Medical Image Classification Algorithm Based on Visual Attention Mechanism-MCNN

Due to the complexity of medical images, traditional medical image classification methods have been unable to meet the actual application needs. In recent years, the rapid development of deep learning theory has provided a technical approach for solving medical image classification. However, deep le...

Full description

Saved in:
Bibliographic Details
Published inOxidative medicine and cellular longevity Vol. 2021; no. 1; p. 6280690
Main Authors An, Fengping, Li, Xiaowei, Ma, Xingmin
Format Journal Article
LanguageEnglish
Published United States Hindawi 2021
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1942-0900
1942-0994
1942-0994
DOI10.1155/2021/6280690

Cover

Abstract Due to the complexity of medical images, traditional medical image classification methods have been unable to meet the actual application needs. In recent years, the rapid development of deep learning theory has provided a technical approach for solving medical image classification. However, deep learning has the following problems in the application of medical image classification. First, it is impossible to construct a deep learning model with excellent performance according to the characteristics of medical images. Second, the current deep learning network structure and training strategies are less adaptable to medical images. Therefore, this paper first introduces the visual attention mechanism into the deep learning model so that the information can be extracted more effectively according to the problem of medical images, and the reasoning is realized at a finer granularity. It can increase the interpretability of the model. Additionally, to solve the problem of matching the deep learning network structure and training strategy to medical images, this paper will construct a novel multiscale convolutional neural network model that can automatically extract high-level discriminative appearance features from the original image, and the loss function uses the Mahalanobis distance optimization model to obtain a better training strategy, which can improve the robust performance of the network model. The medical image classification task is completed by the above method. Based on the above ideas, this paper proposes a medical classification algorithm based on a visual attention mechanism-multiscale convolutional neural network. The lung nodules and breast cancer images were classified by the method in this paper. The experimental results show that the accuracy of medical image classification in this paper is not only higher than that of traditional machine learning methods but also improved compared with other deep learning methods, and the method has good stability and robustness.
AbstractList Due to the complexity of medical images, traditional medical image classification methods have been unable to meet the actual application needs. In recent years, the rapid development of deep learning theory has provided a technical approach for solving medical image classification. However, deep learning has the following problems in the application of medical image classification. First, it is impossible to construct a deep learning model with excellent performance according to the characteristics of medical images. Second, the current deep learning network structure and training strategies are less adaptable to medical images. Therefore, this paper first introduces the visual attention mechanism into the deep learning model so that the information can be extracted more effectively according to the problem of medical images, and the reasoning is realized at a finer granularity. It can increase the interpretability of the model. Additionally, to solve the problem of matching the deep learning network structure and training strategy to medical images, this paper will construct a novel multiscale convolutional neural network model that can automatically extract high-level discriminative appearance features from the original image, and the loss function uses the Mahalanobis distance optimization model to obtain a better training strategy, which can improve the robust performance of the network model. The medical image classification task is completed by the above method. Based on the above ideas, this paper proposes a medical classification algorithm based on a visual attention mechanism-multiscale convolutional neural network. The lung nodules and breast cancer images were classified by the method in this paper. The experimental results show that the accuracy of medical image classification in this paper is not only higher than that of traditional machine learning methods but also improved compared with other deep learning methods, and the method has good stability and robustness.
Due to the complexity of medical images, traditional medical image classification methods have been unable to meet the actual application needs. In recent years, the rapid development of deep learning theory has provided a technical approach for solving medical image classification. However, deep learning has the following problems in the application of medical image classification. First, it is impossible to construct a deep learning model with excellent performance according to the characteristics of medical images. Second, the current deep learning network structure and training strategies are less adaptable to medical images. Therefore, this paper first introduces the visual attention mechanism into the deep learning model so that the information can be extracted more effectively according to the problem of medical images, and the reasoning is realized at a finer granularity. It can increase the interpretability of the model. Additionally, to solve the problem of matching the deep learning network structure and training strategy to medical images, this paper will construct a novel multiscale convolutional neural network model that can automatically extract high-level discriminative appearance features from the original image, and the loss function uses the Mahalanobis distance optimization model to obtain a better training strategy, which can improve the robust performance of the network model. The medical image classification task is completed by the above method. Based on the above ideas, this paper proposes a medical classification algorithm based on a visual attention mechanism-multiscale convolutional neural network. The lung nodules and breast cancer images were classified by the method in this paper. The experimental results show that the accuracy of medical image classification in this paper is not only higher than that of traditional machine learning methods but also improved compared with other deep learning methods, and the method has good stability and robustness.Due to the complexity of medical images, traditional medical image classification methods have been unable to meet the actual application needs. In recent years, the rapid development of deep learning theory has provided a technical approach for solving medical image classification. However, deep learning has the following problems in the application of medical image classification. First, it is impossible to construct a deep learning model with excellent performance according to the characteristics of medical images. Second, the current deep learning network structure and training strategies are less adaptable to medical images. Therefore, this paper first introduces the visual attention mechanism into the deep learning model so that the information can be extracted more effectively according to the problem of medical images, and the reasoning is realized at a finer granularity. It can increase the interpretability of the model. Additionally, to solve the problem of matching the deep learning network structure and training strategy to medical images, this paper will construct a novel multiscale convolutional neural network model that can automatically extract high-level discriminative appearance features from the original image, and the loss function uses the Mahalanobis distance optimization model to obtain a better training strategy, which can improve the robust performance of the network model. The medical image classification task is completed by the above method. Based on the above ideas, this paper proposes a medical classification algorithm based on a visual attention mechanism-multiscale convolutional neural network. The lung nodules and breast cancer images were classified by the method in this paper. The experimental results show that the accuracy of medical image classification in this paper is not only higher than that of traditional machine learning methods but also improved compared with other deep learning methods, and the method has good stability and robustness.
Author An, Fengping
Li, Xiaowei
Ma, Xingmin
AuthorAffiliation 2 System Second Department, North China Institute of Computing Technology, Beijing 100083, China
1 School of Physics and Electronic Electrical Engineering, Huaiyin Normal University, Huaian 223300, China
AuthorAffiliation_xml – name: 2 System Second Department, North China Institute of Computing Technology, Beijing 100083, China
– name: 1 School of Physics and Electronic Electrical Engineering, Huaiyin Normal University, Huaian 223300, China
Author_xml – sequence: 1
  givenname: Fengping
  orcidid: 0000-0002-2220-2987
  surname: An
  fullname: An, Fengping
  organization: School of Physics and Electronic Electrical EngineeringHuaiyin Normal UniversityHuaian 223300Chinahytc.edu.cn
– sequence: 2
  givenname: Xiaowei
  surname: Li
  fullname: Li, Xiaowei
  organization: School of Physics and Electronic Electrical EngineeringHuaiyin Normal UniversityHuaian 223300Chinahytc.edu.cn
– sequence: 3
  givenname: Xingmin
  surname: Ma
  fullname: Ma, Xingmin
  organization: System Second DepartmentNorth China Institute of Computing TechnologyBeijing 100083China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33688390$$D View this record in MEDLINE/PubMed
BookMark eNqFkctvEzEQxi1URB9w44xW4oIES8eP9doXpBDxqNS0F-BqObY3ceW10_UuVf97nCYUqATIB1szv_k8880xOogpOoSeY3iLcdOcEiD4lBMBXMIjdIQlIzVIyQ7u3wCH6DjnKwBOCcNP0CGlXAgq4QhdLpz1RofqrNcrV82Dztl3JTL6FKtZWKXBj-u-eq-zs1UJffN5KvhsHF28YxbOrHX0ua8X84uLp-hxp0N2z_b3Cfr68cOX-ef6_PLT2Xx2XhvGxFg7aVuw1HatbgS3eNm6ThBnuiURHLuGtwxTy8CIRpZkR4Ux1gHlneBaAqMnqN7pTnGjb290CGoz-F4PtwqD2hqjtsaovTGFf7fjN9Oyd9aU5gf9qyZpr_7MRL9Wq_RdtRIzELQIvNoLDOl6cnlUvc_GhaCjS1NWhEkpaUNgi758gF6laYjFji3FoBwuCvXi947uW_m5mwK82QFmSDkPrvvfhOQBbvx4t8Yyjw9_K3q9K1r7aPWN__cXPwCXX7qf
CitedBy_id crossref_primary_10_1155_2022_2056791
crossref_primary_10_32604_iasc_2023_025930
crossref_primary_10_1088_1361_6560_ac7d33
crossref_primary_10_1007_s41060_025_00715_0
crossref_primary_10_1038_s41746_022_00699_2
crossref_primary_10_1371_journal_pone_0313946
crossref_primary_10_3390_app13010507
crossref_primary_10_1038_s41598_023_33793_w
crossref_primary_10_12677_JISP_2024_131007
crossref_primary_10_1155_2024_5576859
crossref_primary_10_3390_diagnostics15020207
crossref_primary_10_1002_ima_22903
crossref_primary_10_1007_s10462_024_11063_z
crossref_primary_10_3390_bioengineering11101021
crossref_primary_10_3389_fnagi_2022_912283
Cites_doi 10.1109/CVPR.2015.7298682
10.1016/j.neunet.2017.02.013
10.3389/fnins.2014.00229
10.1166/jmihi.2015.1382
10.4018/978-1-5225-0140-4
10.1017/9781316671849
10.1016/j.artmed.2010.04.011
10.1109/CVPR.2016.90
10.1016/j.media.2005.09.003
10.1109/ICCV.2015.510
10.1038/nature21056
10.1109/TMI.2016.2536809
10.1118/1.3140589
10.1109/ETECHNXT.2018.8385355
10.1109/TNNLS.2016.2582924
10.1109/R10-HTC.2017.8289075
10.1016/j.neucom.2018.09.013
10.1109/TMI.2005.852048
10.1007/978-3-319-47157-0_20
10.1109/TBME.2015.2496253
10.1145/3123266.3130141
10.1007/978-3-319-46723-8_25
10.1109/JBHI.2016.2635662
10.1109/TMI.2016.2535865
10.1148/rg.2017160130
10.1109/CVPR.2016.308
10.1109/TMM.2017.2751969
10.1109/ICACCCN.2018.8748777
10.1166/jmihi.2016.1871
10.1007/978-3-642-40763-5_72
10.1118/1.1580485
10.1007/s12194-017-0406-5
10.1109/ACCESS.2018.2807385
10.1016/j.neuroimage.2014.06.077
10.1166/jmihi.2017.2280
10.1166/jmihi.2018.2345
10.1038/srep24454
10.1126/science.1127647
10.1016/j.measurement.2015.04.028
10.1186/s12938-015-0120-7
10.1007/978-3-030-17971-7_77
10.1038/ncomms12474
10.1109/ICCV.2015.172
10.1007/s11042-019-7419-5
10.3348/kjr.2017.18.4.570
10.1016/j.patcog.2015.04.005
10.1016/j.ultras.2016.08.004
10.1016/j.ijar.2011.05.006
ContentType Journal Article
Copyright Copyright © 2021 Fengping An et al.
Copyright © 2021 Fengping An et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright © 2021 Fengping An et al. 2021
Copyright_xml – notice: Copyright © 2021 Fengping An et al.
– notice: Copyright © 2021 Fengping An et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
– notice: Copyright © 2021 Fengping An et al. 2021
DBID RHU
RHW
RHX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M1P
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1155/2021/6280690
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

CrossRef
Publicly Available Content Database
MEDLINE
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1942-0994
Editor Lorenzini, Antonello
Editor_xml – sequence: 1
  givenname: Antonello
  surname: Lorenzini
  fullname: Lorenzini, Antonello
ExternalDocumentID 10.1155/2021/6280690
PMC7914083
33688390
10_1155_2021_6280690
Genre Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20201479
– fundername: Hebei IoT Monitoring Engineering Technology Research Center funded project
  grantid: IOT202004
– fundername: National Natural Science Foundation of China
  grantid: 61701188
– fundername: China Postdoctoral Science Foundation
  grantid: 2019M650512
GroupedDBID ---
3V.
4.4
53G
5VS
7X7
88E
8FI
8FJ
8G5
AAFWJ
AAJEY
ABUWG
ADBBV
ADRAZ
AENEX
AFKRA
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
DIK
DWQXO
E3Z
EBD
EBS
EMOBN
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GUQSH
HMCUK
HYE
IAO
IEA
IHR
INH
INR
ITC
KQ8
M1P
M2O
M48
M~E
O5R
O5S
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RHU
RHW
RHX
RNS
RPM
SV3
TR2
UKHRP
0R~
24P
AAMMB
AAYXX
ACCMX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
EJD
H13
IPNFZ
PGMZT
PHGZM
PHGZT
PJZUB
PPXIY
PUEGO
RIG
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c448t-e9d70d3df7a586d1b7ef82ecfb2861e567413d40c8591b7f38ccde036f86a9043
IEDL.DBID M48
ISSN 1942-0900
1942-0994
IngestDate Sun Oct 26 04:03:52 EDT 2025
Tue Sep 30 16:53:33 EDT 2025
Sun Sep 28 08:25:44 EDT 2025
Tue Oct 07 06:34:24 EDT 2025
Mon Jul 21 06:01:54 EDT 2025
Thu Apr 24 23:11:15 EDT 2025
Wed Oct 01 03:32:59 EDT 2025
Sun Jun 02 18:54:52 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © 2021 Fengping An et al.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c448t-e9d70d3df7a586d1b7ef82ecfb2861e567413d40c8591b7f38ccde036f86a9043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Academic Editor: Antonello Lorenzini
ORCID 0000-0002-2220-2987
OpenAccessLink https://dx.doi.org/10.1155/2021/6280690
PMID 33688390
PQID 2494040468
PQPubID 2037493
ParticipantIDs unpaywall_primary_10_1155_2021_6280690
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7914083
proquest_miscellaneous_2499935203
proquest_journals_2494040468
pubmed_primary_33688390
crossref_primary_10_1155_2021_6280690
crossref_citationtrail_10_1155_2021_6280690
hindawi_primary_10_1155_2021_6280690
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Oxidative medicine and cellular longevity
PublicationTitleAlternate Oxid Med Cell Longev
PublicationYear 2021
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References e_1_2_10_23_2
e_1_2_10_44_2
e_1_2_10_21_2
e_1_2_10_42_2
e_1_2_10_40_2
e_1_2_10_2_2
e_1_2_10_18_2
e_1_2_10_39_2
e_1_2_10_53_2
e_1_2_10_4_2
e_1_2_10_16_2
e_1_2_10_37_2
e_1_2_10_14_2
e_1_2_10_35_2
e_1_2_10_11_2
e_1_2_10_34_2
e_1_2_10_8_2
Meyer-Baese A. (e_1_2_10_6_2) 2014
e_1_2_10_30_2
e_1_2_10_51_2
e_1_2_10_29_2
e_1_2_10_27_2
e_1_2_10_48_2
e_1_2_10_25_2
e_1_2_10_46_2
e_1_2_10_22_2
e_1_2_10_45_2
e_1_2_10_20_2
e_1_2_10_43_2
e_1_2_10_41_2
Bidart R. (e_1_2_10_32_2) 2018
e_1_2_10_19_2
e_1_2_10_1_2
e_1_2_10_3_2
e_1_2_10_17_2
e_1_2_10_52_2
e_1_2_10_5_2
e_1_2_10_15_2
e_1_2_10_38_2
e_1_2_10_54_2
e_1_2_10_7_2
e_1_2_10_13_2
e_1_2_10_36_2
e_1_2_10_9_2
e_1_2_10_12_2
e_1_2_10_33_2
e_1_2_10_10_2
e_1_2_10_31_2
e_1_2_10_50_2
e_1_2_10_28_2
e_1_2_10_26_2
e_1_2_10_49_2
e_1_2_10_24_2
e_1_2_10_47_2
References_xml – ident: e_1_2_10_40_2
  doi: 10.1109/CVPR.2015.7298682
– volume-title: Pattern Recognition and Signal Analysis in Medical Imaging
  year: 2014
  ident: e_1_2_10_6_2
– ident: e_1_2_10_20_2
  doi: 10.1016/j.neunet.2017.02.013
– ident: e_1_2_10_25_2
  doi: 10.3389/fnins.2014.00229
– ident: e_1_2_10_43_2
  doi: 10.1166/jmihi.2015.1382
– ident: e_1_2_10_5_2
  doi: 10.4018/978-1-5225-0140-4
– ident: e_1_2_10_1_2
  doi: 10.1017/9781316671849
– ident: e_1_2_10_7_2
  doi: 10.1016/j.artmed.2010.04.011
– ident: e_1_2_10_38_2
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_10_42_2
  doi: 10.1016/j.media.2005.09.003
– ident: e_1_2_10_22_2
  doi: 10.1109/ICCV.2015.510
– ident: e_1_2_10_31_2
  doi: 10.1038/nature21056
– ident: e_1_2_10_33_2
  doi: 10.1109/TMI.2016.2536809
– ident: e_1_2_10_10_2
  doi: 10.1118/1.3140589
– ident: e_1_2_10_52_2
  doi: 10.1109/ETECHNXT.2018.8385355
– ident: e_1_2_10_36_2
– ident: e_1_2_10_37_2
  doi: 10.1109/TNNLS.2016.2582924
– ident: e_1_2_10_48_2
  doi: 10.1109/R10-HTC.2017.8289075
– ident: e_1_2_10_3_2
  doi: 10.1016/j.neucom.2018.09.013
– ident: e_1_2_10_9_2
  doi: 10.1109/TMI.2005.852048
– ident: e_1_2_10_30_2
  doi: 10.1007/978-3-319-47157-0_20
– ident: e_1_2_10_47_2
  doi: 10.1109/TBME.2015.2496253
– ident: e_1_2_10_23_2
  doi: 10.1145/3123266.3130141
– start-page: 10581
  volume-title: Medical Imaging: Digital Pathology
  year: 2018
  ident: e_1_2_10_32_2
– ident: e_1_2_10_34_2
  doi: 10.1007/978-3-319-46723-8_25
– ident: e_1_2_10_4_2
  doi: 10.1109/JBHI.2016.2635662
– ident: e_1_2_10_24_2
  doi: 10.1109/TMI.2016.2535865
– ident: e_1_2_10_2_2
  doi: 10.1148/rg.2017160130
– ident: e_1_2_10_17_2
  doi: 10.1109/CVPR.2016.308
– ident: e_1_2_10_21_2
  doi: 10.1109/TMM.2017.2751969
– ident: e_1_2_10_53_2
  doi: 10.1109/ICACCCN.2018.8748777
– ident: e_1_2_10_45_2
  doi: 10.1166/jmihi.2016.1871
– ident: e_1_2_10_26_2
  doi: 10.1007/978-3-642-40763-5_72
– ident: e_1_2_10_8_2
  doi: 10.1118/1.1580485
– ident: e_1_2_10_14_2
  doi: 10.1007/s12194-017-0406-5
– ident: e_1_2_10_19_2
– ident: e_1_2_10_18_2
  doi: 10.1109/ACCESS.2018.2807385
– ident: e_1_2_10_27_2
  doi: 10.1016/j.neuroimage.2014.06.077
– ident: e_1_2_10_46_2
  doi: 10.1166/jmihi.2017.2280
– ident: e_1_2_10_44_2
  doi: 10.1166/jmihi.2018.2345
– ident: e_1_2_10_29_2
  doi: 10.1038/srep24454
– ident: e_1_2_10_15_2
  doi: 10.1126/science.1127647
– ident: e_1_2_10_50_2
  doi: 10.1016/j.measurement.2015.04.028
– ident: e_1_2_10_11_2
  doi: 10.1186/s12938-015-0120-7
– ident: e_1_2_10_51_2
  doi: 10.1007/978-3-030-17971-7_77
– ident: e_1_2_10_35_2
– ident: e_1_2_10_12_2
  doi: 10.1038/ncomms12474
– ident: e_1_2_10_41_2
  doi: 10.1109/ICCV.2015.172
– ident: e_1_2_10_54_2
  doi: 10.1007/s11042-019-7419-5
– ident: e_1_2_10_13_2
  doi: 10.3348/kjr.2017.18.4.570
– ident: e_1_2_10_39_2
  doi: 10.1016/j.patcog.2015.04.005
– ident: e_1_2_10_28_2
  doi: 10.1016/j.ultras.2016.08.004
– ident: e_1_2_10_16_2
– ident: e_1_2_10_49_2
  doi: 10.1016/j.ijar.2011.05.006
SSID ssj0063241
Score 2.378076
Snippet Due to the complexity of medical images, traditional medical image classification methods have been unable to meet the actual application needs. In recent...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
hindawi
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6280690
SubjectTerms Accuracy
Algorithms
Attention - physiology
Breast cancer
Breast Neoplasms - classification
Breast Neoplasms - diagnostic imaging
Classification
Deep learning
Discriminant analysis
Female
Genetic algorithms
Humans
Image Processing, Computer-Assisted - classification
Lung cancer
Lung Neoplasms - diagnostic imaging
Machine learning
Medical imaging
Methods
Neural networks
Neural Networks, Computer
Support vector machines
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA86GPoifjudUkF9kWI_kjR9nKJMYRNEZW-lTVJX2DpxHWP_vXdtV5zfb21zTdO7NPe73PWOkBOhOFOe1CYPKTepVLYJOE6aTCrKdchtrnEfstPl7Sd612O9MknS-KsLH7Qdmuf2BUcPoA-2-bLgGLn10O7NF1xMOJ7bVT51cNvBmse3f7p3QfPU-2jyTpPvgOXX-MiVSfoazqbhYPBB-dysk7USNRqtQswbZEmnm6Re1JGcbZH70t1i3A5heTDyQpcYApRz3WgNXkZvSdYfGpegspQBl56T8QT7y7Ii2tHoaPwDOBkPzc5Vt7tNnm6uH6_aZlkpwZRgXmWm9pVnKVfFXsgEV3bk6Vg4WsaRI7itGQfc4CpqScxWF3mxK6RUGpRXLHjoW9TdIbV0lOo9YghNuaAagBccWSKMfIc5CoCYhfHKlDXI-ZyLgSzTiGM1i0GQmxOMBcjzoOR5g5xW1K9F-owf6E5KgfxB1pxLKyi_tXEABiSFpQiG3SDHVTN8Jej6CFM9muQ0AMSYY7kNslsIt3qQ63IBMBE69xbEXhFgBu7FljTp55m4PR_sUwF9nlUT5Nfx7__vNQ_IKp4WOz1NUsveJvoQsE8WHeUz_x1RTvhG
  priority: 102
  providerName: Hindawi Publishing
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9QwDLfGTRO8IL45GKhIgxcUrR9Jmj4gtE2bBtIVhBjaW5UmKXfSXe_gepr232O3adkEjLeqsdI0dpyfHccG2FNWCpsax6TmknFjI4Y4zjBhLJdOy0g68kNOcnl6xj-ei_MtyPu7MBRW2evEVlHbpSEf-T6aCRwFjkv1fvWDUdUoOl3tS2hoX1rBvmtTjN2C7ZgyY41g-_A4__yl182Um7w1wTIek4ci7EPhhSAvQLQv6aCR9POVTWpnStbxxexvGPTPUMrbm3qlLy_0fH5lnzq5B3c9wAwOOom4D1uufgA7XcnJy4fwyZ_MBB8WqEmCtiYmRQu1DAoO5t_xn5vpIjjE3c0G-OrbbL2h_pqmC4wMJo4uC8_WCzY5yvNHcHZy_PXolPmiCsygJdYwl9k0tImtUi2UtFGZukrFzlRlrGTkhESIkVgeGkpsV6ZVooyxDve5SkmdhTx5DKN6WbunECiH3OAOMRo-hUqXWSxii5gtpNBmLsbwtp_FwviM41T4Yl60locQBc154ed8DK8H6lWXaeMfdHueIf8h2-25VfhluS5-C9EYXg3NuKDolETXbrlpaRCziThMxvCkY-7woSSRChEldp5eY_tAQMm6r7fUs2mbtDvN0JRV2OebQUBuHP-zm8f_HO4QdecM2oVR83PjXiA8asqXXuZ_AapoCRs
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrSq48C4sFBSkwgVlm4ftOFIv24qqIO0KJBaVA4oS22Ejssmqm6gqJ34Cv7G_pOPECSxvcXPi0fg1tr-xxzMAu1wyKgOhbBYTZhMhXRtxnLCpkISpmLlM6XPIyZQdz8irE3qyAfvdWxipXcSXsVyN5lonPcua1dr062qvXIhc6-vuHtNXgqEzWsr0Cmwyikh8AJuz6evx--YimXj6CML5lg5JZ_dO6RqLtR1pyxT7K8D5s93k1bpYxudncZ5_tykd3YAPXXNaW5RPo7pKRuLzD54e_7e9N-G6QavWuBWvW7Chituw1cavPL8Db8w1j_VygcuS1QTY1KZHzWhb4_xjeZpV84V1gFultPDXu2xVa35V1VpZWhOlXx5nq8XFl6-Tw-n0LsyOXrw9PLZNjAZboGJX2SqUgSN9mQYx5Uy6SaBS7imRJh5nrqIMEYsviSO0n7wkSH0uhFS4baacxaFD_G0YFGWh7oPFFWGcKIR8mHJ4nIQe9SRCQEdbShM6hOfdOEXCODDXcTTyqFFkKI10R0Wmo4bwtKdeto47fkO3a3r-L2Q7nTxE3ehEqLoSXASx2kN40mfj_NSXLnGhyrqhQQhIPccfwr1WfPqCfJ9xBKjIPFgTrJ5A-_5ezymyeeMDPAhRM-bI81kvgn-s_4N_JXwI1_Rne8q0A4PqtFaPEHdVyWMzvS4BJeInBg
  priority: 102
  providerName: Unpaywall
Title Medical Image Classification Algorithm Based on Visual Attention Mechanism-MCNN
URI https://dx.doi.org/10.1155/2021/6280690
https://www.ncbi.nlm.nih.gov/pubmed/33688390
https://www.proquest.com/docview/2494040468
https://www.proquest.com/docview/2499935203
https://pubmed.ncbi.nlm.nih.gov/PMC7914083
https://downloads.hindawi.com/journals/omcl/2021/6280690.pdf
UnpaywallVersion publishedVersion
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1942-0994
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0063241
  issn: 1942-0994
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1942-0994
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0063241
  issn: 1942-0994
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1942-0994
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0063241
  issn: 1942-0994
  databaseCode: DIK
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1942-0994
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0063241
  issn: 1942-0994
  databaseCode: RPM
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1942-0994
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0063241
  issn: 1942-0994
  databaseCode: 7X7
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1942-0994
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0063241
  issn: 1942-0994
  databaseCode: BENPR
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1942-0994
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0063241
  issn: 1942-0994
  databaseCode: M48
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1942-0994
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0063241
  issn: 1942-0994
  databaseCode: 24P
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED-NTYO9IL4JjCpIgxcUyIe_8oBQN20qSA3TRFF5ihLboZHSdLSpRv97zvkShQ1eosi-2Jbv7PudfbkDOBKKUcWldlhCmEOk8hzEcdKhUhGmE-Yxbc4hxxEbTcinKZ3uQJdttJ3A1bWmncknNVkWb3_-2HzABf--XvCUGvvde8fMFWGIxvse6qjQJHEYk_4-wcQk9zq39z--OIDbQcAEAgV3Szftz4xRfJVfBz3_9qC8sy4vk81VUhS_qaeze3C3xZX2sBGE-7Cjywew32Sa3DyEz-2FjP1xjhuIXafCNE5CNV_sYfF9scyr2dw-RqWmbCz6mq_Wpr2qavwh7bE2_wjnq7kzPomiRzA5O_1yMnLaXAqORAOscnSouKsClfGECqa8lOtM-FpmqS-YpylDZBEo4koTzy7lWSCkVBrVWyZYErokeAy75aLUT8EWmjBBNEIzfHNFkoY-9RVCNdd4NBNqwZtuFmPZBho3-S6KuDY4KI3N9Mft9Fvwqqe-bAJs3EB31DLkP2SHHbfiTphiNDEJblY4bAte9tW4jszlSFLqxbqmQahGfTew4EnD3L6jTj4s4Fts7wlMjO7tmjKf1bG6eYgWrMA2X_cC8s_xP7ux8-dwYAib459D2K2Wa_0CAVGVDuAWn_IB7B2fRucXg1ry8XkxmmLZJDoffvsFN60How
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0Bqbpu0F8U1hQJA2XpC1fNiO8zChbWxq2RoQ2tDessR21kptWmiqqn-O38Zd4oRNwHjaWxRfHOvufF8-3xGyLbXgOlSGipQJypT2KNhxinKlmTCp8ITBOGQ_Ft1z9umCX6yQn81dGEyrbGRiJaj1RGGMfBfcBAYMx4T8MP1OsWsUnq42LTRS21pB71UlxuzFjhOzXIALN9vrfQR67_j-8dHZYZfaLgNUgWtSUhPp0NWBzsOUS6G9LDS59I3KM18Kz3ABOjfQzFVY6S0L80AqpQ0I_lyKNHJZAPPeI2ssYBE4f2sHR_GXr40uwFrolcsXMR8jIm6Tes85Rh28XYEHm6gPrinF9QF644vh32zeP1M3N-bFNF0u0tHoml48fkDuW4PW2a858CFZMcUjsl63uFw-Jp_tSZDTG4PkcqoenJidVDGEsz-6AhyXg7FzANpUO_Dq23A2x_nKsk7EdPoGLycPZ2PaP4zjJ-T8TtD7lKwWk8I8J440QH1mwCaEJ1emWeRzX4ON6GIqNeMd8r7BYqJshXNstDFKKk-H8wRxnlicd8hOCz2tK3v8A27bEuQ_YFsNtRIrBmbJb6btkLftMGxgPJVJCzOZVzBgI3LfDTrkWU3c9kdBICRYsDB5eIPsLQAWB785UgwHVZHwMALXWcKc71oGuXX9L25f_xuy0T3rnyanvfjkJdnEL-tA1BZZLX_MzSswzcrsteV_h1ze9Zb7BcxYRnM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw8DSGBrwgvikMMNLGC4qaD9txHhAaG9XKaOGBob5lie3QSm1aaKqqf41fx12-2ASMp71F8cWx7s735fMdwJ4yUphQW0cmXDpcG89BO047QhsubSI9aSkOORjK41P-YSRGW_CzuQtDaZWNTCwFtZlripF30U3gyHBcqm5Wp0V8Puq9XXx3qIMUnbQ27TQqFjmxmzW6b8s3_SOk9b7v995_OTx26g4Djka3pHBsZELXBCYLE6Gk8dLQZsq3Okt9JT0rJOrbwHBXU5W3NMwCpbWxKPQzJZPI5QHOew2uh0EQUTphOGqdPaqCXjp7EfcpFuI2SfdCULzB60o60iRNcE4d7ozJD19P_mbt_pm0eXOVL5LNOplOz2nE3h24XZuy7KDivbuwZfN7sFM1t9zch0_1GRDrz1BmsbL7JuUllazADqbfEKPFeMbeoR41DF99nSxXNF9RVCmYbGDpWvJkOXMGh8PhAzi9EuQ-hO18ntvHwJRFunOL1iA-uSpJI1_4Bq1Dl5KouejA6waLsa5rm1OLjWlc-jhCxITzuMZ5B_Zb6EVV0-MfcHs1Qf4DtttQK64FwDL-za4deNkO49al85gkt_NVCYPWofDdoAOPKuK2PwoCqdB2xcnDC2RvAags-MWRfDIuy4OHETrNCud81TLIpet_cvn6X8AN3Gjxx_7w5Cncog-rCNQubBc_VvYZ2mRF-rxkfgZnV73bfgHGTkQN
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrSq48C4sFBSkwgVlm4ftOFIv24qqIO0KJBaVA4oS22Ejssmqm6gqJ34Cv7G_pOPECSxvcXPi0fg1tr-xxzMAu1wyKgOhbBYTZhMhXRtxnLCpkISpmLlM6XPIyZQdz8irE3qyAfvdWxipXcSXsVyN5lonPcua1dr062qvXIhc6-vuHtNXgqEzWsr0Cmwyikh8AJuz6evx--YimXj6CML5lg5JZ_dO6RqLtR1pyxT7K8D5s93k1bpYxudncZ5_tykd3YAPXXNaW5RPo7pKRuLzD54e_7e9N-G6QavWuBWvW7Chituw1cavPL8Db8w1j_VygcuS1QTY1KZHzWhb4_xjeZpV84V1gFultPDXu2xVa35V1VpZWhOlXx5nq8XFl6-Tw-n0LsyOXrw9PLZNjAZboGJX2SqUgSN9mQYx5Uy6SaBS7imRJh5nrqIMEYsviSO0n7wkSH0uhFS4baacxaFD_G0YFGWh7oPFFWGcKIR8mHJ4nIQe9SRCQEdbShM6hOfdOEXCODDXcTTyqFFkKI10R0Wmo4bwtKdeto47fkO3a3r-L2Q7nTxE3ehEqLoSXASx2kN40mfj_NSXLnGhyrqhQQhIPccfwr1WfPqCfJ9xBKjIPFgTrJ5A-_5ezymyeeMDPAhRM-bI81kvgn-s_4N_JXwI1_Rne8q0A4PqtFaPEHdVyWMzvS4BJeInBg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Medical+Image+Classification+Algorithm+Based+on+Visual+Attention+Mechanism-MCNN&rft.jtitle=Oxidative+medicine+and+cellular+longevity&rft.au=An%2C+Fengping&rft.au=Li%2C+Xiaowei&rft.au=Ma%2C+Xingmin&rft.date=2021&rft.eissn=1942-0994&rft.volume=2021&rft.spage=6280690&rft_id=info:doi/10.1155%2F2021%2F6280690&rft_id=info%3Apmid%2F33688390&rft.externalDocID=33688390
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1942-0900&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1942-0900&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1942-0900&client=summon