Learning abstract visual concepts via probabilistic program induction in a Language of Thought
The ability to learn abstract concepts is a powerful component of human cognition. It has been argued that variable binding is the key element enabling this ability, but the computational aspects of variable binding remain poorly understood. Here, we address this shortcoming by formalizing the Hiera...
Saved in:
| Published in | Cognition Vol. 168; pp. 320 - 334 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Netherlands
Elsevier B.V
01.11.2017
Elsevier Science Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0010-0277 1873-7838 1873-7838 |
| DOI | 10.1016/j.cognition.2017.07.005 |
Cover
| Abstract | The ability to learn abstract concepts is a powerful component of human cognition. It has been argued that variable binding is the key element enabling this ability, but the computational aspects of variable binding remain poorly understood. Here, we address this shortcoming by formalizing the Hierarchical Language of Thought (HLOT) model of rule learning. Given a set of data items, the model uses Bayesian inference to infer a probability distribution over stochastic programs that implement variable binding. Because the model makes use of symbolic variables as well as Bayesian inference and programs with stochastic primitives, it combines many of the advantages of both symbolic and statistical approaches to cognitive modeling. To evaluate the model, we conducted an experiment in which human subjects viewed training items and then judged which test items belong to the same concept as the training items. We found that the HLOT model provides a close match to human generalization patterns, significantly outperforming two variants of the Generalized Context Model, one variant based on string similarity and the other based on visual similarity using features from a deep convolutional neural network. Additional results suggest that variable binding happens automatically, implying that binding operations do not add complexity to peoples’ hypothesized rules. Overall, this work demonstrates that a cognitive model combining symbolic variables with Bayesian inference and stochastic program primitives provides a new perspective for understanding people’s patterns of generalization. |
|---|---|
| AbstractList | The ability to learn abstract concepts is a powerful component of human cognition. It has been argued that variable binding is the key element enabling this ability, but the computational aspects of variable binding remain poorly understood. Here, we address this shortcoming by formalizing the Hierarchical Language of Thought (HLOT) model of rule learning. Given a set of data items, the model uses Bayesian inference to infer a probability distribution over stochastic programs that implement variable binding. Because the model makes use of symbolic variables as well as Bayesian inference and programs with stochastic primitives, it combines many of the advantages of both symbolic and statistical approaches to cognitive modeling. To evaluate the model, we conducted an experiment in which human subjects viewed training items and then judged which test items belong to the same concept as the training items. We found that the HLOT model provides a close match to human generalization patterns, significantly outperforming two variants of the Generalized Context Model, one variant based on string similarity and the other based on visual similarity using features from a deep convolutional neural network. Additional results suggest that variable binding happens automatically, implying that binding operations do not add complexity to peoples' hypothesized rules. Overall, this work demonstrates that a cognitive model combining symbolic variables with Bayesian inference and stochastic program primitives provides a new perspective for understanding people's patterns of generalization.The ability to learn abstract concepts is a powerful component of human cognition. It has been argued that variable binding is the key element enabling this ability, but the computational aspects of variable binding remain poorly understood. Here, we address this shortcoming by formalizing the Hierarchical Language of Thought (HLOT) model of rule learning. Given a set of data items, the model uses Bayesian inference to infer a probability distribution over stochastic programs that implement variable binding. Because the model makes use of symbolic variables as well as Bayesian inference and programs with stochastic primitives, it combines many of the advantages of both symbolic and statistical approaches to cognitive modeling. To evaluate the model, we conducted an experiment in which human subjects viewed training items and then judged which test items belong to the same concept as the training items. We found that the HLOT model provides a close match to human generalization patterns, significantly outperforming two variants of the Generalized Context Model, one variant based on string similarity and the other based on visual similarity using features from a deep convolutional neural network. Additional results suggest that variable binding happens automatically, implying that binding operations do not add complexity to peoples' hypothesized rules. Overall, this work demonstrates that a cognitive model combining symbolic variables with Bayesian inference and stochastic program primitives provides a new perspective for understanding people's patterns of generalization. The ability to learn abstract concepts is a powerful component of human cognition. It has been argued that variable binding is the key element enabling this ability, but the computational aspects of variable binding remain poorly understood. Here, we address this shortcoming by formalizing the Hierarchical Language of Thought (HLOT) model of rule learning. Given a set of data items, the model uses Bayesian inference to infer a probability distribution over stochastic programs that implement variable binding. Because the model makes use of symbolic variables as well as Bayesian inference and programs with stochastic primitives, it combines many of the advantages of both symbolic and statistical approaches to cognitive modeling. To evaluate the model, we conducted an experiment in which human subjects viewed training items and then judged which test items belong to the same concept as the training items. We found that the HLOT model provides a close match to human generalization patterns, significantly outperforming two variants of the Generalized Context Model, one variant based on string similarity and the other based on visual similarity using features from a deep convolutional neural network. Additional results suggest that variable binding happens automatically, implying that binding operations do not add complexity to peoples' hypothesized rules. Overall, this work demonstrates that a cognitive model combining symbolic variables with Bayesian inference and stochastic program primitives provides a new perspective for understanding people's patterns of generalization. |
| Author | Overlan, Matthew C. Piantadosi, Steven T. Jacobs, Robert A. |
| Author_xml | – sequence: 1 givenname: Matthew C. surname: Overlan fullname: Overlan, Matthew C. email: m.overlan@rochester.edu – sequence: 2 givenname: Robert A. surname: Jacobs fullname: Jacobs, Robert A. email: robbie@bcs.rochester.edu – sequence: 3 givenname: Steven T. surname: Piantadosi fullname: Piantadosi, Steven T. email: spiantadosi@bcs.rochester.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28772189$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVUU1v1DAUtFAR3Rb-AkTiwmWXZ8eJnQOHquJLWolLuWK9OG9Tr7L2YjtF_fc42tJDL4D0JPtJM6OZeRfszAdPjL3hsOHA2_f7jQ2jd9kFvxHA1QbKQPOMrbhW9VrpWp-xFQCHNQilztlFSnsAkELpF-xcaKUE192K_dgSRu_8WGGfckSbqzuXZpwqG7ylY05lx-oYQ4-9m1zKzi7bGPFQOT_MdvFQfhVWW_TjjCNVYVfd3IZ5vM0v2fMdTolePbyX7PunjzfXX9bbb5-_Xl9t11ZKndeDrMkKalrUHSrSsu-40qpvpSLQvNG6qwUM0AyD7Pua2laWhDXHtut3LYj6kumT7uyPeP8Lp8kcoztgvDcczFKZ2ZvHysxSmYEy0BTquxO1pPo5U8rm4JKlaUJPYU6Gd6JttYRGFujbJ9B9mKMvwYqi4F0xqRbB1w-ouT_Q8GjkT-kFoE4AG0NKkXb_4fXDE6Z1GRdYOZ2b_oF_deJTucWdo2iSdVTuPLhINpshuL9q_AbYFMV1 |
| CitedBy_id | crossref_primary_10_1007_s11023_020_09540_9 crossref_primary_10_1126_scirobotics_aav3150 crossref_primary_10_1146_annurev_vision_100720_103343 crossref_primary_10_1017_S0140525X22002849 crossref_primary_10_3389_fncom_2020_586671 crossref_primary_10_1038_s41467_024_50966_x crossref_primary_10_1111_cdev_14031 crossref_primary_10_1177_0142723720915402 crossref_primary_10_1016_j_cognition_2023_105711 crossref_primary_10_1098_rsos_240716 crossref_primary_10_1016_j_tics_2020_07_005 crossref_primary_10_1007_s10988_022_09377_8 crossref_primary_10_1016_j_cub_2024_10_074 crossref_primary_10_1016_j_cognition_2023_105541 crossref_primary_10_1371_journal_pone_0200420 crossref_primary_10_1016_j_tics_2023_04_006 crossref_primary_10_1111_cogs_13432 |
| Cites_doi | 10.1093/biomet/26.4.404 10.1038/35036586 10.1038/nature20101 10.1016/j.tics.2006.05.002 10.2307/1418892 10.1037/0033-2909.87.2.245 10.1037/a0029347 10.1016/S1364-6613(00)01467-4 10.1016/j.cognition.2005.03.003 10.1016/0004-3702(90)90007-M 10.1037/0096-3445.115.1.39 10.1016/j.cogdev.2012.07.005 10.1177/0963721415609581 10.1080/03640210701802071 10.1126/science.aab3050 10.1017/S0140525X06309028 10.3758/s13423-014-0734-y 10.1017/S0140525X06009022 10.1126/science.283.5398.77 10.1037/0033-295X.92.3.289 10.1016/0010-0277(88)90031-5 10.1364/JOSAA.20.001331 10.1016/j.cognition.2010.10.005 10.1037/0033-295X.104.3.427 10.1016/S1364-6613(02)00005-0 10.1016/j.cognition.2013.04.010 10.1016/j.cognition.2011.11.005 10.1006/jmps.1997.1154 10.1371/journal.pcbi.1004610 10.1016/S0010-0277(96)00728-7 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. Copyright © 2017 Elsevier B.V. All rights reserved. Copyright Elsevier Science Ltd. Nov 2017 |
| Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright © 2017 Elsevier B.V. All rights reserved. – notice: Copyright Elsevier Science Ltd. Nov 2017 |
| DBID | AAYXX CITATION NPM 7TK 8BJ FQK JBE 7X8 ADTOC UNPAY |
| DOI | 10.1016/j.cognition.2017.07.005 |
| DatabaseName | CrossRef PubMed Neurosciences Abstracts International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed International Bibliography of the Social Sciences (IBSS) Neurosciences Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic International Bibliography of the Social Sciences (IBSS) PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Psychology |
| EISSN | 1873-7838 |
| EndPage | 334 |
| ExternalDocumentID | 10.1016/j.cognition.2017.07.005 28772189 10_1016_j_cognition_2017_07_005 S0010027717302020 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
| GrantInformation_xml | – fundername: Air Force Office of Scientific Research grantid: FA9550-12-1-0303 funderid: http://dx.doi.org/10.13039/100000181 – fundername: National Science Foundation grantid: BCS-1400784 funderid: http://dx.doi.org/10.13039/100000001 |
| GroupedDBID | --- --K --M --Z -DZ -~X .~1 0R~ 186 1B1 1RT 1~. 1~5 29F 3EH 4.4 41~ 457 4G. 53G 5GY 5VS 6J9 6PF 7-5 71M 8P~ 9JM 9JO AABNK AACTN AADFP AADPK AAEDT AAEDW AAFJI AAGJA AAGUQ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAWTL AAXLA AAXUO ABCQJ ABFNM ABFRF ABIVO ABJNI ABLJU ABMAC ABMMH ABOYX ABXDB ABYKQ ACDAQ ACGFO ACGFS ACHQT ACIUM ACKIV ACNCT ACPRK ACRLP ACXNI ADBBV ADEZE ADIYS AEBSH AEFWE AEKER AETEA AFFNX AFKWA AFTJW AFXIZ AFYLN AGHFR AGUBO AGWIK AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HF~ HMQ HMW HVGLF HZ~ IHE J1W K-O KOM LPU M2V M3V M41 MO0 MOBAO MVM N9A NHB O-L O9- OAUVE OHT OKEIE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SCC SDF SDG SDP SES SEW SNS SPCBC SPS SSB SSN SSO SSY SSZ T5K TN5 UBW UPT UQL WH7 WUQ XFK XIH XJT XKC XOL XPP YYP YZZ ZA5 ZKB ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ACLOT ACVFH ADCNI ADMHG ADVLN AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD NPM PKN 7TK 8BJ AGCQF FQK JBE 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c448t-d43ec2e56a89a7e84b91787b647e0815889320d05dd4bb3e66483831a69bf6023 |
| IEDL.DBID | .~1 |
| ISSN | 0010-0277 1873-7838 |
| IngestDate | Wed Oct 01 15:54:03 EDT 2025 Sat Sep 27 23:22:52 EDT 2025 Wed Aug 13 09:30:21 EDT 2025 Wed Feb 19 02:43:40 EST 2025 Wed Oct 01 05:18:23 EDT 2025 Thu Apr 24 22:52:33 EDT 2025 Fri Feb 23 02:30:37 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Concept learning Visual learning Computational modeling Behavioral experiment Language of Thought |
| Language | English |
| License | Copyright © 2017 Elsevier B.V. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c448t-d43ec2e56a89a7e84b91787b647e0815889320d05dd4bb3e66483831a69bf6023 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/am/pii/S0010027717302020?via%3Dihub |
| PMID | 28772189 |
| PQID | 2021993275 |
| PQPubID | 2038288 |
| PageCount | 15 |
| ParticipantIDs | unpaywall_primary_10_1016_j_cognition_2017_07_005 proquest_miscellaneous_1926684054 proquest_journals_2021993275 pubmed_primary_28772189 crossref_primary_10_1016_j_cognition_2017_07_005 crossref_citationtrail_10_1016_j_cognition_2017_07_005 elsevier_sciencedirect_doi_10_1016_j_cognition_2017_07_005 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | November 2017 2017-11-00 20171101 |
| PublicationDateYYYYMMDD | 2017-11-01 |
| PublicationDate_xml | – month: 11 year: 2017 text: November 2017 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands – name: Lausanne |
| PublicationTitle | Cognition |
| PublicationTitleAlternate | Cognition |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
| References | Piantadosi, Tenenbaum, Goodman (b0175) 2016 Gregor, K., Danihelka, I., Graves, A., & Wierstra, D. (2014). DRAW: A recurrent neural network for image generation (pp. 1–16). Clopper, Pearson (b0015) 1934; 26 Gomez, Gerken (b0070) 2000; 4 Feldman (b0030) 1997; 41 Graves, A., Wayne, G., & Danihelka, I. (2014). Neural turing machines (pp. 1–26). Levenshtein (b0130) 1966; 10 Krizhevsky, Sutskever, Hinton (b0120) 2012 Siskind (b0190) 1996; 61 Dechter, Malmaud, Adams, Tenenbaum (b0020) 2013 van der Velde, de Kamps (b0235) 2006; 29 Goodman, Tenenbaum, Feldman, Griffiths (b0075) 2008; 32 Yildirim, Jacobs (b0240) 2015; 22 Frank, Tenenbaum (b0050) 2011; 120 Smolensky, Legendre (b0200) 2006; vol. 1: Cognitive architecture Nosofsky (b0160) 1986; 115 Stuhlmüller, Tenenbaum, Goodman (b0215) 2010 Reed, de Freitas (b0185) 2016 Gerken (b0065) 2006; 98 Frank (b0045) 2013; 128 Murphy, Medin (b0155) 1985; 92 Feldman (b0035) 2000; 407 . Graves, Wayne, Reynolds, Harley, Danihelka, Grabska-barwiflska, Hassabis (b0085) 2016; 538 Chater, Vitanyi (b0010) 2003; 7 Yuille, Kersten (b0245) 2006; 10 Lake, Salakhutdinov, Tenenbaum (b0125) 2015; 350 Marcus, Vijayan, Bandi Rao, Vishton (b0150) 1999; 283 Erdogan, Yildirim, Jacobs (b0025) 2015; 11 Liu, Kersten (b0140) 2003; 20 Razavian, Azizpour, Sullivan, Carlsson (b0180) 2014 Stiny, Gips (b0210) 1972; vol. 2, 71 Tenenbaum, Griffiths (b0225) 2001; 24 Kemp (b0110) 2012; 119 Piantadosi, Jacobs (b0165) 2016; 25 Attneave (b0005) 1955; 68 Smolensky (b0195) 1990; 46 Marcus (b0145) 2003 Gayler, R. (2004). Vector symbolic architectures are a viable alternative for Jackendoff’s challenges. Fodor, Pylyshyn (b0040) 1988; 28 Ullman, Goodman, Tenenbaum (b0230) 2012; 27 Geisler (b0060) 2003; 10 Tenenbaum (b0220) 1999 Piantadosi, Tenenbaum, Goodman (b0170) 2012; 123 Jia, Shelhamer, Donahue, Karayev, Long, Girshick, Darrell (b0105) 2014 Leyton (b0135) 1999 Steiger (b0205) 1980; 87 Kemp, Bernstein, Tenenbaum (b0115) 2005 Hummel, Holyoak (b0095) 1997; 104 Jackendoff (b0100) 2003 Stiny (10.1016/j.cognition.2017.07.005_b0210) 1972; vol. 2, 71 Marcus (10.1016/j.cognition.2017.07.005_b0145) 2003 Gomez (10.1016/j.cognition.2017.07.005_b0070) 2000; 4 Graves (10.1016/j.cognition.2017.07.005_b0085) 2016; 538 Krizhevsky (10.1016/j.cognition.2017.07.005_b0120) 2012 van der Velde (10.1016/j.cognition.2017.07.005_b0235) 2006; 29 Siskind (10.1016/j.cognition.2017.07.005_b0190) 1996; 61 Smolensky (10.1016/j.cognition.2017.07.005_b0195) 1990; 46 Gerken (10.1016/j.cognition.2017.07.005_b0065) 2006; 98 Murphy (10.1016/j.cognition.2017.07.005_b0155) 1985; 92 Feldman (10.1016/j.cognition.2017.07.005_b0035) 2000; 407 Attneave (10.1016/j.cognition.2017.07.005_b0005) 1955; 68 Kemp (10.1016/j.cognition.2017.07.005_b0110) 2012; 119 Smolensky (10.1016/j.cognition.2017.07.005_b0200) 2006; vol. 1: Cognitive architecture Tenenbaum (10.1016/j.cognition.2017.07.005_b0220) 1999 Chater (10.1016/j.cognition.2017.07.005_b0010) 2003; 7 10.1016/j.cognition.2017.07.005_b0080 Tenenbaum (10.1016/j.cognition.2017.07.005_b0225) 2001; 24 Yuille (10.1016/j.cognition.2017.07.005_b0245) 2006; 10 Kemp (10.1016/j.cognition.2017.07.005_b0115) 2005 Jackendoff (10.1016/j.cognition.2017.07.005_b0100) 2003 Frank (10.1016/j.cognition.2017.07.005_b0050) 2011; 120 Lake (10.1016/j.cognition.2017.07.005_b0125) 2015; 350 Frank (10.1016/j.cognition.2017.07.005_b0045) 2013; 128 Clopper (10.1016/j.cognition.2017.07.005_b0015) 1934; 26 Erdogan (10.1016/j.cognition.2017.07.005_b0025) 2015; 11 Jia (10.1016/j.cognition.2017.07.005_b0105) 2014 Piantadosi (10.1016/j.cognition.2017.07.005_b0165) 2016; 25 Piantadosi (10.1016/j.cognition.2017.07.005_b0170) 2012; 123 Razavian (10.1016/j.cognition.2017.07.005_b0180) 2014 Steiger (10.1016/j.cognition.2017.07.005_b0205) 1980; 87 Feldman (10.1016/j.cognition.2017.07.005_b0030) 1997; 41 10.1016/j.cognition.2017.07.005_b0090 Levenshtein (10.1016/j.cognition.2017.07.005_b0130) 1966; 10 Yildirim (10.1016/j.cognition.2017.07.005_b0240) 2015; 22 Fodor (10.1016/j.cognition.2017.07.005_b0040) 1988; 28 10.1016/j.cognition.2017.07.005_b0055 Marcus (10.1016/j.cognition.2017.07.005_b0150) 1999; 283 Leyton (10.1016/j.cognition.2017.07.005_b0135) 1999 Nosofsky (10.1016/j.cognition.2017.07.005_b0160) 1986; 115 Stuhlmüller (10.1016/j.cognition.2017.07.005_b0215) 2010 Goodman (10.1016/j.cognition.2017.07.005_b0075) 2008; 32 Dechter (10.1016/j.cognition.2017.07.005_b0020) 2013 Geisler (10.1016/j.cognition.2017.07.005_b0060) 2003; 10 Piantadosi (10.1016/j.cognition.2017.07.005_b0175) 2016 Reed (10.1016/j.cognition.2017.07.005_b0185) 2016 Ullman (10.1016/j.cognition.2017.07.005_b0230) 2012; 27 Hummel (10.1016/j.cognition.2017.07.005_b0095) 1997; 104 Liu (10.1016/j.cognition.2017.07.005_b0140) 2003; 20 |
| References_xml | – start-page: 512 year: 2014 end-page: 519 ident: b0180 article-title: CNN features off-the-shelf: An astounding baseline for recognition publication-title: IEEE computer society conference on computer vision and pattern recognition workshops – volume: 92 start-page: 289 year: 1985 end-page: 316 ident: b0155 article-title: The role of theories in conceptual coherence publication-title: Psychological Review – volume: 26 start-page: 404 year: 1934 end-page: 413 ident: b0015 article-title: The use of confidence or fiducial limits illustrated in the case of the binomial publication-title: Biometrika – year: 2016 ident: b0185 article-title: Neural programmer-interpreters publication-title: International conference on learning representations (iclr) – volume: 41 start-page: 145 year: 1997 end-page: 170 ident: b0030 article-title: The structure of perceptual categories publication-title: Journal of Mathematical Psychology – volume: 20 start-page: 1331 year: 2003 end-page: 1340 ident: b0140 article-title: Three-dimensional symmetric shapes are discriminated more efficiently than asymmetric ones publication-title: Journal of the Optical Society of America A – volume: 27 start-page: 455 year: 2012 end-page: 480 ident: b0230 article-title: Theory learning as stochastic search in the language of thought publication-title: Cognitive Development – volume: 29 start-page: 37 year: 2006 end-page: 70 ident: b0235 article-title: Neural blackboard architectures of combinatorial structures in cognition publication-title: The Behavioral and Brain Sciences – volume: 32 start-page: 108 year: 2008 end-page: 154 ident: b0075 article-title: A rational analysis of rule-based concept learning publication-title: Cognitive Science: A Multidisciplinary Journal – volume: 119 start-page: 685 year: 2012 end-page: 722 ident: b0110 article-title: Exploring the conceptual universe publication-title: Psychological Review – volume: 123 start-page: 199 year: 2012 end-page: 217 ident: b0170 article-title: Bootstrapping in a language of thought: A formal model of numerical concept learning publication-title: Cognition – volume: 98 start-page: B67 year: 2006 end-page: 74 ident: b0065 article-title: Decisions, decisions: Infant language learning when multiple generalizations are possible publication-title: Cognition – volume: 115 start-page: 39 year: 1986 end-page: 61 ident: b0160 article-title: Attention, similarity, and the identification-categorization relationship publication-title: Journal of Experimental Psychology. General – volume: vol. 2, 71 start-page: 1460 year: 1972 end-page: 1465 ident: b0210 article-title: Shape grammars and the generative specification of painting and sculpture publication-title: Information processing 71 proceedings of the IFIP congress 1971 – volume: 68 start-page: 209 year: 1955 end-page: 222 ident: b0005 article-title: Symmetry, information, and memory for patterns publication-title: The American Journal of Psychology – volume: 87 start-page: 245 year: 1980 end-page: 251 ident: b0205 article-title: Tests for comparing elements of a correlation matrix publication-title: Psychological Bulletin – start-page: 1 year: 2012 end-page: 9 ident: b0120 article-title: ImageNet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems – start-page: 1 year: 2016 end-page: 43 ident: b0175 article-title: The logical primitives of thought: Empirical foundations for compositional cognitive models publication-title: Psychological Review – volume: 46 start-page: 159 year: 1990 end-page: 216 ident: b0195 article-title: Tensor product variable binding and the representation of symbolic structures in connectionist systems publication-title: Artificial Intelligence – volume: 128 start-page: 417 year: 2013 end-page: 423 ident: b0045 article-title: Throwing out the Bayesian baby with the optimal bathwater: Response to Endress (2013) publication-title: Cognition – year: 2010 ident: b0215 article-title: Learning structured generative concepts publication-title: Proceedings of the 32nd Annual Conference of the Cognitive Science Society – volume: 4 start-page: 178 year: 2000 end-page: 186 ident: b0070 article-title: Infant artificial language learning and language acquisition publication-title: Trends in Cognitive Sciences – volume: 407 start-page: 630 year: 2000 end-page: 633 ident: b0035 article-title: Minimization of Boolean complexity in human concept learning publication-title: Nature – volume: 104 start-page: 427 year: 1997 end-page: 466 ident: b0095 article-title: Distributed representations of structure: A theory of analogical access and mapping publication-title: Psychological Review – volume: 22 start-page: 673 year: 2015 end-page: 686 ident: b0240 article-title: Learning multisensory representations for auditory-visual transfer of sequence category knowledge: A probabilistic language of thought approach publication-title: Psychonomic Bulletin & Review – start-page: 1132 year: 2005 end-page: 1137 ident: b0115 article-title: A generative theory of similarity publication-title: Proceedings of the twenty-seventh annual meeting of the cognitive science society – year: 1999 ident: b0135 article-title: Symmetry, causality, mind – reference: Graves, A., Wayne, G., & Danihelka, I. (2014). Neural turing machines (pp. 1–26). – year: 2003 ident: b0145 article-title: The algebraic mind: Integrating connectionism and cognitive science – volume: 11 start-page: 1 year: 2015 end-page: 32 ident: b0025 article-title: From sensory signals to modality-independent conceptual representations: A probabilistic language of thought approach publication-title: PLoS Computational Biology – start-page: 675 year: 2014 end-page: 678 ident: b0105 article-title: Caffe: Convolutional architecture for fast feature embedding publication-title: Proceedings of the acm international conference on multimedia – volume: 350 start-page: 1332 year: 2015 end-page: 1338 ident: b0125 article-title: Human-level concept learning through probabilistic program induction publication-title: Science – year: 2013 ident: b0020 article-title: Bootstrap learning via modular concept discovery publication-title: Proceedings of the 23rd international joint conference on artificial intelligence – volume: 61 start-page: 39 year: 1996 end-page: 91 ident: b0190 article-title: A computational study of cross-situational techniques for learning word-to-meaning mappings publication-title: Cognition – volume: 120 start-page: 360 year: 2011 end-page: 371 ident: b0050 article-title: Three ideal observer models for rule learning in simple languages publication-title: Cognition – volume: 283 start-page: 77 year: 1999 end-page: 80 ident: b0150 article-title: Rule learning by seven-month-old infants publication-title: Science – volume: 24 start-page: 629 year: 2001 end-page: 630 ident: b0225 article-title: Generalization, similarity, and Bayesian inference publication-title: Sciences-New York – volume: 10 start-page: 707 year: 1966 end-page: 710 ident: b0130 article-title: Binary codes capable of correcting deletions, insertions, and reversals publication-title: Soviet Physics Doklady – reference: Gayler, R. (2004). Vector symbolic architectures are a viable alternative for Jackendoff’s challenges. – volume: 7 start-page: 19 year: 2003 end-page: 22 ident: b0010 article-title: Simplicity: A unifying principle in cognitive science? publication-title: Trends in Cognitive Sciences – volume: vol. 1: Cognitive architecture year: 2006 ident: b0200 publication-title: The harmonic mind: From neural computation to optimality-theoretic grammar – volume: 10 start-page: 12 year: 2003 ident: b0060 article-title: Ideal observer analysis publication-title: The Visual Neurosciences – reference: Gregor, K., Danihelka, I., Graves, A., & Wierstra, D. (2014). DRAW: A recurrent neural network for image generation (pp. 1–16). – reference: . – volume: 25 start-page: 54 year: 2016 end-page: 59 ident: b0165 article-title: Four problems solved by the probabilistic language of thought publication-title: Current Directions in Psychological Science – year: 1999 ident: b0220 article-title: A Bayesian framework for concept learning – year: 2003 ident: b0100 article-title: Foundations of language: Brain, meaning, grammar, evolution – volume: 538 start-page: 471 year: 2016 end-page: 476 ident: b0085 article-title: Hybrid computing using a neural network with dynamic external memory publication-title: Nature – volume: 28 start-page: 3 year: 1988 end-page: 71 ident: b0040 article-title: Connectionism and cognitive architecture: A critical analysis publication-title: Cognition – volume: 10 start-page: 301 year: 2006 end-page: 308 ident: b0245 article-title: Vision as Bayesian inference: Analysis by synthesis? publication-title: Trends in Cognitive Sciences – year: 2010 ident: 10.1016/j.cognition.2017.07.005_b0215 article-title: Learning structured generative concepts – year: 2003 ident: 10.1016/j.cognition.2017.07.005_b0145 – start-page: 512 year: 2014 ident: 10.1016/j.cognition.2017.07.005_b0180 article-title: CNN features off-the-shelf: An astounding baseline for recognition – volume: 26 start-page: 404 issue: 4 year: 1934 ident: 10.1016/j.cognition.2017.07.005_b0015 article-title: The use of confidence or fiducial limits illustrated in the case of the binomial publication-title: Biometrika doi: 10.1093/biomet/26.4.404 – volume: 407 start-page: 630 issue: 6804 year: 2000 ident: 10.1016/j.cognition.2017.07.005_b0035 article-title: Minimization of Boolean complexity in human concept learning publication-title: Nature doi: 10.1038/35036586 – volume: 538 start-page: 471 issue: 7626 year: 2016 ident: 10.1016/j.cognition.2017.07.005_b0085 article-title: Hybrid computing using a neural network with dynamic external memory publication-title: Nature doi: 10.1038/nature20101 – year: 2016 ident: 10.1016/j.cognition.2017.07.005_b0185 article-title: Neural programmer-interpreters – volume: 10 start-page: 301 issue: 7 year: 2006 ident: 10.1016/j.cognition.2017.07.005_b0245 article-title: Vision as Bayesian inference: Analysis by synthesis? publication-title: Trends in Cognitive Sciences doi: 10.1016/j.tics.2006.05.002 – volume: 68 start-page: 209 issue: 2 year: 1955 ident: 10.1016/j.cognition.2017.07.005_b0005 article-title: Symmetry, information, and memory for patterns publication-title: The American Journal of Psychology doi: 10.2307/1418892 – volume: 87 start-page: 245 issue: 2 year: 1980 ident: 10.1016/j.cognition.2017.07.005_b0205 article-title: Tests for comparing elements of a correlation matrix publication-title: Psychological Bulletin doi: 10.1037/0033-2909.87.2.245 – volume: 10 start-page: 707 issue: 8 year: 1966 ident: 10.1016/j.cognition.2017.07.005_b0130 article-title: Binary codes capable of correcting deletions, insertions, and reversals publication-title: Soviet Physics Doklady – volume: 119 start-page: 685 issue: 4 year: 2012 ident: 10.1016/j.cognition.2017.07.005_b0110 article-title: Exploring the conceptual universe publication-title: Psychological Review doi: 10.1037/a0029347 – volume: vol. 2, 71 start-page: 1460 year: 1972 ident: 10.1016/j.cognition.2017.07.005_b0210 article-title: Shape grammars and the generative specification of painting and sculpture – volume: 4 start-page: 178 issue: 5 year: 2000 ident: 10.1016/j.cognition.2017.07.005_b0070 article-title: Infant artificial language learning and language acquisition publication-title: Trends in Cognitive Sciences doi: 10.1016/S1364-6613(00)01467-4 – volume: 98 start-page: B67 issue: 3 year: 2006 ident: 10.1016/j.cognition.2017.07.005_b0065 article-title: Decisions, decisions: Infant language learning when multiple generalizations are possible publication-title: Cognition doi: 10.1016/j.cognition.2005.03.003 – year: 2003 ident: 10.1016/j.cognition.2017.07.005_b0100 – volume: 46 start-page: 159 issue: 1–2 year: 1990 ident: 10.1016/j.cognition.2017.07.005_b0195 article-title: Tensor product variable binding and the representation of symbolic structures in connectionist systems publication-title: Artificial Intelligence doi: 10.1016/0004-3702(90)90007-M – volume: 115 start-page: 39 issue: 1 year: 1986 ident: 10.1016/j.cognition.2017.07.005_b0160 article-title: Attention, similarity, and the identification-categorization relationship publication-title: Journal of Experimental Psychology. General doi: 10.1037/0096-3445.115.1.39 – year: 2013 ident: 10.1016/j.cognition.2017.07.005_b0020 article-title: Bootstrap learning via modular concept discovery – year: 1999 ident: 10.1016/j.cognition.2017.07.005_b0220 – volume: 27 start-page: 455 year: 2012 ident: 10.1016/j.cognition.2017.07.005_b0230 article-title: Theory learning as stochastic search in the language of thought publication-title: Cognitive Development doi: 10.1016/j.cogdev.2012.07.005 – volume: 25 start-page: 54 issue: 1 year: 2016 ident: 10.1016/j.cognition.2017.07.005_b0165 article-title: Four problems solved by the probabilistic language of thought publication-title: Current Directions in Psychological Science doi: 10.1177/0963721415609581 – start-page: 675 year: 2014 ident: 10.1016/j.cognition.2017.07.005_b0105 article-title: Caffe: Convolutional architecture for fast feature embedding – volume: 32 start-page: 108 issue: 1 year: 2008 ident: 10.1016/j.cognition.2017.07.005_b0075 article-title: A rational analysis of rule-based concept learning publication-title: Cognitive Science: A Multidisciplinary Journal doi: 10.1080/03640210701802071 – volume: 350 start-page: 1332 issue: 6266 year: 2015 ident: 10.1016/j.cognition.2017.07.005_b0125 article-title: Human-level concept learning through probabilistic program induction publication-title: Science doi: 10.1126/science.aab3050 – year: 1999 ident: 10.1016/j.cognition.2017.07.005_b0135 – start-page: 1 year: 2016 ident: 10.1016/j.cognition.2017.07.005_b0175 article-title: The logical primitives of thought: Empirical foundations for compositional cognitive models publication-title: Psychological Review – ident: 10.1016/j.cognition.2017.07.005_b0055 doi: 10.1017/S0140525X06309028 – volume: 22 start-page: 673 issue: 3 year: 2015 ident: 10.1016/j.cognition.2017.07.005_b0240 article-title: Learning multisensory representations for auditory-visual transfer of sequence category knowledge: A probabilistic language of thought approach publication-title: Psychonomic Bulletin & Review doi: 10.3758/s13423-014-0734-y – volume: 29 start-page: 37 issue: 1 year: 2006 ident: 10.1016/j.cognition.2017.07.005_b0235 article-title: Neural blackboard architectures of combinatorial structures in cognition publication-title: The Behavioral and Brain Sciences doi: 10.1017/S0140525X06009022 – ident: 10.1016/j.cognition.2017.07.005_b0090 – volume: 283 start-page: 77 issue: 5398 year: 1999 ident: 10.1016/j.cognition.2017.07.005_b0150 article-title: Rule learning by seven-month-old infants publication-title: Science doi: 10.1126/science.283.5398.77 – start-page: 1 year: 2012 ident: 10.1016/j.cognition.2017.07.005_b0120 article-title: ImageNet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems – volume: 92 start-page: 289 issue: 3 year: 1985 ident: 10.1016/j.cognition.2017.07.005_b0155 article-title: The role of theories in conceptual coherence publication-title: Psychological Review doi: 10.1037/0033-295X.92.3.289 – start-page: 1132 year: 2005 ident: 10.1016/j.cognition.2017.07.005_b0115 article-title: A generative theory of similarity – volume: 28 start-page: 3 issue: 1–2 year: 1988 ident: 10.1016/j.cognition.2017.07.005_b0040 article-title: Connectionism and cognitive architecture: A critical analysis publication-title: Cognition doi: 10.1016/0010-0277(88)90031-5 – volume: 20 start-page: 1331 issue: 7 year: 2003 ident: 10.1016/j.cognition.2017.07.005_b0140 article-title: Three-dimensional symmetric shapes are discriminated more efficiently than asymmetric ones publication-title: Journal of the Optical Society of America A doi: 10.1364/JOSAA.20.001331 – volume: 24 start-page: 629 year: 2001 ident: 10.1016/j.cognition.2017.07.005_b0225 article-title: Generalization, similarity, and Bayesian inference publication-title: Sciences-New York – volume: 120 start-page: 360 issue: 3 year: 2011 ident: 10.1016/j.cognition.2017.07.005_b0050 article-title: Three ideal observer models for rule learning in simple languages publication-title: Cognition doi: 10.1016/j.cognition.2010.10.005 – volume: vol. 1: Cognitive architecture year: 2006 ident: 10.1016/j.cognition.2017.07.005_b0200 – volume: 104 start-page: 427 issue: 3 year: 1997 ident: 10.1016/j.cognition.2017.07.005_b0095 article-title: Distributed representations of structure: A theory of analogical access and mapping publication-title: Psychological Review doi: 10.1037/0033-295X.104.3.427 – volume: 7 start-page: 19 issue: 1 year: 2003 ident: 10.1016/j.cognition.2017.07.005_b0010 article-title: Simplicity: A unifying principle in cognitive science? publication-title: Trends in Cognitive Sciences doi: 10.1016/S1364-6613(02)00005-0 – volume: 128 start-page: 417 issue: 3 year: 2013 ident: 10.1016/j.cognition.2017.07.005_b0045 article-title: Throwing out the Bayesian baby with the optimal bathwater: Response to Endress (2013) publication-title: Cognition doi: 10.1016/j.cognition.2013.04.010 – volume: 10 start-page: 12 issue: 7 year: 2003 ident: 10.1016/j.cognition.2017.07.005_b0060 article-title: Ideal observer analysis publication-title: The Visual Neurosciences – volume: 123 start-page: 199 issue: 2 year: 2012 ident: 10.1016/j.cognition.2017.07.005_b0170 article-title: Bootstrapping in a language of thought: A formal model of numerical concept learning publication-title: Cognition doi: 10.1016/j.cognition.2011.11.005 – volume: 41 start-page: 145 issue: 2 year: 1997 ident: 10.1016/j.cognition.2017.07.005_b0030 article-title: The structure of perceptual categories publication-title: Journal of Mathematical Psychology doi: 10.1006/jmps.1997.1154 – volume: 11 start-page: 1 issue: 11 year: 2015 ident: 10.1016/j.cognition.2017.07.005_b0025 article-title: From sensory signals to modality-independent conceptual representations: A probabilistic language of thought approach publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1004610 – ident: 10.1016/j.cognition.2017.07.005_b0080 – volume: 61 start-page: 39 year: 1996 ident: 10.1016/j.cognition.2017.07.005_b0190 article-title: A computational study of cross-situational techniques for learning word-to-meaning mappings publication-title: Cognition doi: 10.1016/S0010-0277(96)00728-7 |
| SSID | ssj0004278 |
| Score | 2.3951023 |
| Snippet | The ability to learn abstract concepts is a powerful component of human cognition. It has been argued that variable binding is the key element enabling this... |
| SourceID | unpaywall proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 320 |
| SubjectTerms | Bayesian analysis Behavioral experiment Cognition Cognition & reasoning Cognitive ability Cognitive models Computational modeling Computer applications Concept learning Induction Language Language of Thought Learning Mathematical models Neural networks Probability Probability distribution Research subjects Symbols Variants Visual discrimination learning Visual learning Visual similarity |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6V7QF64P1YVJCR4Jiuk_gVLqgCqgqhCqSuVC5YduK0gW121U2Kyq9nnDgRBaQixC2JNVHsmYy_scffADwvGbeqKGlkhMwihgFApErrIotTSVpKVzDXsX0eiP05e3fEjzbg43AWxqdVBt_f-_TOW4cnszCaM3M6W1WVP-brGUSl30lG2JPQV-eVeZG-qU5aew02BUd4PoHN-cGH3U-9R6bdnqUPwpRMI6lSdSnnK6TsLD0xaiw7Vk9f1-7PM9bviHQLrrf1ylx8M4vFT7PU3i04G_rXJ6d83Wkbu5N__4X68b8OwG24GTAt2e2l7sCGq-_CjdG1XtyDz4HG9ZgY69dW8oacV-sWhfL-2OQa7w3x1W06xl9PHk1C6hip6qKnuMUrYsj7sMJKliU5PPFFhpr7MN97e_h6PwqVHaIcraGJCpa6PHFcGJUZ6RSzGDUqaQWTDjEKV4iiElpQXhTM2tQJwVBVaWxEZkuBMOMBTOpl7R4BcQXNjHM0dhhJJlZYgwE_viYxjjsWyymIQXs6D7TnvvrGQg_5bV_0qHbt1a6p35LnU6Cj4Kpn_rha5OVgHvqSDjXOT1cLbw8GpYMfWWN74jMsE4nNz8Zm9AB-W8fUbtmuNWJ04Sl7OJvCw94Qxw_GeBhDfJVNIR4t82978_gfZLZh0py17gkCtcY-Db_eDxN6P4w priority: 102 providerName: Unpaywall |
| Title | Learning abstract visual concepts via probabilistic program induction in a Language of Thought |
| URI | https://dx.doi.org/10.1016/j.cognition.2017.07.005 https://www.ncbi.nlm.nih.gov/pubmed/28772189 https://www.proquest.com/docview/2021993275 https://www.proquest.com/docview/1926684054 https://www.sciencedirect.com/science/article/am/pii/S0010027717302020?via%3Dihub |
| UnpaywallVersion | publishedVersion |
| Volume | 168 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-7838 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004278 issn: 1873-7838 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-7838 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004278 issn: 1873-7838 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-7838 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004278 issn: 1873-7838 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-7838 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004278 issn: 1873-7838 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-7838 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004278 issn: 1873-7838 databaseCode: AKRWK dateStart: 19950101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB0hOEAPqPRzW0Cu1GtKknXspLcVAm0pWvXASvRSy04mZatVdsVmW3Hpb-9M4gRQK1GJU-JYjhyPPTMvHr8BeF_KxKVFGQZW6SyQBACCtHQYODIlw1JjIbFh-5yo8VSeXSaXG3DcnYXhsEqv-1ud3mhr_-TIj-bRcjbjM75MH6p5G5l8nphxu5Sasxh8-H0b5sGpJFptHDb7lfdivHyIzoKJUCPdsHhyHrt_W6i_PdAnsL2ulvbml53P71il06ew691JMWp7vAcbWD2DnV6r3TyHb55B9buwjn9r5LX4OVutqVHenlhcUdkKTizTkO0yb7PwUVuCAHvLLkt3wopz_3NTLEpxccX5feoXMD09uTgeBz6pQpCTIOqgkEPMY0yUTTOrMZWOAFuqnZIayT1IUnJg4rAIk6KQzg1RKZkSio2sylypyMK_hM1qUeFrEFiEmUUMIyQQFzvlLGFtek1sMUEZ6QGobiBN7hnHOfHF3HShZT9MLwHDEjAh74YnAwj7hsuWdOPhJh87SZl788eQaXi48X4nW-OX8IrqYw5ujDVVv-urafHxjoqtcLFeGXKPFbPlJHIAr9o50XeYoCih6zQbQNRPkv_9mjeP-Zq3sMOl9sDkPmzW12s8IM-pdofN0jiErdGnz-MJXaeTL6OvfwAZ5Brq |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5V5dByqHizpYCRuIYmWT8SbqiiWmDpaSv1hGUnE7polV11s6166W9nJnECFUhF4hbHchR77Jn57PE3AG8rqXxWVnHktMkjSQAgyiqPkSdTMq4MlhJbts8TPTmVn8_U2RYc9XdhOKwy6P5Op7faOrw5DKN5uJrP-Y4v04caPkYmnycl3H5PKirTpH538yvOg3NJdOo4bg8sbwV5hRidJTOhJqal8eREdn83UX-6oPdhZ1Ov3PWVWyx-M0vHD2Av-JPiQ_fLD2EL60ewO6i168fwLVCofhfO875G0YjL-XpDjYruyuKayk5wZpmWbZeJm0UI2xKE2Dt6WXoSTkzD7qZYVmJ2zgl-midwevxxdjSJQlaFqCBJNFEpx1ikqLTLcmcwk54QW2a8lgbJP1AZeTBpXMaqLKX3Y9RaZgRjE6dzX2ky8U9hu17W-BwElnHuEOMECcWlXntHYJs-kzpUKBMzAt0PpC0C5ThnvljYPrbshx0kYFkCNubjcDWCeGi46lg37m7yvpeUvTWBLNmGuxsf9LK1YQ2vqT7l6MbUUPWboZpWHx-puBqXm7Ul_1gzXY6SI3jWzYnhhwmLErzO8hEkwyT5197s_09vXsPOZPZ1aqefTr68gF2u6W5PHsB2c7HBl-RGNf5Vu0x-Ap4nGs8 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6V7QF64P1YVJCR4Jiuk_gVLqgCqgqhCqSuVC5YduK0gW121U2Kyq9nnDgRBaQixC2JNVHsmYy_scffADwvGbeqKGlkhMwihgFApErrIotTSVpKVzDXsX0eiP05e3fEjzbg43AWxqdVBt_f-_TOW4cnszCaM3M6W1WVP-brGUSl30lG2JPQV-eVeZG-qU5aew02BUd4PoHN-cGH3U-9R6bdnqUPwpRMI6lSdSnnK6TsLD0xaiw7Vk9f1-7PM9bviHQLrrf1ylx8M4vFT7PU3i04G_rXJ6d83Wkbu5N__4X68b8OwG24GTAt2e2l7sCGq-_CjdG1XtyDz4HG9ZgY69dW8oacV-sWhfL-2OQa7w3x1W06xl9PHk1C6hip6qKnuMUrYsj7sMJKliU5PPFFhpr7MN97e_h6PwqVHaIcraGJCpa6PHFcGJUZ6RSzGDUqaQWTDjEKV4iiElpQXhTM2tQJwVBVaWxEZkuBMOMBTOpl7R4BcQXNjHM0dhhJJlZYgwE_viYxjjsWyymIQXs6D7TnvvrGQg_5bV_0qHbt1a6p35LnU6Cj4Kpn_rha5OVgHvqSDjXOT1cLbw8GpYMfWWN74jMsE4nNz8Zm9AB-W8fUbtmuNWJ04Sl7OJvCw94Qxw_GeBhDfJVNIR4t82978_gfZLZh0py17gkCtcY-Db_eDxN6P4w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+abstract+visual+concepts+via+probabilistic+program+induction+in+a+Language+of+Thought&rft.jtitle=Cognition&rft.au=Overlan%2C+Matthew+C&rft.au=Jacobs%2C+Robert+A&rft.au=Piantadosi%2C+Steven+T&rft.date=2017-11-01&rft.issn=1873-7838&rft.eissn=1873-7838&rft.volume=168&rft.spage=320&rft_id=info:doi/10.1016%2Fj.cognition.2017.07.005&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-0277&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-0277&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-0277&client=summon |