Quantification of different silicon fractions in broadleaf and conifer forests of northern China and consequent implications for biogeochemical Si cycling

•Terrestrial biogeochemical Si cycle is strongly influenced by labile Si fractions.•The contribution made by non-crystalline Si fraction to total Si was 1.51–2.31%.•Biogenic amorphous Si contributed more to the Si cycle in the broadleaf forests.•Pedogenic amorphous Si contributed more to the Si cycl...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 361; p. 114036
Main Authors Yang, Xiaomin, Song, Zhaoliang, Yu, Changxun, Ding, Fan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2020
Subjects
Online AccessGet full text
ISSN0016-7061
1872-6259
1872-6259
DOI10.1016/j.geoderma.2019.114036

Cover

Abstract •Terrestrial biogeochemical Si cycle is strongly influenced by labile Si fractions.•The contribution made by non-crystalline Si fraction to total Si was 1.51–2.31%.•Biogenic amorphous Si contributed more to the Si cycle in the broadleaf forests.•Pedogenic amorphous Si contributed more to the Si cycle in the conifer forests.•Soil organic matter, pH, and plant communities can affect the Si transformation. The terrestrial biogeochemical silicon (Si) cycle significantly contributes to maintaining the functions and sustainability of terrestrial ecosystems. Over the short term, the biogeochemical Si cycle can be strongly influenced by dissolved Si, organic bound Si, Si adsorbed to pedogenic oxides/hydroxides, and biogenic and pedogenic amorphous Si. However, quantitative studies about these relatively soluble Si fractions are rare. In this study, we quantified different Si fractions in the 0–10 cm, 10–20 cm, 20–30 cm, 30–40 cm and 40–50 cm soil layers of broadleaf forests (Betula forest and Quercus forest) and conifer forests (Larix forest and Pinus forest) in northern China using a sequential chemical extraction scheme optimized for these Si fractions. The results showed that the total Si (Sit) in the soil layers consisted of 97.7–98.5% crystalline Si (Sicry) and 1.5–2.3% non-crystalline Si (Sinoncry) fractions. Within the Sinoncry fraction, the proportions of dissolved Si (Sidis), organic matter bound Si (Siorg), pedogenic oxides/hydroxides chemisorbed Si (Sisorb), and amorphous Si (Siamor) were 3.4–6.7%, 5.5–8.9%, 6.3–8.5%, and 77.7–84.8%, respectively. Although the Sidis fraction was the least abundant component, it is at the center of the interconversion processes among the different Sinoncry fractions. The Siamor fraction was the largest component of Sinoncry and was composed of 37.7–71.9% biogenic amorphous Si (Sibio-amor) and 28.1–62.3% pedogenic amorphous Si (Siped-amor). Our study indicated that i) Siped-amor fraction is more easily influenced by soil pH comparing to Sibio-amor fraction; ii) the Sibio-amor fraction contributes more to the biogeochemical Si cycle in broadleaf forests, whereas the Siped-amor fraction contributes more in conifer forests; and iii) soil pH, soil organic matter, and plant community differences can influence the vertical distribution of the different Sinoncry fractions and thus affect the multiple transformation processes among these Si fractions in studied forests.
AbstractList The terrestrial biogeochemical silicon (Si) cycle significantly contributes to maintaining the functions and sustainability of terrestrial ecosystems. Over the short term, the biogeochemical Si cycle can be strongly influenced by dissolved Si, organic bound Si, Si adsorbed to pedogenic oxides/hydroxides, and biogenic and pedogenic amorphous Si. However, quantitative studies about these relatively soluble Si fractions are rare. In this study, we quantified different Si fractions in the 0–10 cm, 10–20 cm, 20–30 cm, 30–40 cm and 40–50 cm soil layers of broadleaf forests (Betula forest and Quercus forest) and conifer forests (Larix forest and Pinus forest) in northern China using a sequential chemical extraction scheme optimized for these Si fractions. The results showed that the total Si (Siₜ) in the soil layers consisted of 97.7–98.5% crystalline Si (Sicᵣy) and 1.5–2.3% non-crystalline Si (Siₙₒₙcᵣy) fractions. Within the Siₙₒₙcᵣy fraction, the proportions of dissolved Si (Sidᵢₛ), organic matter bound Si (Siₒᵣg), pedogenic oxides/hydroxides chemisorbed Si (Siₛₒᵣb), and amorphous Si (Siₐₘₒᵣ) were 3.4–6.7%, 5.5–8.9%, 6.3–8.5%, and 77.7–84.8%, respectively. Although the Sidᵢₛ fraction was the least abundant component, it is at the center of the interconversion processes among the different Siₙₒₙcᵣy fractions. The Siₐₘₒᵣ fraction was the largest component of Siₙₒₙcᵣy and was composed of 37.7–71.9% biogenic amorphous Si (Sibᵢₒ₋ₐₘₒᵣ) and 28.1–62.3% pedogenic amorphous Si (Siₚₑd₋ₐₘₒᵣ). Our study indicated that i) Siₚₑd₋ₐₘₒᵣ fraction is more easily influenced by soil pH comparing to Sibᵢₒ₋ₐₘₒᵣ fraction; ii) the Sibᵢₒ₋ₐₘₒᵣ fraction contributes more to the biogeochemical Si cycle in broadleaf forests, whereas the Siₚₑd₋ₐₘₒᵣ fraction contributes more in conifer forests; and iii) soil pH, soil organic matter, and plant community differences can influence the vertical distribution of the different Siₙₒₙcᵣy fractions and thus affect the multiple transformation processes among these Si fractions in studied forests.
The terrestrial biogeochemical silicon (Si) cycle significantly contributes to maintaining the functions and sustainability of terrestrial ecosystems. Over the short term, the biogeochemical Si cycle can be strongly influenced by dissolved Si, organic bound Si, Si adsorbed to pedogenic oxides/hydroxides, and biogenic and pedogenic amorphous Si. However, quantitative studies about these relatively soluble Si fractions are rare. In this study, we quantified different Si fractions in the 0–10 cm, 10–20 cm, 20–30 cm, 30–40 cm and 40–50 cm soil layers of broadleaf forests ( Betula  forest and  Quercus  forest) and conifer forests ( Larix  forest and  Pinus  forest) in northern China using a sequential chemical extraction scheme optimized for these Si fractions. The results showed that the total Si (Sit) in the soil layers consisted of 97.7–98.5% crystalline Si (Sicry) and 1.5–2.3% non-crystalline Si (Sinoncry) fractions. Within the Sinoncry fraction, the proportions of dissolved Si (Sidis), organic matter bound Si (Siorg), pedogenic oxides/hydroxides chemisorbed Si (Sisorb), and amorphous Si (Siamor) were 3.4–6.7%, 5.5–8.9%, 6.3–8.5%, and 77.7–84.8%, respectively. Although the Sidis fraction was the least abundant component, it is at the center of the interconversion processes among the different Sinoncry fractions. The Siamor fraction was the largest component of Sinoncry and was composed of 37.7–71.9% biogenic amorphous Si (Sibio-amor) and 28.1–62.3% pedogenic amorphous Si (Siped-amor). Our study indicated that i) Siped-amor fraction is more easily influenced by soil pH comparing to Sibio-amor fraction; ii) the Sibio-amor fraction contributes more to the biogeochemical Si cycle in broadleaf forests, whereas the Siped-amorfraction contributes more in conifer forests; and iii) soil pH, soil organic matter, and plant community differences can influence the vertical distribution of the different Sinoncry fractions and thus affect the multiple transformation processes among these Si fractions in studied forests.
•Terrestrial biogeochemical Si cycle is strongly influenced by labile Si fractions.•The contribution made by non-crystalline Si fraction to total Si was 1.51–2.31%.•Biogenic amorphous Si contributed more to the Si cycle in the broadleaf forests.•Pedogenic amorphous Si contributed more to the Si cycle in the conifer forests.•Soil organic matter, pH, and plant communities can affect the Si transformation. The terrestrial biogeochemical silicon (Si) cycle significantly contributes to maintaining the functions and sustainability of terrestrial ecosystems. Over the short term, the biogeochemical Si cycle can be strongly influenced by dissolved Si, organic bound Si, Si adsorbed to pedogenic oxides/hydroxides, and biogenic and pedogenic amorphous Si. However, quantitative studies about these relatively soluble Si fractions are rare. In this study, we quantified different Si fractions in the 0–10 cm, 10–20 cm, 20–30 cm, 30–40 cm and 40–50 cm soil layers of broadleaf forests (Betula forest and Quercus forest) and conifer forests (Larix forest and Pinus forest) in northern China using a sequential chemical extraction scheme optimized for these Si fractions. The results showed that the total Si (Sit) in the soil layers consisted of 97.7–98.5% crystalline Si (Sicry) and 1.5–2.3% non-crystalline Si (Sinoncry) fractions. Within the Sinoncry fraction, the proportions of dissolved Si (Sidis), organic matter bound Si (Siorg), pedogenic oxides/hydroxides chemisorbed Si (Sisorb), and amorphous Si (Siamor) were 3.4–6.7%, 5.5–8.9%, 6.3–8.5%, and 77.7–84.8%, respectively. Although the Sidis fraction was the least abundant component, it is at the center of the interconversion processes among the different Sinoncry fractions. The Siamor fraction was the largest component of Sinoncry and was composed of 37.7–71.9% biogenic amorphous Si (Sibio-amor) and 28.1–62.3% pedogenic amorphous Si (Siped-amor). Our study indicated that i) Siped-amor fraction is more easily influenced by soil pH comparing to Sibio-amor fraction; ii) the Sibio-amor fraction contributes more to the biogeochemical Si cycle in broadleaf forests, whereas the Siped-amor fraction contributes more in conifer forests; and iii) soil pH, soil organic matter, and plant community differences can influence the vertical distribution of the different Sinoncry fractions and thus affect the multiple transformation processes among these Si fractions in studied forests.
ArticleNumber 114036
Author Song, Zhaoliang
Ding, Fan
Yang, Xiaomin
Yu, Changxun
Author_xml – sequence: 1
  givenname: Xiaomin
  surname: Yang
  fullname: Yang, Xiaomin
  organization: Institute of Surface-Earth System Science, Tianjin University, No. 92 Weijin Road Nankai District, Tianjin 300072, China
– sequence: 2
  givenname: Zhaoliang
  surname: Song
  fullname: Song, Zhaoliang
  email: zhaoliang.song@tju.edu.cn
  organization: Institute of Surface-Earth System Science, Tianjin University, No. 92 Weijin Road Nankai District, Tianjin 300072, China
– sequence: 3
  givenname: Changxun
  surname: Yu
  fullname: Yu, Changxun
  organization: Department of Biology and Environmental Science, Linnaeus University, SE-39182 Kalmar, Sweden
– sequence: 4
  givenname: Fan
  surname: Ding
  fullname: Ding, Fan
  organization: College of Land and Environment, Shenyang Agricultural University, Dongling Road, Shenyang 110866, China
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-90947$$DView record from Swedish Publication Index
BookMark eNqFkU1v1DAQhi1UJLaFv4B85EC2dtbrJBIHqgUKUiWE-LhajjPenZVjL7YD6l_h1-KQ7oVLTyPPvM98-L0kFz54IOQlZ2vOuLw-rvcQBoijXteMd2vOBdvIJ2TF26auZL3tLsiKFWXVMMmfkcuUjuXZsJqtyJ8vk_YZLRqdMXgaLB3QWojgM03o0JSkjdrM1UTR0z4GPTjQlmo_0FLGoqY2REg5zbwPMR8gero7oNdnVYKf09wTx5N7GJZmivYYyv7mAGNJO_oVqbk3Dv3-OXlqtUvw4iFeke8f3n_bfazuPt9-2t3cVUaINlemtY2xHa9NK4WUdtt0cqtBslZsmGZMGFHLth5a6KToBDeskQVkm76TTV_iFXm99E2_4TT16hRx1PFeBY3qHf64USHulfOT6lgnmiJ_tchPMZSTUlYjJgPOaQ9hSqretG3TdqzmRfpmkZoYUopglcH87_QcNTrFmZodVEd1dlDNDqrFwYLL__Dzao-CbxcQyrf9QogqGQRvYMAIJqsh4GMt_gLkkr7H
CitedBy_id crossref_primary_10_1007_s42832_021_0076_4
crossref_primary_10_1016_j_rhisph_2020_100229
crossref_primary_10_1007_s11104_020_04656_4
crossref_primary_10_1002_saj2_20386
crossref_primary_10_1016_j_catena_2020_104868
crossref_primary_10_1007_s11104_021_05264_6
crossref_primary_10_1016_j_scitotenv_2023_169206
crossref_primary_10_1007_s11104_024_06872_8
crossref_primary_10_3390_f15122154
crossref_primary_10_1016_j_catena_2023_107211
crossref_primary_10_1016_j_catena_2023_107683
crossref_primary_10_3390_plants10020295
crossref_primary_10_1016_j_geoderma_2023_116602
crossref_primary_10_1111_gcb_17213
crossref_primary_10_1007_s11368_022_03136_9
crossref_primary_10_1016_j_catena_2022_106136
crossref_primary_10_3390_f14071353
Cites_doi 10.1007/s10533-009-9369-x
10.1007/s11104-013-1847-1
10.1007/s13593-018-0496-4
10.1016/j.earscirev.2018.06.020
10.1111/1365-2435.12704
10.1111/jvs.12055
10.2136/sssaj1980.03615995004400040043x
10.1007/s11356-018-2357-8
10.1016/0016-7037(94)90013-2
10.1016/j.gca.2007.11.010
10.1007/BF00329030
10.1016/S0016-7037(00)00426-9
10.1016/S0012-8252(02)00092-2
10.1097/00010694-199407000-00005
10.1046/j.1365-2389.2001.00391.x
10.1016/j.geoderma.2014.12.018
10.1007/s00027-008-8117-y
10.1016/j.soilbio.2004.06.013
10.1111/j.1744-7429.2004.tb00343.x
10.1016/j.geoderma.2018.06.001
10.1029/2002GB001894
10.1016/j.geoderma.2018.07.027
10.1007/s11676-016-0248-8
10.1111/j.1365-2389.1985.tb00340.x
10.1007/s11104-019-04013-0
10.1007/s13593-013-0194-1
10.1007/s11284-014-1228-0
10.1002/ecy.1542
10.1016/j.chemgeo.2008.10.003
10.1111/gcbb.12635
10.1007/s00606-010-0406-y
10.1016/j.apsoil.2016.01.020
10.1016/j.gexplo.2005.08.039
10.1016/j.scitotenv.2018.12.381
10.1002/jpln.201000023
10.1130/0091-7613(1987)15<1099:EOTAAD>2.0.CO;2
10.1007/s00018-008-7580-x
10.1146/annurev.arplant.50.1.641
10.1016/j.catena.2017.01.027
10.1016/j.geoderma.2004.11.014
10.1016/j.gca.2012.06.009
10.5194/bg-15-2231-2018
10.1016/S0065-2113(08)60403-4
10.1016/j.pedobi.2016.02.001
10.5194/bg-10-4991-2013
10.1016/j.ecoleng.2014.06.011
10.1016/j.geoderma.2013.06.023
10.1016/j.scitotenv.2017.09.253
10.1093/aob/mci255
10.3389/fpls.2014.00529
10.1016/j.dib.2018.10.164
10.1007/s11104-010-0702-x
10.1016/j.gca.2005.12.025
10.1002/jpln.200521981
10.1038/198852a0
10.1029/2006GB002690
10.1016/S0016-7037(97)00001-X
10.1111/gcb.12275
10.1007/s13593-013-0202-5
10.1016/j.geoderma.2007.07.009
10.1071/SR14016
10.1016/j.jas.2015.09.002
10.1016/j.geoderma.2017.10.005
10.5194/bg-14-5239-2017
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
ADTPV
AOWAS
D92
DOI 10.1016/j.geoderma.2019.114036
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
SwePub
SwePub Articles
SWEPUB Linnéuniversitetet
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID oai_DiVA_org_lnu_90947
10_1016_j_geoderma_2019_114036
S0016706119311000
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
SEN
SEP
SEW
VH1
WUQ
XPP
Y6R
ZMT
~HD
7S9
ACLOT
L.6
ADTPV
AOWAS
D92
ID FETCH-LOGICAL-c448t-c8f7cf912c86466f57965ae608430a004c42682d8e964941c07644803b967b803
IEDL.DBID AIKHN
ISSN 0016-7061
1872-6259
IngestDate Wed Sep 10 00:09:02 EDT 2025
Sat Sep 27 20:26:22 EDT 2025
Thu Sep 18 00:24:33 EDT 2025
Thu Apr 24 23:07:32 EDT 2025
Fri Feb 23 02:47:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Relatively soluble Si fractions
Pedogenic amorphous Si
Si bioavailability
Sequential chemical extraction
Biogenic amorphous Si
Forest soils
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c448t-c8f7cf912c86466f57965ae608430a004c42682d8e964941c07644803b967b803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2388789021
PQPubID 24069
ParticipantIDs swepub_primary_oai_DiVA_org_lnu_90947
proquest_miscellaneous_2388789021
crossref_citationtrail_10_1016_j_geoderma_2019_114036
crossref_primary_10_1016_j_geoderma_2019_114036
elsevier_sciencedirect_doi_10_1016_j_geoderma_2019_114036
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Geoderma
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sommer, Jochheim, Höhn, Breuer, Zagorski, Busse, Barkusky, Meier, Puppe, Wanner, Kaczorek (b0320) 2013; 10
Li, Song, Cornelis (b0210) 2014; 5
Wang, You, Tang, Sun, Sun (b0355) 2016; 27
State Soil Survey Service of China (b0330) 1998
Wang, Xie, Ren, Li (b0360) 2018; 25
Ma, Yamaji (b0240) 2008; 65
Li, Ng, Dudgeon (b0200) 2009; 71
Ge, Jie, Sun, Liu (b0140) 2011; 292
Puppe, Kaczorek, Wanner, Sommer (b0265) 2014; 70
Parr, Sullivan (b0255) 2005; 37
Alexandre, Meunier, Colin, Koud (b0005) 1997; 61
Song, Wang, Strong, Shan (b0305) 2014; 34
Alfredsson, Clymans, Hugelius, Kuhry, Conley (b0010) 2016; 30
McKeague, Cline (b0245) 1963; 15
Cornelis, Titeux, Ranger, Delvaux (b0070) 2011; 342
Zhu, Gong (b0390) 2014; 34
Li, Song, Yan, Hao, Song, Liu, Yang, Xia, Liang (b0215) 2018; 38
Hansen, Raben-Lange, Raulund-Rasmussen, Borggaard (b0165) 1994; 158
Tubaña, Heckman (b0340) 2015
IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106. FAO, Rome.
Lu (b0235) 2000
White, Vivit, Schulz, Bullen, Evett, Aagarwal (b0370) 2012; 94
Fraysse, Pokrovsky, Schott, Meunier (b0125) 2006; 70
Fraysse, Cantais, Pokrovsky, Schott, Meunier (b0130) 2006; 88
Sommer, Kaczorek, Kuzyakov, Breuer (b0325) 2006; 169
Canadell, Jackson, Ehleringer, Mooney, Sala, Schulze (b0045) 1996; 108
Jones, Handreck (b0185) 1963; 198
Yang, Song, Liu, Van, Song, Li, Hao, Zhang, Wang (b0385) 2018; 312
Wanner, Birkhofer, Fischer, Shimizu, Shimano, Puppe (b0350) 2019; 1–11
Conley (b0060) 2002; 16
Song, Liu, Li, Yang (b0300) 2013; 19
Georgiadis, Rinklebe, Straubinger, Rennert (b0155) 2017; 153
Drever (b0100) 1994; 58
Farmer, Delbos, Miller (b0115) 2005; 127
Gérard, Mayer, Hodson, Ranger (b0160) 2008; 72
Schoelynck, Müller, Vandevenne, Bal, Barão, Smis, Opdekamp, Meire, Struyf (b0295) 2014; 25
Fonte, Schowalter (b0120) 2004; 36
Clarke (b0050) 2003; 60
Tavakkoli, Lyons, English, Chris, Guppy (b0335) 2011; 174
Bartoli (b0020) 1981
Puppe, Wanner, Sommer (b0285) 2018; 21
Song, Liu, Müller, Yang, Wu, Wang (b0310) 2018; 185
Nguyen, Dultz, Meharg, Pham, Hoang, Dam, Nguyen, Nguyen, Nguyen, Nguyen (b0250) 2019; 333
Cornelis, Delvaux (b0075) 2016; 30
Georgiadis, Sauer, Herrmann, Breuer, Zarei, Stahr (b0150) 2014; 52
Creevy, Fisher, Puppe, Wilkinson (b0080) 2016; 59
Kaufman, Dayanandan, Takeoka, Bigelow, Jones, Iler (b0190) 1981
Hodson (b0170) 2016; 68
Watteau, Villemin (b0365) 2001; 52
Epstein (b0110) 2001
Knoll, James (b0195) 1987; 15
Blecker, McCulley, Chadwick, Kelly (b0040) 2006; 20
Fraysse, Pokrovsky, Schott, Meunier (b0135) 2009; 258
Aoki, Hoshino, Matsubara (b0015) 2007; 142
Li, Song, Singh, Wang (b9000) 2019; 659
Drees, L.R., Wilding, L.P., Smeck, N.E., Senkayi, A.L., 1989. Silica in soils: quartz and disordered silica polymorphs. In: Dixon, J.B., Weed, S.B., (Eds). Minerals in Soil Environments. Soil Science Society of America Book Series No. 1, Madison, pp 913–974.
Bartoli, Wilding (b0035) 1980; 44
Li, Delvaux (b0205) 2019; 11
Georgiadis, Sauer, Herrmann, Breuer, Zarei, Stahr (b0145) 2013; 209
Dietzel (b0090) 2002
Parr, Sullivan (b0260) 2014; 374
Hodson, White, Mead, Broadley (b0175) 2005; 96
Puppe, Leue (b0290) 2018; 330
Puppe, Ehrmann, Kaczorek, Wanner, Sommer (b0270) 2015; 243
Puppe, Höhn, Kaczorek, Wanner, Wehrhan, Sommer (b0280) 2017; 14
Yang, Song, Liu, Bolan, Wang, Li (b0380) 2015; 30
Liang, Nikolic, Bélanger, Gong, Song (b0225) 2015
Epstein (b0105) 1999; 50
Williams (b0375) 1986
Bartoli (b0030) 1985; 36
Puppe, Höhn, Kaczorek, Wanner, Sommer (b0275) 2016; 105
Turpault, Calvaruso, Kirchen, Redon, Cochet (b0345) 2018; 15
Li, Unzué-Belmonte, Cornelis, Linden, Struyf, Ronsse, Delvaux (b0220) 2019; 438
Dietzel (b0085) 2000; 64
Liu, Chen, Yang, Zhao, Wang (b0230) 2012; 26
Bartoli (b0025) 1983; 35
Cornelis, Ranger, Iserentant, Delvaux (b0065) 2010; 97
Song, Liu, Strömberg, Wang, Strong, Yang, Wu (b0315) 2018; 615
Clymans, Conley, Battles, Frings, Koppers, Likens, Johnson (b0055) 2016; 97
Liu (10.1016/j.geoderma.2019.114036_b0230) 2012; 26
Bartoli (10.1016/j.geoderma.2019.114036_b0025) 1983; 35
Li (10.1016/j.geoderma.2019.114036_b9000) 2019; 659
Knoll (10.1016/j.geoderma.2019.114036_b0195) 1987; 15
Bartoli (10.1016/j.geoderma.2019.114036_b0020) 1981
Song (10.1016/j.geoderma.2019.114036_b0300) 2013; 19
Puppe (10.1016/j.geoderma.2019.114036_b0265) 2014; 70
10.1016/j.geoderma.2019.114036_b0095
Song (10.1016/j.geoderma.2019.114036_b0305) 2014; 34
Song (10.1016/j.geoderma.2019.114036_b0315) 2018; 615
Bartoli (10.1016/j.geoderma.2019.114036_b0035) 1980; 44
Fraysse (10.1016/j.geoderma.2019.114036_b0135) 2009; 258
Puppe (10.1016/j.geoderma.2019.114036_b0285) 2018; 21
Georgiadis (10.1016/j.geoderma.2019.114036_b0145) 2013; 209
Alexandre (10.1016/j.geoderma.2019.114036_b0005) 1997; 61
Wang (10.1016/j.geoderma.2019.114036_b0360) 2018; 25
Watteau (10.1016/j.geoderma.2019.114036_b0365) 2001; 52
Creevy (10.1016/j.geoderma.2019.114036_b0080) 2016; 59
Schoelynck (10.1016/j.geoderma.2019.114036_b0295) 2014; 25
Epstein (10.1016/j.geoderma.2019.114036_b0110) 2001
Hodson (10.1016/j.geoderma.2019.114036_b0175) 2005; 96
Epstein (10.1016/j.geoderma.2019.114036_b0105) 1999; 50
Li (10.1016/j.geoderma.2019.114036_b0215) 2018; 38
Zhu (10.1016/j.geoderma.2019.114036_b0390) 2014; 34
Wanner (10.1016/j.geoderma.2019.114036_b0350) 2019; 1–11
Drever (10.1016/j.geoderma.2019.114036_b0100) 1994; 58
Li (10.1016/j.geoderma.2019.114036_b0205) 2019; 11
Li (10.1016/j.geoderma.2019.114036_b0210) 2014; 5
Tavakkoli (10.1016/j.geoderma.2019.114036_b0335) 2011; 174
Ge (10.1016/j.geoderma.2019.114036_b0140) 2011; 292
Song (10.1016/j.geoderma.2019.114036_b0310) 2018; 185
Aoki (10.1016/j.geoderma.2019.114036_b0015) 2007; 142
Puppe (10.1016/j.geoderma.2019.114036_b0270) 2015; 243
Fonte (10.1016/j.geoderma.2019.114036_b0120) 2004; 36
Sommer (10.1016/j.geoderma.2019.114036_b0320) 2013; 10
Puppe (10.1016/j.geoderma.2019.114036_b0290) 2018; 330
Conley (10.1016/j.geoderma.2019.114036_b0060) 2002; 16
Yang (10.1016/j.geoderma.2019.114036_b0385) 2018; 312
Bartoli (10.1016/j.geoderma.2019.114036_b0030) 1985; 36
Kaufman (10.1016/j.geoderma.2019.114036_b0190) 1981
Georgiadis (10.1016/j.geoderma.2019.114036_b0155) 2017; 153
Parr (10.1016/j.geoderma.2019.114036_b0255) 2005; 37
Georgiadis (10.1016/j.geoderma.2019.114036_b0150) 2014; 52
Cornelis (10.1016/j.geoderma.2019.114036_b0075) 2016; 30
Puppe (10.1016/j.geoderma.2019.114036_b0280) 2017; 14
Hansen (10.1016/j.geoderma.2019.114036_b0165) 1994; 158
Liang (10.1016/j.geoderma.2019.114036_b0225) 2015
Parr (10.1016/j.geoderma.2019.114036_b0260) 2014; 374
Williams (10.1016/j.geoderma.2019.114036_b0375) 1986
Ma (10.1016/j.geoderma.2019.114036_b0240) 2008; 65
McKeague (10.1016/j.geoderma.2019.114036_b0245) 1963; 15
White (10.1016/j.geoderma.2019.114036_b0370) 2012; 94
Clarke (10.1016/j.geoderma.2019.114036_b0050) 2003; 60
Hodson (10.1016/j.geoderma.2019.114036_b0170) 2016; 68
Li (10.1016/j.geoderma.2019.114036_b0220) 2019; 438
Tubaña (10.1016/j.geoderma.2019.114036_b0340) 2015
Cornelis (10.1016/j.geoderma.2019.114036_b0065) 2010; 97
Yang (10.1016/j.geoderma.2019.114036_b0380) 2015; 30
Alfredsson (10.1016/j.geoderma.2019.114036_b0010) 2016; 30
Turpault (10.1016/j.geoderma.2019.114036_b0345) 2018; 15
Canadell (10.1016/j.geoderma.2019.114036_b0045) 1996; 108
Fraysse (10.1016/j.geoderma.2019.114036_b0130) 2006; 88
Puppe (10.1016/j.geoderma.2019.114036_b0275) 2016; 105
Nguyen (10.1016/j.geoderma.2019.114036_b0250) 2019; 333
10.1016/j.geoderma.2019.114036_b0180
Farmer (10.1016/j.geoderma.2019.114036_b0115) 2005; 127
Gérard (10.1016/j.geoderma.2019.114036_b0160) 2008; 72
Fraysse (10.1016/j.geoderma.2019.114036_b0125) 2006; 70
Lu (10.1016/j.geoderma.2019.114036_b0235) 2000
Blecker (10.1016/j.geoderma.2019.114036_b0040) 2006; 20
Cornelis (10.1016/j.geoderma.2019.114036_b0070) 2011; 342
Wang (10.1016/j.geoderma.2019.114036_b0355) 2016; 27
Dietzel (10.1016/j.geoderma.2019.114036_b0090) 2002
Jones (10.1016/j.geoderma.2019.114036_b0185) 1963; 198
State Soil Survey Service of China (10.1016/j.geoderma.2019.114036_b0330) 1998
Clymans (10.1016/j.geoderma.2019.114036_b0055) 2016; 97
Li (10.1016/j.geoderma.2019.114036_b0200) 2009; 71
Sommer (10.1016/j.geoderma.2019.114036_b0325) 2006; 169
Dietzel (10.1016/j.geoderma.2019.114036_b0085) 2000; 64
References_xml – volume: 127
  start-page: 71
  year: 2005
  end-page: 79
  ident: b0115
  article-title: The role of phytolith formation and dissolution in controlling concentrations of silica in soil solutions and streams
  publication-title: Geoderma
– volume: 70
  start-page: 1939
  year: 2006
  end-page: 1951
  ident: b0125
  article-title: Surface properties, solubility and dissolution kinetics of bamboo phytoliths
  publication-title: Geochim. Cosmochim. Acta
– volume: 342
  start-page: 369
  year: 2011
  end-page: 378
  ident: b0070
  article-title: Identification and distribution of the readily soluble silicon pool in a temperate forest soil below three distinct tree species
  publication-title: Plant Soil
– volume: 68
  start-page: 62
  year: 2016
  end-page: 69
  ident: b0170
  article-title: The development of phytoliths in plants and its influence on their chemistry and isotopic composition. Implications for palaeoecology and archaeology
  publication-title: J. Archaeol. Sci.
– volume: 52
  start-page: 385
  year: 2001
  end-page: 396
  ident: b0365
  article-title: Ultrastructural study of the biogeochemical cycle of silicon in the soil and litter of a temperate forest
  publication-title: Eur. J. Soil Sci.
– reference: Drees, L.R., Wilding, L.P., Smeck, N.E., Senkayi, A.L., 1989. Silica in soils: quartz and disordered silica polymorphs. In: Dixon, J.B., Weed, S.B., (Eds). Minerals in Soil Environments. Soil Science Society of America Book Series No. 1, Madison, pp 913–974.
– volume: 333
  start-page: 200
  year: 2019
  end-page: 213
  ident: b0250
  article-title: Phytolith content in Vietnamese paddy soils in relation to soil properties
  publication-title: Geoderma
– start-page: 24
  year: 1986
  end-page: 39
  ident: b0375
  article-title: Introduction to silicon chemistry and biochemistry
  publication-title: Silicon Biochemistry
– volume: 21
  start-page: 1697
  year: 2018
  end-page: 1703
  ident: b0285
  article-title: Data on euglyphid testate amoeba densities, corresponding protozoic silicon pools, and selected soil parameters of initial and forested biogeosystems
  publication-title: Data Brief
– volume: 15
  start-page: 339
  year: 1963
  end-page: 396
  ident: b0245
  article-title: Silica in soils
  publication-title: Adv. Agron.
– volume: 185
  start-page: 463
  year: 2018
  end-page: 475
  ident: b0310
  article-title: Silicon regulation of soil organic carbon stabilization and its potential to mitigate climate change
  publication-title: Earth Sci. Rev.
– volume: 59
  start-page: 51
  year: 2016
  end-page: 59
  ident: b0080
  article-title: Protist diversity on a nature reserve in NW England—With particular reference to their role in soil biogenic silicon pools
  publication-title: Pedobiologia
– volume: 72
  start-page: 741
  year: 2008
  end-page: 758
  ident: b0160
  article-title: Modelling the biogeochemical cycle of silicon in soils: application to a temperate forest ecosystem
  publication-title: Geochim. Cosmochim. Acta
– start-page: 409
  year: 1981
  end-page: 449
  ident: b0190
  article-title: Silica in shoots of higher plants
  publication-title: Silicon and Siliceous Structures in Biological Systems
– volume: 30
  start-page: 347
  year: 2015
  end-page: 355
  ident: b0380
  article-title: Plant silicon content in forests of north China and its implications for phytolith carbon sequestration
  publication-title: Ecol. Res.
– volume: 243
  start-page: 196
  year: 2015
  end-page: 204
  ident: b0270
  article-title: The protozoic Si pool in temperate forest ecosystems—Quantification, abiotic controls and interactions with earthworms
  publication-title: Geoderma
– volume: 25
  start-page: 301
  year: 2014
  end-page: 313
  ident: b0295
  article-title: Silicon–vegetation interaction in multiple ecosystems: a review
  publication-title: J. Veg. Sci.
– start-page: 1
  year: 2001
  end-page: 15
  ident: b0110
  article-title: Silicon in plants: facts vs. concepts
  publication-title: Silicon in Agriculture
– volume: 34
  start-page: 813
  year: 2014
  end-page: 819
  ident: b0305
  article-title: Increase of available soil silicon by Si-rich manure for sustainable rice production
  publication-title: Agron. Sustain. Dev.
– volume: 35
  start-page: 469
  year: 1983
  end-page: 476
  ident: b0025
  article-title: The biogeochemical cycle of silicon in two temperate forest ecosystems
  publication-title: Environ. Biogeochem. Ecol. Bull.
– volume: 10
  start-page: 4991
  year: 2013
  end-page: 5007
  ident: b0320
  article-title: Si cycling in a forest biogeosystem- the importance of transient state biogenic Si pools
  publication-title: Biogeosciences
– volume: 97
  start-page: 044
  year: 2016
  end-page: 3057
  ident: b0055
  article-title: Silica uptake and release in live and decaying biomass in a northern hardwood forest
  publication-title: Ecology
– volume: 292
  start-page: 55
  year: 2011
  end-page: 62
  ident: b0140
  article-title: Phytoliths in woody plants from the northern slope of the Changbai Mountain (Northeast China), and their implications
  publication-title: Plant Syst. Evol.
– volume: 330
  start-page: 212
  year: 2018
  end-page: 220
  ident: b0290
  article-title: Physicochemical surface properties of different biogenic silicon structures: Results from spectroscopic and microscopic analyses of protistic and phytogenic silica
  publication-title: Geoderma
– volume: 15
  start-page: 2231
  year: 2018
  end-page: 2249
  ident: b0345
  article-title: Contribution of fine tree roots to the silicon cycle in a temperate forest ecosystem developed on three soil types
  publication-title: Biogeosciences
– volume: 64
  start-page: 3275
  year: 2000
  end-page: 3281
  ident: b0085
  article-title: Dissolution of silicates and the stability of polysilicic acid
  publication-title: Geochim. Cosmochim. Acta
– volume: 30
  start-page: 1298
  year: 2016
  end-page: 1310
  ident: b0075
  article-title: Soil processes drive the biological silicon feedback loop
  publication-title: Func. Ecol.
– volume: 374
  start-page: 45
  year: 2014
  end-page: 53
  ident: b0260
  article-title: Comparison of two methods for the isolation of phytolith occluded carbon from plant material
  publication-title: Plant Soil
– volume: 16
  start-page: 1121
  year: 2002
  ident: b0060
  article-title: Terrestrial ecosystems and the global biogeochemical silica cycle
  publication-title: Glob. Biogeochem. Cycles
– volume: 71
  start-page: 80
  year: 2009
  end-page: 93
  ident: b0200
  article-title: Effects of leaf toughness and nitrogen content on litter breakdown and macroinvertebrates in a tropical stream
  publication-title: Aquat. Sci.
– volume: 14
  start-page: 5239
  year: 2017
  end-page: 5252
  ident: b0280
  article-title: How big is the influence of biogenic silicon pools on short-term changes in water-soluble silicon in soils? Implications from a study of a 10-year-old soil–plant system
  publication-title: Biogeosciences
– volume: 108
  start-page: 583
  year: 1996
  end-page: 595
  ident: b0045
  article-title: Maximum rooting depth of vegetation types at the global scale
  publication-title: Oecologia
– volume: 615
  start-page: 1
  year: 2018
  end-page: 8
  ident: b0315
  article-title: Contribution of forests to the carbon sink via biologically-mediated silicate weathering: A case study of China
  publication-title: Sci. Total Environ.
– volume: 50
  start-page: 641
  year: 1999
  end-page: 664
  ident: b0105
  publication-title: Silicon. Annu. Rev. Plant Physio.
– start-page: 207
  year: 2002
  end-page: 235
  ident: b0090
  article-title: Interaction of polysilicic and monosilicic acid with mineral surfaces
  publication-title: Water-Rock Interaction
– volume: 15
  start-page: 1099
  year: 1987
  end-page: 1102
  ident: b0195
  article-title: Effect of the advent and diversification of vascular land plants on mineral weathering through geologic time
  publication-title: Geology
– year: 1998
  ident: b0330
  article-title: China Soil
– volume: 25
  start-page: 23261
  year: 2018
  end-page: 23275
  ident: b0360
  article-title: Leaf decomposition and nutrient release of three tree species in the hydro-fluctuation zone of the Three Gorges Dam Reservoir
  publication-title: China. Environ. Sci. Pollut. Res.
– volume: 96
  start-page: 1027
  year: 2005
  end-page: 1046
  ident: b0175
  article-title: Phylogenetic variation in the silicon composition of plants
  publication-title: Ann. Bot.
– volume: 58
  start-page: 2325
  year: 1994
  end-page: 2332
  ident: b0100
  article-title: The effect of land plants on weathering rates of silicate minerals
  publication-title: Geochim. Cosmochim. Acta
– volume: 438
  start-page: 187
  year: 2019
  end-page: 203
  ident: b0220
  article-title: Effects of phytolithic rice-straw biochar, soil buffering capacity and pH on silicon bioavailability
  publication-title: Plant Soil
– volume: 30
  start-page: 497
  year: 2016
  end-page: 500
  ident: b0010
  article-title: Estimated storage of amorphous silica in soils of the circum-Arctic tundra region
  publication-title: Global Biogechem. Cycles
– year: 1981
  ident: b0020
  article-title: Le cycle biogéochimique du silicium sur roche acide: Application à deux écosystèmes forestiers tempérés (Vosges)
– reference: IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106. FAO, Rome.
– volume: 60
  start-page: 175
  year: 2003
  end-page: 194
  ident: b0050
  article-title: The occurrence and significance of biogenic opal in the regolith
  publication-title: Earth Sci. Rev.
– volume: 27
  start-page: 1037
  year: 2016
  end-page: 1045
  ident: b0355
  article-title: A comparison of decomposition dynamics among green tree leaves, partially decomposed tree leaf litter and their mixture in a warm temperate forest ecosystem
  publication-title: J. For. Res.
– volume: 36
  start-page: 335
  year: 1985
  end-page: 350
  ident: b0030
  article-title: Crystallochemistry and surface properties of biogenic opal
  publication-title: Eur. J. Soil Sci.
– start-page: 7
  year: 2015
  end-page: 51
  ident: b0340
  article-title: Silicon in soils and plants
  publication-title: Silicon and plant diseases
– volume: 61
  start-page: 677
  year: 1997
  end-page: 682
  ident: b0005
  article-title: Plant impact on the biogeochemical cycle of silicon and related weathering processes
  publication-title: Geochim. Cosmochim. Acta
– volume: 209
  start-page: 251
  year: 2013
  end-page: 261
  ident: b0145
  article-title: Development of a method for sequential Si extraction from soils
  publication-title: Geoderma
– volume: 153
  start-page: 100
  year: 2017
  end-page: 105
  ident: b0155
  article-title: Silicon fractionation in Mollic Fluvisols along the Central Elbe River, Germany
  publication-title: Catena
– volume: 5
  start-page: 529
  year: 2014
  ident: b0210
  article-title: Impact of rice cultivar and organ on elemental composition of phytoliths and the release of bio-available silicon
  publication-title: Front. Plant Sci.
– volume: 36
  start-page: 474
  year: 2004
  end-page: 482
  ident: b0120
  article-title: Decomposition of greenfall vs. senescent foliage in a tropical forest ecosystem in Puerto Rico
  publication-title: Biotropica
– volume: 158
  start-page: 40
  year: 1994
  end-page: 46
  ident: b0165
  article-title: Monosilicate adsorption by ferrihydrite and goethite at pH 3–6
  publication-title: Soil Sci.
– volume: 37
  start-page: 117
  year: 2005
  end-page: 124
  ident: b0255
  article-title: Soil carbon sequestration in phytoliths
  publication-title: Soil Biol. Biochem.
– year: 2000
  ident: b0235
  article-title: Methods of Soil and Agrochemical Analysis
– volume: 65
  start-page: 3049
  year: 2008
  end-page: 3057
  ident: b0240
  article-title: Functions and transport of silicon in plants
  publication-title: Cell. Mol. Life Sci.
– volume: 44
  start-page: 873
  year: 1980
  end-page: 878
  ident: b0035
  article-title: Dissolution of biogenic opal as a function of its physical and chemical properties
  publication-title: Soil Sci. Soc. Am. J.
– volume: 20
  start-page: GB3023
  year: 2006
  ident: b0040
  article-title: Biologic cycling of silica across a grassland bioclimosequence
  publication-title: Glob. Biogeochem. Cycles
– volume: 52
  start-page: 645
  year: 2014
  end-page: 657
  ident: b0150
  article-title: Testing a new method for sequential silicon extraction on soils of a temperate–humid climate
  publication-title: Soil Res.
– volume: 258
  start-page: 197
  year: 2009
  end-page: 206
  ident: b0135
  article-title: Surface chemistry and reactivity of plant phytoliths in aqueous solutions
  publication-title: Chem. Geol.
– year: 2015
  ident: b0225
  article-title: Silicon in Agriculture. From Theory to Practice
– volume: 169
  start-page: 310
  year: 2006
  end-page: 3291
  ident: b0325
  article-title: Silicon pools and fluxes in soils and landscapes –A review
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 34
  start-page: 455
  year: 2014
  end-page: 472
  ident: b0390
  article-title: Beneficial effects of silicon on salt and drought tolerance in plants
  publication-title: Agron. Sustain. Dev.
– volume: 659
  start-page: 673
  year: 2019
  end-page: 680
  ident: b9000
  article-title: The impact of crop residue biochars on silicon and nutrient cycles in croplands
  publication-title: Sci. Total Environ.
– volume: 174
  start-page: 437
  year: 2011
  end-page: 446
  ident: b0335
  article-title: Silicon nutrition of rice is affected by soil pH, weathering and silicon fertilisation
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 142
  start-page: 29
  year: 2007
  end-page: 35
  ident: b0015
  article-title: Silica and testate amoebae in a soil under pine–oak forest
  publication-title: Geoderma
– volume: 38
  start-page: 26
  year: 2018
  ident: b0215
  article-title: Silicon enhancement of estimated plant biomass carbon accumulation under abiotic and biotic stresses. A meta-analysis
  publication-title: Agron. Sustain. Dev.
– volume: 105
  start-page: 9
  year: 2016
  end-page: 16
  ident: b0275
  article-title: As time goes by—Spatiotemporal changes of biogenic Si pools in initial soils of an artificial catchment in NE Germany
  publication-title: Appl. Soil Ecol.
– volume: 94
  start-page: 72
  year: 2012
  end-page: 94
  ident: b0370
  article-title: Biogenic and pedogenic controls on Si distributions and cycling in grasslands of the Santa Cruz soil chronosequence
  publication-title: California. Geochim. Cosmochim. Acta
– volume: 70
  start-page: 477
  year: 2014
  end-page: 482
  ident: b0265
  article-title: Dynamics and drivers of the protozoic Si pool along a 10-year chronosequence of initial ecosystem states
  publication-title: Ecol. Eng.
– volume: 312
  start-page: 36
  year: 2018
  end-page: 44
  ident: b0385
  article-title: Phytolith accumulation in broadleaf and conifer forests of northern China: Implications for phytolith carbon sequestration
  publication-title: Geoderma
– volume: 97
  start-page: 231
  year: 2010
  end-page: 245
  ident: b0065
  article-title: Tree species impact the terrestrial cycle of silicon through various uptakes
  publication-title: Biogeochemistry
– volume: 1–11
  year: 2019
  ident: b0350
  article-title: Soil Testate Amoebae and Diatoms as Bioindicators of an Old Heavy Metal Contaminated Floodplain in Japan
  publication-title: Microb. Ecol.
– volume: 198
  start-page: 852
  year: 1963
  end-page: 853
  ident: b0185
  article-title: Effects of iron and aluminium oxides on silica in solution in soils
  publication-title: Nature
– volume: 11
  start-page: 1264
  year: 2019
  end-page: 1282
  ident: b0205
  article-title: Phytolith-rich biochar: A potential Si fertilizer in desilicated soils
  publication-title: GCB Bioenergy
– volume: 19
  start-page: 2907
  year: 2013
  end-page: 2915
  ident: b0300
  article-title: The production of phytolith-occluded carbon in China's forests: implications to biogeochemical carbon sequestration
  publication-title: Glob. Chang. Biol.
– volume: 88
  start-page: 202
  year: 2006
  end-page: 205
  ident: b0130
  article-title: Aqueous reactivity of phytoliths and plant litter: physico-chemical constraints on terrestrial biogeochemical cycle of silicon
  publication-title: J. Geochem. Explor.
– volume: 26
  start-page: 159
  year: 2012
  end-page: 163
  ident: b0230
  article-title: Fractal characteristics of soil particles of typical forest in north mountain of Hebei province
  publication-title: J. Soil Water Conserv.
– volume: 97
  start-page: 231
  year: 2010
  ident: 10.1016/j.geoderma.2019.114036_b0065
  article-title: Tree species impact the terrestrial cycle of silicon through various uptakes
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-009-9369-x
– volume: 374
  start-page: 45
  year: 2014
  ident: 10.1016/j.geoderma.2019.114036_b0260
  article-title: Comparison of two methods for the isolation of phytolith occluded carbon from plant material
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1847-1
– volume: 38
  start-page: 26
  year: 2018
  ident: 10.1016/j.geoderma.2019.114036_b0215
  article-title: Silicon enhancement of estimated plant biomass carbon accumulation under abiotic and biotic stresses. A meta-analysis
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-018-0496-4
– volume: 185
  start-page: 463
  year: 2018
  ident: 10.1016/j.geoderma.2019.114036_b0310
  article-title: Silicon regulation of soil organic carbon stabilization and its potential to mitigate climate change
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2018.06.020
– volume: 30
  start-page: 1298
  year: 2016
  ident: 10.1016/j.geoderma.2019.114036_b0075
  article-title: Soil processes drive the biological silicon feedback loop
  publication-title: Func. Ecol.
  doi: 10.1111/1365-2435.12704
– volume: 25
  start-page: 301
  year: 2014
  ident: 10.1016/j.geoderma.2019.114036_b0295
  article-title: Silicon–vegetation interaction in multiple ecosystems: a review
  publication-title: J. Veg. Sci.
  doi: 10.1111/jvs.12055
– volume: 44
  start-page: 873
  year: 1980
  ident: 10.1016/j.geoderma.2019.114036_b0035
  article-title: Dissolution of biogenic opal as a function of its physical and chemical properties
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1980.03615995004400040043x
– volume: 25
  start-page: 23261
  year: 2018
  ident: 10.1016/j.geoderma.2019.114036_b0360
  article-title: Leaf decomposition and nutrient release of three tree species in the hydro-fluctuation zone of the Three Gorges Dam Reservoir
  publication-title: China. Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-018-2357-8
– volume: 58
  start-page: 2325
  year: 1994
  ident: 10.1016/j.geoderma.2019.114036_b0100
  article-title: The effect of land plants on weathering rates of silicate minerals
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(94)90013-2
– volume: 72
  start-page: 741
  year: 2008
  ident: 10.1016/j.geoderma.2019.114036_b0160
  article-title: Modelling the biogeochemical cycle of silicon in soils: application to a temperate forest ecosystem
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2007.11.010
– volume: 26
  start-page: 159
  year: 2012
  ident: 10.1016/j.geoderma.2019.114036_b0230
  article-title: Fractal characteristics of soil particles of typical forest in north mountain of Hebei province
  publication-title: J. Soil Water Conserv.
– start-page: 24
  year: 1986
  ident: 10.1016/j.geoderma.2019.114036_b0375
  article-title: Introduction to silicon chemistry and biochemistry
– volume: 108
  start-page: 583
  year: 1996
  ident: 10.1016/j.geoderma.2019.114036_b0045
  article-title: Maximum rooting depth of vegetation types at the global scale
  publication-title: Oecologia
  doi: 10.1007/BF00329030
– volume: 64
  start-page: 3275
  year: 2000
  ident: 10.1016/j.geoderma.2019.114036_b0085
  article-title: Dissolution of silicates and the stability of polysilicic acid
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(00)00426-9
– volume: 60
  start-page: 175
  year: 2003
  ident: 10.1016/j.geoderma.2019.114036_b0050
  article-title: The occurrence and significance of biogenic opal in the regolith
  publication-title: Earth Sci. Rev.
  doi: 10.1016/S0012-8252(02)00092-2
– volume: 158
  start-page: 40
  year: 1994
  ident: 10.1016/j.geoderma.2019.114036_b0165
  article-title: Monosilicate adsorption by ferrihydrite and goethite at pH 3–6
  publication-title: Soil Sci.
  doi: 10.1097/00010694-199407000-00005
– volume: 52
  start-page: 385
  year: 2001
  ident: 10.1016/j.geoderma.2019.114036_b0365
  article-title: Ultrastructural study of the biogeochemical cycle of silicon in the soil and litter of a temperate forest
  publication-title: Eur. J. Soil Sci.
  doi: 10.1046/j.1365-2389.2001.00391.x
– volume: 243
  start-page: 196
  year: 2015
  ident: 10.1016/j.geoderma.2019.114036_b0270
  article-title: The protozoic Si pool in temperate forest ecosystems—Quantification, abiotic controls and interactions with earthworms
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.12.018
– volume: 71
  start-page: 80
  year: 2009
  ident: 10.1016/j.geoderma.2019.114036_b0200
  article-title: Effects of leaf toughness and nitrogen content on litter breakdown and macroinvertebrates in a tropical stream
  publication-title: Aquat. Sci.
  doi: 10.1007/s00027-008-8117-y
– volume: 37
  start-page: 117
  year: 2005
  ident: 10.1016/j.geoderma.2019.114036_b0255
  article-title: Soil carbon sequestration in phytoliths
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2004.06.013
– volume: 36
  start-page: 474
  year: 2004
  ident: 10.1016/j.geoderma.2019.114036_b0120
  article-title: Decomposition of greenfall vs. senescent foliage in a tropical forest ecosystem in Puerto Rico
  publication-title: Biotropica
  doi: 10.1111/j.1744-7429.2004.tb00343.x
– volume: 330
  start-page: 212
  year: 2018
  ident: 10.1016/j.geoderma.2019.114036_b0290
  article-title: Physicochemical surface properties of different biogenic silicon structures: Results from spectroscopic and microscopic analyses of protistic and phytogenic silica
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.06.001
– ident: 10.1016/j.geoderma.2019.114036_b0095
– volume: 16
  start-page: 1121
  year: 2002
  ident: 10.1016/j.geoderma.2019.114036_b0060
  article-title: Terrestrial ecosystems and the global biogeochemical silica cycle
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1029/2002GB001894
– volume: 333
  start-page: 200
  year: 2019
  ident: 10.1016/j.geoderma.2019.114036_b0250
  article-title: Phytolith content in Vietnamese paddy soils in relation to soil properties
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.07.027
– volume: 27
  start-page: 1037
  year: 2016
  ident: 10.1016/j.geoderma.2019.114036_b0355
  article-title: A comparison of decomposition dynamics among green tree leaves, partially decomposed tree leaf litter and their mixture in a warm temperate forest ecosystem
  publication-title: J. For. Res.
  doi: 10.1007/s11676-016-0248-8
– volume: 36
  start-page: 335
  year: 1985
  ident: 10.1016/j.geoderma.2019.114036_b0030
  article-title: Crystallochemistry and surface properties of biogenic opal
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.1985.tb00340.x
– start-page: 1
  year: 2001
  ident: 10.1016/j.geoderma.2019.114036_b0110
  article-title: Silicon in plants: facts vs. concepts
– volume: 438
  start-page: 187
  year: 2019
  ident: 10.1016/j.geoderma.2019.114036_b0220
  article-title: Effects of phytolithic rice-straw biochar, soil buffering capacity and pH on silicon bioavailability
  publication-title: Plant Soil
  doi: 10.1007/s11104-019-04013-0
– volume: 34
  start-page: 455
  year: 2014
  ident: 10.1016/j.geoderma.2019.114036_b0390
  article-title: Beneficial effects of silicon on salt and drought tolerance in plants
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-013-0194-1
– year: 2015
  ident: 10.1016/j.geoderma.2019.114036_b0225
– volume: 30
  start-page: 347
  year: 2015
  ident: 10.1016/j.geoderma.2019.114036_b0380
  article-title: Plant silicon content in forests of north China and its implications for phytolith carbon sequestration
  publication-title: Ecol. Res.
  doi: 10.1007/s11284-014-1228-0
– volume: 97
  start-page: 044
  year: 2016
  ident: 10.1016/j.geoderma.2019.114036_b0055
  article-title: Silica uptake and release in live and decaying biomass in a northern hardwood forest
  publication-title: Ecology
  doi: 10.1002/ecy.1542
– volume: 258
  start-page: 197
  year: 2009
  ident: 10.1016/j.geoderma.2019.114036_b0135
  article-title: Surface chemistry and reactivity of plant phytoliths in aqueous solutions
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2008.10.003
– volume: 11
  start-page: 1264
  year: 2019
  ident: 10.1016/j.geoderma.2019.114036_b0205
  article-title: Phytolith-rich biochar: A potential Si fertilizer in desilicated soils
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12635
– volume: 1–11
  year: 2019
  ident: 10.1016/j.geoderma.2019.114036_b0350
  article-title: Soil Testate Amoebae and Diatoms as Bioindicators of an Old Heavy Metal Contaminated Floodplain in Japan
  publication-title: Microb. Ecol.
– volume: 292
  start-page: 55
  year: 2011
  ident: 10.1016/j.geoderma.2019.114036_b0140
  article-title: Phytoliths in woody plants from the northern slope of the Changbai Mountain (Northeast China), and their implications
  publication-title: Plant Syst. Evol.
  doi: 10.1007/s00606-010-0406-y
– volume: 105
  start-page: 9
  year: 2016
  ident: 10.1016/j.geoderma.2019.114036_b0275
  article-title: As time goes by—Spatiotemporal changes of biogenic Si pools in initial soils of an artificial catchment in NE Germany
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2016.01.020
– volume: 88
  start-page: 202
  year: 2006
  ident: 10.1016/j.geoderma.2019.114036_b0130
  article-title: Aqueous reactivity of phytoliths and plant litter: physico-chemical constraints on terrestrial biogeochemical cycle of silicon
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2005.08.039
– volume: 659
  start-page: 673
  year: 2019
  ident: 10.1016/j.geoderma.2019.114036_b9000
  article-title: The impact of crop residue biochars on silicon and nutrient cycles in croplands
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.12.381
– volume: 174
  start-page: 437
  year: 2011
  ident: 10.1016/j.geoderma.2019.114036_b0335
  article-title: Silicon nutrition of rice is affected by soil pH, weathering and silicon fertilisation
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.201000023
– volume: 15
  start-page: 1099
  year: 1987
  ident: 10.1016/j.geoderma.2019.114036_b0195
  article-title: Effect of the advent and diversification of vascular land plants on mineral weathering through geologic time
  publication-title: Geology
  doi: 10.1130/0091-7613(1987)15<1099:EOTAAD>2.0.CO;2
– volume: 65
  start-page: 3049
  year: 2008
  ident: 10.1016/j.geoderma.2019.114036_b0240
  article-title: Functions and transport of silicon in plants
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-008-7580-x
– volume: 50
  start-page: 641
  year: 1999
  ident: 10.1016/j.geoderma.2019.114036_b0105
  publication-title: Silicon. Annu. Rev. Plant Physio.
  doi: 10.1146/annurev.arplant.50.1.641
– volume: 153
  start-page: 100
  year: 2017
  ident: 10.1016/j.geoderma.2019.114036_b0155
  article-title: Silicon fractionation in Mollic Fluvisols along the Central Elbe River, Germany
  publication-title: Catena
  doi: 10.1016/j.catena.2017.01.027
– volume: 127
  start-page: 71
  year: 2005
  ident: 10.1016/j.geoderma.2019.114036_b0115
  article-title: The role of phytolith formation and dissolution in controlling concentrations of silica in soil solutions and streams
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2004.11.014
– volume: 94
  start-page: 72
  year: 2012
  ident: 10.1016/j.geoderma.2019.114036_b0370
  article-title: Biogenic and pedogenic controls on Si distributions and cycling in grasslands of the Santa Cruz soil chronosequence
  publication-title: California. Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2012.06.009
– volume: 15
  start-page: 2231
  year: 2018
  ident: 10.1016/j.geoderma.2019.114036_b0345
  article-title: Contribution of fine tree roots to the silicon cycle in a temperate forest ecosystem developed on three soil types
  publication-title: Biogeosciences
  doi: 10.5194/bg-15-2231-2018
– volume: 15
  start-page: 339
  year: 1963
  ident: 10.1016/j.geoderma.2019.114036_b0245
  article-title: Silica in soils
  publication-title: Adv. Agron.
  doi: 10.1016/S0065-2113(08)60403-4
– volume: 59
  start-page: 51
  year: 2016
  ident: 10.1016/j.geoderma.2019.114036_b0080
  article-title: Protist diversity on a nature reserve in NW England—With particular reference to their role in soil biogenic silicon pools
  publication-title: Pedobiologia
  doi: 10.1016/j.pedobi.2016.02.001
– volume: 10
  start-page: 4991
  year: 2013
  ident: 10.1016/j.geoderma.2019.114036_b0320
  article-title: Si cycling in a forest biogeosystem- the importance of transient state biogenic Si pools
  publication-title: Biogeosciences
  doi: 10.5194/bg-10-4991-2013
– volume: 70
  start-page: 477
  year: 2014
  ident: 10.1016/j.geoderma.2019.114036_b0265
  article-title: Dynamics and drivers of the protozoic Si pool along a 10-year chronosequence of initial ecosystem states
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2014.06.011
– volume: 209
  start-page: 251
  year: 2013
  ident: 10.1016/j.geoderma.2019.114036_b0145
  article-title: Development of a method for sequential Si extraction from soils
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.06.023
– year: 2000
  ident: 10.1016/j.geoderma.2019.114036_b0235
– start-page: 7
  year: 2015
  ident: 10.1016/j.geoderma.2019.114036_b0340
  article-title: Silicon in soils and plants
– volume: 615
  start-page: 1
  year: 2018
  ident: 10.1016/j.geoderma.2019.114036_b0315
  article-title: Contribution of forests to the carbon sink via biologically-mediated silicate weathering: A case study of China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.09.253
– volume: 96
  start-page: 1027
  year: 2005
  ident: 10.1016/j.geoderma.2019.114036_b0175
  article-title: Phylogenetic variation in the silicon composition of plants
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mci255
– volume: 5
  start-page: 529
  year: 2014
  ident: 10.1016/j.geoderma.2019.114036_b0210
  article-title: Impact of rice cultivar and organ on elemental composition of phytoliths and the release of bio-available silicon
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2014.00529
– volume: 21
  start-page: 1697
  year: 2018
  ident: 10.1016/j.geoderma.2019.114036_b0285
  article-title: Data on euglyphid testate amoeba densities, corresponding protozoic silicon pools, and selected soil parameters of initial and forested biogeosystems
  publication-title: Data Brief
  doi: 10.1016/j.dib.2018.10.164
– volume: 342
  start-page: 369
  year: 2011
  ident: 10.1016/j.geoderma.2019.114036_b0070
  article-title: Identification and distribution of the readily soluble silicon pool in a temperate forest soil below three distinct tree species
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0702-x
– volume: 70
  start-page: 1939
  year: 2006
  ident: 10.1016/j.geoderma.2019.114036_b0125
  article-title: Surface properties, solubility and dissolution kinetics of bamboo phytoliths
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2005.12.025
– volume: 169
  start-page: 310
  year: 2006
  ident: 10.1016/j.geoderma.2019.114036_b0325
  article-title: Silicon pools and fluxes in soils and landscapes –A review
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.200521981
– volume: 198
  start-page: 852
  year: 1963
  ident: 10.1016/j.geoderma.2019.114036_b0185
  article-title: Effects of iron and aluminium oxides on silica in solution in soils
  publication-title: Nature
  doi: 10.1038/198852a0
– volume: 30
  start-page: 497
  year: 2016
  ident: 10.1016/j.geoderma.2019.114036_b0010
  article-title: Estimated storage of amorphous silica in soils of the circum-Arctic tundra region
  publication-title: Global Biogechem. Cycles
– year: 1998
  ident: 10.1016/j.geoderma.2019.114036_b0330
– volume: 20
  start-page: GB3023
  year: 2006
  ident: 10.1016/j.geoderma.2019.114036_b0040
  article-title: Biologic cycling of silica across a grassland bioclimosequence
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1029/2006GB002690
– volume: 61
  start-page: 677
  year: 1997
  ident: 10.1016/j.geoderma.2019.114036_b0005
  article-title: Plant impact on the biogeochemical cycle of silicon and related weathering processes
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(97)00001-X
– volume: 35
  start-page: 469
  year: 1983
  ident: 10.1016/j.geoderma.2019.114036_b0025
  article-title: The biogeochemical cycle of silicon in two temperate forest ecosystems
  publication-title: Environ. Biogeochem. Ecol. Bull.
– volume: 19
  start-page: 2907
  year: 2013
  ident: 10.1016/j.geoderma.2019.114036_b0300
  article-title: The production of phytolith-occluded carbon in China's forests: implications to biogeochemical carbon sequestration
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12275
– volume: 34
  start-page: 813
  year: 2014
  ident: 10.1016/j.geoderma.2019.114036_b0305
  article-title: Increase of available soil silicon by Si-rich manure for sustainable rice production
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-013-0202-5
– volume: 142
  start-page: 29
  year: 2007
  ident: 10.1016/j.geoderma.2019.114036_b0015
  article-title: Silica and testate amoebae in a soil under pine–oak forest
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2007.07.009
– start-page: 409
  year: 1981
  ident: 10.1016/j.geoderma.2019.114036_b0190
  article-title: Silica in shoots of higher plants
– volume: 52
  start-page: 645
  year: 2014
  ident: 10.1016/j.geoderma.2019.114036_b0150
  article-title: Testing a new method for sequential silicon extraction on soils of a temperate–humid climate
  publication-title: Soil Res.
  doi: 10.1071/SR14016
– volume: 68
  start-page: 62
  year: 2016
  ident: 10.1016/j.geoderma.2019.114036_b0170
  article-title: The development of phytoliths in plants and its influence on their chemistry and isotopic composition. Implications for palaeoecology and archaeology
  publication-title: J. Archaeol. Sci.
  doi: 10.1016/j.jas.2015.09.002
– volume: 312
  start-page: 36
  year: 2018
  ident: 10.1016/j.geoderma.2019.114036_b0385
  article-title: Phytolith accumulation in broadleaf and conifer forests of northern China: Implications for phytolith carbon sequestration
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.10.005
– start-page: 207
  year: 2002
  ident: 10.1016/j.geoderma.2019.114036_b0090
  article-title: Interaction of polysilicic and monosilicic acid with mineral surfaces
– year: 1981
  ident: 10.1016/j.geoderma.2019.114036_b0020
– volume: 14
  start-page: 5239
  year: 2017
  ident: 10.1016/j.geoderma.2019.114036_b0280
  article-title: How big is the influence of biogenic silicon pools on short-term changes in water-soluble silicon in soils? Implications from a study of a 10-year-old soil–plant system
  publication-title: Biogeosciences
  doi: 10.5194/bg-14-5239-2017
– ident: 10.1016/j.geoderma.2019.114036_b0180
SSID ssj0017020
Score 2.4143672
Snippet •Terrestrial biogeochemical Si cycle is strongly influenced by labile Si fractions.•The contribution made by non-crystalline Si fraction to total Si was...
The terrestrial biogeochemical silicon (Si) cycle significantly contributes to maintaining the functions and sustainability of terrestrial ecosystems. Over the...
SourceID swepub
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114036
SubjectTerms Betula
Biogenic amorphous Si
biogeochemical cycles
China
coniferous forests
deciduous forests
Environmental Science
Forest soils
hydroxides
Larix
Miljövetenskap
oxides
Pedogenic amorphous Si
Pinus
plant communities
Quercus
Relatively soluble Si fractions
Sequential chemical extraction
Si bioavailability
silicon
soil organic matter
soil pH
spatial distribution
terrestrial ecosystems
Title Quantification of different silicon fractions in broadleaf and conifer forests of northern China and consequent implications for biogeochemical Si cycling
URI https://dx.doi.org/10.1016/j.geoderma.2019.114036
https://www.proquest.com/docview/2388789021
https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-90947
Volume 361
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9swEBbb7KU9lD5p-lhUaI9ubMXR4xi2XdKWLpR2y96EJEvBS5AXxznsZX9If21nbDmkUNhDTwbbA-OZkWbGmvmGkHeVY_NgwyIrrTRZWSLkLStsVrHCK-vmUlr8NfDtnK8uyi-Xi8sjcjr2wmBZZdr7hz29363TnVmS5uy6rrHHt-AC3BGEIIh7Bnn7MQNvLyfkePn56-p8f5gg8oTOWPAMCQ4aha9ATThzrIcgKhQi5-Y9WvM_fdRhDHqIK9r7orNH5GEKIuly4PMxOfLxCXmwXLcJSMM_Jb-_78xQB9SLnjaBjrNQOrqtN2AAkYZ2aGvY0jpS2zam2ngTqIkVhcdY9EIhpgVOtkgf8YjHt5H2M7fHt4Za7I7WB6XpSEVt3cBXuwRIQH_U1N1gH-b6Gbk4-_TzdJWlOQyZg-Sty5wMwgVVMCd5yXnA9tWF8TyX5Tw3sMocuHnJKukVL1VZuFxg1pfPreLCwvU5mcQm-heEhhLRcqQXFvKYyuZWWMGrYL0yEAixfEoWo-S1SyDlOCtjo8dqtCs9akyjxvSgsSmZ7emuB5iOOynUqFj9l8Fp8CV30r4dLUHDasQjFhN9s9tqCIAkthazYkreDyay5weBvD_Wv5a6add6E3daQWotXv4HH6_IfYbpf18S95pMunbn30CM1NkTcu_DbXGSVsIfYvQUMw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcgAOiKfY8jISHMPGWa8fx1WhWqCthGhRb1bs2KtUK6fKZg9c-CH8WmYSZ7VISD1wipR4pIln7JmxZ74h5F3lilmwYZ5xq8qMc4S8LZjNqoJ5bd1MKYtHA2fnYnnJv1zNrw7I8VgLg2mVae8f9vR-t05vpmk2pzd1jTW-TEgwR-CCIO4ZxO13OLY5AKX-8GuX58FknrAZmchw-F6Z8DUICTuO9QBETCNubt5jNf_TQu17oPuoor0lOnlIHiQXki4GLh-RAx8fk_uLVZtgNPwT8vvbthyygPqJp02gYyeUjm7qNYg_0tAORQ0bWkdq26as1r4MtIwVhc-Y8kLBowVONkgf8YLHt5H2HbfHUUMmdkfrvcR0pKK2buCvXYIjoN9r6n5iFebqKbk8-XRxvMxSF4bMQejWZU4F6YJmhVOCCxGweHVeepErPstLWGMOjLwqKuW14Jozl0uM-fKZ1UJaeD4jh7GJ_jmhgSNWjvLSQhRT2dxKK0UVrNcluEFFPiHzceaNSxDl2CljbcZctGszSsygxMwgsQmZ7uhuBpCOWyn0KFjzl7oZsCS30r4dNcHAWsQLljL6Zrsx4P4oLCwu2IS8H1Rkxw_CeH-sfyxM067MOm6NhsBaHv0HH2_I3eXF2ak5_Xz-9QW5V-BBQJ8c95Icdu3WvwJvqbOv-9XwB6eJFPU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantification+of+different+silicon+fractions+in+broadleaf+and+conifer+forests+of+northern+China+and+consequent+implications+for+biogeochemical+Si+cycling&rft.jtitle=Geoderma&rft.au=Yang%2C+Xiaomin&rft.au=Song%2C+Zhaoliang&rft.au=Yu%2C+Changxun&rft.au=Ding%2C+Fan&rft.date=2020-03-01&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.eissn=1872-6259&rft.volume=361&rft_id=info:doi/10.1016%2Fj.geoderma.2019.114036&rft.externalDocID=S0016706119311000
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon