Medical Image Classification Algorithm Based on Visual Attention Mechanism-MCNN
Due to the complexity of medical images, traditional medical image classification methods have been unable to meet the actual application needs. In recent years, the rapid development of deep learning theory has provided a technical approach for solving medical image classification. However, deep le...
Saved in:
| Published in | Oxidative medicine and cellular longevity Vol. 2021; no. 1; p. 6280690 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Hindawi
2021
John Wiley & Sons, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1942-0900 1942-0994 1942-0994 |
| DOI | 10.1155/2021/6280690 |
Cover
| Abstract | Due to the complexity of medical images, traditional medical image classification methods have been unable to meet the actual application needs. In recent years, the rapid development of deep learning theory has provided a technical approach for solving medical image classification. However, deep learning has the following problems in the application of medical image classification. First, it is impossible to construct a deep learning model with excellent performance according to the characteristics of medical images. Second, the current deep learning network structure and training strategies are less adaptable to medical images. Therefore, this paper first introduces the visual attention mechanism into the deep learning model so that the information can be extracted more effectively according to the problem of medical images, and the reasoning is realized at a finer granularity. It can increase the interpretability of the model. Additionally, to solve the problem of matching the deep learning network structure and training strategy to medical images, this paper will construct a novel multiscale convolutional neural network model that can automatically extract high-level discriminative appearance features from the original image, and the loss function uses the Mahalanobis distance optimization model to obtain a better training strategy, which can improve the robust performance of the network model. The medical image classification task is completed by the above method. Based on the above ideas, this paper proposes a medical classification algorithm based on a visual attention mechanism-multiscale convolutional neural network. The lung nodules and breast cancer images were classified by the method in this paper. The experimental results show that the accuracy of medical image classification in this paper is not only higher than that of traditional machine learning methods but also improved compared with other deep learning methods, and the method has good stability and robustness. |
|---|---|
| AbstractList | Due to the complexity of medical images, traditional medical image classification methods have been unable to meet the actual application needs. In recent years, the rapid development of deep learning theory has provided a technical approach for solving medical image classification. However, deep learning has the following problems in the application of medical image classification. First, it is impossible to construct a deep learning model with excellent performance according to the characteristics of medical images. Second, the current deep learning network structure and training strategies are less adaptable to medical images. Therefore, this paper first introduces the visual attention mechanism into the deep learning model so that the information can be extracted more effectively according to the problem of medical images, and the reasoning is realized at a finer granularity. It can increase the interpretability of the model. Additionally, to solve the problem of matching the deep learning network structure and training strategy to medical images, this paper will construct a novel multiscale convolutional neural network model that can automatically extract high-level discriminative appearance features from the original image, and the loss function uses the Mahalanobis distance optimization model to obtain a better training strategy, which can improve the robust performance of the network model. The medical image classification task is completed by the above method. Based on the above ideas, this paper proposes a medical classification algorithm based on a visual attention mechanism-multiscale convolutional neural network. The lung nodules and breast cancer images were classified by the method in this paper. The experimental results show that the accuracy of medical image classification in this paper is not only higher than that of traditional machine learning methods but also improved compared with other deep learning methods, and the method has good stability and robustness. Due to the complexity of medical images, traditional medical image classification methods have been unable to meet the actual application needs. In recent years, the rapid development of deep learning theory has provided a technical approach for solving medical image classification. However, deep learning has the following problems in the application of medical image classification. First, it is impossible to construct a deep learning model with excellent performance according to the characteristics of medical images. Second, the current deep learning network structure and training strategies are less adaptable to medical images. Therefore, this paper first introduces the visual attention mechanism into the deep learning model so that the information can be extracted more effectively according to the problem of medical images, and the reasoning is realized at a finer granularity. It can increase the interpretability of the model. Additionally, to solve the problem of matching the deep learning network structure and training strategy to medical images, this paper will construct a novel multiscale convolutional neural network model that can automatically extract high-level discriminative appearance features from the original image, and the loss function uses the Mahalanobis distance optimization model to obtain a better training strategy, which can improve the robust performance of the network model. The medical image classification task is completed by the above method. Based on the above ideas, this paper proposes a medical classification algorithm based on a visual attention mechanism-multiscale convolutional neural network. The lung nodules and breast cancer images were classified by the method in this paper. The experimental results show that the accuracy of medical image classification in this paper is not only higher than that of traditional machine learning methods but also improved compared with other deep learning methods, and the method has good stability and robustness.Due to the complexity of medical images, traditional medical image classification methods have been unable to meet the actual application needs. In recent years, the rapid development of deep learning theory has provided a technical approach for solving medical image classification. However, deep learning has the following problems in the application of medical image classification. First, it is impossible to construct a deep learning model with excellent performance according to the characteristics of medical images. Second, the current deep learning network structure and training strategies are less adaptable to medical images. Therefore, this paper first introduces the visual attention mechanism into the deep learning model so that the information can be extracted more effectively according to the problem of medical images, and the reasoning is realized at a finer granularity. It can increase the interpretability of the model. Additionally, to solve the problem of matching the deep learning network structure and training strategy to medical images, this paper will construct a novel multiscale convolutional neural network model that can automatically extract high-level discriminative appearance features from the original image, and the loss function uses the Mahalanobis distance optimization model to obtain a better training strategy, which can improve the robust performance of the network model. The medical image classification task is completed by the above method. Based on the above ideas, this paper proposes a medical classification algorithm based on a visual attention mechanism-multiscale convolutional neural network. The lung nodules and breast cancer images were classified by the method in this paper. The experimental results show that the accuracy of medical image classification in this paper is not only higher than that of traditional machine learning methods but also improved compared with other deep learning methods, and the method has good stability and robustness. |
| Author | An, Fengping Li, Xiaowei Ma, Xingmin |
| AuthorAffiliation | 2 System Second Department, North China Institute of Computing Technology, Beijing 100083, China 1 School of Physics and Electronic Electrical Engineering, Huaiyin Normal University, Huaian 223300, China |
| AuthorAffiliation_xml | – name: 2 System Second Department, North China Institute of Computing Technology, Beijing 100083, China – name: 1 School of Physics and Electronic Electrical Engineering, Huaiyin Normal University, Huaian 223300, China |
| Author_xml | – sequence: 1 givenname: Fengping orcidid: 0000-0002-2220-2987 surname: An fullname: An, Fengping organization: School of Physics and Electronic Electrical EngineeringHuaiyin Normal UniversityHuaian 223300Chinahytc.edu.cn – sequence: 2 givenname: Xiaowei surname: Li fullname: Li, Xiaowei organization: School of Physics and Electronic Electrical EngineeringHuaiyin Normal UniversityHuaian 223300Chinahytc.edu.cn – sequence: 3 givenname: Xingmin surname: Ma fullname: Ma, Xingmin organization: System Second DepartmentNorth China Institute of Computing TechnologyBeijing 100083China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33688390$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkctvEzEQxi1URB9w44xW4oIES8eP9doXpBDxqNS0F-BqObY3ceW10_UuVf97nCYUqATIB1szv_k8880xOogpOoSeY3iLcdOcEiD4lBMBXMIjdIQlIzVIyQ7u3wCH6DjnKwBOCcNP0CGlXAgq4QhdLpz1RofqrNcrV82Dztl3JTL6FKtZWKXBj-u-eq-zs1UJffN5KvhsHF28YxbOrHX0ua8X84uLp-hxp0N2z_b3Cfr68cOX-ef6_PLT2Xx2XhvGxFg7aVuw1HatbgS3eNm6ThBnuiURHLuGtwxTy8CIRpZkR4Ux1gHlneBaAqMnqN7pTnGjb290CGoz-F4PtwqD2hqjtsaovTGFf7fjN9Oyd9aU5gf9qyZpr_7MRL9Wq_RdtRIzELQIvNoLDOl6cnlUvc_GhaCjS1NWhEkpaUNgi758gF6laYjFji3FoBwuCvXi947uW_m5mwK82QFmSDkPrvvfhOQBbvx4t8Yyjw9_K3q9K1r7aPWN__cXPwCXX7qf |
| CitedBy_id | crossref_primary_10_1155_2022_2056791 crossref_primary_10_32604_iasc_2023_025930 crossref_primary_10_1088_1361_6560_ac7d33 crossref_primary_10_1007_s41060_025_00715_0 crossref_primary_10_1038_s41746_022_00699_2 crossref_primary_10_1371_journal_pone_0313946 crossref_primary_10_3390_app13010507 crossref_primary_10_1038_s41598_023_33793_w crossref_primary_10_12677_JISP_2024_131007 crossref_primary_10_1155_2024_5576859 crossref_primary_10_3390_diagnostics15020207 crossref_primary_10_1002_ima_22903 crossref_primary_10_1007_s10462_024_11063_z crossref_primary_10_3390_bioengineering11101021 crossref_primary_10_3389_fnagi_2022_912283 |
| Cites_doi | 10.1109/CVPR.2015.7298682 10.1016/j.neunet.2017.02.013 10.3389/fnins.2014.00229 10.1166/jmihi.2015.1382 10.4018/978-1-5225-0140-4 10.1017/9781316671849 10.1016/j.artmed.2010.04.011 10.1109/CVPR.2016.90 10.1016/j.media.2005.09.003 10.1109/ICCV.2015.510 10.1038/nature21056 10.1109/TMI.2016.2536809 10.1118/1.3140589 10.1109/ETECHNXT.2018.8385355 10.1109/TNNLS.2016.2582924 10.1109/R10-HTC.2017.8289075 10.1016/j.neucom.2018.09.013 10.1109/TMI.2005.852048 10.1007/978-3-319-47157-0_20 10.1109/TBME.2015.2496253 10.1145/3123266.3130141 10.1007/978-3-319-46723-8_25 10.1109/JBHI.2016.2635662 10.1109/TMI.2016.2535865 10.1148/rg.2017160130 10.1109/CVPR.2016.308 10.1109/TMM.2017.2751969 10.1109/ICACCCN.2018.8748777 10.1166/jmihi.2016.1871 10.1007/978-3-642-40763-5_72 10.1118/1.1580485 10.1007/s12194-017-0406-5 10.1109/ACCESS.2018.2807385 10.1016/j.neuroimage.2014.06.077 10.1166/jmihi.2017.2280 10.1166/jmihi.2018.2345 10.1038/srep24454 10.1126/science.1127647 10.1016/j.measurement.2015.04.028 10.1186/s12938-015-0120-7 10.1007/978-3-030-17971-7_77 10.1038/ncomms12474 10.1109/ICCV.2015.172 10.1007/s11042-019-7419-5 10.3348/kjr.2017.18.4.570 10.1016/j.patcog.2015.04.005 10.1016/j.ultras.2016.08.004 10.1016/j.ijar.2011.05.006 |
| ContentType | Journal Article |
| Copyright | Copyright © 2021 Fengping An et al. Copyright © 2021 Fengping An et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 Copyright © 2021 Fengping An et al. 2021 |
| Copyright_xml | – notice: Copyright © 2021 Fengping An et al. – notice: Copyright © 2021 Fengping An et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 – notice: Copyright © 2021 Fengping An et al. 2021 |
| DBID | RHU RHW RHX AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| DOI | 10.1155/2021/6280690 |
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database MEDLINE |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1942-0994 |
| Editor | Lorenzini, Antonello |
| Editor_xml | – sequence: 1 givenname: Antonello surname: Lorenzini fullname: Lorenzini, Antonello |
| ExternalDocumentID | 10.1155/2021/6280690 PMC7914083 33688390 10_1155_2021_6280690 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20201479 – fundername: Hebei IoT Monitoring Engineering Technology Research Center funded project grantid: IOT202004 – fundername: National Natural Science Foundation of China grantid: 61701188 – fundername: China Postdoctoral Science Foundation grantid: 2019M650512 |
| GroupedDBID | --- 3V. 4.4 53G 5VS 7X7 88E 8FI 8FJ 8G5 AAFWJ AAJEY ABUWG ADBBV ADRAZ AENEX AFKRA AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU DIK DWQXO E3Z EBD EBS EMOBN F5P FYUFA GNUQQ GROUPED_DOAJ GUQSH HMCUK HYE IAO IEA IHR INH INR ITC KQ8 M1P M2O M48 M~E O5R O5S OK1 PIMPY PQQKQ PROAC PSQYO RHU RHW RHX RNS RPM SV3 TR2 UKHRP 0R~ 24P AAMMB AAYXX ACCMX AEFGJ AGXDD AIDQK AIDYY CITATION EJD H13 IPNFZ PGMZT PHGZM PHGZT PJZUB PPXIY PUEGO RIG ALIPV CGR CUY CVF ECM EIF NPM 7XB 8FK K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c448t-e9d70d3df7a586d1b7ef82ecfb2861e567413d40c8591b7f38ccde036f86a9043 |
| IEDL.DBID | M48 |
| ISSN | 1942-0900 1942-0994 |
| IngestDate | Sun Oct 26 04:03:52 EDT 2025 Tue Sep 30 16:53:33 EDT 2025 Sun Sep 28 08:25:44 EDT 2025 Tue Oct 07 06:34:24 EDT 2025 Mon Jul 21 06:01:54 EDT 2025 Thu Apr 24 23:11:15 EDT 2025 Wed Oct 01 03:32:59 EDT 2025 Sun Jun 02 18:54:52 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright © 2021 Fengping An et al. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c448t-e9d70d3df7a586d1b7ef82ecfb2861e567413d40c8591b7f38ccde036f86a9043 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Academic Editor: Antonello Lorenzini |
| ORCID | 0000-0002-2220-2987 |
| OpenAccessLink | https://dx.doi.org/10.1155/2021/6280690 |
| PMID | 33688390 |
| PQID | 2494040468 |
| PQPubID | 2037493 |
| ParticipantIDs | unpaywall_primary_10_1155_2021_6280690 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7914083 proquest_miscellaneous_2499935203 proquest_journals_2494040468 pubmed_primary_33688390 crossref_primary_10_1155_2021_6280690 crossref_citationtrail_10_1155_2021_6280690 hindawi_primary_10_1155_2021_6280690 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-00-00 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 2021-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | Oxidative medicine and cellular longevity |
| PublicationTitleAlternate | Oxid Med Cell Longev |
| PublicationYear | 2021 |
| Publisher | Hindawi John Wiley & Sons, Inc |
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
| References | e_1_2_10_23_2 e_1_2_10_44_2 e_1_2_10_21_2 e_1_2_10_42_2 e_1_2_10_40_2 e_1_2_10_2_2 e_1_2_10_18_2 e_1_2_10_39_2 e_1_2_10_53_2 e_1_2_10_4_2 e_1_2_10_16_2 e_1_2_10_37_2 e_1_2_10_14_2 e_1_2_10_35_2 e_1_2_10_11_2 e_1_2_10_34_2 e_1_2_10_8_2 Meyer-Baese A. (e_1_2_10_6_2) 2014 e_1_2_10_30_2 e_1_2_10_51_2 e_1_2_10_29_2 e_1_2_10_27_2 e_1_2_10_48_2 e_1_2_10_25_2 e_1_2_10_46_2 e_1_2_10_22_2 e_1_2_10_45_2 e_1_2_10_20_2 e_1_2_10_43_2 e_1_2_10_41_2 Bidart R. (e_1_2_10_32_2) 2018 e_1_2_10_19_2 e_1_2_10_1_2 e_1_2_10_3_2 e_1_2_10_17_2 e_1_2_10_52_2 e_1_2_10_5_2 e_1_2_10_15_2 e_1_2_10_38_2 e_1_2_10_54_2 e_1_2_10_7_2 e_1_2_10_13_2 e_1_2_10_36_2 e_1_2_10_9_2 e_1_2_10_12_2 e_1_2_10_33_2 e_1_2_10_10_2 e_1_2_10_31_2 e_1_2_10_50_2 e_1_2_10_28_2 e_1_2_10_26_2 e_1_2_10_49_2 e_1_2_10_24_2 e_1_2_10_47_2 |
| References_xml | – ident: e_1_2_10_40_2 doi: 10.1109/CVPR.2015.7298682 – volume-title: Pattern Recognition and Signal Analysis in Medical Imaging year: 2014 ident: e_1_2_10_6_2 – ident: e_1_2_10_20_2 doi: 10.1016/j.neunet.2017.02.013 – ident: e_1_2_10_25_2 doi: 10.3389/fnins.2014.00229 – ident: e_1_2_10_43_2 doi: 10.1166/jmihi.2015.1382 – ident: e_1_2_10_5_2 doi: 10.4018/978-1-5225-0140-4 – ident: e_1_2_10_1_2 doi: 10.1017/9781316671849 – ident: e_1_2_10_7_2 doi: 10.1016/j.artmed.2010.04.011 – ident: e_1_2_10_38_2 doi: 10.1109/CVPR.2016.90 – ident: e_1_2_10_42_2 doi: 10.1016/j.media.2005.09.003 – ident: e_1_2_10_22_2 doi: 10.1109/ICCV.2015.510 – ident: e_1_2_10_31_2 doi: 10.1038/nature21056 – ident: e_1_2_10_33_2 doi: 10.1109/TMI.2016.2536809 – ident: e_1_2_10_10_2 doi: 10.1118/1.3140589 – ident: e_1_2_10_52_2 doi: 10.1109/ETECHNXT.2018.8385355 – ident: e_1_2_10_36_2 – ident: e_1_2_10_37_2 doi: 10.1109/TNNLS.2016.2582924 – ident: e_1_2_10_48_2 doi: 10.1109/R10-HTC.2017.8289075 – ident: e_1_2_10_3_2 doi: 10.1016/j.neucom.2018.09.013 – ident: e_1_2_10_9_2 doi: 10.1109/TMI.2005.852048 – ident: e_1_2_10_30_2 doi: 10.1007/978-3-319-47157-0_20 – ident: e_1_2_10_47_2 doi: 10.1109/TBME.2015.2496253 – ident: e_1_2_10_23_2 doi: 10.1145/3123266.3130141 – start-page: 10581 volume-title: Medical Imaging: Digital Pathology year: 2018 ident: e_1_2_10_32_2 – ident: e_1_2_10_34_2 doi: 10.1007/978-3-319-46723-8_25 – ident: e_1_2_10_4_2 doi: 10.1109/JBHI.2016.2635662 – ident: e_1_2_10_24_2 doi: 10.1109/TMI.2016.2535865 – ident: e_1_2_10_2_2 doi: 10.1148/rg.2017160130 – ident: e_1_2_10_17_2 doi: 10.1109/CVPR.2016.308 – ident: e_1_2_10_21_2 doi: 10.1109/TMM.2017.2751969 – ident: e_1_2_10_53_2 doi: 10.1109/ICACCCN.2018.8748777 – ident: e_1_2_10_45_2 doi: 10.1166/jmihi.2016.1871 – ident: e_1_2_10_26_2 doi: 10.1007/978-3-642-40763-5_72 – ident: e_1_2_10_8_2 doi: 10.1118/1.1580485 – ident: e_1_2_10_14_2 doi: 10.1007/s12194-017-0406-5 – ident: e_1_2_10_19_2 – ident: e_1_2_10_18_2 doi: 10.1109/ACCESS.2018.2807385 – ident: e_1_2_10_27_2 doi: 10.1016/j.neuroimage.2014.06.077 – ident: e_1_2_10_46_2 doi: 10.1166/jmihi.2017.2280 – ident: e_1_2_10_44_2 doi: 10.1166/jmihi.2018.2345 – ident: e_1_2_10_29_2 doi: 10.1038/srep24454 – ident: e_1_2_10_15_2 doi: 10.1126/science.1127647 – ident: e_1_2_10_50_2 doi: 10.1016/j.measurement.2015.04.028 – ident: e_1_2_10_11_2 doi: 10.1186/s12938-015-0120-7 – ident: e_1_2_10_51_2 doi: 10.1007/978-3-030-17971-7_77 – ident: e_1_2_10_35_2 – ident: e_1_2_10_12_2 doi: 10.1038/ncomms12474 – ident: e_1_2_10_41_2 doi: 10.1109/ICCV.2015.172 – ident: e_1_2_10_54_2 doi: 10.1007/s11042-019-7419-5 – ident: e_1_2_10_13_2 doi: 10.3348/kjr.2017.18.4.570 – ident: e_1_2_10_39_2 doi: 10.1016/j.patcog.2015.04.005 – ident: e_1_2_10_28_2 doi: 10.1016/j.ultras.2016.08.004 – ident: e_1_2_10_16_2 – ident: e_1_2_10_49_2 doi: 10.1016/j.ijar.2011.05.006 |
| SSID | ssj0063241 |
| Score | 2.378076 |
| Snippet | Due to the complexity of medical images, traditional medical image classification methods have been unable to meet the actual application needs. In recent... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref hindawi |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 6280690 |
| SubjectTerms | Accuracy Algorithms Attention - physiology Breast cancer Breast Neoplasms - classification Breast Neoplasms - diagnostic imaging Classification Deep learning Discriminant analysis Female Genetic algorithms Humans Image Processing, Computer-Assisted - classification Lung cancer Lung Neoplasms - diagnostic imaging Machine learning Medical imaging Methods Neural networks Neural Networks, Computer Support vector machines |
| SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA86GPoifjudUkF9kWI_kjR9nKJMYRNEZW-lTVJX2DpxHWP_vXdtV5zfb21zTdO7NPe73PWOkBOhOFOe1CYPKTepVLYJOE6aTCrKdchtrnEfstPl7Sd612O9MknS-KsLH7Qdmuf2BUcPoA-2-bLgGLn10O7NF1xMOJ7bVT51cNvBmse3f7p3QfPU-2jyTpPvgOXX-MiVSfoazqbhYPBB-dysk7USNRqtQswbZEmnm6Re1JGcbZH70t1i3A5heTDyQpcYApRz3WgNXkZvSdYfGpegspQBl56T8QT7y7Ii2tHoaPwDOBkPzc5Vt7tNnm6uH6_aZlkpwZRgXmWm9pVnKVfFXsgEV3bk6Vg4WsaRI7itGQfc4CpqScxWF3mxK6RUGpRXLHjoW9TdIbV0lOo9YghNuaAagBccWSKMfIc5CoCYhfHKlDXI-ZyLgSzTiGM1i0GQmxOMBcjzoOR5g5xW1K9F-owf6E5KgfxB1pxLKyi_tXEABiSFpQiG3SDHVTN8Jej6CFM9muQ0AMSYY7kNslsIt3qQ63IBMBE69xbEXhFgBu7FljTp55m4PR_sUwF9nlUT5Nfx7__vNQ_IKp4WOz1NUsveJvoQsE8WHeUz_x1RTvhG priority: 102 providerName: Hindawi Publishing – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9QwDLfGTRO8IL45GKhIgxcUrR9Jmj4gtE2bBtIVhBjaW5UmKXfSXe_gepr232O3adkEjLeqsdI0dpyfHccG2FNWCpsax6TmknFjI4Y4zjBhLJdOy0g68kNOcnl6xj-ei_MtyPu7MBRW2evEVlHbpSEf-T6aCRwFjkv1fvWDUdUoOl3tS2hoX1rBvmtTjN2C7ZgyY41g-_A4__yl182Um7w1wTIek4ci7EPhhSAvQLQv6aCR9POVTWpnStbxxexvGPTPUMrbm3qlLy_0fH5lnzq5B3c9wAwOOom4D1uufgA7XcnJy4fwyZ_MBB8WqEmCtiYmRQu1DAoO5t_xn5vpIjjE3c0G-OrbbL2h_pqmC4wMJo4uC8_WCzY5yvNHcHZy_PXolPmiCsygJdYwl9k0tImtUi2UtFGZukrFzlRlrGTkhESIkVgeGkpsV6ZVooyxDve5SkmdhTx5DKN6WbunECiH3OAOMRo-hUqXWSxii5gtpNBmLsbwtp_FwviM41T4Yl60locQBc154ed8DK8H6lWXaeMfdHueIf8h2-25VfhluS5-C9EYXg3NuKDolETXbrlpaRCziThMxvCkY-7woSSRChEldp5eY_tAQMm6r7fUs2mbtDvN0JRV2OebQUBuHP-zm8f_HO4QdecM2oVR83PjXiA8asqXXuZ_AapoCRs priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrSq48C4sFBSkwgVlm4ftOFIv24qqIO0KJBaVA4oS22Ejssmqm6gqJ34Cv7G_pOPECSxvcXPi0fg1tr-xxzMAu1wyKgOhbBYTZhMhXRtxnLCpkISpmLlM6XPIyZQdz8irE3qyAfvdWxipXcSXsVyN5lonPcua1dr062qvXIhc6-vuHtNXgqEzWsr0Cmwyikh8AJuz6evx--YimXj6CML5lg5JZ_dO6RqLtR1pyxT7K8D5s93k1bpYxudncZ5_tykd3YAPXXNaW5RPo7pKRuLzD54e_7e9N-G6QavWuBWvW7Chituw1cavPL8Db8w1j_VygcuS1QTY1KZHzWhb4_xjeZpV84V1gFultPDXu2xVa35V1VpZWhOlXx5nq8XFl6-Tw-n0LsyOXrw9PLZNjAZboGJX2SqUgSN9mQYx5Uy6SaBS7imRJh5nrqIMEYsviSO0n7wkSH0uhFS4baacxaFD_G0YFGWh7oPFFWGcKIR8mHJ4nIQe9SRCQEdbShM6hOfdOEXCODDXcTTyqFFkKI10R0Wmo4bwtKdeto47fkO3a3r-L2Q7nTxE3ehEqLoSXASx2kN40mfj_NSXLnGhyrqhQQhIPccfwr1WfPqCfJ9xBKjIPFgTrJ5A-_5ezymyeeMDPAhRM-bI81kvgn-s_4N_JXwI1_Rne8q0A4PqtFaPEHdVyWMzvS4BJeInBg priority: 102 providerName: Unpaywall |
| Title | Medical Image Classification Algorithm Based on Visual Attention Mechanism-MCNN |
| URI | https://dx.doi.org/10.1155/2021/6280690 https://www.ncbi.nlm.nih.gov/pubmed/33688390 https://www.proquest.com/docview/2494040468 https://www.proquest.com/docview/2499935203 https://pubmed.ncbi.nlm.nih.gov/PMC7914083 https://downloads.hindawi.com/journals/omcl/2021/6280690.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 2021 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1942-0994 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0063241 issn: 1942-0994 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1942-0994 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0063241 issn: 1942-0994 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1942-0994 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0063241 issn: 1942-0994 databaseCode: DIK dateStart: 20080101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1942-0994 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0063241 issn: 1942-0994 databaseCode: RPM dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1942-0994 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0063241 issn: 1942-0994 databaseCode: 7X7 dateStart: 20140101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1942-0994 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0063241 issn: 1942-0994 databaseCode: BENPR dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1942-0994 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0063241 issn: 1942-0994 databaseCode: M48 dateStart: 20080101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1942-0994 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0063241 issn: 1942-0994 databaseCode: 24P dateStart: 20080101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED-NTYO9IL4JjCpIgxcUyIe_8oBQN20qSA3TRFF5ihLboZHSdLSpRv97zvkShQ1eosi-2Jbv7PudfbkDOBKKUcWldlhCmEOk8hzEcdKhUhGmE-Yxbc4hxxEbTcinKZ3uQJdttJ3A1bWmncknNVkWb3_-2HzABf--XvCUGvvde8fMFWGIxvse6qjQJHEYk_4-wcQk9zq39z--OIDbQcAEAgV3Szftz4xRfJVfBz3_9qC8sy4vk81VUhS_qaeze3C3xZX2sBGE-7Cjywew32Sa3DyEz-2FjP1xjhuIXafCNE5CNV_sYfF9scyr2dw-RqWmbCz6mq_Wpr2qavwh7bE2_wjnq7kzPomiRzA5O_1yMnLaXAqORAOscnSouKsClfGECqa8lOtM-FpmqS-YpylDZBEo4koTzy7lWSCkVBrVWyZYErokeAy75aLUT8EWmjBBNEIzfHNFkoY-9RVCNdd4NBNqwZtuFmPZBho3-S6KuDY4KI3N9Mft9Fvwqqe-bAJs3EB31DLkP2SHHbfiTphiNDEJblY4bAte9tW4jszlSFLqxbqmQahGfTew4EnD3L6jTj4s4Fts7wlMjO7tmjKf1bG6eYgWrMA2X_cC8s_xP7ux8-dwYAib459D2K2Wa_0CAVGVDuAWn_IB7B2fRucXg1ry8XkxmmLZJDoffvsFN60How |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0Bqbpu0F8U1hQJA2XpC1fNiO8zChbWxq2RoQ2tDessR21kptWmiqqn-O38Zd4oRNwHjaWxRfHOvufF8-3xGyLbXgOlSGipQJypT2KNhxinKlmTCp8ITBOGQ_Ft1z9umCX6yQn81dGEyrbGRiJaj1RGGMfBfcBAYMx4T8MP1OsWsUnq42LTRS21pB71UlxuzFjhOzXIALN9vrfQR67_j-8dHZYZfaLgNUgWtSUhPp0NWBzsOUS6G9LDS59I3KM18Kz3ABOjfQzFVY6S0L80AqpQ0I_lyKNHJZAPPeI2ssYBE4f2sHR_GXr40uwFrolcsXMR8jIm6Tes85Rh28XYEHm6gPrinF9QF644vh32zeP1M3N-bFNF0u0tHoml48fkDuW4PW2a858CFZMcUjsl63uFw-Jp_tSZDTG4PkcqoenJidVDGEsz-6AhyXg7FzANpUO_Dq23A2x_nKsk7EdPoGLycPZ2PaP4zjJ-T8TtD7lKwWk8I8J440QH1mwCaEJ1emWeRzX4ON6GIqNeMd8r7BYqJshXNstDFKKk-H8wRxnlicd8hOCz2tK3v8A27bEuQ_YFsNtRIrBmbJb6btkLftMGxgPJVJCzOZVzBgI3LfDTrkWU3c9kdBICRYsDB5eIPsLQAWB785UgwHVZHwMALXWcKc71oGuXX9L25f_xuy0T3rnyanvfjkJdnEL-tA1BZZLX_MzSswzcrsteV_h1ze9Zb7BcxYRnM |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw8DSGBrwgvikMMNLGC4qaD9txHhAaG9XKaOGBob5lie3QSm1aaKqqf41fx12-2ASMp71F8cWx7s735fMdwJ4yUphQW0cmXDpcG89BO047QhsubSI9aSkOORjK41P-YSRGW_CzuQtDaZWNTCwFtZlripF30U3gyHBcqm5Wp0V8Puq9XXx3qIMUnbQ27TQqFjmxmzW6b8s3_SOk9b7v995_OTx26g4Djka3pHBsZELXBCYLE6Gk8dLQZsq3Okt9JT0rJOrbwHBXU5W3NMwCpbWxKPQzJZPI5QHOew2uh0EQUTphOGqdPaqCXjp7EfcpFuI2SfdCULzB60o60iRNcE4d7ozJD19P_mbt_pm0eXOVL5LNOplOz2nE3h24XZuy7KDivbuwZfN7sFM1t9zch0_1GRDrz1BmsbL7JuUllazADqbfEKPFeMbeoR41DF99nSxXNF9RVCmYbGDpWvJkOXMGh8PhAzi9EuQ-hO18ntvHwJRFunOL1iA-uSpJI1_4Bq1Dl5KouejA6waLsa5rm1OLjWlc-jhCxITzuMZ5B_Zb6EVV0-MfcHs1Qf4DtttQK64FwDL-za4deNkO49al85gkt_NVCYPWofDdoAOPKuK2PwoCqdB2xcnDC2RvAags-MWRfDIuy4OHETrNCud81TLIpet_cvn6X8AN3Gjxx_7w5Cncog-rCNQubBc_VvYZ2mRF-rxkfgZnV73bfgHGTkQN |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrSq48C4sFBSkwgVlm4ftOFIv24qqIO0KJBaVA4oS22Ejssmqm6gqJ34Cv7G_pOPECSxvcXPi0fg1tr-xxzMAu1wyKgOhbBYTZhMhXRtxnLCpkISpmLlM6XPIyZQdz8irE3qyAfvdWxipXcSXsVyN5lonPcua1dr062qvXIhc6-vuHtNXgqEzWsr0Cmwyikh8AJuz6evx--YimXj6CML5lg5JZ_dO6RqLtR1pyxT7K8D5s93k1bpYxudncZ5_tykd3YAPXXNaW5RPo7pKRuLzD54e_7e9N-G6QavWuBWvW7Chituw1cavPL8Db8w1j_VygcuS1QTY1KZHzWhb4_xjeZpV84V1gFultPDXu2xVa35V1VpZWhOlXx5nq8XFl6-Tw-n0LsyOXrw9PLZNjAZboGJX2SqUgSN9mQYx5Uy6SaBS7imRJh5nrqIMEYsviSO0n7wkSH0uhFS4baacxaFD_G0YFGWh7oPFFWGcKIR8mHJ4nIQe9SRCQEdbShM6hOfdOEXCODDXcTTyqFFkKI10R0Wmo4bwtKdeto47fkO3a3r-L2Q7nTxE3ehEqLoSXASx2kN40mfj_NSXLnGhyrqhQQhIPccfwr1WfPqCfJ9xBKjIPFgTrJ5A-_5ezymyeeMDPAhRM-bI81kvgn-s_4N_JXwI1_Rne8q0A4PqtFaPEHdVyWMzvS4BJeInBg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Medical+Image+Classification+Algorithm+Based+on+Visual+Attention+Mechanism-MCNN&rft.jtitle=Oxidative+medicine+and+cellular+longevity&rft.au=An%2C+Fengping&rft.au=Li%2C+Xiaowei&rft.au=Ma%2C+Xingmin&rft.date=2021&rft.eissn=1942-0994&rft.volume=2021&rft.spage=6280690&rft_id=info:doi/10.1155%2F2021%2F6280690&rft_id=info%3Apmid%2F33688390&rft.externalDocID=33688390 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1942-0900&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1942-0900&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1942-0900&client=summon |