Learning abstract visual concepts via probabilistic program induction in a Language of Thought

The ability to learn abstract concepts is a powerful component of human cognition. It has been argued that variable binding is the key element enabling this ability, but the computational aspects of variable binding remain poorly understood. Here, we address this shortcoming by formalizing the Hiera...

Full description

Saved in:
Bibliographic Details
Published inCognition Vol. 168; pp. 320 - 334
Main Authors Overlan, Matthew C., Jacobs, Robert A., Piantadosi, Steven T.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.11.2017
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0010-0277
1873-7838
1873-7838
DOI10.1016/j.cognition.2017.07.005

Cover

Abstract The ability to learn abstract concepts is a powerful component of human cognition. It has been argued that variable binding is the key element enabling this ability, but the computational aspects of variable binding remain poorly understood. Here, we address this shortcoming by formalizing the Hierarchical Language of Thought (HLOT) model of rule learning. Given a set of data items, the model uses Bayesian inference to infer a probability distribution over stochastic programs that implement variable binding. Because the model makes use of symbolic variables as well as Bayesian inference and programs with stochastic primitives, it combines many of the advantages of both symbolic and statistical approaches to cognitive modeling. To evaluate the model, we conducted an experiment in which human subjects viewed training items and then judged which test items belong to the same concept as the training items. We found that the HLOT model provides a close match to human generalization patterns, significantly outperforming two variants of the Generalized Context Model, one variant based on string similarity and the other based on visual similarity using features from a deep convolutional neural network. Additional results suggest that variable binding happens automatically, implying that binding operations do not add complexity to peoples’ hypothesized rules. Overall, this work demonstrates that a cognitive model combining symbolic variables with Bayesian inference and stochastic program primitives provides a new perspective for understanding people’s patterns of generalization.
AbstractList The ability to learn abstract concepts is a powerful component of human cognition. It has been argued that variable binding is the key element enabling this ability, but the computational aspects of variable binding remain poorly understood. Here, we address this shortcoming by formalizing the Hierarchical Language of Thought (HLOT) model of rule learning. Given a set of data items, the model uses Bayesian inference to infer a probability distribution over stochastic programs that implement variable binding. Because the model makes use of symbolic variables as well as Bayesian inference and programs with stochastic primitives, it combines many of the advantages of both symbolic and statistical approaches to cognitive modeling. To evaluate the model, we conducted an experiment in which human subjects viewed training items and then judged which test items belong to the same concept as the training items. We found that the HLOT model provides a close match to human generalization patterns, significantly outperforming two variants of the Generalized Context Model, one variant based on string similarity and the other based on visual similarity using features from a deep convolutional neural network. Additional results suggest that variable binding happens automatically, implying that binding operations do not add complexity to peoples' hypothesized rules. Overall, this work demonstrates that a cognitive model combining symbolic variables with Bayesian inference and stochastic program primitives provides a new perspective for understanding people's patterns of generalization.The ability to learn abstract concepts is a powerful component of human cognition. It has been argued that variable binding is the key element enabling this ability, but the computational aspects of variable binding remain poorly understood. Here, we address this shortcoming by formalizing the Hierarchical Language of Thought (HLOT) model of rule learning. Given a set of data items, the model uses Bayesian inference to infer a probability distribution over stochastic programs that implement variable binding. Because the model makes use of symbolic variables as well as Bayesian inference and programs with stochastic primitives, it combines many of the advantages of both symbolic and statistical approaches to cognitive modeling. To evaluate the model, we conducted an experiment in which human subjects viewed training items and then judged which test items belong to the same concept as the training items. We found that the HLOT model provides a close match to human generalization patterns, significantly outperforming two variants of the Generalized Context Model, one variant based on string similarity and the other based on visual similarity using features from a deep convolutional neural network. Additional results suggest that variable binding happens automatically, implying that binding operations do not add complexity to peoples' hypothesized rules. Overall, this work demonstrates that a cognitive model combining symbolic variables with Bayesian inference and stochastic program primitives provides a new perspective for understanding people's patterns of generalization.
The ability to learn abstract concepts is a powerful component of human cognition. It has been argued that variable binding is the key element enabling this ability, but the computational aspects of variable binding remain poorly understood. Here, we address this shortcoming by formalizing the Hierarchical Language of Thought (HLOT) model of rule learning. Given a set of data items, the model uses Bayesian inference to infer a probability distribution over stochastic programs that implement variable binding. Because the model makes use of symbolic variables as well as Bayesian inference and programs with stochastic primitives, it combines many of the advantages of both symbolic and statistical approaches to cognitive modeling. To evaluate the model, we conducted an experiment in which human subjects viewed training items and then judged which test items belong to the same concept as the training items. We found that the HLOT model provides a close match to human generalization patterns, significantly outperforming two variants of the Generalized Context Model, one variant based on string similarity and the other based on visual similarity using features from a deep convolutional neural network. Additional results suggest that variable binding happens automatically, implying that binding operations do not add complexity to peoples' hypothesized rules. Overall, this work demonstrates that a cognitive model combining symbolic variables with Bayesian inference and stochastic program primitives provides a new perspective for understanding people's patterns of generalization.
Author Overlan, Matthew C.
Piantadosi, Steven T.
Jacobs, Robert A.
Author_xml – sequence: 1
  givenname: Matthew C.
  surname: Overlan
  fullname: Overlan, Matthew C.
  email: m.overlan@rochester.edu
– sequence: 2
  givenname: Robert A.
  surname: Jacobs
  fullname: Jacobs, Robert A.
  email: robbie@bcs.rochester.edu
– sequence: 3
  givenname: Steven T.
  surname: Piantadosi
  fullname: Piantadosi, Steven T.
  email: spiantadosi@bcs.rochester.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28772189$$D View this record in MEDLINE/PubMed
BookMark eNqVUU1v1DAUtFAR3Rb-AkTiwmWXZ8eJnQOHquJLWolLuWK9OG9Tr7L2YjtF_fc42tJDL4D0JPtJM6OZeRfszAdPjL3hsOHA2_f7jQ2jd9kFvxHA1QbKQPOMrbhW9VrpWp-xFQCHNQilztlFSnsAkELpF-xcaKUE192K_dgSRu_8WGGfckSbqzuXZpwqG7ylY05lx-oYQ4-9m1zKzi7bGPFQOT_MdvFQfhVWW_TjjCNVYVfd3IZ5vM0v2fMdTolePbyX7PunjzfXX9bbb5-_Xl9t11ZKndeDrMkKalrUHSrSsu-40qpvpSLQvNG6qwUM0AyD7Pua2laWhDXHtut3LYj6kumT7uyPeP8Lp8kcoztgvDcczFKZ2ZvHysxSmYEy0BTquxO1pPo5U8rm4JKlaUJPYU6Gd6JttYRGFujbJ9B9mKMvwYqi4F0xqRbB1w-ouT_Q8GjkT-kFoE4AG0NKkXb_4fXDE6Z1GRdYOZ2b_oF_deJTucWdo2iSdVTuPLhINpshuL9q_AbYFMV1
CitedBy_id crossref_primary_10_1007_s11023_020_09540_9
crossref_primary_10_1126_scirobotics_aav3150
crossref_primary_10_1146_annurev_vision_100720_103343
crossref_primary_10_1017_S0140525X22002849
crossref_primary_10_3389_fncom_2020_586671
crossref_primary_10_1038_s41467_024_50966_x
crossref_primary_10_1111_cdev_14031
crossref_primary_10_1177_0142723720915402
crossref_primary_10_1016_j_cognition_2023_105711
crossref_primary_10_1098_rsos_240716
crossref_primary_10_1016_j_tics_2020_07_005
crossref_primary_10_1007_s10988_022_09377_8
crossref_primary_10_1016_j_cub_2024_10_074
crossref_primary_10_1016_j_cognition_2023_105541
crossref_primary_10_1371_journal_pone_0200420
crossref_primary_10_1016_j_tics_2023_04_006
crossref_primary_10_1111_cogs_13432
Cites_doi 10.1093/biomet/26.4.404
10.1038/35036586
10.1038/nature20101
10.1016/j.tics.2006.05.002
10.2307/1418892
10.1037/0033-2909.87.2.245
10.1037/a0029347
10.1016/S1364-6613(00)01467-4
10.1016/j.cognition.2005.03.003
10.1016/0004-3702(90)90007-M
10.1037/0096-3445.115.1.39
10.1016/j.cogdev.2012.07.005
10.1177/0963721415609581
10.1080/03640210701802071
10.1126/science.aab3050
10.1017/S0140525X06309028
10.3758/s13423-014-0734-y
10.1017/S0140525X06009022
10.1126/science.283.5398.77
10.1037/0033-295X.92.3.289
10.1016/0010-0277(88)90031-5
10.1364/JOSAA.20.001331
10.1016/j.cognition.2010.10.005
10.1037/0033-295X.104.3.427
10.1016/S1364-6613(02)00005-0
10.1016/j.cognition.2013.04.010
10.1016/j.cognition.2011.11.005
10.1006/jmps.1997.1154
10.1371/journal.pcbi.1004610
10.1016/S0010-0277(96)00728-7
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright © 2017 Elsevier B.V. All rights reserved.
Copyright Elsevier Science Ltd. Nov 2017
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright © 2017 Elsevier B.V. All rights reserved.
– notice: Copyright Elsevier Science Ltd. Nov 2017
DBID AAYXX
CITATION
NPM
7TK
8BJ
FQK
JBE
7X8
ADTOC
UNPAY
DOI 10.1016/j.cognition.2017.07.005
DatabaseName CrossRef
PubMed
Neurosciences Abstracts
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
International Bibliography of the Social Sciences (IBSS)

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
EISSN 1873-7838
EndPage 334
ExternalDocumentID 10.1016/j.cognition.2017.07.005
28772189
10_1016_j_cognition_2017_07_005
S0010027717302020
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GrantInformation_xml – fundername: Air Force Office of Scientific Research
  grantid: FA9550-12-1-0303
  funderid: http://dx.doi.org/10.13039/100000181
– fundername: National Science Foundation
  grantid: BCS-1400784
  funderid: http://dx.doi.org/10.13039/100000001
GroupedDBID ---
--K
--M
--Z
-DZ
-~X
.~1
0R~
186
1B1
1RT
1~.
1~5
29F
3EH
4.4
41~
457
4G.
53G
5GY
5VS
6J9
6PF
7-5
71M
8P~
9JM
9JO
AABNK
AACTN
AADFP
AADPK
AAEDT
AAEDW
AAFJI
AAGJA
AAGUQ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAWTL
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABLJU
ABMAC
ABMMH
ABOYX
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACHQT
ACIUM
ACKIV
ACNCT
ACPRK
ACRLP
ACXNI
ADBBV
ADEZE
ADIYS
AEBSH
AEFWE
AEKER
AETEA
AFFNX
AFKWA
AFTJW
AFXIZ
AFYLN
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HF~
HMQ
HMW
HVGLF
HZ~
IHE
J1W
K-O
KOM
LPU
M2V
M3V
M41
MO0
MOBAO
MVM
N9A
NHB
O-L
O9-
OAUVE
OHT
OKEIE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPCBC
SPS
SSB
SSN
SSO
SSY
SSZ
T5K
TN5
UBW
UPT
UQL
WH7
WUQ
XFK
XIH
XJT
XKC
XOL
XPP
YYP
YZZ
ZA5
ZKB
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ACLOT
ACVFH
ADCNI
ADMHG
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
NPM
PKN
7TK
8BJ
AGCQF
FQK
JBE
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c448t-d43ec2e56a89a7e84b91787b647e0815889320d05dd4bb3e66483831a69bf6023
IEDL.DBID .~1
ISSN 0010-0277
1873-7838
IngestDate Wed Oct 01 15:54:03 EDT 2025
Sat Sep 27 23:22:52 EDT 2025
Wed Aug 13 09:30:21 EDT 2025
Wed Feb 19 02:43:40 EST 2025
Wed Oct 01 05:18:23 EDT 2025
Thu Apr 24 22:52:33 EDT 2025
Fri Feb 23 02:30:37 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Concept learning
Visual learning
Computational modeling
Behavioral experiment
Language of Thought
Language English
License Copyright © 2017 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c448t-d43ec2e56a89a7e84b91787b647e0815889320d05dd4bb3e66483831a69bf6023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/am/pii/S0010027717302020?via%3Dihub
PMID 28772189
PQID 2021993275
PQPubID 2038288
PageCount 15
ParticipantIDs unpaywall_primary_10_1016_j_cognition_2017_07_005
proquest_miscellaneous_1926684054
proquest_journals_2021993275
pubmed_primary_28772189
crossref_primary_10_1016_j_cognition_2017_07_005
crossref_citationtrail_10_1016_j_cognition_2017_07_005
elsevier_sciencedirect_doi_10_1016_j_cognition_2017_07_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2017
2017-11-00
20171101
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: November 2017
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Lausanne
PublicationTitle Cognition
PublicationTitleAlternate Cognition
PublicationYear 2017
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Piantadosi, Tenenbaum, Goodman (b0175) 2016
Gregor, K., Danihelka, I., Graves, A., & Wierstra, D. (2014). DRAW: A recurrent neural network for image generation (pp. 1–16).
Clopper, Pearson (b0015) 1934; 26
Gomez, Gerken (b0070) 2000; 4
Feldman (b0030) 1997; 41
Graves, A., Wayne, G., & Danihelka, I. (2014). Neural turing machines (pp. 1–26).
Levenshtein (b0130) 1966; 10
Krizhevsky, Sutskever, Hinton (b0120) 2012
Siskind (b0190) 1996; 61
Dechter, Malmaud, Adams, Tenenbaum (b0020) 2013
van der Velde, de Kamps (b0235) 2006; 29
Goodman, Tenenbaum, Feldman, Griffiths (b0075) 2008; 32
Yildirim, Jacobs (b0240) 2015; 22
Frank, Tenenbaum (b0050) 2011; 120
Smolensky, Legendre (b0200) 2006; vol. 1: Cognitive architecture
Nosofsky (b0160) 1986; 115
Stuhlmüller, Tenenbaum, Goodman (b0215) 2010
Reed, de Freitas (b0185) 2016
Gerken (b0065) 2006; 98
Frank (b0045) 2013; 128
Murphy, Medin (b0155) 1985; 92
Feldman (b0035) 2000; 407
.
Graves, Wayne, Reynolds, Harley, Danihelka, Grabska-barwiflska, Hassabis (b0085) 2016; 538
Chater, Vitanyi (b0010) 2003; 7
Yuille, Kersten (b0245) 2006; 10
Lake, Salakhutdinov, Tenenbaum (b0125) 2015; 350
Marcus, Vijayan, Bandi Rao, Vishton (b0150) 1999; 283
Erdogan, Yildirim, Jacobs (b0025) 2015; 11
Liu, Kersten (b0140) 2003; 20
Razavian, Azizpour, Sullivan, Carlsson (b0180) 2014
Stiny, Gips (b0210) 1972; vol. 2, 71
Tenenbaum, Griffiths (b0225) 2001; 24
Kemp (b0110) 2012; 119
Piantadosi, Jacobs (b0165) 2016; 25
Attneave (b0005) 1955; 68
Smolensky (b0195) 1990; 46
Marcus (b0145) 2003
Gayler, R. (2004). Vector symbolic architectures are a viable alternative for Jackendoff’s challenges.
Fodor, Pylyshyn (b0040) 1988; 28
Ullman, Goodman, Tenenbaum (b0230) 2012; 27
Geisler (b0060) 2003; 10
Tenenbaum (b0220) 1999
Piantadosi, Tenenbaum, Goodman (b0170) 2012; 123
Jia, Shelhamer, Donahue, Karayev, Long, Girshick, Darrell (b0105) 2014
Leyton (b0135) 1999
Steiger (b0205) 1980; 87
Kemp, Bernstein, Tenenbaum (b0115) 2005
Hummel, Holyoak (b0095) 1997; 104
Jackendoff (b0100) 2003
Stiny (10.1016/j.cognition.2017.07.005_b0210) 1972; vol. 2, 71
Marcus (10.1016/j.cognition.2017.07.005_b0145) 2003
Gomez (10.1016/j.cognition.2017.07.005_b0070) 2000; 4
Graves (10.1016/j.cognition.2017.07.005_b0085) 2016; 538
Krizhevsky (10.1016/j.cognition.2017.07.005_b0120) 2012
van der Velde (10.1016/j.cognition.2017.07.005_b0235) 2006; 29
Siskind (10.1016/j.cognition.2017.07.005_b0190) 1996; 61
Smolensky (10.1016/j.cognition.2017.07.005_b0195) 1990; 46
Gerken (10.1016/j.cognition.2017.07.005_b0065) 2006; 98
Murphy (10.1016/j.cognition.2017.07.005_b0155) 1985; 92
Feldman (10.1016/j.cognition.2017.07.005_b0035) 2000; 407
Attneave (10.1016/j.cognition.2017.07.005_b0005) 1955; 68
Kemp (10.1016/j.cognition.2017.07.005_b0110) 2012; 119
Smolensky (10.1016/j.cognition.2017.07.005_b0200) 2006; vol. 1: Cognitive architecture
Tenenbaum (10.1016/j.cognition.2017.07.005_b0220) 1999
Chater (10.1016/j.cognition.2017.07.005_b0010) 2003; 7
10.1016/j.cognition.2017.07.005_b0080
Tenenbaum (10.1016/j.cognition.2017.07.005_b0225) 2001; 24
Yuille (10.1016/j.cognition.2017.07.005_b0245) 2006; 10
Kemp (10.1016/j.cognition.2017.07.005_b0115) 2005
Jackendoff (10.1016/j.cognition.2017.07.005_b0100) 2003
Frank (10.1016/j.cognition.2017.07.005_b0050) 2011; 120
Lake (10.1016/j.cognition.2017.07.005_b0125) 2015; 350
Frank (10.1016/j.cognition.2017.07.005_b0045) 2013; 128
Clopper (10.1016/j.cognition.2017.07.005_b0015) 1934; 26
Erdogan (10.1016/j.cognition.2017.07.005_b0025) 2015; 11
Jia (10.1016/j.cognition.2017.07.005_b0105) 2014
Piantadosi (10.1016/j.cognition.2017.07.005_b0165) 2016; 25
Piantadosi (10.1016/j.cognition.2017.07.005_b0170) 2012; 123
Razavian (10.1016/j.cognition.2017.07.005_b0180) 2014
Steiger (10.1016/j.cognition.2017.07.005_b0205) 1980; 87
Feldman (10.1016/j.cognition.2017.07.005_b0030) 1997; 41
10.1016/j.cognition.2017.07.005_b0090
Levenshtein (10.1016/j.cognition.2017.07.005_b0130) 1966; 10
Yildirim (10.1016/j.cognition.2017.07.005_b0240) 2015; 22
Fodor (10.1016/j.cognition.2017.07.005_b0040) 1988; 28
10.1016/j.cognition.2017.07.005_b0055
Marcus (10.1016/j.cognition.2017.07.005_b0150) 1999; 283
Leyton (10.1016/j.cognition.2017.07.005_b0135) 1999
Nosofsky (10.1016/j.cognition.2017.07.005_b0160) 1986; 115
Stuhlmüller (10.1016/j.cognition.2017.07.005_b0215) 2010
Goodman (10.1016/j.cognition.2017.07.005_b0075) 2008; 32
Dechter (10.1016/j.cognition.2017.07.005_b0020) 2013
Geisler (10.1016/j.cognition.2017.07.005_b0060) 2003; 10
Piantadosi (10.1016/j.cognition.2017.07.005_b0175) 2016
Reed (10.1016/j.cognition.2017.07.005_b0185) 2016
Ullman (10.1016/j.cognition.2017.07.005_b0230) 2012; 27
Hummel (10.1016/j.cognition.2017.07.005_b0095) 1997; 104
Liu (10.1016/j.cognition.2017.07.005_b0140) 2003; 20
References_xml – start-page: 512
  year: 2014
  end-page: 519
  ident: b0180
  article-title: CNN features off-the-shelf: An astounding baseline for recognition
  publication-title: IEEE computer society conference on computer vision and pattern recognition workshops
– volume: 92
  start-page: 289
  year: 1985
  end-page: 316
  ident: b0155
  article-title: The role of theories in conceptual coherence
  publication-title: Psychological Review
– volume: 26
  start-page: 404
  year: 1934
  end-page: 413
  ident: b0015
  article-title: The use of confidence or fiducial limits illustrated in the case of the binomial
  publication-title: Biometrika
– year: 2016
  ident: b0185
  article-title: Neural programmer-interpreters
  publication-title: International conference on learning representations (iclr)
– volume: 41
  start-page: 145
  year: 1997
  end-page: 170
  ident: b0030
  article-title: The structure of perceptual categories
  publication-title: Journal of Mathematical Psychology
– volume: 20
  start-page: 1331
  year: 2003
  end-page: 1340
  ident: b0140
  article-title: Three-dimensional symmetric shapes are discriminated more efficiently than asymmetric ones
  publication-title: Journal of the Optical Society of America A
– volume: 27
  start-page: 455
  year: 2012
  end-page: 480
  ident: b0230
  article-title: Theory learning as stochastic search in the language of thought
  publication-title: Cognitive Development
– volume: 29
  start-page: 37
  year: 2006
  end-page: 70
  ident: b0235
  article-title: Neural blackboard architectures of combinatorial structures in cognition
  publication-title: The Behavioral and Brain Sciences
– volume: 32
  start-page: 108
  year: 2008
  end-page: 154
  ident: b0075
  article-title: A rational analysis of rule-based concept learning
  publication-title: Cognitive Science: A Multidisciplinary Journal
– volume: 119
  start-page: 685
  year: 2012
  end-page: 722
  ident: b0110
  article-title: Exploring the conceptual universe
  publication-title: Psychological Review
– volume: 123
  start-page: 199
  year: 2012
  end-page: 217
  ident: b0170
  article-title: Bootstrapping in a language of thought: A formal model of numerical concept learning
  publication-title: Cognition
– volume: 98
  start-page: B67
  year: 2006
  end-page: 74
  ident: b0065
  article-title: Decisions, decisions: Infant language learning when multiple generalizations are possible
  publication-title: Cognition
– volume: 115
  start-page: 39
  year: 1986
  end-page: 61
  ident: b0160
  article-title: Attention, similarity, and the identification-categorization relationship
  publication-title: Journal of Experimental Psychology. General
– volume: vol. 2, 71
  start-page: 1460
  year: 1972
  end-page: 1465
  ident: b0210
  article-title: Shape grammars and the generative specification of painting and sculpture
  publication-title: Information processing 71 proceedings of the IFIP congress 1971
– volume: 68
  start-page: 209
  year: 1955
  end-page: 222
  ident: b0005
  article-title: Symmetry, information, and memory for patterns
  publication-title: The American Journal of Psychology
– volume: 87
  start-page: 245
  year: 1980
  end-page: 251
  ident: b0205
  article-title: Tests for comparing elements of a correlation matrix
  publication-title: Psychological Bulletin
– start-page: 1
  year: 2012
  end-page: 9
  ident: b0120
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– start-page: 1
  year: 2016
  end-page: 43
  ident: b0175
  article-title: The logical primitives of thought: Empirical foundations for compositional cognitive models
  publication-title: Psychological Review
– volume: 46
  start-page: 159
  year: 1990
  end-page: 216
  ident: b0195
  article-title: Tensor product variable binding and the representation of symbolic structures in connectionist systems
  publication-title: Artificial Intelligence
– volume: 128
  start-page: 417
  year: 2013
  end-page: 423
  ident: b0045
  article-title: Throwing out the Bayesian baby with the optimal bathwater: Response to Endress (2013)
  publication-title: Cognition
– year: 2010
  ident: b0215
  article-title: Learning structured generative concepts
  publication-title: Proceedings of the 32nd Annual Conference of the Cognitive Science Society
– volume: 4
  start-page: 178
  year: 2000
  end-page: 186
  ident: b0070
  article-title: Infant artificial language learning and language acquisition
  publication-title: Trends in Cognitive Sciences
– volume: 407
  start-page: 630
  year: 2000
  end-page: 633
  ident: b0035
  article-title: Minimization of Boolean complexity in human concept learning
  publication-title: Nature
– volume: 104
  start-page: 427
  year: 1997
  end-page: 466
  ident: b0095
  article-title: Distributed representations of structure: A theory of analogical access and mapping
  publication-title: Psychological Review
– volume: 22
  start-page: 673
  year: 2015
  end-page: 686
  ident: b0240
  article-title: Learning multisensory representations for auditory-visual transfer of sequence category knowledge: A probabilistic language of thought approach
  publication-title: Psychonomic Bulletin & Review
– start-page: 1132
  year: 2005
  end-page: 1137
  ident: b0115
  article-title: A generative theory of similarity
  publication-title: Proceedings of the twenty-seventh annual meeting of the cognitive science society
– year: 1999
  ident: b0135
  article-title: Symmetry, causality, mind
– reference: Graves, A., Wayne, G., & Danihelka, I. (2014). Neural turing machines (pp. 1–26).
– year: 2003
  ident: b0145
  article-title: The algebraic mind: Integrating connectionism and cognitive science
– volume: 11
  start-page: 1
  year: 2015
  end-page: 32
  ident: b0025
  article-title: From sensory signals to modality-independent conceptual representations: A probabilistic language of thought approach
  publication-title: PLoS Computational Biology
– start-page: 675
  year: 2014
  end-page: 678
  ident: b0105
  article-title: Caffe: Convolutional architecture for fast feature embedding
  publication-title: Proceedings of the acm international conference on multimedia
– volume: 350
  start-page: 1332
  year: 2015
  end-page: 1338
  ident: b0125
  article-title: Human-level concept learning through probabilistic program induction
  publication-title: Science
– year: 2013
  ident: b0020
  article-title: Bootstrap learning via modular concept discovery
  publication-title: Proceedings of the 23rd international joint conference on artificial intelligence
– volume: 61
  start-page: 39
  year: 1996
  end-page: 91
  ident: b0190
  article-title: A computational study of cross-situational techniques for learning word-to-meaning mappings
  publication-title: Cognition
– volume: 120
  start-page: 360
  year: 2011
  end-page: 371
  ident: b0050
  article-title: Three ideal observer models for rule learning in simple languages
  publication-title: Cognition
– volume: 283
  start-page: 77
  year: 1999
  end-page: 80
  ident: b0150
  article-title: Rule learning by seven-month-old infants
  publication-title: Science
– volume: 24
  start-page: 629
  year: 2001
  end-page: 630
  ident: b0225
  article-title: Generalization, similarity, and Bayesian inference
  publication-title: Sciences-New York
– volume: 10
  start-page: 707
  year: 1966
  end-page: 710
  ident: b0130
  article-title: Binary codes capable of correcting deletions, insertions, and reversals
  publication-title: Soviet Physics Doklady
– reference: Gayler, R. (2004). Vector symbolic architectures are a viable alternative for Jackendoff’s challenges.
– volume: 7
  start-page: 19
  year: 2003
  end-page: 22
  ident: b0010
  article-title: Simplicity: A unifying principle in cognitive science?
  publication-title: Trends in Cognitive Sciences
– volume: vol. 1: Cognitive architecture
  year: 2006
  ident: b0200
  publication-title: The harmonic mind: From neural computation to optimality-theoretic grammar
– volume: 10
  start-page: 12
  year: 2003
  ident: b0060
  article-title: Ideal observer analysis
  publication-title: The Visual Neurosciences
– reference: Gregor, K., Danihelka, I., Graves, A., & Wierstra, D. (2014). DRAW: A recurrent neural network for image generation (pp. 1–16).
– reference: .
– volume: 25
  start-page: 54
  year: 2016
  end-page: 59
  ident: b0165
  article-title: Four problems solved by the probabilistic language of thought
  publication-title: Current Directions in Psychological Science
– year: 1999
  ident: b0220
  article-title: A Bayesian framework for concept learning
– year: 2003
  ident: b0100
  article-title: Foundations of language: Brain, meaning, grammar, evolution
– volume: 538
  start-page: 471
  year: 2016
  end-page: 476
  ident: b0085
  article-title: Hybrid computing using a neural network with dynamic external memory
  publication-title: Nature
– volume: 28
  start-page: 3
  year: 1988
  end-page: 71
  ident: b0040
  article-title: Connectionism and cognitive architecture: A critical analysis
  publication-title: Cognition
– volume: 10
  start-page: 301
  year: 2006
  end-page: 308
  ident: b0245
  article-title: Vision as Bayesian inference: Analysis by synthesis?
  publication-title: Trends in Cognitive Sciences
– year: 2010
  ident: 10.1016/j.cognition.2017.07.005_b0215
  article-title: Learning structured generative concepts
– year: 2003
  ident: 10.1016/j.cognition.2017.07.005_b0145
– start-page: 512
  year: 2014
  ident: 10.1016/j.cognition.2017.07.005_b0180
  article-title: CNN features off-the-shelf: An astounding baseline for recognition
– volume: 26
  start-page: 404
  issue: 4
  year: 1934
  ident: 10.1016/j.cognition.2017.07.005_b0015
  article-title: The use of confidence or fiducial limits illustrated in the case of the binomial
  publication-title: Biometrika
  doi: 10.1093/biomet/26.4.404
– volume: 407
  start-page: 630
  issue: 6804
  year: 2000
  ident: 10.1016/j.cognition.2017.07.005_b0035
  article-title: Minimization of Boolean complexity in human concept learning
  publication-title: Nature
  doi: 10.1038/35036586
– volume: 538
  start-page: 471
  issue: 7626
  year: 2016
  ident: 10.1016/j.cognition.2017.07.005_b0085
  article-title: Hybrid computing using a neural network with dynamic external memory
  publication-title: Nature
  doi: 10.1038/nature20101
– year: 2016
  ident: 10.1016/j.cognition.2017.07.005_b0185
  article-title: Neural programmer-interpreters
– volume: 10
  start-page: 301
  issue: 7
  year: 2006
  ident: 10.1016/j.cognition.2017.07.005_b0245
  article-title: Vision as Bayesian inference: Analysis by synthesis?
  publication-title: Trends in Cognitive Sciences
  doi: 10.1016/j.tics.2006.05.002
– volume: 68
  start-page: 209
  issue: 2
  year: 1955
  ident: 10.1016/j.cognition.2017.07.005_b0005
  article-title: Symmetry, information, and memory for patterns
  publication-title: The American Journal of Psychology
  doi: 10.2307/1418892
– volume: 87
  start-page: 245
  issue: 2
  year: 1980
  ident: 10.1016/j.cognition.2017.07.005_b0205
  article-title: Tests for comparing elements of a correlation matrix
  publication-title: Psychological Bulletin
  doi: 10.1037/0033-2909.87.2.245
– volume: 10
  start-page: 707
  issue: 8
  year: 1966
  ident: 10.1016/j.cognition.2017.07.005_b0130
  article-title: Binary codes capable of correcting deletions, insertions, and reversals
  publication-title: Soviet Physics Doklady
– volume: 119
  start-page: 685
  issue: 4
  year: 2012
  ident: 10.1016/j.cognition.2017.07.005_b0110
  article-title: Exploring the conceptual universe
  publication-title: Psychological Review
  doi: 10.1037/a0029347
– volume: vol. 2, 71
  start-page: 1460
  year: 1972
  ident: 10.1016/j.cognition.2017.07.005_b0210
  article-title: Shape grammars and the generative specification of painting and sculpture
– volume: 4
  start-page: 178
  issue: 5
  year: 2000
  ident: 10.1016/j.cognition.2017.07.005_b0070
  article-title: Infant artificial language learning and language acquisition
  publication-title: Trends in Cognitive Sciences
  doi: 10.1016/S1364-6613(00)01467-4
– volume: 98
  start-page: B67
  issue: 3
  year: 2006
  ident: 10.1016/j.cognition.2017.07.005_b0065
  article-title: Decisions, decisions: Infant language learning when multiple generalizations are possible
  publication-title: Cognition
  doi: 10.1016/j.cognition.2005.03.003
– year: 2003
  ident: 10.1016/j.cognition.2017.07.005_b0100
– volume: 46
  start-page: 159
  issue: 1–2
  year: 1990
  ident: 10.1016/j.cognition.2017.07.005_b0195
  article-title: Tensor product variable binding and the representation of symbolic structures in connectionist systems
  publication-title: Artificial Intelligence
  doi: 10.1016/0004-3702(90)90007-M
– volume: 115
  start-page: 39
  issue: 1
  year: 1986
  ident: 10.1016/j.cognition.2017.07.005_b0160
  article-title: Attention, similarity, and the identification-categorization relationship
  publication-title: Journal of Experimental Psychology. General
  doi: 10.1037/0096-3445.115.1.39
– year: 2013
  ident: 10.1016/j.cognition.2017.07.005_b0020
  article-title: Bootstrap learning via modular concept discovery
– year: 1999
  ident: 10.1016/j.cognition.2017.07.005_b0220
– volume: 27
  start-page: 455
  year: 2012
  ident: 10.1016/j.cognition.2017.07.005_b0230
  article-title: Theory learning as stochastic search in the language of thought
  publication-title: Cognitive Development
  doi: 10.1016/j.cogdev.2012.07.005
– volume: 25
  start-page: 54
  issue: 1
  year: 2016
  ident: 10.1016/j.cognition.2017.07.005_b0165
  article-title: Four problems solved by the probabilistic language of thought
  publication-title: Current Directions in Psychological Science
  doi: 10.1177/0963721415609581
– start-page: 675
  year: 2014
  ident: 10.1016/j.cognition.2017.07.005_b0105
  article-title: Caffe: Convolutional architecture for fast feature embedding
– volume: 32
  start-page: 108
  issue: 1
  year: 2008
  ident: 10.1016/j.cognition.2017.07.005_b0075
  article-title: A rational analysis of rule-based concept learning
  publication-title: Cognitive Science: A Multidisciplinary Journal
  doi: 10.1080/03640210701802071
– volume: 350
  start-page: 1332
  issue: 6266
  year: 2015
  ident: 10.1016/j.cognition.2017.07.005_b0125
  article-title: Human-level concept learning through probabilistic program induction
  publication-title: Science
  doi: 10.1126/science.aab3050
– year: 1999
  ident: 10.1016/j.cognition.2017.07.005_b0135
– start-page: 1
  year: 2016
  ident: 10.1016/j.cognition.2017.07.005_b0175
  article-title: The logical primitives of thought: Empirical foundations for compositional cognitive models
  publication-title: Psychological Review
– ident: 10.1016/j.cognition.2017.07.005_b0055
  doi: 10.1017/S0140525X06309028
– volume: 22
  start-page: 673
  issue: 3
  year: 2015
  ident: 10.1016/j.cognition.2017.07.005_b0240
  article-title: Learning multisensory representations for auditory-visual transfer of sequence category knowledge: A probabilistic language of thought approach
  publication-title: Psychonomic Bulletin & Review
  doi: 10.3758/s13423-014-0734-y
– volume: 29
  start-page: 37
  issue: 1
  year: 2006
  ident: 10.1016/j.cognition.2017.07.005_b0235
  article-title: Neural blackboard architectures of combinatorial structures in cognition
  publication-title: The Behavioral and Brain Sciences
  doi: 10.1017/S0140525X06009022
– ident: 10.1016/j.cognition.2017.07.005_b0090
– volume: 283
  start-page: 77
  issue: 5398
  year: 1999
  ident: 10.1016/j.cognition.2017.07.005_b0150
  article-title: Rule learning by seven-month-old infants
  publication-title: Science
  doi: 10.1126/science.283.5398.77
– start-page: 1
  year: 2012
  ident: 10.1016/j.cognition.2017.07.005_b0120
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 92
  start-page: 289
  issue: 3
  year: 1985
  ident: 10.1016/j.cognition.2017.07.005_b0155
  article-title: The role of theories in conceptual coherence
  publication-title: Psychological Review
  doi: 10.1037/0033-295X.92.3.289
– start-page: 1132
  year: 2005
  ident: 10.1016/j.cognition.2017.07.005_b0115
  article-title: A generative theory of similarity
– volume: 28
  start-page: 3
  issue: 1–2
  year: 1988
  ident: 10.1016/j.cognition.2017.07.005_b0040
  article-title: Connectionism and cognitive architecture: A critical analysis
  publication-title: Cognition
  doi: 10.1016/0010-0277(88)90031-5
– volume: 20
  start-page: 1331
  issue: 7
  year: 2003
  ident: 10.1016/j.cognition.2017.07.005_b0140
  article-title: Three-dimensional symmetric shapes are discriminated more efficiently than asymmetric ones
  publication-title: Journal of the Optical Society of America A
  doi: 10.1364/JOSAA.20.001331
– volume: 24
  start-page: 629
  year: 2001
  ident: 10.1016/j.cognition.2017.07.005_b0225
  article-title: Generalization, similarity, and Bayesian inference
  publication-title: Sciences-New York
– volume: 120
  start-page: 360
  issue: 3
  year: 2011
  ident: 10.1016/j.cognition.2017.07.005_b0050
  article-title: Three ideal observer models for rule learning in simple languages
  publication-title: Cognition
  doi: 10.1016/j.cognition.2010.10.005
– volume: vol. 1: Cognitive architecture
  year: 2006
  ident: 10.1016/j.cognition.2017.07.005_b0200
– volume: 104
  start-page: 427
  issue: 3
  year: 1997
  ident: 10.1016/j.cognition.2017.07.005_b0095
  article-title: Distributed representations of structure: A theory of analogical access and mapping
  publication-title: Psychological Review
  doi: 10.1037/0033-295X.104.3.427
– volume: 7
  start-page: 19
  issue: 1
  year: 2003
  ident: 10.1016/j.cognition.2017.07.005_b0010
  article-title: Simplicity: A unifying principle in cognitive science?
  publication-title: Trends in Cognitive Sciences
  doi: 10.1016/S1364-6613(02)00005-0
– volume: 128
  start-page: 417
  issue: 3
  year: 2013
  ident: 10.1016/j.cognition.2017.07.005_b0045
  article-title: Throwing out the Bayesian baby with the optimal bathwater: Response to Endress (2013)
  publication-title: Cognition
  doi: 10.1016/j.cognition.2013.04.010
– volume: 10
  start-page: 12
  issue: 7
  year: 2003
  ident: 10.1016/j.cognition.2017.07.005_b0060
  article-title: Ideal observer analysis
  publication-title: The Visual Neurosciences
– volume: 123
  start-page: 199
  issue: 2
  year: 2012
  ident: 10.1016/j.cognition.2017.07.005_b0170
  article-title: Bootstrapping in a language of thought: A formal model of numerical concept learning
  publication-title: Cognition
  doi: 10.1016/j.cognition.2011.11.005
– volume: 41
  start-page: 145
  issue: 2
  year: 1997
  ident: 10.1016/j.cognition.2017.07.005_b0030
  article-title: The structure of perceptual categories
  publication-title: Journal of Mathematical Psychology
  doi: 10.1006/jmps.1997.1154
– volume: 11
  start-page: 1
  issue: 11
  year: 2015
  ident: 10.1016/j.cognition.2017.07.005_b0025
  article-title: From sensory signals to modality-independent conceptual representations: A probabilistic language of thought approach
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1004610
– ident: 10.1016/j.cognition.2017.07.005_b0080
– volume: 61
  start-page: 39
  year: 1996
  ident: 10.1016/j.cognition.2017.07.005_b0190
  article-title: A computational study of cross-situational techniques for learning word-to-meaning mappings
  publication-title: Cognition
  doi: 10.1016/S0010-0277(96)00728-7
SSID ssj0004278
Score 2.3951023
Snippet The ability to learn abstract concepts is a powerful component of human cognition. It has been argued that variable binding is the key element enabling this...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 320
SubjectTerms Bayesian analysis
Behavioral experiment
Cognition
Cognition & reasoning
Cognitive ability
Cognitive models
Computational modeling
Computer applications
Concept learning
Induction
Language
Language of Thought
Learning
Mathematical models
Neural networks
Probability
Probability distribution
Research subjects
Symbols
Variants
Visual discrimination learning
Visual learning
Visual similarity
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6V7QF64P1YVJCR4Jiuk_gVLqgCqgqhCqSuVC5YduK0gW121U2Kyq9nnDgRBaQixC2JNVHsmYy_scffADwvGbeqKGlkhMwihgFApErrIotTSVpKVzDXsX0eiP05e3fEjzbg43AWxqdVBt_f-_TOW4cnszCaM3M6W1WVP-brGUSl30lG2JPQV-eVeZG-qU5aew02BUd4PoHN-cGH3U-9R6bdnqUPwpRMI6lSdSnnK6TsLD0xaiw7Vk9f1-7PM9bviHQLrrf1ylx8M4vFT7PU3i04G_rXJ6d83Wkbu5N__4X68b8OwG24GTAt2e2l7sCGq-_CjdG1XtyDz4HG9ZgY69dW8oacV-sWhfL-2OQa7w3x1W06xl9PHk1C6hip6qKnuMUrYsj7sMJKliU5PPFFhpr7MN97e_h6PwqVHaIcraGJCpa6PHFcGJUZ6RSzGDUqaQWTDjEKV4iiElpQXhTM2tQJwVBVaWxEZkuBMOMBTOpl7R4BcQXNjHM0dhhJJlZYgwE_viYxjjsWyymIQXs6D7TnvvrGQg_5bV_0qHbt1a6p35LnU6Cj4Kpn_rha5OVgHvqSDjXOT1cLbw8GpYMfWWN74jMsE4nNz8Zm9AB-W8fUbtmuNWJ04Sl7OJvCw94Qxw_GeBhDfJVNIR4t82978_gfZLZh0py17gkCtcY-Db_eDxN6P4w
  priority: 102
  providerName: Unpaywall
Title Learning abstract visual concepts via probabilistic program induction in a Language of Thought
URI https://dx.doi.org/10.1016/j.cognition.2017.07.005
https://www.ncbi.nlm.nih.gov/pubmed/28772189
https://www.proquest.com/docview/2021993275
https://www.proquest.com/docview/1926684054
https://www.sciencedirect.com/science/article/am/pii/S0010027717302020?via%3Dihub
UnpaywallVersion publishedVersion
Volume 168
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-7838
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004278
  issn: 1873-7838
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-7838
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004278
  issn: 1873-7838
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-7838
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004278
  issn: 1873-7838
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-7838
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004278
  issn: 1873-7838
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-7838
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004278
  issn: 1873-7838
  databaseCode: AKRWK
  dateStart: 19950101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB0hOEAPqPRzW0Cu1GtKknXspLcVAm0pWvXASvRSy04mZatVdsVmW3Hpb-9M4gRQK1GJU-JYjhyPPTMvHr8BeF_KxKVFGQZW6SyQBACCtHQYODIlw1JjIbFh-5yo8VSeXSaXG3DcnYXhsEqv-1ud3mhr_-TIj-bRcjbjM75MH6p5G5l8nphxu5Sasxh8-H0b5sGpJFptHDb7lfdivHyIzoKJUCPdsHhyHrt_W6i_PdAnsL2ulvbml53P71il06ew691JMWp7vAcbWD2DnV6r3TyHb55B9buwjn9r5LX4OVutqVHenlhcUdkKTizTkO0yb7PwUVuCAHvLLkt3wopz_3NTLEpxccX5feoXMD09uTgeBz6pQpCTIOqgkEPMY0yUTTOrMZWOAFuqnZIayT1IUnJg4rAIk6KQzg1RKZkSio2sylypyMK_hM1qUeFrEFiEmUUMIyQQFzvlLGFtek1sMUEZ6QGobiBN7hnHOfHF3HShZT9MLwHDEjAh74YnAwj7hsuWdOPhJh87SZl788eQaXi48X4nW-OX8IrqYw5ujDVVv-urafHxjoqtcLFeGXKPFbPlJHIAr9o50XeYoCih6zQbQNRPkv_9mjeP-Zq3sMOl9sDkPmzW12s8IM-pdofN0jiErdGnz-MJXaeTL6OvfwAZ5Brq
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5V5dByqHizpYCRuIYmWT8SbqiiWmDpaSv1hGUnE7polV11s6166W9nJnECFUhF4hbHchR77Jn57PE3AG8rqXxWVnHktMkjSQAgyiqPkSdTMq4MlhJbts8TPTmVn8_U2RYc9XdhOKwy6P5Op7faOrw5DKN5uJrP-Y4v04caPkYmnycl3H5PKirTpH538yvOg3NJdOo4bg8sbwV5hRidJTOhJqal8eREdn83UX-6oPdhZ1Ov3PWVWyx-M0vHD2Av-JPiQ_fLD2EL60ewO6i168fwLVCofhfO875G0YjL-XpDjYruyuKayk5wZpmWbZeJm0UI2xKE2Dt6WXoSTkzD7qZYVmJ2zgl-midwevxxdjSJQlaFqCBJNFEpx1ikqLTLcmcwk54QW2a8lgbJP1AZeTBpXMaqLKX3Y9RaZgRjE6dzX2ky8U9hu17W-BwElnHuEOMECcWlXntHYJs-kzpUKBMzAt0PpC0C5ThnvljYPrbshx0kYFkCNubjcDWCeGi46lg37m7yvpeUvTWBLNmGuxsf9LK1YQ2vqT7l6MbUUPWboZpWHx-puBqXm7Ul_1gzXY6SI3jWzYnhhwmLErzO8hEkwyT5197s_09vXsPOZPZ1aqefTr68gF2u6W5PHsB2c7HBl-RGNf5Vu0x-Ap4nGs8
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6V7QF64P1YVJCR4Jiuk_gVLqgCqgqhCqSuVC5YduK0gW121U2Kyq9nnDgRBaQixC2JNVHsmYy_scffADwvGbeqKGlkhMwihgFApErrIotTSVpKVzDXsX0eiP05e3fEjzbg43AWxqdVBt_f-_TOW4cnszCaM3M6W1WVP-brGUSl30lG2JPQV-eVeZG-qU5aew02BUd4PoHN-cGH3U-9R6bdnqUPwpRMI6lSdSnnK6TsLD0xaiw7Vk9f1-7PM9bviHQLrrf1ylx8M4vFT7PU3i04G_rXJ6d83Wkbu5N__4X68b8OwG24GTAt2e2l7sCGq-_CjdG1XtyDz4HG9ZgY69dW8oacV-sWhfL-2OQa7w3x1W06xl9PHk1C6hip6qKnuMUrYsj7sMJKliU5PPFFhpr7MN97e_h6PwqVHaIcraGJCpa6PHFcGJUZ6RSzGDUqaQWTDjEKV4iiElpQXhTM2tQJwVBVaWxEZkuBMOMBTOpl7R4BcQXNjHM0dhhJJlZYgwE_viYxjjsWyymIQXs6D7TnvvrGQg_5bV_0qHbt1a6p35LnU6Cj4Kpn_rha5OVgHvqSDjXOT1cLbw8GpYMfWWN74jMsE4nNz8Zm9AB-W8fUbtmuNWJ04Sl7OJvCw94Qxw_GeBhDfJVNIR4t82978_gfZLZh0py17gkCtcY-Db_eDxN6P4w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+abstract+visual+concepts+via+probabilistic+program+induction+in+a+Language+of+Thought&rft.jtitle=Cognition&rft.au=Overlan%2C+Matthew+C&rft.au=Jacobs%2C+Robert+A&rft.au=Piantadosi%2C+Steven+T&rft.date=2017-11-01&rft.issn=1873-7838&rft.eissn=1873-7838&rft.volume=168&rft.spage=320&rft_id=info:doi/10.1016%2Fj.cognition.2017.07.005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-0277&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-0277&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-0277&client=summon