournal of Information Technologies2012511623
NapoleonDLakshmiG PAn efficient k-means clustering algorithm for reducing time complexity using uniform distribution data points2010Chennai, IndiaIEEE4245
YuLLiuHEfficient feature selection via analysis of relevance and redundancyJournal of Machine Learning Research20045120512241222.68340
FonarowG CAbrahamW TAlbertN MStoughW GGheorghiadeMGreenbergB HO’ConnorC MPieperKSunJ LYancyCYoungJ BAssociation between performance measures and clinical outcomes for patients hospitalized with heart failureJournal of the American Medical Association20072971617010.1001/jama.297.1.61
SugiyamaMKawanabeMChuiP LDimensionality reduction for density ratio estimation in high-dimensional spacesNeural Networks2010231445910.1016/j.neunet.2009.07.007
HolmeIPedersenT RBomanKEgstrupKGerdtsEKesäniemiY AMalbecqWRaySRossebøA BWachtellKWillenheimerRGohlke-BärwolfCA risk score for predicting mortality in patients with asymptomatic mild to moderate aortic stenosisHeart201198537738310.1136/heartjnl-2011-300475
ZhouNWangLA modified T-test feature selection method and its application on the HapMap genotype dataGenomics, Proteomics & Bioinformatics200753–424224910.1016/S1672-0229(08)60011-X
ShiPRaySZhuQ FKonM ATop scoring pairs for feature selection in machine learning and applications to cancer outcome predictionBMC Bioinformatics20111237510.1186/1471-2105-12-375
D. W. Aha, R. L. Bankert. A comparative evaluation of sequential feature selection algorithms. In Proceedings of the 5th International Workshop on Artificial Intelligence and Statistics, pp. 1–7, 1995.
Al-NajiarYGoodeK MZhangJClelandJ GClarkA LAndrewRed cell distribution width: An inexpensive and powerful prognostic marker in heart failureEuropean Journal Heart Failure200911121155116210.1093/eurjhf/hfp147
LeeD SAustinP CRouleauJ LLiuP PNaimarkDTuJ VPredicting mortality among patients hospitalizeed for heart failure, derivation and validation of a clinical modelJournal of the American Medical Association2003290192581258710.1001/jama.290.19.2581
BohacikJDavisD NBenedikovićMRisk estimation of cardiovascular patients using Weka2012Slovakia, Žilina, SlovakiaThe Society for Open Information Technologies — SOIT in Bratislava1520
KimW DLeeH KLeeDFuzzy clustering of categorical data using fuzzy centroidsPattern Recognit
T Mar (778_CR7) 2011; 58
T Hastie (778_CR59) 1998
L Breiman (778_CR60) 2001; 45
M Sugiyama (778_CR8) 2010; 23
Y Su (778_CR52) 2003; 19
L Autio (778_CR55) 2007; 37
B L Wu (778_CR49) 2003; 19
P Shi (778_CR6) 2011; 12
778_CR53
Z G Yan (778_CR12) 2008; 90
E L Silva-Ramírez (778_CR43) 2011; 24
D S Lee (778_CR21) 2005; 43
M W Gardner (778_CR54) 1998; 32
A Khemphila (778_CR56) 2012; 64
J C Platt (778_CR58) 1998
U R Acharya (778_CR5) 2003; 36
J Han (778_CR44) 2006
Y Saeys (778_CR30) 2008
P N Peterson (778_CR18) 2010; 3
H Liu (778_CR34) 2002; 13
J S J Lee (778_CR71) 1991
L Yu (778_CR31) 2003
Z X Huang (778_CR64) 1998; 2
W R Myers (778_CR77) 2000; 34
M Dash (778_CR10) 1997
D P Muni (778_CR13) 2006; 36
C N Hsu (778_CR35) 2002; 32
C Safran (778_CR3) 2000; 60
R A Damarell (778_CR20) 2011; 11
J G F Cleland (778_CR4) 2003; 24
J Jäaeger (778_CR51) 2003; 8
N Zhou (778_CR32) 2007; 5
778_CR63
B Mirkin (778_CR67) 2005
778_CR66
K D Min (778_CR19) 2010; 393
C M Grinstead (778_CR78) 1998
N Poolsawad (778_CR40) 2012
Y Al-Najiar (778_CR73) 2009; 11
J Bohacik (778_CR27) 2012; 5
E Yom-Tov (778_CR14) 2002; 10
R Varshavsky (778_CR15) 2007; 23
J C Kelder (778_CR17) 2011; 97
E Acuña (778_CR37) 2004
J C Kelder (778_CR16) 2011; 124
J Bohacik (778_CR26) 2010; 3
A Jain (778_CR29) 1997; 19
C Cortes (778_CR57) 1995; 20
A K Jha (778_CR2) 2009; 360
G C Fonarow (778_CR25) 2007; 297
778_CR74
I Holme (778_CR23) 2011; 98
W J Frawley (778_CR41) 2011; 13
F M Coetzee (778_CR48) 2005; 26
K K L Ho (778_CR24) 1997; 96
T Jirapech-Umpai (778_CR47) 2005; 6
I Levner (778_CR50) 2005; 6
778_CR75
J Herrero (778_CR76) 2000; 17
D S Lee (778_CR22) 2003; 290
A K Tanwani (778_CR1) 2009
778_CR38
N Poolsawad (778_CR39) 2011; 60
T Kanungo (778_CR65) 2002; 24
D Napoleon (778_CR69) 2010
C L Bean (778_CR62) 2003
J Bohacik (778_CR36) 2012
L Yu (778_CR46) 2004; 5
M M Rahman (778_CR79) 2013
A Sridhar (778_CR68) 2010; 2
778_CR42
U M Fayyad (778_CR33) 1993
778_CR45
J Bohacik (778_CR28) 2011
J H Chiang (778_CR11) 2008; 7
P Y Wang (778_CR9) 2007
W D Kim (778_CR61) 2004; 25
Y Zhao (778_CR70) 2005; 10
Y Zhang (778_CR72) 2012
References_xml – reference: AcuñaERodriguezCBanksDHouseLMcMorrisF RArabiePGaulWThe treatment of missing values and its effect in the classifier accuracyClassification, Clustering, and Data Mining Applications2004Berlin, HeidelbergSpringer63964810.1007/978-3-642-17103-1_60
– reference: Silva-RamírezE LPino-MejíasRLópez-CoelloMCubiles-de-la-VegaM DMissing value imputation on missing completely at random data using multilayer perceptronsNeural Networks201124112112910.1016/j.neunet.2010.09.008
– reference: HolmeIPedersenT RBomanKEgstrupKGerdtsEKesäniemiY AMalbecqWRaySRossebøA BWachtellKWillenheimerRGohlke-BärwolfCA risk score for predicting mortality in patients with asymptomatic mild to moderate aortic stenosisHeart201198537738310.1136/heartjnl-2011-300475
– reference: Jirapech-UmpaiTAitkenSFeature selection and classification for microarray data analysis: Evolutionary methods for identifying predictive genesBMC Bioinformatics2005614810.1186/1471-2105-6-148
– reference: LiuHLiJWongLA comparative study on feature selection and classification methods using gene expression profiles and proteomic patternsGenome Informatics2002135160
– reference: KelderJ CCramerM JVan WijngaardenJVan ToorenRMosterdAMoonsK GLammersJ WCowieM RGrobbeeD EHoesA WThe diagnostic value of physical examination and additional testing in primary care patients with suspected heart failureCirculation2011124251865287310.1161/CIRCULATIONAHA.111.019216
– reference: Al-NajiarYGoodeK MZhangJClelandJ GClarkA LAndrewRed cell distribution width: An inexpensive and powerful prognostic marker in heart failureEuropean Journal Heart Failure200911121155116210.1093/eurjhf/hfp147
– reference: K. Alsabti, S. Ranka, V. Singh. An efficient k-means clustering algorithm. In Proceedings of IPPS/SPDP Workshop on High Performance Data Mining, pp. 1–7, 1998.
– reference: WuB LAbbottTFishmanDMcMurrayWMorGStoneKWardDWilliamsKZhaoH YComparison of statistical methods for classification of ovarian cancer using mass spectrometry dataBioinformatics200319131636164310.1093/bioinformatics/btg210
– reference: SafranCGoldbergHElectronic patient records and the impact of the internetInternational Journal of Medical Informatics2000602778310.1016/S1386-5056(00)00106-4
– reference: KhemphilaABoonjingVParkinsons disease classification using neural network and feature selectionWorld Academy of Science, Engineering and Technology2012641518
– reference: M. Y. Mashor. Improving the performance of k-means clustering algorithm to position the centres of RBF network. International Journal of the Computer, the Internet and Management, vol. 6, no 2, 1998.
– reference: PetersonP NRumsfeldJ SLiangLAlbertN MHernandezA FPetersonE DFonarowG CMasoudiF AA validated risk score for in-hospital mortality in patients with heart failure from the American Heart Association get with the guidelines programCirculation: Cardiovascular Quality and Outcomes2010312532
– reference: MyersW RHandling missing data in clinical trials: An overviewDrug Information Journal2000342525533
– reference: MinK DAsakuraMLiaoY LNakamaruKOkazakiHTakahashiTFujimotoKItoSTakahashiAAsanumaHYamazakiSMinaminoTSanadaSSequchiONakanoAAndoYOtsukaTFurukawaHIsomuraTTakashimaSMochizukiNKitakazeMIdentification of genes related to heart failure using global gene expression profiling of human failing myocardiumBiochemical Biophysical Research Communications20103931556010.1016/j.bbrc.2010.01.076
– reference: The University of Waikato. WEKA: The Waikato Environment for Knowledge Acquisition. [Online], Available: http://www.cs.waikato.ac.nz/ml/weka, 30 August 2011.
– reference: HastieTTibshiraniRClassification by pairwise couplingAdvances in Neural Information Processing Systems1998Cambridge, MA, USAMIT Press507513
– reference: GrinsteadC MSnellJ LIntroduction to Probability1998Rhode IslandAmerican Mathematical Society
– reference: D. W. Aha, R. L. Bankert. A comparative evaluation of sequential feature selection algorithms. In Proceedings of the 5th International Workshop on Artificial Intelligence and Statistics, pp. 1–7, 1995.
– reference: MuniD PPalB RDasJGenetic programming for simultaneous feature selection and classifier designIEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics200636110611710.1109/TSMCB.2005.854499
– reference: BreimanLRandom forestsMachine Learning200145153210.1023/A:10109334043241007.68152
– reference: TanwaniA KAfridiJShafiqM ZFarooqMGuidelines to select machine learning scheme for classification of biomedical datasets2009Berlin, Heidelberg, GermanySpringer-Verlag128139
– reference: FayyadU MIraniKMulti-interval discretization of continuous-valued attributes for classification learning1993San Francisco, CA, USAMorgan Kaufmann Publishers Inc.10221029
– reference: AutioLJuholaMLaurikkalaJOn the neural network classification of medical data and an endeavour to balance non-uniform data sets with artificial data extensionComputers in Biology and Medicine200737338839710.1016/j.compbiomed.2006.05.001
– reference: PlattJ CSchoelkopfBBurgesCSmolaAFast training of support vector machines using sequential minimal optimizationAdvances in Kernel Methods — Support Vector Learning1998Cambridge, MA, USAMIT Press185208
– reference: J. H. Lin, P. J. Haug. Data preparation framework for preprocessing clinical data in data mining. In Proceedings of AMIA Annual Symposium, AMIA, American, pp. 489–493, 2006.
– reference: SaeysYAbeelTVan de PeerYRobust feature selection using ensemble feature selection techniques2008Berlin, Heidelberg, GermanySpringer-Verlag313325
– reference: ClelandJ G FSwedbergKFollathFKomajdaMCohen-SolalAAguilarJ CDietzRGavazziAHobbsRKorewickiJMadeiraH CMoiseyevV SPredaIvan GilstW HWidimskyJFreemantleNEastaughJMasonJStudy Group on Diagnosis of the Working Group on Heart Failure of the European Society of CardiologyFreemantleNEastaughJMasonJThe EuroHeart Failure survey programme — A survey on the quality of care among patients with heart failure in Europe, Part 1: Patient characteristics and diagnosisEuropean Heart Journal200324544246310.1016/S0195-668X(02)00823-0
– reference: JainAZongkerDFeature selection: Evaluation, application, and small sample performanceIEEE Transactions on Pattern Analysis and Machine Intelligence199719215315810.1109/34.574797
– reference: PoolsawadNKambhampatiCClelandJ G FFeature selection approaches with missing values handling for data mining — A case study of heart failure datasetWorld Academy of Science, Engineering and Technology201160828837
– reference: JäaegerJSenguptaRRuzzoW LImproved gene selection for classifcation of MicroarraysPacific Symposium on Biocomputing200385364
– reference: LevnerIFeature selection and nearest centroid classification for protein mass spectrometryBMC Bioinformatics200566810.1186/1471-2105-6-68
– reference: CoetzeeF MCorrecting the Kullback-Leibler distance for feature selectionPattern Recognition Letters200526111675168310.1016/j.patrec.2005.01.014
– reference: SuYMuraliT MPavlovicVSchafferMKasifSRankGene: Identification of diagnostic genes based on expression dataBioinformatics200319121578157910.1093/bioinformatics/btg179
– reference: ShiPRaySZhuQ FKonM ATop scoring pairs for feature selection in machine learning and applications to cancer outcome predictionBMC Bioinformatics20111237510.1186/1471-2105-12-375
– reference: Yom-TovEInbarG FFeature selection for the classification of movements from single movement-related potentialsIEEE Transactions on Neural Systems and Rehabilitation Engineering200210317017710.1109/TNSRE.2002.802875
– reference: SridharASowndaryaSEfficiency of k-means clustering algorithm in mining outliers from large data setsInternational Journal on Computer Science and Engineering20102930433045
– reference: ZhaoYKarypisGFayyadUHierarchical clustering algorithms for document datasetsData Mining and Knowledge Discovery200510214116810.1007/s10618-005-0361-32138240
– reference: FonarowG CAbrahamW TAlbertN MStoughW GGheorghiadeMGreenbergB HO’ConnorC MPieperKSunJ LYancyCYoungJ BAssociation between performance measures and clinical outcomes for patients hospitalized with heart failureJournal of the American Medical Association20072971617010.1001/jama.297.1.61
– reference: MarTZaunsederSMartinezJ PLlamedoMPollROptimization of ECG classification by means of feature selectionIEEE Transactions on Biomedical Engineering20115882168217710.1109/TBME.2011.2113395
– reference: DamarellR ATiemanJSladekR MDavidsonP MDevelopment of a heart failure filter for Medline: An objective approach using evidence-based clinical practice guidelines as an alternative to hand searchingBMC Medical Research Methodology2011111210.1186/1471-2288-11-12
– reference: GardnerM WDorlingS RArtificial neural networks (the multilayer perceptron) — A review of applications in the atmospheric sciencesAtmospheric Environment19983214–152627263610.1016/S1352-2310(97)00447-0
– reference: JhaA KDesRochesC MCampbellE GDonelanKRaoS RFerrisT GShieldsARosenbaumSBlumenthalDUse of electronic health records in U. S. hospitalsThe New England Journal of Medicine2009360161628163810.1056/NEJMsa0900592
– reference: NapoleonDLakshmiG PAn efficient k-means clustering algorithm for reducing time complexity using uniform distribution data points2010Chennai, IndiaIEEE4245
– reference: ZhouNWangLA modified T-test feature selection method and its application on the HapMap genotype dataGenomics, Proteomics & Bioinformatics200753–424224910.1016/S1672-0229(08)60011-X
– reference: FrawleyW JPiatetsky-ShapiroGMatheusC JKnowledge discovery in databases: An overviewArtificial Intelligence Magazine20111335770
– reference: LeeD SDonovanLAustinP CGongY YLiuP PRouleauJ LTuJ VComparison of coding of heart failure and comorbidities in administrative and clinical data for use in outcomes researchMedical Care200543218218810.1097/00005650-200502000-00012
– reference: WangP YChowT W SA new feature selection scheme using data distribution factor for transactional data2007Bruges, BelgiumESANN169174
– reference: CortesCVapnikVSupport-vector networksMachine Learning19952032732970831.68098
– reference: ChiangJ HHoS HA combination of rough-based feature selection and RBF neural network for classification using gene expression dataIEEE Transactions on Nanotechnology200871919910.1109/TNANO.2007.910334
– reference: YanZ GWangZ ZXieH BThe application of mutual information-based feature selection and fuzzy LS-SVM-based classifier in motion classificationComputer Methods and Programs in Biomedicine200890327528410.1016/j.cmpb.2008.01.003
– reference: HuangZ XExtensions to the k-means algorithm for clustering large data sets with categorical valuesData Mining and Knowledge Discovery19982328330410.1023/A:1009769707641
– reference: LeeJ S JHwangJ NDavisD TNelsonA CIntegration of neural networks and decision tree classifiers for automated cytology screening1991Seattle, WA, USAIEEE257262vol. 1
– reference: HsuC NHuangH JDietrichSThe ANNIGMA-wrapper approach to fast feature selection for neural netsIEEE Transactions Systems, Man, and Cybernetics, Part B200232220721210.1109/3477.990877
– reference: M. Steinbach, G. Karypis, V. Kumar. A comparison of document clustering techniques. In Proceedings of KDD Workshop on Text Mining, pp. 1–2, 2000.
– reference: BohacikJDavisD NEstimation of cardiovascular patient risk with a Bayesian network2011Zilina, SlovakiaUniversity of Zilina3740
– reference: DashMLiuHYaoJDimensionality reduction of unsupervised data1997Newport Beach, CA, USAIEEE532539
– reference: KelderJ CCowieM RMcDonaghT AHardmanS MGrobbeeD ECostBHoesA WQuantifying the added value of BNP in suspected heart failure in general practice: An individual patient data meta-analysisHeart2011971295996310.1136/hrt.2010.220426
– reference: MirkinBClustering for Data Mining: A Data Recovery Approach2005FloridaChapman and Hull/CRC10.1201/9781420034912
– reference: VarshavskyRGottliebAHornDLinialMUnsupervised feature selection under perturbations: Meeting the challenges of biological dataBioinformatics200723243343334910.1093/bioinformatics/btm528
– reference: YuLLiuHEfficient feature selection via analysis of relevance and redundancyJournal of Machine Learning Research20045120512241222.68340
– reference: RahmanM MDavisD NMachine learning-based missing value imputation method for clinical datasetsIAENG Transactions on Engineering Technologies2013NetherlandsSpringer24525710.1007/978-94-007-6190-2_19
– reference: Analysis Factor. EM Imputation and Missing Data: Is Mean Imputation Really so Terrible? [Online], Available: http://www.analysisfactor.com/statchat/tag/spss-missing-values-analysis, 30 August 2011.
– reference: HoK K LMoodyG BPengC KMietusJ ELarsonM GLevyDGoldbergerA LPredicting survival in heart failure case and control subjects by use of fully automated methods for deriving nonlinear and conventional indices of heart rate dynamicsCirculation19979638424810.1161/01.CIR.96.3.842
– reference: BohacikJDavisD NBenedikovićMRisk estimation of cardiovascular patients using Weka2012Slovakia, Žilina, SlovakiaThe Society for Open Information Technologies — SOIT in Bratislava1520
– reference: HerreroJValenciaADopazoJA hierarchical unsupervised growing neural network for clustering gene expression patternsBioinformatics200017212613610.1093/bioinformatics/17.2.126
– reference: PoolsawadNMooreLKambhampatiCClelandJ G FHandling missing values in data mining — A case study of heart failure dataset2012Chongqing, ChinaIEEE19342938
– reference: BohacikJDavisD NData mining applied to cardiovascular dataJournal of Information Technologies2010321421
– reference: BohacikJDavisD NAlert rules for remote monitoring of cardiovascular patientsJournal of Information Technologies2012511623
– reference: YuLLiuHFeature selection for high-dimensional data: A fast correlation-based filter solution2003Washington DC, USAAAAI856863
– reference: Atherotech Diagnotics Lab. Atherotech Panels. [Online], Available: http://www.atherotech.com/athdiagtests/atherotechpanels.asp, 13 June 2011.
– reference: HanJKamberMData Mining: Concepts and Techniques20062San FranciscoMorgan Kaufman Publishers
– reference: BeanC LKambhampatiCKnowledge-oriented clustering for decision support2003Portland, OR, USAIEEE32443249
– reference: AcharyaU RBhatP SIyengarS SRaoADuaSClassification of heart rate data using artificial neural network and fuzzy equivalence relationPattern Recognition2003361616810.1016/S0031-3203(02)00063-81027.68655
– reference: ZhangYKambhampatiCDavisD NGoodeKClelandJ G FA comparative study of missing value imputation with multiclass classification for clinical heart failure data2012Sichuan, ChinaIEEE28402844
– reference: SugiyamaMKawanabeMChuiP LDimensionality reduction for density ratio estimation in high-dimensional spacesNeural Networks2010231445910.1016/j.neunet.2009.07.007
– reference: LeeD SAustinP CRouleauJ LLiuP PNaimarkDTuJ VPredicting mortality among patients hospitalizeed for heart failure, derivation and validation of a clinical modelJournal of the American Medical Association2003290192581258710.1001/jama.290.19.2581
– reference: KimW DLeeH KLeeDFuzzy clustering of categorical data using fuzzy centroidsPattern Recognition Letters200425111263127110.1016/j.patrec.2004.04.004
– reference: KanungoTMountM DNetanyahuS NPiatkoD CSilvermanRWuY AAn efficient k-means clustering algorithm: Analysis and implementationIEEE Transactions on Pattern Analysis and Machine Intelligence200224788189210.1109/TPAMI.2002.1017616
– volume: 124
  start-page: 1865
  issue: 25
  year: 2011
  ident: 778_CR16
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.111.019216
– volume: 58
  start-page: 2168
  issue: 8
  year: 2011
  ident: 778_CR7
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2011.2113395
– volume: 34
  start-page: 525
  issue: 2
  year: 2000
  ident: 778_CR77
  publication-title: Drug Information Journal
  doi: 10.1177/009286150003400221
– start-page: 2840
  volume-title: A comparative study of missing value imputation with multiclass classification for clinical heart failure data
  year: 2012
  ident: 778_CR72
– volume: 6
  start-page: 148
  year: 2005
  ident: 778_CR47
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-6-148
– start-page: 639
  volume-title: Classification, Clustering, and Data Mining Applications
  year: 2004
  ident: 778_CR37
  doi: 10.1007/978-3-642-17103-1_60
– volume: 60
  start-page: 828
  year: 2011
  ident: 778_CR39
  publication-title: World Academy of Science, Engineering and Technology
– volume-title: Data Mining: Concepts and Techniques
  year: 2006
  ident: 778_CR44
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 778_CR60
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– ident: 778_CR66
– volume: 13
  start-page: 51
  year: 2002
  ident: 778_CR34
  publication-title: Genome Informatics
– ident: 778_CR75
– volume: 393
  start-page: 55
  issue: 1
  year: 2010
  ident: 778_CR19
  publication-title: Biochemical Biophysical Research Communications
  doi: 10.1016/j.bbrc.2010.01.076
– volume: 2
  start-page: 283
  issue: 3
  year: 1998
  ident: 778_CR64
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1023/A:1009769707641
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 778_CR57
  publication-title: Machine Learning
– volume: 24
  start-page: 881
  issue: 7
  year: 2002
  ident: 778_CR65
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2002.1017616
– volume: 297
  start-page: 61
  issue: 1
  year: 2007
  ident: 778_CR25
  publication-title: Journal of the American Medical Association
  doi: 10.1001/jama.297.1.61
– volume: 97
  start-page: 959
  issue: 12
  year: 2011
  ident: 778_CR17
  publication-title: Heart
  doi: 10.1136/hrt.2010.220426
– volume: 96
  start-page: 842
  issue: 3
  year: 1997
  ident: 778_CR24
  publication-title: Circulation
  doi: 10.1161/01.CIR.96.3.842
– ident: 778_CR63
– start-page: 42
  volume-title: An efficient k-means clustering algorithm for reducing time complexity using uniform distribution data points
  year: 2010
  ident: 778_CR69
– volume: 3
  start-page: 14
  issue: 2
  year: 2010
  ident: 778_CR26
  publication-title: Journal of Information Technologies
– ident: 778_CR42
– volume: 290
  start-page: 2581
  issue: 19
  year: 2003
  ident: 778_CR22
  publication-title: Journal of the American Medical Association
  doi: 10.1001/jama.290.19.2581
– volume: 60
  start-page: 77
  issue: 2
  year: 2000
  ident: 778_CR3
  publication-title: International Journal of Medical Informatics
  doi: 10.1016/S1386-5056(00)00106-4
– volume: 5
  start-page: 242
  issue: 3–4
  year: 2007
  ident: 778_CR32
  publication-title: Genomics, Proteomics & Bioinformatics
  doi: 10.1016/S1672-0229(08)60011-X
– volume: 12
  start-page: 375
  year: 2011
  ident: 778_CR6
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-375
– start-page: 245
  volume-title: IAENG Transactions on Engineering Technologies
  year: 2013
  ident: 778_CR79
  doi: 10.1007/978-94-007-6190-2_19
– volume: 26
  start-page: 1675
  issue: 11
  year: 2005
  ident: 778_CR48
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2005.01.014
– start-page: 507
  volume-title: Advances in Neural Information Processing Systems
  year: 1998
  ident: 778_CR59
– volume: 25
  start-page: 1263
  issue: 11
  year: 2004
  ident: 778_CR61
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2004.04.004
– volume: 11
  start-page: 12
  year: 2011
  ident: 778_CR20
  publication-title: BMC Medical Research Methodology
  doi: 10.1186/1471-2288-11-12
– ident: 778_CR74
– ident: 778_CR53
– volume: 19
  start-page: 153
  issue: 2
  year: 1997
  ident: 778_CR29
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.574797
– volume: 32
  start-page: 2627
  issue: 14–15
  year: 1998
  ident: 778_CR54
  publication-title: Atmospheric Environment
  doi: 10.1016/S1352-2310(97)00447-0
– start-page: 856
  volume-title: Feature selection for high-dimensional data: A fast correlation-based filter solution
  year: 2003
  ident: 778_CR31
– volume-title: Clustering for Data Mining: A Data Recovery Approach
  year: 2005
  ident: 778_CR67
  doi: 10.1201/9781420034912
– volume: 10
  start-page: 141
  issue: 2
  year: 2005
  ident: 778_CR70
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1007/s10618-005-0361-3
– volume: 6
  start-page: 68
  year: 2005
  ident: 778_CR50
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-6-68
– volume: 24
  start-page: 121
  issue: 1
  year: 2011
  ident: 778_CR43
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2010.09.008
– start-page: 169
  volume-title: A new feature selection scheme using data distribution factor for transactional data
  year: 2007
  ident: 778_CR9
– volume: 23
  start-page: 44
  issue: 1
  year: 2010
  ident: 778_CR8
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2009.07.007
– volume: 36
  start-page: 106
  issue: 1
  year: 2006
  ident: 778_CR13
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
  doi: 10.1109/TSMCB.2005.854499
– start-page: 1934
  volume-title: Handling missing values in data mining — A case study of heart failure dataset
  year: 2012
  ident: 778_CR40
– volume: 19
  start-page: 1578
  issue: 12
  year: 2003
  ident: 778_CR52
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg179
– volume: 90
  start-page: 275
  issue: 3
  year: 2008
  ident: 778_CR12
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2008.01.003
– volume: 3
  start-page: 25
  issue: 1
  year: 2010
  ident: 778_CR18
  publication-title: Circulation: Cardiovascular Quality and Outcomes
– volume: 43
  start-page: 182
  issue: 2
  year: 2005
  ident: 778_CR21
  publication-title: Medical Care
  doi: 10.1097/00005650-200502000-00012
– start-page: 1022
  volume-title: Multi-interval discretization of continuous-valued attributes for classification learning
  year: 1993
  ident: 778_CR33
– volume: 13
  start-page: 57
  issue: 3
  year: 2011
  ident: 778_CR41
  publication-title: Artificial Intelligence Magazine
– volume: 2
  start-page: 3043
  issue: 9
  year: 2010
  ident: 778_CR68
  publication-title: International Journal on Computer Science and Engineering
– volume: 360
  start-page: 1628
  issue: 16
  year: 2009
  ident: 778_CR2
  publication-title: The New England Journal of Medicine
  doi: 10.1056/NEJMsa0900592
– volume: 5
  start-page: 16
  issue: 1
  year: 2012
  ident: 778_CR27
  publication-title: Journal of Information Technologies
– volume: 17
  start-page: 126
  issue: 2
  year: 2000
  ident: 778_CR76
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.2.126
– volume: 24
  start-page: 442
  issue: 5
  year: 2003
  ident: 778_CR4
  publication-title: European Heart Journal
  doi: 10.1016/S0195-668X(02)00823-0
– volume: 10
  start-page: 170
  issue: 3
  year: 2002
  ident: 778_CR14
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2002.802875
– start-page: 313
  volume-title: Robust feature selection using ensemble feature selection techniques
  year: 2008
  ident: 778_CR30
– volume: 64
  start-page: 15
  year: 2012
  ident: 778_CR56
  publication-title: World Academy of Science, Engineering and Technology
– ident: 778_CR38
– volume: 19
  start-page: 1636
  issue: 13
  year: 2003
  ident: 778_CR49
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg210
– volume: 37
  start-page: 388
  issue: 3
  year: 2007
  ident: 778_CR55
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2006.05.001
– start-page: 3244
  volume-title: Knowledge-oriented clustering for decision support
  year: 2003
  ident: 778_CR62
– start-page: 128
  volume-title: Guidelines to select machine learning scheme for classification of biomedical datasets
  year: 2009
  ident: 778_CR1
– volume: 36
  start-page: 61
  issue: 1
  year: 2003
  ident: 778_CR5
  publication-title: Pattern Recognition
  doi: 10.1016/S0031-3203(02)00063-8
– volume: 11
  start-page: 1155
  issue: 12
  year: 2009
  ident: 778_CR73
  publication-title: European Journal Heart Failure
  doi: 10.1093/eurjhf/hfp147
– volume: 5
  start-page: 1205
  year: 2004
  ident: 778_CR46
  publication-title: Journal of Machine Learning Research
– volume: 7
  start-page: 91
  issue: 1
  year: 2008
  ident: 778_CR11
  publication-title: IEEE Transactions on Nanotechnology
  doi: 10.1109/TNANO.2007.910334
– start-page: 15
  volume-title: Risk estimation of cardiovascular patients using Weka
  year: 2012
  ident: 778_CR36
– ident: 778_CR45
– volume: 8
  start-page: 53
  year: 2003
  ident: 778_CR51
  publication-title: Pacific Symposium on Biocomputing
– volume: 32
  start-page: 207
  issue: 2
  year: 2002
  ident: 778_CR35
  publication-title: IEEE Transactions Systems, Man, and Cybernetics, Part B
  doi: 10.1109/3477.990877
– start-page: 532
  volume-title: Dimensionality reduction of unsupervised data
  year: 1997
  ident: 778_CR10
– volume-title: Introduction to Probability
  year: 1998
  ident: 778_CR78
– start-page: 185
  volume-title: Advances in Kernel Methods — Support Vector Learning
  year: 1998
  ident: 778_CR58
– volume: 23
  start-page: 3343
  issue: 24
  year: 2007
  ident: 778_CR15
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm528
– start-page: 37
  volume-title: Estimation of cardiovascular patient risk with a Bayesian network
  year: 2011
  ident: 778_CR28
– start-page: 257
  volume-title: Integration of neural networks and decision tree classifiers for automated cytology screening
  year: 1991
  ident: 778_CR71
– volume: 98
  start-page: 377
  issue: 5
  year: 2011
  ident: 778_CR23
  publication-title: Heart
  doi: 10.1136/heartjnl-2011-300475
SSID ssj0067294
ssj0003320693
Score 2.0690017
Snippet This paper investigates the characteristics of a clinical dataset using a combination of feature selection and classification methods to handle missing values...
Issue Title: Special Issue on Big Data This paper investigates the characteristics of a clinical dataset using a combination of feature selection and...
SourceID unpaywall
proquest
crossref
springer
chongqing
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 162
SubjectTerms Algorithms
CAE) and Design
Classification
Classifiers
clinical
clustering
Computer Applications
Computer-Aided Engineering (CAD
Control
Data mining
dataset
Datasets
Decision trees
Diagnostic systems
Engineering
Exploration
failure
feature
Feature selection
Health care
Heart
Heart failure
Human error
Learning
Machine learning
Mechatronics
Medical prognosis
missing
Missing data
Patients
Radial basis function
Representations
Robotics
selection
Supervised learning
values
Variables
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9swED-69KUvo2MdTZcOFfa0os6xZFl-GGNbG8KgoYwW8mZkfbSFYKerQ-l_vzvHdjpot2fJ8nE66e50d78D-JiQGil84M4EdFBM8FxbF_HM4OYXVvu0qXo_n6nplfw5T-ZbMOtqYSitsrsTm4vaVZbeyD_HGQG7izSWX5d3nLpGUXS1a6Fh2tYK7ksDMfYKtmNCxhrA9vez2cWv_tVFiDhSDRIv0ig4GtfzLtTZ1NOhdULpRZJHKXpXCQEu3FTl9R2qkb8V18Ya7QOoOHlVLs3jg1ksnuioyS68bo1L9m0tDW9gy5dv4WTdYI_dlgyNPXbedIRgVWBTFPKaTcwtZaazU1OjQqvv9-Bqcnb5Y8rbLgncomtV86C9VUFFhcPjpKQNMqjEKy2F1EYlTrkQZYWXwetMF4pcUnRhYm9TJ4tkbMQ7GJRV6feBjYUKTmVpQmYWfmC8jw0BJlJGmrR6CKOeHflyjYZBoMdCSKHleAhRx6Hctgjj1OhikW-wkYnBOTI4JwbnyRA-9Z9sFnxx8qhje96etPscRU3EWYpznx3eiM0QjvphPEIUFzGlr1a0BNq4VA6BSxx3u_nkDy_Tc9xv-P-pP_g3ee9hJ24Ej5KCRjCof6_8Ido7dfGhFeI_9uP2oQ
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86X_RB_MTqlAg-OSpdm6Tp41DHEOaTg72FtE1UGN10HeJ_713Xjwkb4nOSS7i7JHfc3e8IueH4jcTGuqm24KBoa1yZpJ4baRB-nEgTFlXvw2cxGLGnMR-XddzzKtu9CkkWL3VT7AamA-b-MNcLwfXh22SHI5oXKPHI71XPrwBrsQgls1C4CNdWhTLXkUBAhbdp9voB2_3-mBprsw6QwuRFNtPfX3oyWfmD-gdkvzQeaW8p7UOyZbIjsrcCKXhM7pbt9Oh7RsG0o8Oi_wOdWjoAlc5pX79jHjp90Dl8X_n8hIz6jy_3A7fsieAm4EjlrpUmEVZ4cQqXR7DEMiu4EZIFTGrBU5FaL4oNs0ZGMhbogILD4pskTFnMuzo4Ja1smpkzQruBsKmIQo5GFSzQxvga4REx_4wl0iHtmjlqtsS-QIjjIGCBZF2HeBW_VFLiiWNbi4lqkJCR3QrYrZDdijvktl7SENw4uV0JQZX3aq5AsQI_CmHu2mE_QvT_IPSZQ67rYbgwGAXRmZkukARYtFj8ACQ6lWxXdth8nk4t_r9Pf_4v2hdk1y-0EjOC2qSVfy7MJRg7eXxVKPcPwajweA
  priority: 102
  providerName: Springer Nature
Title Issues in the Mining of Heart Failure Datasets
URI http://lib.cqvip.com/qk/88433X/201402/1003343841.html
https://link.springer.com/article/10.1007/s11633-014-0778-5
https://www.proquest.com/docview/1513297116
https://www.proquest.com/docview/2918683724
https://www.proquest.com/docview/1531011086
https://link.springer.com/content/pdf/10.1007%2Fs11633-014-0778-5.pdf
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1751-8520
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0003320693
  issn: 1476-8186
  databaseCode: BENPR
  dateStart: 20041001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1751-8520
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067294
  issn: 1751-8520
  databaseCode: AGYKE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1751-8520
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0067294
  issn: 1751-8520
  databaseCode: U2A
  dateStart: 20041001
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9t7Qs8MD5FWamCxBOTSz5sx3ks0K4CrZoQlbanyEnsMVGl3ZoKbX89d_lqmZgQ4ilSbF8cn093p7v7HcBbQWokMZZl2qKDoq1hKs1cFmlkfpIqE5ZV7yczOZ3zz2fibA_GTS1Mme3ehCSrmgZCacqL96vM7kT11x4aEpQJxJkboiMkhji-D10p0CTvQHc-Ox2dl5VFoWSE2lYWRgqPKeG30c2yhO4OHcJY-L7ML65wB7_rqq0B2sZMcfImX-mbn3qx2FFLk4MqfWRdohlSNsqP4aZIhuntHazH__7jx_CoNlydUXXTnsCeyZ_Cwx04w2cwrFr5OZe5g2alc1L2nnCW1pmiOBXORF9SDrzzSReoOov1c5hPxt8-Tlndj4Gl6MQVzCqTSivdJEPBlTy13EphpOIBV1qKTGbWjRLDrVGRSiQ5v-gs-SYNM54ITwcvoJMvc_MSHC-QNpNRKMigwwXaGF8TNCPlvvFU9aDfciFeVbgbBK8cBDxQ3OuB2zAmTmssc2qpsYi3KMx0WjGeVkynFYsevGuXbAneO7nfcDuuZXod46UO_CjEuX8c9iPqPBCEPu_Bm3YYhZUiMDo3yw2RQGuaCi-QxFHD850v3L-fo_ae_X33r_5p9iE88MtLRdlIfegU1xvzGg2tIhnAvpocD6A7Oj7_Msbnh_Hs9Cu-nfujQS1ivwBuiB6X
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbG9gAvCASIQmFGghcmQ2o7jvMwobGt6thaIbRJfQuOf8CkKuloqmn_HH8bd2mSbhKDpz3bcazPZ9-dffcdIW9jVCO5D8yZAA6KCZ5p6yKWGlj83Gqf1Fnv44kanckv03i6QX63uTAYVtmeifVB7UqLd-QfeYrE7iLh8tP8gmHVKHxdbUtomKa0gtutKcaaxI5jf3UJLtxi9-gA1vsd58PD0_0Ra6oMMAuuScWC9lYFFeUOxFFJG2RQsVdaCqmNip1yIUpzL4PXqc4VunTgAnBvEyfzeGAEjHuPbEH3FJy_rc-Hk6_fulseIXikauZfwEQwMOan7dNqnb8H1hCGM0kWJeDNxUjw8LMsflyA2rqpKNfWb_dgC52XxdxcXZrZ7JpOHD4iDxtjlu6tpO8x2fDFE_JhVdCPnhcUjEs6ritQ0DLQEaBV0aE5x0h4emAqUKDV4ik5uxO8npHNoiz8c0IHQgWn0iRGsw4-MN5zgwSNGAEnre6RfgdHNl-xbyDJshBSaDnokahFKLMNozkW1phlay5mBDgDgDMEOIt75H33yXrAWzv3W9izZmcvMhBtwdME-v61eS2mPfKma4Yti-8wpvDlEocAmxrTL2CInXY1r_3h9vnsdAv-_9m_-Pf0tsn90en4JDs5mhy_JA94LYQYkNQnm9WvpX8FtlaVv24EmpLvd72H_gC0dDOy
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8NADA9-gOiD-InTqSf4pFS79nq9Poo65ic-OPDtuLZ3Koxuug7xvzfp2m6CIj7fNXckuSYhyS8AhwGZkdhYJ9UWAxRtjSOT1HUijcKPE2nCouv97l50uvz6KXgq55wOq2r3KiU57mkglKYsPx2k9nTS-IZuBNUBcccNMQwKZmGeE04CKnTXO6t-xQI9xyKtzEPhEHRbldb8iQSBK7z0s-c3PPq7kZp4nnWyFDePsoH-_NC93pQ9aq_AculIsrOx5FdhxmRrsDQFL7gOJ-PReuw1Y-jmsbtiFgTrW9ZB9c5ZW79STTq70Dmasny4Ad325eN5xynnIzgJBlW5Y6VJhBVunOJDEjyx3IrACMl9LrUIUpFaN4oNt0ZGMhYUjGLw4pkkTHkctLS_CXNZPzNbwFq-sKmIwoAcLPxAG-NpgkqkWjSeyAY0a-aowRgHg-COfZ_7krca4Fb8UkmJLU4jLnpqgopM7FbIbkXsVkEDjupPJgR_3dyshKDKNzZUqGS-F4W498dlL6JJAH7o8QYc1Mv4eCgjojPTHxEJ9G6pEQJJHFeynTrh9_sc1-L_-_bb_6K9DwsPF211e3V_swOLXqGgVCjUhLn8fWR20QfK471Cz78Aee_3oA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbxMxDLdG9wIPYwwQHR0KEk-bUu4jyeUeJ1hVIW3igUrj6ZTLJTBRXbv1qmn89dj31TIxIcRzHF8uthVbtn8GeCfpGcmd54XxGKAY77i2RcBTg8LPrXZJ3fV-fqGmM_HpUl7uwFnXC1NXu3cpyaangVCayur9svBbWf1ViI4EVQIJHiQYCMkxrj-CXSXRJR_A7uzi8-nXurMoUZxQ2-rGSBlyLaM-u1m30N3jQxgL3xflt2s8we9v1cYB7XOmSLwul-bu1sznW8_S5GlTPrKq0QypGuXHeF3lY_vzHtbjf__xPuy1jis7bTTtGey48gCebMEZPodxM8qPXZUM3Up2Xs-eYAvPpmhOFZuYK6qBZx9NhU9ntXoBs8nZlw9T3s5j4BaDuIp77azyKsgLNFwlrBdeSae0iIU2Shaq8EGaO-GdTnWuKPjFYClyNilELkMTv4RBuSjdK2BhrHyh0kSSQ4cbjHORIWhGqn0TVg9h1EshWza4GwSvHMci1iIcQtAJJrMtljmN1JhnGxRmuq0Mbyuj28rkEI77LRuGDxKPOmlnrU2vMlTqOEoTpP3jcpTS5IE4icQQ3vbLaKyUgTGlW6yJBXrT1HiBLE46mW994eHznPR69vfTH_4T9Wt4HNVKRdVIIxhUN2t3hI5Wlb9pzegXZicZmg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Issues+in+the+Mining+of+Heart+Failure+Datasets&rft.jtitle=International+journal+of+automation+and+computing&rft.au=Poolsawad%2C+Nongnuch&rft.au=Moore%2C+Lisa&rft.au=Kambhampati%2C+Chandrasekhar&rft.au=Cleland%2C+John+G.+F.&rft.date=2014-04-01&rft.pub=Springer-Verlag&rft.issn=1476-8186&rft.eissn=1751-8520&rft.volume=11&rft.issue=2&rft.spage=162&rft.epage=179&rft_id=info:doi/10.1007%2Fs11633-014-0778-5&rft.externalDocID=10_1007_s11633_014_0778_5
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F88433X%2F88433X.jpg