Quantification of different silicon fractions in broadleaf and conifer forests of northern China and consequent implications for biogeochemical Si cycling
•Terrestrial biogeochemical Si cycle is strongly influenced by labile Si fractions.•The contribution made by non-crystalline Si fraction to total Si was 1.51–2.31%.•Biogenic amorphous Si contributed more to the Si cycle in the broadleaf forests.•Pedogenic amorphous Si contributed more to the Si cycl...
Saved in:
Published in | Geoderma Vol. 361; p. 114036 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0016-7061 1872-6259 1872-6259 |
DOI | 10.1016/j.geoderma.2019.114036 |
Cover
Abstract | •Terrestrial biogeochemical Si cycle is strongly influenced by labile Si fractions.•The contribution made by non-crystalline Si fraction to total Si was 1.51–2.31%.•Biogenic amorphous Si contributed more to the Si cycle in the broadleaf forests.•Pedogenic amorphous Si contributed more to the Si cycle in the conifer forests.•Soil organic matter, pH, and plant communities can affect the Si transformation.
The terrestrial biogeochemical silicon (Si) cycle significantly contributes to maintaining the functions and sustainability of terrestrial ecosystems. Over the short term, the biogeochemical Si cycle can be strongly influenced by dissolved Si, organic bound Si, Si adsorbed to pedogenic oxides/hydroxides, and biogenic and pedogenic amorphous Si. However, quantitative studies about these relatively soluble Si fractions are rare. In this study, we quantified different Si fractions in the 0–10 cm, 10–20 cm, 20–30 cm, 30–40 cm and 40–50 cm soil layers of broadleaf forests (Betula forest and Quercus forest) and conifer forests (Larix forest and Pinus forest) in northern China using a sequential chemical extraction scheme optimized for these Si fractions. The results showed that the total Si (Sit) in the soil layers consisted of 97.7–98.5% crystalline Si (Sicry) and 1.5–2.3% non-crystalline Si (Sinoncry) fractions. Within the Sinoncry fraction, the proportions of dissolved Si (Sidis), organic matter bound Si (Siorg), pedogenic oxides/hydroxides chemisorbed Si (Sisorb), and amorphous Si (Siamor) were 3.4–6.7%, 5.5–8.9%, 6.3–8.5%, and 77.7–84.8%, respectively. Although the Sidis fraction was the least abundant component, it is at the center of the interconversion processes among the different Sinoncry fractions. The Siamor fraction was the largest component of Sinoncry and was composed of 37.7–71.9% biogenic amorphous Si (Sibio-amor) and 28.1–62.3% pedogenic amorphous Si (Siped-amor). Our study indicated that i) Siped-amor fraction is more easily influenced by soil pH comparing to Sibio-amor fraction; ii) the Sibio-amor fraction contributes more to the biogeochemical Si cycle in broadleaf forests, whereas the Siped-amor fraction contributes more in conifer forests; and iii) soil pH, soil organic matter, and plant community differences can influence the vertical distribution of the different Sinoncry fractions and thus affect the multiple transformation processes among these Si fractions in studied forests. |
---|---|
AbstractList | The terrestrial biogeochemical silicon (Si) cycle significantly contributes to maintaining the functions and sustainability of terrestrial ecosystems. Over the short term, the biogeochemical Si cycle can be strongly influenced by dissolved Si, organic bound Si, Si adsorbed to pedogenic oxides/hydroxides, and biogenic and pedogenic amorphous Si. However, quantitative studies about these relatively soluble Si fractions are rare. In this study, we quantified different Si fractions in the 0–10 cm, 10–20 cm, 20–30 cm, 30–40 cm and 40–50 cm soil layers of broadleaf forests (Betula forest and Quercus forest) and conifer forests (Larix forest and Pinus forest) in northern China using a sequential chemical extraction scheme optimized for these Si fractions. The results showed that the total Si (Siₜ) in the soil layers consisted of 97.7–98.5% crystalline Si (Sicᵣy) and 1.5–2.3% non-crystalline Si (Siₙₒₙcᵣy) fractions. Within the Siₙₒₙcᵣy fraction, the proportions of dissolved Si (Sidᵢₛ), organic matter bound Si (Siₒᵣg), pedogenic oxides/hydroxides chemisorbed Si (Siₛₒᵣb), and amorphous Si (Siₐₘₒᵣ) were 3.4–6.7%, 5.5–8.9%, 6.3–8.5%, and 77.7–84.8%, respectively. Although the Sidᵢₛ fraction was the least abundant component, it is at the center of the interconversion processes among the different Siₙₒₙcᵣy fractions. The Siₐₘₒᵣ fraction was the largest component of Siₙₒₙcᵣy and was composed of 37.7–71.9% biogenic amorphous Si (Sibᵢₒ₋ₐₘₒᵣ) and 28.1–62.3% pedogenic amorphous Si (Siₚₑd₋ₐₘₒᵣ). Our study indicated that i) Siₚₑd₋ₐₘₒᵣ fraction is more easily influenced by soil pH comparing to Sibᵢₒ₋ₐₘₒᵣ fraction; ii) the Sibᵢₒ₋ₐₘₒᵣ fraction contributes more to the biogeochemical Si cycle in broadleaf forests, whereas the Siₚₑd₋ₐₘₒᵣ fraction contributes more in conifer forests; and iii) soil pH, soil organic matter, and plant community differences can influence the vertical distribution of the different Siₙₒₙcᵣy fractions and thus affect the multiple transformation processes among these Si fractions in studied forests. The terrestrial biogeochemical silicon (Si) cycle significantly contributes to maintaining the functions and sustainability of terrestrial ecosystems. Over the short term, the biogeochemical Si cycle can be strongly influenced by dissolved Si, organic bound Si, Si adsorbed to pedogenic oxides/hydroxides, and biogenic and pedogenic amorphous Si. However, quantitative studies about these relatively soluble Si fractions are rare. In this study, we quantified different Si fractions in the 0–10 cm, 10–20 cm, 20–30 cm, 30–40 cm and 40–50 cm soil layers of broadleaf forests ( Betula forest and Quercus forest) and conifer forests ( Larix forest and Pinus forest) in northern China using a sequential chemical extraction scheme optimized for these Si fractions. The results showed that the total Si (Sit) in the soil layers consisted of 97.7–98.5% crystalline Si (Sicry) and 1.5–2.3% non-crystalline Si (Sinoncry) fractions. Within the Sinoncry fraction, the proportions of dissolved Si (Sidis), organic matter bound Si (Siorg), pedogenic oxides/hydroxides chemisorbed Si (Sisorb), and amorphous Si (Siamor) were 3.4–6.7%, 5.5–8.9%, 6.3–8.5%, and 77.7–84.8%, respectively. Although the Sidis fraction was the least abundant component, it is at the center of the interconversion processes among the different Sinoncry fractions. The Siamor fraction was the largest component of Sinoncry and was composed of 37.7–71.9% biogenic amorphous Si (Sibio-amor) and 28.1–62.3% pedogenic amorphous Si (Siped-amor). Our study indicated that i) Siped-amor fraction is more easily influenced by soil pH comparing to Sibio-amor fraction; ii) the Sibio-amor fraction contributes more to the biogeochemical Si cycle in broadleaf forests, whereas the Siped-amorfraction contributes more in conifer forests; and iii) soil pH, soil organic matter, and plant community differences can influence the vertical distribution of the different Sinoncry fractions and thus affect the multiple transformation processes among these Si fractions in studied forests. •Terrestrial biogeochemical Si cycle is strongly influenced by labile Si fractions.•The contribution made by non-crystalline Si fraction to total Si was 1.51–2.31%.•Biogenic amorphous Si contributed more to the Si cycle in the broadleaf forests.•Pedogenic amorphous Si contributed more to the Si cycle in the conifer forests.•Soil organic matter, pH, and plant communities can affect the Si transformation. The terrestrial biogeochemical silicon (Si) cycle significantly contributes to maintaining the functions and sustainability of terrestrial ecosystems. Over the short term, the biogeochemical Si cycle can be strongly influenced by dissolved Si, organic bound Si, Si adsorbed to pedogenic oxides/hydroxides, and biogenic and pedogenic amorphous Si. However, quantitative studies about these relatively soluble Si fractions are rare. In this study, we quantified different Si fractions in the 0–10 cm, 10–20 cm, 20–30 cm, 30–40 cm and 40–50 cm soil layers of broadleaf forests (Betula forest and Quercus forest) and conifer forests (Larix forest and Pinus forest) in northern China using a sequential chemical extraction scheme optimized for these Si fractions. The results showed that the total Si (Sit) in the soil layers consisted of 97.7–98.5% crystalline Si (Sicry) and 1.5–2.3% non-crystalline Si (Sinoncry) fractions. Within the Sinoncry fraction, the proportions of dissolved Si (Sidis), organic matter bound Si (Siorg), pedogenic oxides/hydroxides chemisorbed Si (Sisorb), and amorphous Si (Siamor) were 3.4–6.7%, 5.5–8.9%, 6.3–8.5%, and 77.7–84.8%, respectively. Although the Sidis fraction was the least abundant component, it is at the center of the interconversion processes among the different Sinoncry fractions. The Siamor fraction was the largest component of Sinoncry and was composed of 37.7–71.9% biogenic amorphous Si (Sibio-amor) and 28.1–62.3% pedogenic amorphous Si (Siped-amor). Our study indicated that i) Siped-amor fraction is more easily influenced by soil pH comparing to Sibio-amor fraction; ii) the Sibio-amor fraction contributes more to the biogeochemical Si cycle in broadleaf forests, whereas the Siped-amor fraction contributes more in conifer forests; and iii) soil pH, soil organic matter, and plant community differences can influence the vertical distribution of the different Sinoncry fractions and thus affect the multiple transformation processes among these Si fractions in studied forests. |
ArticleNumber | 114036 |
Author | Song, Zhaoliang Ding, Fan Yang, Xiaomin Yu, Changxun |
Author_xml | – sequence: 1 givenname: Xiaomin surname: Yang fullname: Yang, Xiaomin organization: Institute of Surface-Earth System Science, Tianjin University, No. 92 Weijin Road Nankai District, Tianjin 300072, China – sequence: 2 givenname: Zhaoliang surname: Song fullname: Song, Zhaoliang email: zhaoliang.song@tju.edu.cn organization: Institute of Surface-Earth System Science, Tianjin University, No. 92 Weijin Road Nankai District, Tianjin 300072, China – sequence: 3 givenname: Changxun surname: Yu fullname: Yu, Changxun organization: Department of Biology and Environmental Science, Linnaeus University, SE-39182 Kalmar, Sweden – sequence: 4 givenname: Fan surname: Ding fullname: Ding, Fan organization: College of Land and Environment, Shenyang Agricultural University, Dongling Road, Shenyang 110866, China |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-90947$$DView record from Swedish Publication Index |
BookMark | eNqFkU1v1DAQhi1UJLaFv4B85EC2dtbrJBIHqgUKUiWE-LhajjPenZVjL7YD6l_h1-KQ7oVLTyPPvM98-L0kFz54IOQlZ2vOuLw-rvcQBoijXteMd2vOBdvIJ2TF26auZL3tLsiKFWXVMMmfkcuUjuXZsJqtyJ8vk_YZLRqdMXgaLB3QWojgM03o0JSkjdrM1UTR0z4GPTjQlmo_0FLGoqY2REg5zbwPMR8gero7oNdnVYKf09wTx5N7GJZmivYYyv7mAGNJO_oVqbk3Dv3-OXlqtUvw4iFeke8f3n_bfazuPt9-2t3cVUaINlemtY2xHa9NK4WUdtt0cqtBslZsmGZMGFHLth5a6KToBDeskQVkm76TTV_iFXm99E2_4TT16hRx1PFeBY3qHf64USHulfOT6lgnmiJ_tchPMZSTUlYjJgPOaQ9hSqretG3TdqzmRfpmkZoYUopglcH87_QcNTrFmZodVEd1dlDNDqrFwYLL__Dzao-CbxcQyrf9QogqGQRvYMAIJqsh4GMt_gLkkr7H |
CitedBy_id | crossref_primary_10_1007_s42832_021_0076_4 crossref_primary_10_1016_j_rhisph_2020_100229 crossref_primary_10_1007_s11104_020_04656_4 crossref_primary_10_1002_saj2_20386 crossref_primary_10_1016_j_catena_2020_104868 crossref_primary_10_1007_s11104_021_05264_6 crossref_primary_10_1016_j_scitotenv_2023_169206 crossref_primary_10_1007_s11104_024_06872_8 crossref_primary_10_3390_f15122154 crossref_primary_10_1016_j_catena_2023_107211 crossref_primary_10_1016_j_catena_2023_107683 crossref_primary_10_3390_plants10020295 crossref_primary_10_1016_j_geoderma_2023_116602 crossref_primary_10_1111_gcb_17213 crossref_primary_10_1007_s11368_022_03136_9 crossref_primary_10_1016_j_catena_2022_106136 crossref_primary_10_3390_f14071353 |
Cites_doi | 10.1007/s10533-009-9369-x 10.1007/s11104-013-1847-1 10.1007/s13593-018-0496-4 10.1016/j.earscirev.2018.06.020 10.1111/1365-2435.12704 10.1111/jvs.12055 10.2136/sssaj1980.03615995004400040043x 10.1007/s11356-018-2357-8 10.1016/0016-7037(94)90013-2 10.1016/j.gca.2007.11.010 10.1007/BF00329030 10.1016/S0016-7037(00)00426-9 10.1016/S0012-8252(02)00092-2 10.1097/00010694-199407000-00005 10.1046/j.1365-2389.2001.00391.x 10.1016/j.geoderma.2014.12.018 10.1007/s00027-008-8117-y 10.1016/j.soilbio.2004.06.013 10.1111/j.1744-7429.2004.tb00343.x 10.1016/j.geoderma.2018.06.001 10.1029/2002GB001894 10.1016/j.geoderma.2018.07.027 10.1007/s11676-016-0248-8 10.1111/j.1365-2389.1985.tb00340.x 10.1007/s11104-019-04013-0 10.1007/s13593-013-0194-1 10.1007/s11284-014-1228-0 10.1002/ecy.1542 10.1016/j.chemgeo.2008.10.003 10.1111/gcbb.12635 10.1007/s00606-010-0406-y 10.1016/j.apsoil.2016.01.020 10.1016/j.gexplo.2005.08.039 10.1016/j.scitotenv.2018.12.381 10.1002/jpln.201000023 10.1130/0091-7613(1987)15<1099:EOTAAD>2.0.CO;2 10.1007/s00018-008-7580-x 10.1146/annurev.arplant.50.1.641 10.1016/j.catena.2017.01.027 10.1016/j.geoderma.2004.11.014 10.1016/j.gca.2012.06.009 10.5194/bg-15-2231-2018 10.1016/S0065-2113(08)60403-4 10.1016/j.pedobi.2016.02.001 10.5194/bg-10-4991-2013 10.1016/j.ecoleng.2014.06.011 10.1016/j.geoderma.2013.06.023 10.1016/j.scitotenv.2017.09.253 10.1093/aob/mci255 10.3389/fpls.2014.00529 10.1016/j.dib.2018.10.164 10.1007/s11104-010-0702-x 10.1016/j.gca.2005.12.025 10.1002/jpln.200521981 10.1038/198852a0 10.1029/2006GB002690 10.1016/S0016-7037(97)00001-X 10.1111/gcb.12275 10.1007/s13593-013-0202-5 10.1016/j.geoderma.2007.07.009 10.1071/SR14016 10.1016/j.jas.2015.09.002 10.1016/j.geoderma.2017.10.005 10.5194/bg-14-5239-2017 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 ADTPV AOWAS D92 |
DOI | 10.1016/j.geoderma.2019.114036 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic SwePub SwePub Articles SWEPUB Linnéuniversitetet |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | oai_DiVA_org_lnu_90947 10_1016_j_geoderma_2019_114036 S0016706119311000 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- SEN SEP SEW VH1 WUQ XPP Y6R ZMT ~HD 7S9 ACLOT L.6 ADTPV AOWAS D92 |
ID | FETCH-LOGICAL-c448t-c8f7cf912c86466f57965ae608430a004c42682d8e964941c07644803b967b803 |
IEDL.DBID | AIKHN |
ISSN | 0016-7061 1872-6259 |
IngestDate | Wed Sep 10 00:09:02 EDT 2025 Sat Sep 27 20:26:22 EDT 2025 Thu Sep 18 00:24:33 EDT 2025 Thu Apr 24 23:07:32 EDT 2025 Fri Feb 23 02:47:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Relatively soluble Si fractions Pedogenic amorphous Si Si bioavailability Sequential chemical extraction Biogenic amorphous Si Forest soils |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c448t-c8f7cf912c86466f57965ae608430a004c42682d8e964941c07644803b967b803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2388789021 |
PQPubID | 24069 |
ParticipantIDs | swepub_primary_oai_DiVA_org_lnu_90947 proquest_miscellaneous_2388789021 crossref_citationtrail_10_1016_j_geoderma_2019_114036 crossref_primary_10_1016_j_geoderma_2019_114036 elsevier_sciencedirect_doi_10_1016_j_geoderma_2019_114036 |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Sommer, Jochheim, Höhn, Breuer, Zagorski, Busse, Barkusky, Meier, Puppe, Wanner, Kaczorek (b0320) 2013; 10 Li, Song, Cornelis (b0210) 2014; 5 Wang, You, Tang, Sun, Sun (b0355) 2016; 27 State Soil Survey Service of China (b0330) 1998 Wang, Xie, Ren, Li (b0360) 2018; 25 Ma, Yamaji (b0240) 2008; 65 Li, Ng, Dudgeon (b0200) 2009; 71 Ge, Jie, Sun, Liu (b0140) 2011; 292 Puppe, Kaczorek, Wanner, Sommer (b0265) 2014; 70 Parr, Sullivan (b0255) 2005; 37 Alexandre, Meunier, Colin, Koud (b0005) 1997; 61 Song, Wang, Strong, Shan (b0305) 2014; 34 Alfredsson, Clymans, Hugelius, Kuhry, Conley (b0010) 2016; 30 McKeague, Cline (b0245) 1963; 15 Cornelis, Titeux, Ranger, Delvaux (b0070) 2011; 342 Zhu, Gong (b0390) 2014; 34 Li, Song, Yan, Hao, Song, Liu, Yang, Xia, Liang (b0215) 2018; 38 Hansen, Raben-Lange, Raulund-Rasmussen, Borggaard (b0165) 1994; 158 Tubaña, Heckman (b0340) 2015 IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106. FAO, Rome. Lu (b0235) 2000 White, Vivit, Schulz, Bullen, Evett, Aagarwal (b0370) 2012; 94 Fraysse, Pokrovsky, Schott, Meunier (b0125) 2006; 70 Fraysse, Cantais, Pokrovsky, Schott, Meunier (b0130) 2006; 88 Sommer, Kaczorek, Kuzyakov, Breuer (b0325) 2006; 169 Canadell, Jackson, Ehleringer, Mooney, Sala, Schulze (b0045) 1996; 108 Jones, Handreck (b0185) 1963; 198 Yang, Song, Liu, Van, Song, Li, Hao, Zhang, Wang (b0385) 2018; 312 Wanner, Birkhofer, Fischer, Shimizu, Shimano, Puppe (b0350) 2019; 1–11 Conley (b0060) 2002; 16 Song, Liu, Li, Yang (b0300) 2013; 19 Georgiadis, Rinklebe, Straubinger, Rennert (b0155) 2017; 153 Drever (b0100) 1994; 58 Farmer, Delbos, Miller (b0115) 2005; 127 Gérard, Mayer, Hodson, Ranger (b0160) 2008; 72 Schoelynck, Müller, Vandevenne, Bal, Barão, Smis, Opdekamp, Meire, Struyf (b0295) 2014; 25 Fonte, Schowalter (b0120) 2004; 36 Clarke (b0050) 2003; 60 Tavakkoli, Lyons, English, Chris, Guppy (b0335) 2011; 174 Bartoli (b0020) 1981 Puppe, Wanner, Sommer (b0285) 2018; 21 Song, Liu, Müller, Yang, Wu, Wang (b0310) 2018; 185 Nguyen, Dultz, Meharg, Pham, Hoang, Dam, Nguyen, Nguyen, Nguyen, Nguyen (b0250) 2019; 333 Cornelis, Delvaux (b0075) 2016; 30 Georgiadis, Sauer, Herrmann, Breuer, Zarei, Stahr (b0150) 2014; 52 Creevy, Fisher, Puppe, Wilkinson (b0080) 2016; 59 Kaufman, Dayanandan, Takeoka, Bigelow, Jones, Iler (b0190) 1981 Hodson (b0170) 2016; 68 Watteau, Villemin (b0365) 2001; 52 Epstein (b0110) 2001 Knoll, James (b0195) 1987; 15 Blecker, McCulley, Chadwick, Kelly (b0040) 2006; 20 Fraysse, Pokrovsky, Schott, Meunier (b0135) 2009; 258 Aoki, Hoshino, Matsubara (b0015) 2007; 142 Li, Song, Singh, Wang (b9000) 2019; 659 Drees, L.R., Wilding, L.P., Smeck, N.E., Senkayi, A.L., 1989. Silica in soils: quartz and disordered silica polymorphs. In: Dixon, J.B., Weed, S.B., (Eds). Minerals in Soil Environments. Soil Science Society of America Book Series No. 1, Madison, pp 913–974. Bartoli, Wilding (b0035) 1980; 44 Li, Delvaux (b0205) 2019; 11 Georgiadis, Sauer, Herrmann, Breuer, Zarei, Stahr (b0145) 2013; 209 Dietzel (b0090) 2002 Parr, Sullivan (b0260) 2014; 374 Hodson, White, Mead, Broadley (b0175) 2005; 96 Puppe, Leue (b0290) 2018; 330 Puppe, Ehrmann, Kaczorek, Wanner, Sommer (b0270) 2015; 243 Puppe, Höhn, Kaczorek, Wanner, Wehrhan, Sommer (b0280) 2017; 14 Yang, Song, Liu, Bolan, Wang, Li (b0380) 2015; 30 Liang, Nikolic, Bélanger, Gong, Song (b0225) 2015 Epstein (b0105) 1999; 50 Williams (b0375) 1986 Bartoli (b0030) 1985; 36 Puppe, Höhn, Kaczorek, Wanner, Sommer (b0275) 2016; 105 Turpault, Calvaruso, Kirchen, Redon, Cochet (b0345) 2018; 15 Li, Unzué-Belmonte, Cornelis, Linden, Struyf, Ronsse, Delvaux (b0220) 2019; 438 Dietzel (b0085) 2000; 64 Liu, Chen, Yang, Zhao, Wang (b0230) 2012; 26 Bartoli (b0025) 1983; 35 Cornelis, Ranger, Iserentant, Delvaux (b0065) 2010; 97 Song, Liu, Strömberg, Wang, Strong, Yang, Wu (b0315) 2018; 615 Clymans, Conley, Battles, Frings, Koppers, Likens, Johnson (b0055) 2016; 97 Liu (10.1016/j.geoderma.2019.114036_b0230) 2012; 26 Bartoli (10.1016/j.geoderma.2019.114036_b0025) 1983; 35 Li (10.1016/j.geoderma.2019.114036_b9000) 2019; 659 Knoll (10.1016/j.geoderma.2019.114036_b0195) 1987; 15 Bartoli (10.1016/j.geoderma.2019.114036_b0020) 1981 Song (10.1016/j.geoderma.2019.114036_b0300) 2013; 19 Puppe (10.1016/j.geoderma.2019.114036_b0265) 2014; 70 10.1016/j.geoderma.2019.114036_b0095 Song (10.1016/j.geoderma.2019.114036_b0305) 2014; 34 Song (10.1016/j.geoderma.2019.114036_b0315) 2018; 615 Bartoli (10.1016/j.geoderma.2019.114036_b0035) 1980; 44 Fraysse (10.1016/j.geoderma.2019.114036_b0135) 2009; 258 Puppe (10.1016/j.geoderma.2019.114036_b0285) 2018; 21 Georgiadis (10.1016/j.geoderma.2019.114036_b0145) 2013; 209 Alexandre (10.1016/j.geoderma.2019.114036_b0005) 1997; 61 Wang (10.1016/j.geoderma.2019.114036_b0360) 2018; 25 Watteau (10.1016/j.geoderma.2019.114036_b0365) 2001; 52 Creevy (10.1016/j.geoderma.2019.114036_b0080) 2016; 59 Schoelynck (10.1016/j.geoderma.2019.114036_b0295) 2014; 25 Epstein (10.1016/j.geoderma.2019.114036_b0110) 2001 Hodson (10.1016/j.geoderma.2019.114036_b0175) 2005; 96 Epstein (10.1016/j.geoderma.2019.114036_b0105) 1999; 50 Li (10.1016/j.geoderma.2019.114036_b0215) 2018; 38 Zhu (10.1016/j.geoderma.2019.114036_b0390) 2014; 34 Wanner (10.1016/j.geoderma.2019.114036_b0350) 2019; 1–11 Drever (10.1016/j.geoderma.2019.114036_b0100) 1994; 58 Li (10.1016/j.geoderma.2019.114036_b0205) 2019; 11 Li (10.1016/j.geoderma.2019.114036_b0210) 2014; 5 Tavakkoli (10.1016/j.geoderma.2019.114036_b0335) 2011; 174 Ge (10.1016/j.geoderma.2019.114036_b0140) 2011; 292 Song (10.1016/j.geoderma.2019.114036_b0310) 2018; 185 Aoki (10.1016/j.geoderma.2019.114036_b0015) 2007; 142 Puppe (10.1016/j.geoderma.2019.114036_b0270) 2015; 243 Fonte (10.1016/j.geoderma.2019.114036_b0120) 2004; 36 Sommer (10.1016/j.geoderma.2019.114036_b0320) 2013; 10 Puppe (10.1016/j.geoderma.2019.114036_b0290) 2018; 330 Conley (10.1016/j.geoderma.2019.114036_b0060) 2002; 16 Yang (10.1016/j.geoderma.2019.114036_b0385) 2018; 312 Bartoli (10.1016/j.geoderma.2019.114036_b0030) 1985; 36 Kaufman (10.1016/j.geoderma.2019.114036_b0190) 1981 Georgiadis (10.1016/j.geoderma.2019.114036_b0155) 2017; 153 Parr (10.1016/j.geoderma.2019.114036_b0255) 2005; 37 Georgiadis (10.1016/j.geoderma.2019.114036_b0150) 2014; 52 Cornelis (10.1016/j.geoderma.2019.114036_b0075) 2016; 30 Puppe (10.1016/j.geoderma.2019.114036_b0280) 2017; 14 Hansen (10.1016/j.geoderma.2019.114036_b0165) 1994; 158 Liang (10.1016/j.geoderma.2019.114036_b0225) 2015 Parr (10.1016/j.geoderma.2019.114036_b0260) 2014; 374 Williams (10.1016/j.geoderma.2019.114036_b0375) 1986 Ma (10.1016/j.geoderma.2019.114036_b0240) 2008; 65 McKeague (10.1016/j.geoderma.2019.114036_b0245) 1963; 15 White (10.1016/j.geoderma.2019.114036_b0370) 2012; 94 Clarke (10.1016/j.geoderma.2019.114036_b0050) 2003; 60 Hodson (10.1016/j.geoderma.2019.114036_b0170) 2016; 68 Li (10.1016/j.geoderma.2019.114036_b0220) 2019; 438 Tubaña (10.1016/j.geoderma.2019.114036_b0340) 2015 Cornelis (10.1016/j.geoderma.2019.114036_b0065) 2010; 97 Yang (10.1016/j.geoderma.2019.114036_b0380) 2015; 30 Alfredsson (10.1016/j.geoderma.2019.114036_b0010) 2016; 30 Turpault (10.1016/j.geoderma.2019.114036_b0345) 2018; 15 Canadell (10.1016/j.geoderma.2019.114036_b0045) 1996; 108 Fraysse (10.1016/j.geoderma.2019.114036_b0130) 2006; 88 Puppe (10.1016/j.geoderma.2019.114036_b0275) 2016; 105 Nguyen (10.1016/j.geoderma.2019.114036_b0250) 2019; 333 10.1016/j.geoderma.2019.114036_b0180 Farmer (10.1016/j.geoderma.2019.114036_b0115) 2005; 127 Gérard (10.1016/j.geoderma.2019.114036_b0160) 2008; 72 Fraysse (10.1016/j.geoderma.2019.114036_b0125) 2006; 70 Lu (10.1016/j.geoderma.2019.114036_b0235) 2000 Blecker (10.1016/j.geoderma.2019.114036_b0040) 2006; 20 Cornelis (10.1016/j.geoderma.2019.114036_b0070) 2011; 342 Wang (10.1016/j.geoderma.2019.114036_b0355) 2016; 27 Dietzel (10.1016/j.geoderma.2019.114036_b0090) 2002 Jones (10.1016/j.geoderma.2019.114036_b0185) 1963; 198 State Soil Survey Service of China (10.1016/j.geoderma.2019.114036_b0330) 1998 Clymans (10.1016/j.geoderma.2019.114036_b0055) 2016; 97 Li (10.1016/j.geoderma.2019.114036_b0200) 2009; 71 Sommer (10.1016/j.geoderma.2019.114036_b0325) 2006; 169 Dietzel (10.1016/j.geoderma.2019.114036_b0085) 2000; 64 |
References_xml | – volume: 127 start-page: 71 year: 2005 end-page: 79 ident: b0115 article-title: The role of phytolith formation and dissolution in controlling concentrations of silica in soil solutions and streams publication-title: Geoderma – volume: 70 start-page: 1939 year: 2006 end-page: 1951 ident: b0125 article-title: Surface properties, solubility and dissolution kinetics of bamboo phytoliths publication-title: Geochim. Cosmochim. Acta – volume: 342 start-page: 369 year: 2011 end-page: 378 ident: b0070 article-title: Identification and distribution of the readily soluble silicon pool in a temperate forest soil below three distinct tree species publication-title: Plant Soil – volume: 68 start-page: 62 year: 2016 end-page: 69 ident: b0170 article-title: The development of phytoliths in plants and its influence on their chemistry and isotopic composition. Implications for palaeoecology and archaeology publication-title: J. Archaeol. Sci. – volume: 52 start-page: 385 year: 2001 end-page: 396 ident: b0365 article-title: Ultrastructural study of the biogeochemical cycle of silicon in the soil and litter of a temperate forest publication-title: Eur. J. Soil Sci. – reference: Drees, L.R., Wilding, L.P., Smeck, N.E., Senkayi, A.L., 1989. Silica in soils: quartz and disordered silica polymorphs. In: Dixon, J.B., Weed, S.B., (Eds). Minerals in Soil Environments. Soil Science Society of America Book Series No. 1, Madison, pp 913–974. – volume: 333 start-page: 200 year: 2019 end-page: 213 ident: b0250 article-title: Phytolith content in Vietnamese paddy soils in relation to soil properties publication-title: Geoderma – start-page: 24 year: 1986 end-page: 39 ident: b0375 article-title: Introduction to silicon chemistry and biochemistry publication-title: Silicon Biochemistry – volume: 21 start-page: 1697 year: 2018 end-page: 1703 ident: b0285 article-title: Data on euglyphid testate amoeba densities, corresponding protozoic silicon pools, and selected soil parameters of initial and forested biogeosystems publication-title: Data Brief – volume: 15 start-page: 339 year: 1963 end-page: 396 ident: b0245 article-title: Silica in soils publication-title: Adv. Agron. – volume: 185 start-page: 463 year: 2018 end-page: 475 ident: b0310 article-title: Silicon regulation of soil organic carbon stabilization and its potential to mitigate climate change publication-title: Earth Sci. Rev. – volume: 59 start-page: 51 year: 2016 end-page: 59 ident: b0080 article-title: Protist diversity on a nature reserve in NW England—With particular reference to their role in soil biogenic silicon pools publication-title: Pedobiologia – volume: 72 start-page: 741 year: 2008 end-page: 758 ident: b0160 article-title: Modelling the biogeochemical cycle of silicon in soils: application to a temperate forest ecosystem publication-title: Geochim. Cosmochim. Acta – start-page: 409 year: 1981 end-page: 449 ident: b0190 article-title: Silica in shoots of higher plants publication-title: Silicon and Siliceous Structures in Biological Systems – volume: 30 start-page: 347 year: 2015 end-page: 355 ident: b0380 article-title: Plant silicon content in forests of north China and its implications for phytolith carbon sequestration publication-title: Ecol. Res. – volume: 243 start-page: 196 year: 2015 end-page: 204 ident: b0270 article-title: The protozoic Si pool in temperate forest ecosystems—Quantification, abiotic controls and interactions with earthworms publication-title: Geoderma – volume: 25 start-page: 301 year: 2014 end-page: 313 ident: b0295 article-title: Silicon–vegetation interaction in multiple ecosystems: a review publication-title: J. Veg. Sci. – start-page: 1 year: 2001 end-page: 15 ident: b0110 article-title: Silicon in plants: facts vs. concepts publication-title: Silicon in Agriculture – volume: 34 start-page: 813 year: 2014 end-page: 819 ident: b0305 article-title: Increase of available soil silicon by Si-rich manure for sustainable rice production publication-title: Agron. Sustain. Dev. – volume: 35 start-page: 469 year: 1983 end-page: 476 ident: b0025 article-title: The biogeochemical cycle of silicon in two temperate forest ecosystems publication-title: Environ. Biogeochem. Ecol. Bull. – volume: 10 start-page: 4991 year: 2013 end-page: 5007 ident: b0320 article-title: Si cycling in a forest biogeosystem- the importance of transient state biogenic Si pools publication-title: Biogeosciences – volume: 97 start-page: 044 year: 2016 end-page: 3057 ident: b0055 article-title: Silica uptake and release in live and decaying biomass in a northern hardwood forest publication-title: Ecology – volume: 292 start-page: 55 year: 2011 end-page: 62 ident: b0140 article-title: Phytoliths in woody plants from the northern slope of the Changbai Mountain (Northeast China), and their implications publication-title: Plant Syst. Evol. – volume: 330 start-page: 212 year: 2018 end-page: 220 ident: b0290 article-title: Physicochemical surface properties of different biogenic silicon structures: Results from spectroscopic and microscopic analyses of protistic and phytogenic silica publication-title: Geoderma – volume: 15 start-page: 2231 year: 2018 end-page: 2249 ident: b0345 article-title: Contribution of fine tree roots to the silicon cycle in a temperate forest ecosystem developed on three soil types publication-title: Biogeosciences – volume: 64 start-page: 3275 year: 2000 end-page: 3281 ident: b0085 article-title: Dissolution of silicates and the stability of polysilicic acid publication-title: Geochim. Cosmochim. Acta – volume: 30 start-page: 1298 year: 2016 end-page: 1310 ident: b0075 article-title: Soil processes drive the biological silicon feedback loop publication-title: Func. Ecol. – volume: 374 start-page: 45 year: 2014 end-page: 53 ident: b0260 article-title: Comparison of two methods for the isolation of phytolith occluded carbon from plant material publication-title: Plant Soil – volume: 16 start-page: 1121 year: 2002 ident: b0060 article-title: Terrestrial ecosystems and the global biogeochemical silica cycle publication-title: Glob. Biogeochem. Cycles – volume: 71 start-page: 80 year: 2009 end-page: 93 ident: b0200 article-title: Effects of leaf toughness and nitrogen content on litter breakdown and macroinvertebrates in a tropical stream publication-title: Aquat. Sci. – volume: 14 start-page: 5239 year: 2017 end-page: 5252 ident: b0280 article-title: How big is the influence of biogenic silicon pools on short-term changes in water-soluble silicon in soils? Implications from a study of a 10-year-old soil–plant system publication-title: Biogeosciences – volume: 108 start-page: 583 year: 1996 end-page: 595 ident: b0045 article-title: Maximum rooting depth of vegetation types at the global scale publication-title: Oecologia – volume: 615 start-page: 1 year: 2018 end-page: 8 ident: b0315 article-title: Contribution of forests to the carbon sink via biologically-mediated silicate weathering: A case study of China publication-title: Sci. Total Environ. – volume: 50 start-page: 641 year: 1999 end-page: 664 ident: b0105 publication-title: Silicon. Annu. Rev. Plant Physio. – start-page: 207 year: 2002 end-page: 235 ident: b0090 article-title: Interaction of polysilicic and monosilicic acid with mineral surfaces publication-title: Water-Rock Interaction – volume: 15 start-page: 1099 year: 1987 end-page: 1102 ident: b0195 article-title: Effect of the advent and diversification of vascular land plants on mineral weathering through geologic time publication-title: Geology – year: 1998 ident: b0330 article-title: China Soil – volume: 25 start-page: 23261 year: 2018 end-page: 23275 ident: b0360 article-title: Leaf decomposition and nutrient release of three tree species in the hydro-fluctuation zone of the Three Gorges Dam Reservoir publication-title: China. Environ. Sci. Pollut. Res. – volume: 96 start-page: 1027 year: 2005 end-page: 1046 ident: b0175 article-title: Phylogenetic variation in the silicon composition of plants publication-title: Ann. Bot. – volume: 58 start-page: 2325 year: 1994 end-page: 2332 ident: b0100 article-title: The effect of land plants on weathering rates of silicate minerals publication-title: Geochim. Cosmochim. Acta – volume: 438 start-page: 187 year: 2019 end-page: 203 ident: b0220 article-title: Effects of phytolithic rice-straw biochar, soil buffering capacity and pH on silicon bioavailability publication-title: Plant Soil – volume: 30 start-page: 497 year: 2016 end-page: 500 ident: b0010 article-title: Estimated storage of amorphous silica in soils of the circum-Arctic tundra region publication-title: Global Biogechem. Cycles – year: 1981 ident: b0020 article-title: Le cycle biogéochimique du silicium sur roche acide: Application à deux écosystèmes forestiers tempérés (Vosges) – reference: IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106. FAO, Rome. – volume: 60 start-page: 175 year: 2003 end-page: 194 ident: b0050 article-title: The occurrence and significance of biogenic opal in the regolith publication-title: Earth Sci. Rev. – volume: 27 start-page: 1037 year: 2016 end-page: 1045 ident: b0355 article-title: A comparison of decomposition dynamics among green tree leaves, partially decomposed tree leaf litter and their mixture in a warm temperate forest ecosystem publication-title: J. For. Res. – volume: 36 start-page: 335 year: 1985 end-page: 350 ident: b0030 article-title: Crystallochemistry and surface properties of biogenic opal publication-title: Eur. J. Soil Sci. – start-page: 7 year: 2015 end-page: 51 ident: b0340 article-title: Silicon in soils and plants publication-title: Silicon and plant diseases – volume: 61 start-page: 677 year: 1997 end-page: 682 ident: b0005 article-title: Plant impact on the biogeochemical cycle of silicon and related weathering processes publication-title: Geochim. Cosmochim. Acta – volume: 209 start-page: 251 year: 2013 end-page: 261 ident: b0145 article-title: Development of a method for sequential Si extraction from soils publication-title: Geoderma – volume: 153 start-page: 100 year: 2017 end-page: 105 ident: b0155 article-title: Silicon fractionation in Mollic Fluvisols along the Central Elbe River, Germany publication-title: Catena – volume: 5 start-page: 529 year: 2014 ident: b0210 article-title: Impact of rice cultivar and organ on elemental composition of phytoliths and the release of bio-available silicon publication-title: Front. Plant Sci. – volume: 36 start-page: 474 year: 2004 end-page: 482 ident: b0120 article-title: Decomposition of greenfall vs. senescent foliage in a tropical forest ecosystem in Puerto Rico publication-title: Biotropica – volume: 158 start-page: 40 year: 1994 end-page: 46 ident: b0165 article-title: Monosilicate adsorption by ferrihydrite and goethite at pH 3–6 publication-title: Soil Sci. – volume: 37 start-page: 117 year: 2005 end-page: 124 ident: b0255 article-title: Soil carbon sequestration in phytoliths publication-title: Soil Biol. Biochem. – year: 2000 ident: b0235 article-title: Methods of Soil and Agrochemical Analysis – volume: 65 start-page: 3049 year: 2008 end-page: 3057 ident: b0240 article-title: Functions and transport of silicon in plants publication-title: Cell. Mol. Life Sci. – volume: 44 start-page: 873 year: 1980 end-page: 878 ident: b0035 article-title: Dissolution of biogenic opal as a function of its physical and chemical properties publication-title: Soil Sci. Soc. Am. J. – volume: 20 start-page: GB3023 year: 2006 ident: b0040 article-title: Biologic cycling of silica across a grassland bioclimosequence publication-title: Glob. Biogeochem. Cycles – volume: 52 start-page: 645 year: 2014 end-page: 657 ident: b0150 article-title: Testing a new method for sequential silicon extraction on soils of a temperate–humid climate publication-title: Soil Res. – volume: 258 start-page: 197 year: 2009 end-page: 206 ident: b0135 article-title: Surface chemistry and reactivity of plant phytoliths in aqueous solutions publication-title: Chem. Geol. – year: 2015 ident: b0225 article-title: Silicon in Agriculture. From Theory to Practice – volume: 169 start-page: 310 year: 2006 end-page: 3291 ident: b0325 article-title: Silicon pools and fluxes in soils and landscapes –A review publication-title: J. Plant Nutr. Soil Sci. – volume: 34 start-page: 455 year: 2014 end-page: 472 ident: b0390 article-title: Beneficial effects of silicon on salt and drought tolerance in plants publication-title: Agron. Sustain. Dev. – volume: 659 start-page: 673 year: 2019 end-page: 680 ident: b9000 article-title: The impact of crop residue biochars on silicon and nutrient cycles in croplands publication-title: Sci. Total Environ. – volume: 174 start-page: 437 year: 2011 end-page: 446 ident: b0335 article-title: Silicon nutrition of rice is affected by soil pH, weathering and silicon fertilisation publication-title: J. Plant Nutr. Soil Sci. – volume: 142 start-page: 29 year: 2007 end-page: 35 ident: b0015 article-title: Silica and testate amoebae in a soil under pine–oak forest publication-title: Geoderma – volume: 38 start-page: 26 year: 2018 ident: b0215 article-title: Silicon enhancement of estimated plant biomass carbon accumulation under abiotic and biotic stresses. A meta-analysis publication-title: Agron. Sustain. Dev. – volume: 105 start-page: 9 year: 2016 end-page: 16 ident: b0275 article-title: As time goes by—Spatiotemporal changes of biogenic Si pools in initial soils of an artificial catchment in NE Germany publication-title: Appl. Soil Ecol. – volume: 94 start-page: 72 year: 2012 end-page: 94 ident: b0370 article-title: Biogenic and pedogenic controls on Si distributions and cycling in grasslands of the Santa Cruz soil chronosequence publication-title: California. Geochim. Cosmochim. Acta – volume: 70 start-page: 477 year: 2014 end-page: 482 ident: b0265 article-title: Dynamics and drivers of the protozoic Si pool along a 10-year chronosequence of initial ecosystem states publication-title: Ecol. Eng. – volume: 312 start-page: 36 year: 2018 end-page: 44 ident: b0385 article-title: Phytolith accumulation in broadleaf and conifer forests of northern China: Implications for phytolith carbon sequestration publication-title: Geoderma – volume: 97 start-page: 231 year: 2010 end-page: 245 ident: b0065 article-title: Tree species impact the terrestrial cycle of silicon through various uptakes publication-title: Biogeochemistry – volume: 1–11 year: 2019 ident: b0350 article-title: Soil Testate Amoebae and Diatoms as Bioindicators of an Old Heavy Metal Contaminated Floodplain in Japan publication-title: Microb. Ecol. – volume: 198 start-page: 852 year: 1963 end-page: 853 ident: b0185 article-title: Effects of iron and aluminium oxides on silica in solution in soils publication-title: Nature – volume: 11 start-page: 1264 year: 2019 end-page: 1282 ident: b0205 article-title: Phytolith-rich biochar: A potential Si fertilizer in desilicated soils publication-title: GCB Bioenergy – volume: 19 start-page: 2907 year: 2013 end-page: 2915 ident: b0300 article-title: The production of phytolith-occluded carbon in China's forests: implications to biogeochemical carbon sequestration publication-title: Glob. Chang. Biol. – volume: 88 start-page: 202 year: 2006 end-page: 205 ident: b0130 article-title: Aqueous reactivity of phytoliths and plant litter: physico-chemical constraints on terrestrial biogeochemical cycle of silicon publication-title: J. Geochem. Explor. – volume: 26 start-page: 159 year: 2012 end-page: 163 ident: b0230 article-title: Fractal characteristics of soil particles of typical forest in north mountain of Hebei province publication-title: J. Soil Water Conserv. – volume: 97 start-page: 231 year: 2010 ident: 10.1016/j.geoderma.2019.114036_b0065 article-title: Tree species impact the terrestrial cycle of silicon through various uptakes publication-title: Biogeochemistry doi: 10.1007/s10533-009-9369-x – volume: 374 start-page: 45 year: 2014 ident: 10.1016/j.geoderma.2019.114036_b0260 article-title: Comparison of two methods for the isolation of phytolith occluded carbon from plant material publication-title: Plant Soil doi: 10.1007/s11104-013-1847-1 – volume: 38 start-page: 26 year: 2018 ident: 10.1016/j.geoderma.2019.114036_b0215 article-title: Silicon enhancement of estimated plant biomass carbon accumulation under abiotic and biotic stresses. A meta-analysis publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-018-0496-4 – volume: 185 start-page: 463 year: 2018 ident: 10.1016/j.geoderma.2019.114036_b0310 article-title: Silicon regulation of soil organic carbon stabilization and its potential to mitigate climate change publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2018.06.020 – volume: 30 start-page: 1298 year: 2016 ident: 10.1016/j.geoderma.2019.114036_b0075 article-title: Soil processes drive the biological silicon feedback loop publication-title: Func. Ecol. doi: 10.1111/1365-2435.12704 – volume: 25 start-page: 301 year: 2014 ident: 10.1016/j.geoderma.2019.114036_b0295 article-title: Silicon–vegetation interaction in multiple ecosystems: a review publication-title: J. Veg. Sci. doi: 10.1111/jvs.12055 – volume: 44 start-page: 873 year: 1980 ident: 10.1016/j.geoderma.2019.114036_b0035 article-title: Dissolution of biogenic opal as a function of its physical and chemical properties publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1980.03615995004400040043x – volume: 25 start-page: 23261 year: 2018 ident: 10.1016/j.geoderma.2019.114036_b0360 article-title: Leaf decomposition and nutrient release of three tree species in the hydro-fluctuation zone of the Three Gorges Dam Reservoir publication-title: China. Environ. Sci. Pollut. Res. doi: 10.1007/s11356-018-2357-8 – volume: 58 start-page: 2325 year: 1994 ident: 10.1016/j.geoderma.2019.114036_b0100 article-title: The effect of land plants on weathering rates of silicate minerals publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(94)90013-2 – volume: 72 start-page: 741 year: 2008 ident: 10.1016/j.geoderma.2019.114036_b0160 article-title: Modelling the biogeochemical cycle of silicon in soils: application to a temperate forest ecosystem publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2007.11.010 – volume: 26 start-page: 159 year: 2012 ident: 10.1016/j.geoderma.2019.114036_b0230 article-title: Fractal characteristics of soil particles of typical forest in north mountain of Hebei province publication-title: J. Soil Water Conserv. – start-page: 24 year: 1986 ident: 10.1016/j.geoderma.2019.114036_b0375 article-title: Introduction to silicon chemistry and biochemistry – volume: 108 start-page: 583 year: 1996 ident: 10.1016/j.geoderma.2019.114036_b0045 article-title: Maximum rooting depth of vegetation types at the global scale publication-title: Oecologia doi: 10.1007/BF00329030 – volume: 64 start-page: 3275 year: 2000 ident: 10.1016/j.geoderma.2019.114036_b0085 article-title: Dissolution of silicates and the stability of polysilicic acid publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(00)00426-9 – volume: 60 start-page: 175 year: 2003 ident: 10.1016/j.geoderma.2019.114036_b0050 article-title: The occurrence and significance of biogenic opal in the regolith publication-title: Earth Sci. Rev. doi: 10.1016/S0012-8252(02)00092-2 – volume: 158 start-page: 40 year: 1994 ident: 10.1016/j.geoderma.2019.114036_b0165 article-title: Monosilicate adsorption by ferrihydrite and goethite at pH 3–6 publication-title: Soil Sci. doi: 10.1097/00010694-199407000-00005 – volume: 52 start-page: 385 year: 2001 ident: 10.1016/j.geoderma.2019.114036_b0365 article-title: Ultrastructural study of the biogeochemical cycle of silicon in the soil and litter of a temperate forest publication-title: Eur. J. Soil Sci. doi: 10.1046/j.1365-2389.2001.00391.x – volume: 243 start-page: 196 year: 2015 ident: 10.1016/j.geoderma.2019.114036_b0270 article-title: The protozoic Si pool in temperate forest ecosystems—Quantification, abiotic controls and interactions with earthworms publication-title: Geoderma doi: 10.1016/j.geoderma.2014.12.018 – volume: 71 start-page: 80 year: 2009 ident: 10.1016/j.geoderma.2019.114036_b0200 article-title: Effects of leaf toughness and nitrogen content on litter breakdown and macroinvertebrates in a tropical stream publication-title: Aquat. Sci. doi: 10.1007/s00027-008-8117-y – volume: 37 start-page: 117 year: 2005 ident: 10.1016/j.geoderma.2019.114036_b0255 article-title: Soil carbon sequestration in phytoliths publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2004.06.013 – volume: 36 start-page: 474 year: 2004 ident: 10.1016/j.geoderma.2019.114036_b0120 article-title: Decomposition of greenfall vs. senescent foliage in a tropical forest ecosystem in Puerto Rico publication-title: Biotropica doi: 10.1111/j.1744-7429.2004.tb00343.x – volume: 330 start-page: 212 year: 2018 ident: 10.1016/j.geoderma.2019.114036_b0290 article-title: Physicochemical surface properties of different biogenic silicon structures: Results from spectroscopic and microscopic analyses of protistic and phytogenic silica publication-title: Geoderma doi: 10.1016/j.geoderma.2018.06.001 – ident: 10.1016/j.geoderma.2019.114036_b0095 – volume: 16 start-page: 1121 year: 2002 ident: 10.1016/j.geoderma.2019.114036_b0060 article-title: Terrestrial ecosystems and the global biogeochemical silica cycle publication-title: Glob. Biogeochem. Cycles doi: 10.1029/2002GB001894 – volume: 333 start-page: 200 year: 2019 ident: 10.1016/j.geoderma.2019.114036_b0250 article-title: Phytolith content in Vietnamese paddy soils in relation to soil properties publication-title: Geoderma doi: 10.1016/j.geoderma.2018.07.027 – volume: 27 start-page: 1037 year: 2016 ident: 10.1016/j.geoderma.2019.114036_b0355 article-title: A comparison of decomposition dynamics among green tree leaves, partially decomposed tree leaf litter and their mixture in a warm temperate forest ecosystem publication-title: J. For. Res. doi: 10.1007/s11676-016-0248-8 – volume: 36 start-page: 335 year: 1985 ident: 10.1016/j.geoderma.2019.114036_b0030 article-title: Crystallochemistry and surface properties of biogenic opal publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.1985.tb00340.x – start-page: 1 year: 2001 ident: 10.1016/j.geoderma.2019.114036_b0110 article-title: Silicon in plants: facts vs. concepts – volume: 438 start-page: 187 year: 2019 ident: 10.1016/j.geoderma.2019.114036_b0220 article-title: Effects of phytolithic rice-straw biochar, soil buffering capacity and pH on silicon bioavailability publication-title: Plant Soil doi: 10.1007/s11104-019-04013-0 – volume: 34 start-page: 455 year: 2014 ident: 10.1016/j.geoderma.2019.114036_b0390 article-title: Beneficial effects of silicon on salt and drought tolerance in plants publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-013-0194-1 – year: 2015 ident: 10.1016/j.geoderma.2019.114036_b0225 – volume: 30 start-page: 347 year: 2015 ident: 10.1016/j.geoderma.2019.114036_b0380 article-title: Plant silicon content in forests of north China and its implications for phytolith carbon sequestration publication-title: Ecol. Res. doi: 10.1007/s11284-014-1228-0 – volume: 97 start-page: 044 year: 2016 ident: 10.1016/j.geoderma.2019.114036_b0055 article-title: Silica uptake and release in live and decaying biomass in a northern hardwood forest publication-title: Ecology doi: 10.1002/ecy.1542 – volume: 258 start-page: 197 year: 2009 ident: 10.1016/j.geoderma.2019.114036_b0135 article-title: Surface chemistry and reactivity of plant phytoliths in aqueous solutions publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2008.10.003 – volume: 11 start-page: 1264 year: 2019 ident: 10.1016/j.geoderma.2019.114036_b0205 article-title: Phytolith-rich biochar: A potential Si fertilizer in desilicated soils publication-title: GCB Bioenergy doi: 10.1111/gcbb.12635 – volume: 1–11 year: 2019 ident: 10.1016/j.geoderma.2019.114036_b0350 article-title: Soil Testate Amoebae and Diatoms as Bioindicators of an Old Heavy Metal Contaminated Floodplain in Japan publication-title: Microb. Ecol. – volume: 292 start-page: 55 year: 2011 ident: 10.1016/j.geoderma.2019.114036_b0140 article-title: Phytoliths in woody plants from the northern slope of the Changbai Mountain (Northeast China), and their implications publication-title: Plant Syst. Evol. doi: 10.1007/s00606-010-0406-y – volume: 105 start-page: 9 year: 2016 ident: 10.1016/j.geoderma.2019.114036_b0275 article-title: As time goes by—Spatiotemporal changes of biogenic Si pools in initial soils of an artificial catchment in NE Germany publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2016.01.020 – volume: 88 start-page: 202 year: 2006 ident: 10.1016/j.geoderma.2019.114036_b0130 article-title: Aqueous reactivity of phytoliths and plant litter: physico-chemical constraints on terrestrial biogeochemical cycle of silicon publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2005.08.039 – volume: 659 start-page: 673 year: 2019 ident: 10.1016/j.geoderma.2019.114036_b9000 article-title: The impact of crop residue biochars on silicon and nutrient cycles in croplands publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.12.381 – volume: 174 start-page: 437 year: 2011 ident: 10.1016/j.geoderma.2019.114036_b0335 article-title: Silicon nutrition of rice is affected by soil pH, weathering and silicon fertilisation publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.201000023 – volume: 15 start-page: 1099 year: 1987 ident: 10.1016/j.geoderma.2019.114036_b0195 article-title: Effect of the advent and diversification of vascular land plants on mineral weathering through geologic time publication-title: Geology doi: 10.1130/0091-7613(1987)15<1099:EOTAAD>2.0.CO;2 – volume: 65 start-page: 3049 year: 2008 ident: 10.1016/j.geoderma.2019.114036_b0240 article-title: Functions and transport of silicon in plants publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-008-7580-x – volume: 50 start-page: 641 year: 1999 ident: 10.1016/j.geoderma.2019.114036_b0105 publication-title: Silicon. Annu. Rev. Plant Physio. doi: 10.1146/annurev.arplant.50.1.641 – volume: 153 start-page: 100 year: 2017 ident: 10.1016/j.geoderma.2019.114036_b0155 article-title: Silicon fractionation in Mollic Fluvisols along the Central Elbe River, Germany publication-title: Catena doi: 10.1016/j.catena.2017.01.027 – volume: 127 start-page: 71 year: 2005 ident: 10.1016/j.geoderma.2019.114036_b0115 article-title: The role of phytolith formation and dissolution in controlling concentrations of silica in soil solutions and streams publication-title: Geoderma doi: 10.1016/j.geoderma.2004.11.014 – volume: 94 start-page: 72 year: 2012 ident: 10.1016/j.geoderma.2019.114036_b0370 article-title: Biogenic and pedogenic controls on Si distributions and cycling in grasslands of the Santa Cruz soil chronosequence publication-title: California. Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2012.06.009 – volume: 15 start-page: 2231 year: 2018 ident: 10.1016/j.geoderma.2019.114036_b0345 article-title: Contribution of fine tree roots to the silicon cycle in a temperate forest ecosystem developed on three soil types publication-title: Biogeosciences doi: 10.5194/bg-15-2231-2018 – volume: 15 start-page: 339 year: 1963 ident: 10.1016/j.geoderma.2019.114036_b0245 article-title: Silica in soils publication-title: Adv. Agron. doi: 10.1016/S0065-2113(08)60403-4 – volume: 59 start-page: 51 year: 2016 ident: 10.1016/j.geoderma.2019.114036_b0080 article-title: Protist diversity on a nature reserve in NW England—With particular reference to their role in soil biogenic silicon pools publication-title: Pedobiologia doi: 10.1016/j.pedobi.2016.02.001 – volume: 10 start-page: 4991 year: 2013 ident: 10.1016/j.geoderma.2019.114036_b0320 article-title: Si cycling in a forest biogeosystem- the importance of transient state biogenic Si pools publication-title: Biogeosciences doi: 10.5194/bg-10-4991-2013 – volume: 70 start-page: 477 year: 2014 ident: 10.1016/j.geoderma.2019.114036_b0265 article-title: Dynamics and drivers of the protozoic Si pool along a 10-year chronosequence of initial ecosystem states publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2014.06.011 – volume: 209 start-page: 251 year: 2013 ident: 10.1016/j.geoderma.2019.114036_b0145 article-title: Development of a method for sequential Si extraction from soils publication-title: Geoderma doi: 10.1016/j.geoderma.2013.06.023 – year: 2000 ident: 10.1016/j.geoderma.2019.114036_b0235 – start-page: 7 year: 2015 ident: 10.1016/j.geoderma.2019.114036_b0340 article-title: Silicon in soils and plants – volume: 615 start-page: 1 year: 2018 ident: 10.1016/j.geoderma.2019.114036_b0315 article-title: Contribution of forests to the carbon sink via biologically-mediated silicate weathering: A case study of China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.09.253 – volume: 96 start-page: 1027 year: 2005 ident: 10.1016/j.geoderma.2019.114036_b0175 article-title: Phylogenetic variation in the silicon composition of plants publication-title: Ann. Bot. doi: 10.1093/aob/mci255 – volume: 5 start-page: 529 year: 2014 ident: 10.1016/j.geoderma.2019.114036_b0210 article-title: Impact of rice cultivar and organ on elemental composition of phytoliths and the release of bio-available silicon publication-title: Front. Plant Sci. doi: 10.3389/fpls.2014.00529 – volume: 21 start-page: 1697 year: 2018 ident: 10.1016/j.geoderma.2019.114036_b0285 article-title: Data on euglyphid testate amoeba densities, corresponding protozoic silicon pools, and selected soil parameters of initial and forested biogeosystems publication-title: Data Brief doi: 10.1016/j.dib.2018.10.164 – volume: 342 start-page: 369 year: 2011 ident: 10.1016/j.geoderma.2019.114036_b0070 article-title: Identification and distribution of the readily soluble silicon pool in a temperate forest soil below three distinct tree species publication-title: Plant Soil doi: 10.1007/s11104-010-0702-x – volume: 70 start-page: 1939 year: 2006 ident: 10.1016/j.geoderma.2019.114036_b0125 article-title: Surface properties, solubility and dissolution kinetics of bamboo phytoliths publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2005.12.025 – volume: 169 start-page: 310 year: 2006 ident: 10.1016/j.geoderma.2019.114036_b0325 article-title: Silicon pools and fluxes in soils and landscapes –A review publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.200521981 – volume: 198 start-page: 852 year: 1963 ident: 10.1016/j.geoderma.2019.114036_b0185 article-title: Effects of iron and aluminium oxides on silica in solution in soils publication-title: Nature doi: 10.1038/198852a0 – volume: 30 start-page: 497 year: 2016 ident: 10.1016/j.geoderma.2019.114036_b0010 article-title: Estimated storage of amorphous silica in soils of the circum-Arctic tundra region publication-title: Global Biogechem. Cycles – year: 1998 ident: 10.1016/j.geoderma.2019.114036_b0330 – volume: 20 start-page: GB3023 year: 2006 ident: 10.1016/j.geoderma.2019.114036_b0040 article-title: Biologic cycling of silica across a grassland bioclimosequence publication-title: Glob. Biogeochem. Cycles doi: 10.1029/2006GB002690 – volume: 61 start-page: 677 year: 1997 ident: 10.1016/j.geoderma.2019.114036_b0005 article-title: Plant impact on the biogeochemical cycle of silicon and related weathering processes publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(97)00001-X – volume: 35 start-page: 469 year: 1983 ident: 10.1016/j.geoderma.2019.114036_b0025 article-title: The biogeochemical cycle of silicon in two temperate forest ecosystems publication-title: Environ. Biogeochem. Ecol. Bull. – volume: 19 start-page: 2907 year: 2013 ident: 10.1016/j.geoderma.2019.114036_b0300 article-title: The production of phytolith-occluded carbon in China's forests: implications to biogeochemical carbon sequestration publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12275 – volume: 34 start-page: 813 year: 2014 ident: 10.1016/j.geoderma.2019.114036_b0305 article-title: Increase of available soil silicon by Si-rich manure for sustainable rice production publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-013-0202-5 – volume: 142 start-page: 29 year: 2007 ident: 10.1016/j.geoderma.2019.114036_b0015 article-title: Silica and testate amoebae in a soil under pine–oak forest publication-title: Geoderma doi: 10.1016/j.geoderma.2007.07.009 – start-page: 409 year: 1981 ident: 10.1016/j.geoderma.2019.114036_b0190 article-title: Silica in shoots of higher plants – volume: 52 start-page: 645 year: 2014 ident: 10.1016/j.geoderma.2019.114036_b0150 article-title: Testing a new method for sequential silicon extraction on soils of a temperate–humid climate publication-title: Soil Res. doi: 10.1071/SR14016 – volume: 68 start-page: 62 year: 2016 ident: 10.1016/j.geoderma.2019.114036_b0170 article-title: The development of phytoliths in plants and its influence on their chemistry and isotopic composition. Implications for palaeoecology and archaeology publication-title: J. Archaeol. Sci. doi: 10.1016/j.jas.2015.09.002 – volume: 312 start-page: 36 year: 2018 ident: 10.1016/j.geoderma.2019.114036_b0385 article-title: Phytolith accumulation in broadleaf and conifer forests of northern China: Implications for phytolith carbon sequestration publication-title: Geoderma doi: 10.1016/j.geoderma.2017.10.005 – start-page: 207 year: 2002 ident: 10.1016/j.geoderma.2019.114036_b0090 article-title: Interaction of polysilicic and monosilicic acid with mineral surfaces – year: 1981 ident: 10.1016/j.geoderma.2019.114036_b0020 – volume: 14 start-page: 5239 year: 2017 ident: 10.1016/j.geoderma.2019.114036_b0280 article-title: How big is the influence of biogenic silicon pools on short-term changes in water-soluble silicon in soils? Implications from a study of a 10-year-old soil–plant system publication-title: Biogeosciences doi: 10.5194/bg-14-5239-2017 – ident: 10.1016/j.geoderma.2019.114036_b0180 |
SSID | ssj0017020 |
Score | 2.4143672 |
Snippet | •Terrestrial biogeochemical Si cycle is strongly influenced by labile Si fractions.•The contribution made by non-crystalline Si fraction to total Si was... The terrestrial biogeochemical silicon (Si) cycle significantly contributes to maintaining the functions and sustainability of terrestrial ecosystems. Over the... |
SourceID | swepub proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 114036 |
SubjectTerms | Betula Biogenic amorphous Si biogeochemical cycles China coniferous forests deciduous forests Environmental Science Forest soils hydroxides Larix Miljövetenskap oxides Pedogenic amorphous Si Pinus plant communities Quercus Relatively soluble Si fractions Sequential chemical extraction Si bioavailability silicon soil organic matter soil pH spatial distribution terrestrial ecosystems |
Title | Quantification of different silicon fractions in broadleaf and conifer forests of northern China and consequent implications for biogeochemical Si cycling |
URI | https://dx.doi.org/10.1016/j.geoderma.2019.114036 https://www.proquest.com/docview/2388789021 https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-90947 |
Volume | 361 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9swEBbb7KU9lD5p-lhUaI9ubMXR4xi2XdKWLpR2y96EJEvBS5AXxznsZX9If21nbDmkUNhDTwbbA-OZkWbGmvmGkHeVY_NgwyIrrTRZWSLkLStsVrHCK-vmUlr8NfDtnK8uyi-Xi8sjcjr2wmBZZdr7hz29363TnVmS5uy6rrHHt-AC3BGEIIh7Bnn7MQNvLyfkePn56-p8f5gg8oTOWPAMCQ4aha9ATThzrIcgKhQi5-Y9WvM_fdRhDHqIK9r7orNH5GEKIuly4PMxOfLxCXmwXLcJSMM_Jb-_78xQB9SLnjaBjrNQOrqtN2AAkYZ2aGvY0jpS2zam2ngTqIkVhcdY9EIhpgVOtkgf8YjHt5H2M7fHt4Za7I7WB6XpSEVt3cBXuwRIQH_U1N1gH-b6Gbk4-_TzdJWlOQyZg-Sty5wMwgVVMCd5yXnA9tWF8TyX5Tw3sMocuHnJKukVL1VZuFxg1pfPreLCwvU5mcQm-heEhhLRcqQXFvKYyuZWWMGrYL0yEAixfEoWo-S1SyDlOCtjo8dqtCs9akyjxvSgsSmZ7emuB5iOOynUqFj9l8Fp8CV30r4dLUHDasQjFhN9s9tqCIAkthazYkreDyay5weBvD_Wv5a6add6E3daQWotXv4HH6_IfYbpf18S95pMunbn30CM1NkTcu_DbXGSVsIfYvQUMw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcgAOiKfY8jISHMPGWa8fx1WhWqCthGhRb1bs2KtUK6fKZg9c-CH8WmYSZ7VISD1wipR4pIln7JmxZ74h5F3lilmwYZ5xq8qMc4S8LZjNqoJ5bd1MKYtHA2fnYnnJv1zNrw7I8VgLg2mVae8f9vR-t05vpmk2pzd1jTW-TEgwR-CCIO4ZxO13OLY5AKX-8GuX58FknrAZmchw-F6Z8DUICTuO9QBETCNubt5jNf_TQu17oPuoor0lOnlIHiQXki4GLh-RAx8fk_uLVZtgNPwT8vvbthyygPqJp02gYyeUjm7qNYg_0tAORQ0bWkdq26as1r4MtIwVhc-Y8kLBowVONkgf8YLHt5H2HbfHUUMmdkfrvcR0pKK2buCvXYIjoN9r6n5iFebqKbk8-XRxvMxSF4bMQejWZU4F6YJmhVOCCxGweHVeepErPstLWGMOjLwqKuW14Jozl0uM-fKZ1UJaeD4jh7GJ_jmhgSNWjvLSQhRT2dxKK0UVrNcluEFFPiHzceaNSxDl2CljbcZctGszSsygxMwgsQmZ7uhuBpCOWyn0KFjzl7oZsCS30r4dNcHAWsQLljL6Zrsx4P4oLCwu2IS8H1Rkxw_CeH-sfyxM067MOm6NhsBaHv0HH2_I3eXF2ak5_Xz-9QW5V-BBQJ8c95Icdu3WvwJvqbOv-9XwB6eJFPU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantification+of+different+silicon+fractions+in+broadleaf+and+conifer+forests+of+northern+China+and+consequent+implications+for+biogeochemical+Si+cycling&rft.jtitle=Geoderma&rft.au=Yang%2C+Xiaomin&rft.au=Song%2C+Zhaoliang&rft.au=Yu%2C+Changxun&rft.au=Ding%2C+Fan&rft.date=2020-03-01&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.eissn=1872-6259&rft.volume=361&rft_id=info:doi/10.1016%2Fj.geoderma.2019.114036&rft.externalDocID=S0016706119311000 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |