Texture Feature Extraction from Thyroid MR Imaging Using High-Order Derived Mean CLBP
In the field of medical imaging, the traditional local binary pattern (LBP) and its improved algorithms are often sensitive to noise. Traditional LBPs are solely based on the signal information from local differences, and the binary quantization method oversimplifies the local texture features while...
Saved in:
| Published in | Journal of computer science and technology Vol. 34; no. 1; pp. 35 - 46 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.01.2019
Springer Springer Nature B.V School of Computer Science and Telecommunication, Jiangsu University, Zhenjiang 212013, China%Department of Computer Science, University of Central Arkansas, Arkansas 72035, U.S.A |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1000-9000 1860-4749 |
| DOI | 10.1007/s11390-019-1897-9 |
Cover
| Abstract | In the field of medical imaging, the traditional local binary pattern (LBP) and its improved algorithms are often sensitive to noise. Traditional LBPs are solely based on the signal information from local differences, and the binary quantization method oversimplifies the local texture features while disregarding the imaging information from the concaveconvex regions between the high-order pixels and the neighboring sampling points. Therefore, we propose an improved Derived Mean Complete Local Binary Pattern (DM CLBP) algorithm based on high-order derivatives. In the DM CLBP method, the grey value of a single pixel is replaced by the mean grey value of the rectangular area block, and the difference between pixel values in the area is obtained using the second-order differentiation method. Based on the calculation concept of the complete local binary pattern (CLBP) algorithm, the cascade signs and magnitudes of the two components are encoded and recombined in DM CLBP using a uniform pattern. The results from the experiments showed that the proposed DM CLBP descriptors achieved a classification accuracy of 94.4%. Compared with LBP and other improved algorithms, the DM CLBP algorithm presented in this study can effectively differentiate between lesion areas and normal areas in thyroid MR (magnetic resonance) images and shows the improved accuracy of area classification. |
|---|---|
| AbstractList | In the field of medical imaging, the traditional local binary pattern (LBP) and its improved algorithms are often sensitive to noise. Traditional LBPs are solely based on the signal information from local differences, and the binary quantization method oversimplifies the local texture features while disregarding the imaging information from the concave-convex regions between the high-order pixels and the neighboring sampling points. Therefore, we propose an improved Derived Mean Complete Local Binary Pattern (DM_CLBP) algorithm based on high-order derivatives. In the DM_CLBP method, the grey value of a single pixel is replaced by the mean grey value of the rectangular area block, and the difference between pixel values in the area is obtained using the second-order differentiation method. Based on the calculation concept of the complete local binary pattern (CLBP) algorithm, the cascade signs and magnitudes of the two components are encoded and recombined in DM_CLBP using a uniform pattern. The results from the experiments showed that the proposed DM_CLBP descriptors achieved a classification accuracy of 94.4%. Compared with LBP and other improved algorithms, the DM_CLBP algorithm presented in this study can effectively differentiate between lesion areas and normal areas in thyroid MR (magnetic resonance) images and shows the improved accuracy of area classification. In the field of medical imaging, the traditional local binary pattern (LBP) and its improved algorithms are often sensitive to noise. Traditional LBPs are solely based on the signal information from local differences, and the binary quantization method oversimplifies the local texture features while disregarding the imaging information from the concave-convex regions between the high-order pixels and the neighboring sampling points. Therefore, we propose an improved Derived Mean Complete Local Binary Pattern (DM_CLBP) algorithm based on high-order derivatives. In the DM_CLBP method, the grey value of a single pixel is replaced by the mean grey value of the rectangular area block, and the difference between pixel values in the area is obtained using the second-order differentiation method. Based on the calculation concept of the complete local binary pattern (CLBP) algorithm, the cascade signs and magnitudes of the two components are encoded and recombined in DM_CLBP using a uniform pattern. The results from the experiments showed that the proposed DM_CLBP descriptors achieved a classification accuracy of 94.4%. Compared with LBP and other improved algorithms, the DM_CLBP algorithm presented in this study can effectively differentiate between lesion areas and normal areas in thyroid MR (magnetic resonance) images and shows the improved accuracy of area classification. In the field of medical imaging, the traditional local binary pattern (LBP) and its improved algorithms are often sensitive to noise. Traditional LBPs are solely based on the signal information from local differences, and the binary quantization method oversimplifies the local texture features while disregarding the imaging information from the concaveconvex regions between the high-order pixels and the neighboring sampling points. Therefore, we propose an improved Derived Mean Complete Local Binary Pattern (DM CLBP) algorithm based on high-order derivatives. In the DM CLBP method, the grey value of a single pixel is replaced by the mean grey value of the rectangular area block, and the difference between pixel values in the area is obtained using the second-order differentiation method. Based on the calculation concept of the complete local binary pattern (CLBP) algorithm, the cascade signs and magnitudes of the two components are encoded and recombined in DM CLBP using a uniform pattern. The results from the experiments showed that the proposed DM CLBP descriptors achieved a classification accuracy of 94.4%. Compared with LBP and other improved algorithms, the DM CLBP algorithm presented in this study can effectively differentiate between lesion areas and normal areas in thyroid MR (magnetic resonance) images and shows the improved accuracy of area classification. In the field of medical imaging, the traditional local binary pattern (LBP) and its improved algorithms are often sensitive to noise. Traditional LBPs are solely based on the signal information from local differences, and the binary quantization method oversimplifies the local texture features while disregarding the imaging information from the concave-convex regions between the high-order pixels and the neighboring sampling points. Therefore, we propose an improved Derived Mean Complete Local Binary Pattern (DM_CLBP) algorithm based on high-order derivatives. In the DM_CLBP method, the grey value of a single pixel is replaced by the mean grey value of the rectangular area block, and the difference between pixel values in the area is obtained using the second-order differentiation method. Based on the calculation concept of the complete local binary pattern (CLBP) algorithm, the cascade signs and magnitudes of the two components are encoded and recombined in DM_CLBP using a uniform pattern. The results from the experiments showed that the proposed DM_CLBP descriptors achieved a classification accuracy of 94.4%. Compared with LBP and other improved algorithms, the DM_CLBP algorithm presented in this study can effectively differentiate between lesion areas and normal areas in thyroid MR (magnetic resonance) images and shows the improved accuracy of area classification. Keywords thyroid magnetic resonance imaging (MRI), local binary pattern, texture feature, complete local binary pattern (CLBP) |
| Audience | Academic |
| Author | Liu, Zhe Sheng, Victor S. Song, Yu-Qing Liu, Xiao-Hong Wang, Juan Qiu, Cheng-Jian |
| AuthorAffiliation | School of Computer Science and Telecommunication, Jiangsu University, Zhenjiang 212013, China%Department of Computer Science, University of Central Arkansas, Arkansas 72035, U.S.A |
| AuthorAffiliation_xml | – name: School of Computer Science and Telecommunication, Jiangsu University, Zhenjiang 212013, China%Department of Computer Science, University of Central Arkansas, Arkansas 72035, U.S.A |
| Author_xml | – sequence: 1 givenname: Zhe surname: Liu fullname: Liu, Zhe organization: School of Computer Science and Telecommunication, Jiangsu University – sequence: 2 givenname: Cheng-Jian surname: Qiu fullname: Qiu, Cheng-Jian organization: School of Computer Science and Telecommunication, Jiangsu University – sequence: 3 givenname: Yu-Qing surname: Song fullname: Song, Yu-Qing organization: School of Computer Science and Telecommunication, Jiangsu University – sequence: 4 givenname: Xiao-Hong surname: Liu fullname: Liu, Xiao-Hong organization: School of Computer Science and Telecommunication, Jiangsu University – sequence: 5 givenname: Juan surname: Wang fullname: Wang, Juan organization: School of Computer Science and Telecommunication, Jiangsu University – sequence: 6 givenname: Victor S. surname: Sheng fullname: Sheng, Victor S. email: ssheng@uca.edu organization: Department of Computer Science, University of Central Arkansas |
| BookMark | eNp9kcFu1DAQhiNUJNrCA3CLxJWUmcSJ7WNZWlppURHaPVtOMk4dNk6xs7B9exyCtAJBZWlsWd9na-Y_S07c6ChJXiNcIAB_FxALCRmgzFBInslnySmKCjLGmTyJZwDIZCwvkrMQeoCCA2OnyXZDh2nvKb0m_Wu_OkxeN5MdXWr8OKSb-0c_2jb99CW9HXRnXZduw1xvbHef3fmWfPqBvP1OkSHt0tX6_eeXyXOjd4Fe_d7Pk-311WZ1k63vPt6uLtdZw5iYsqZqsSbNSm6EqAXwGnJmoKqAibxENFBWZU5ct1XOq9oQL7SWhGByjUXVFufJ2-XdH9oZ7TrVj3vv4o-qD_3XQx8OtaI8DgVi_0XE3yz4gx-_7SlMRz6XKEpZCJ4_SSHHAhlDfqQ6vSNlnRnnuQ02NOqSo5Sy4gIjdfEPKq6WBtvECI2N938IfBEaP4bgyajGTnqOI4p2pxDUnLda8laxNTXnrWQ08S_zwdtB-8cnnXxxQmRdR_7Y6v-ln9dMul8 |
| CitedBy_id | crossref_primary_10_4018_IJBAN_292058 crossref_primary_10_1038_s41598_023_48432_7 |
| Cites_doi | 10.1109/TIP.2010.2044957 10.1016/j.patcog.2012.04.003 10.1053/j.sult.2012.01.001 10.1210/jc.2010-0440 10.1016/j.media.2018.03.015 10.1016/j.compbiomed.2016.06.014 10.1016/j.dsp.2013.12.005 10.1016/j.media.2014.04.002 10.1109/IMCEC.2016.7867573 10.1109/ELECSYM.2016.7861053 10.1109/CBMS.2015.32 10.1109/ICCKE.2014.6993392 10.1371/journal.pone.0078868 10.1007/978-3-540-76390-1_66 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 COPYRIGHT 2019 Springer Journal of Computer Science and Technology is a copyright of Springer, (2019). All Rights Reserved. Springer Science+Business Media, LLC, part of Springer Nature 2019. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: COPYRIGHT 2019 Springer – notice: Journal of Computer Science and Technology is a copyright of Springer, (2019). All Rights Reserved. – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS Q9U 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.1007/s11390-019-1897-9 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing Engineering Database ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1860-4749 |
| EndPage | 46 |
| ExternalDocumentID | jsjkxjsxb_e201901003 A719996781 10_1007_s11390_019_1897_9 |
| GrantInformation_xml | – fundername: the National Natural Science Foundation of China under Grant Nos. 61728205, 61772242, 61402204, and 61572239, and the Natural Science Foundation of Jiangsu Province of China under Grant No. BK20130529, the Research Fund for Advanced Talents of Jiangsu University of China under Grant No. 14JDG141, the Science and Technology Project of Zhenjiang City of China under Grant No. SH20140110, the Special Software Development Foundation of Zhenjiang City of China under Grant No. 201322, and the Science and Technology Support Foundation of Zhenjiang City under Grant No. GY2014013 funderid: (Industrial) under Grant No. GY2014013 |
| GroupedDBID | -4Z -59 -5G -BR -EM -SI -S~ -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 28- 29K 2B. 2C0 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VR 5VS 5XA 5XJ 67Z 6NX 7WY 8FE 8FG 8FL 8TC 8UJ 92H 92I 92R 93N 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CAJEI CCEZO CCPQU CHBEP COF CS3 CSCUP CUBFJ CW9 D-I DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IAO IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M4Y M7S MA- N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q-- Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCL SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TCJ TGT TSG TSK TSV TUC U1G U2A U5S UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z7R Z7U Z7X Z81 Z83 Z88 Z8R Z8W Z92 ZMTXR ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ICD IVC PHGZM PHGZT PQGLB PUEGO TGMPQ 7SC 7XB 8AL 8FD 8FK JQ2 L.- L6V L7M L~C L~D PKEHL PQEST PQUKI Q9U 4A8 PMFND PSX |
| ID | FETCH-LOGICAL-c448t-c6d1bea457f88b807b024f0660482511f05652e7ad6276bfe73aa9e10f2a136d3 |
| IEDL.DBID | BENPR |
| ISSN | 1000-9000 |
| IngestDate | Thu May 29 04:00:16 EDT 2025 Sun Sep 07 23:49:07 EDT 2025 Fri Jul 25 12:21:55 EDT 2025 Mon Oct 20 22:21:12 EDT 2025 Mon Oct 20 16:25:01 EDT 2025 Thu Apr 24 22:56:44 EDT 2025 Wed Oct 01 02:32:15 EDT 2025 Fri Feb 21 02:40:05 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | texture feature local binary pattern thyroid magnetic resonance imaging (MRI) complete local binary pattern (CLBP) |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c448t-c6d1bea457f88b807b024f0660482511f05652e7ad6276bfe73aa9e10f2a136d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2171314417 |
| PQPubID | 326258 |
| PageCount | 12 |
| ParticipantIDs | wanfang_journals_jsjkxjsxb_e201901003 proquest_journals_2918593872 proquest_journals_2171314417 gale_infotracmisc_A719996781 gale_infotracacademiconefile_A719996781 crossref_citationtrail_10_1007_s11390_019_1897_9 crossref_primary_10_1007_s11390_019_1897_9 springer_journals_10_1007_s11390_019_1897_9 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20190100 2019-1-00 20190101 2019 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 1 year: 2019 text: 20190100 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Beijing |
| PublicationTitle | Journal of computer science and technology |
| PublicationTitleAbbrev | J. Comput. Sci. Technol |
| PublicationTitle_FL | Journal of Computer Science & Technology |
| PublicationYear | 2019 |
| Publisher | Springer US Springer Springer Nature B.V School of Computer Science and Telecommunication, Jiangsu University, Zhenjiang 212013, China%Department of Computer Science, University of Central Arkansas, Arkansas 72035, U.S.A |
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V – name: School of Computer Science and Telecommunication, Jiangsu University, Zhenjiang 212013, China%Department of Computer Science, University of Central Arkansas, Arkansas 72035, U.S.A |
| References | CR2 Guo, Zhao, Pietikäinen (CR19) 2012; 45 CR6 Wu, Mazur, Ruan (CR3) 2018; 47 CR5 CR7 CR18 Guo, Zhang, Zhang (CR9) 2010; 19 CR16 CR15 CR13 Juliano, Cunnane (CR14) 2012; 33 CR12 CR11 CR20 Zhou, Wu, Liang (CR8) 2017; 53 Shin, Yoo, Kwon (CR4) 2016; 75 Guo, Zhang, Zhang (CR21) 2010; 19 Zhao, Okada, Rosenbaum (CR22) 2014; 18 Yuan (CR17) 2014; 26 Paes, Hua, Nagy (CR1) 2010; 95 Liu, Xie, Wei (CR10) 2014; 19 1897_CR7 1897_CR5 1897_CR6 1897_CR18 YX Zhou (1897_CR8) 2017; 53 1897_CR2 J Wu (1897_CR3) 2018; 47 F Yuan (1897_CR17) 2014; 26 L Liu (1897_CR10) 2014; 19 1897_CR20 AF Juliano (1897_CR14) 2012; 33 1897_CR13 1897_CR12 JE Paes (1897_CR1) 2010; 95 1897_CR11 Y Guo (1897_CR19) 2012; 45 Z Guo (1897_CR21) 2010; 19 Q Zhao (1897_CR22) 2014; 18 1897_CR16 YG Shin (1897_CR4) 2016; 75 1897_CR15 Z Guo (1897_CR9) 2010; 19 |
| References_xml | – volume: 53 start-page: 163 issue: 4 year: 2017 end-page: 169 ident: CR8 article-title: Facial expression recognition based on discriminative CLBP publication-title: Computer Engineering and Applications – ident: CR18 – volume: 19 start-page: 1657 issue: 6 year: 2010 end-page: 1663 ident: CR9 article-title: A completed modeling of local binary pattern operator for texture classification publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2010.2044957 – ident: CR15 – ident: CR2 – ident: CR16 – volume: 45 start-page: 3834 issue: 10 year: 2012 end-page: 3843 ident: CR19 article-title: Discriminative features for texture description publication-title: Pattern Recognition doi: 10.1016/j.patcog.2012.04.003 – volume: 33 start-page: 130 issue: 2 year: 2012 end-page: 137 ident: CR14 article-title: Benign conditions of the thyroid gland publication-title: Seminars Ultrasound, CT and MRI doi: 10.1053/j.sult.2012.01.001 – volume: 19 start-page: 1657 issue: 6 year: 2010 end-page: 1663 ident: CR21 article-title: A completed modeling of local binary pattern operator for texture classification publication-title: IEEE Trans. Image Process doi: 10.1109/TIP.2010.2044957 – volume: 95 start-page: 4244 issue: 9 year: 2010 end-page: 4250 ident: CR1 article-title: The relationship between body mass index and thyroid cancer pathology features and outcomes: A clinicopathological cohort study publication-title: The Journal of Clinical Endocrinology & Metabolism doi: 10.1210/jc.2010-0440 – ident: CR12 – ident: CR13 – ident: CR11 – volume: 47 start-page: 68 year: 2018 end-page: 80 ident: CR3 article-title: A deep Boltzmann machine-driven level set method for heart motion tracking using cine MRI images publication-title: Medical Image Analysis doi: 10.1016/j.media.2018.03.015 – ident: CR6 – ident: CR5 – ident: CR7 – volume: 19 start-page: 1696 issue: 12 year: 2014 end-page: 1720 ident: CR10 article-title: A review of local binary pattern methods publication-title: Journal of Image and Graphics – volume: 75 start-page: 257 year: 2016 end-page: 266 ident: CR4 article-title: Histogram and gray level co-occurrence matrix on gray-scale ultrasound images for diagnosing lymphocytic thyroiditis publication-title: Computers in Biology & Medicine doi: 10.1016/j.compbiomed.2016.06.014 – volume: 26 start-page: 142 year: 2014 end-page: 152 ident: CR17 article-title: Rotation and scale invariant local binary pattern based on high order directional derivatives for texture classification publication-title: Digital Signal Processing doi: 10.1016/j.dsp.2013.12.005 – ident: CR20 – volume: 18 start-page: 699 issue: 5 year: 2014 end-page: 710 ident: CR22 article-title: Digital facial dysmorphology for genetic screening: Hierarchical constrained local model using ICA publication-title: Medical Image Analysis doi: 10.1016/j.media.2014.04.002 – ident: 1897_CR6 doi: 10.1109/IMCEC.2016.7867573 – ident: 1897_CR16 doi: 10.1109/ELECSYM.2016.7861053 – volume: 19 start-page: 1657 issue: 6 year: 2010 ident: 1897_CR21 publication-title: IEEE Trans. Image Process doi: 10.1109/TIP.2010.2044957 – volume: 75 start-page: 257 year: 2016 ident: 1897_CR4 publication-title: Computers in Biology & Medicine doi: 10.1016/j.compbiomed.2016.06.014 – volume: 45 start-page: 3834 issue: 10 year: 2012 ident: 1897_CR19 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2012.04.003 – ident: 1897_CR20 doi: 10.1109/CBMS.2015.32 – ident: 1897_CR5 doi: 10.1109/ELECSYM.2016.7861053 – volume: 19 start-page: 1657 issue: 6 year: 2010 ident: 1897_CR9 publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2010.2044957 – ident: 1897_CR13 – volume: 18 start-page: 699 issue: 5 year: 2014 ident: 1897_CR22 publication-title: Medical Image Analysis doi: 10.1016/j.media.2014.04.002 – volume: 53 start-page: 163 issue: 4 year: 2017 ident: 1897_CR8 publication-title: Computer Engineering and Applications – ident: 1897_CR15 – volume: 19 start-page: 1696 issue: 12 year: 2014 ident: 1897_CR10 publication-title: Journal of Image and Graphics – ident: 1897_CR11 – volume: 26 start-page: 142 year: 2014 ident: 1897_CR17 publication-title: Digital Signal Processing doi: 10.1016/j.dsp.2013.12.005 – volume: 33 start-page: 130 issue: 2 year: 2012 ident: 1897_CR14 publication-title: Seminars Ultrasound, CT and MRI doi: 10.1053/j.sult.2012.01.001 – volume: 95 start-page: 4244 issue: 9 year: 2010 ident: 1897_CR1 publication-title: The Journal of Clinical Endocrinology & Metabolism doi: 10.1210/jc.2010-0440 – volume: 47 start-page: 68 year: 2018 ident: 1897_CR3 publication-title: Medical Image Analysis doi: 10.1016/j.media.2018.03.015 – ident: 1897_CR18 doi: 10.1109/ICCKE.2014.6993392 – ident: 1897_CR2 doi: 10.1371/journal.pone.0078868 – ident: 1897_CR12 doi: 10.1007/978-3-540-76390-1_66 – ident: 1897_CR7 |
| SSID | ssj0037044 |
| Score | 2.167656 |
| Snippet | In the field of medical imaging, the traditional local binary pattern (LBP) and its improved algorithms are often sensitive to noise. Traditional LBPs are... |
| SourceID | wanfang proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 35 |
| SubjectTerms | Algorithms Area classification Artificial Intelligence Coding Computer Science Data Structures and Information Theory Feature extraction Image classification Information Systems Applications (incl.Internet) Magnetic resonance imaging Medical imaging Medical imaging equipment Noise sensitivity Pixels Regular Paper Software Engineering Texture Theory of Computation Thyroid gland |
| SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dTxQxEJ_g8eKLKGg8RdIHDYmmZL9uu_t4wiEqoDF3CT417W4LHLqYuz1z8tczs9t6HCEkPO1DP9Kdzlfbmd8AvE1iWwaqyLhOIsWT3FgUKWM44cQUWqkyamodHh2nB6Pky0nvxOVxT320u3-SbDT1ItkNnRUKosp5mOWC549gtYHb6sBq_9PPrwOvgGMRNDVc6eaaU01M_5h51yRL5ui2Ur7xOtrk9FRWVac3zM_-Ggz9wtuok4udWa13iqtbmI4P_LOn8MS5o6zf8s8zWDHVOqz5Ug_MSf4GjIaoxGcTw8hlpO9gXk_anAhGGSpsePZvcnlesqMf7PPvpvIRa6IRGAWS8G8E8Mn2kNv_GuxjVMV2Dz9-fw6j_cFw94C7igy8wGNczYu0DLVRSU_YLNNZIDSaeIteC-oBOqtYdKd6kRGqTCORamtErFRuwsBGKozTMn4BneqyMi-BGaPQ29J5EuDUhQqVtonqWdxRSqVNsi4EfmNk4eDKqWrGL7kAWiaySSSbJLLJvAvv_w_502J13Nd5m3ZbkhwTwZRLR8DVESKW7AsCaEBTHnZhc6knyl-x3Oz5RTr5n0o86IUxnVXF3c15SDhzmYi68MHzxKL5nkW_c1y46Dyeji_m4-lcSxMRMACOjF89aNbX8JhGthdLm9CpJzPzBl2tWm850boGhm0bZA priority: 102 providerName: Springer Nature |
| Title | Texture Feature Extraction from Thyroid MR Imaging Using High-Order Derived Mean CLBP |
| URI | https://link.springer.com/article/10.1007/s11390-019-1897-9 https://www.proquest.com/docview/2171314417 https://www.proquest.com/docview/2918593872 https://d.wanfangdata.com.cn/periodical/jsjkxjsxb-e201901003 |
| Volume | 34 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1860-4749 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1860-4749 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1860-4749 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1860-4749 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB61yYULb0SgRD6AkEAW631594BQUpKWR0NVJVI5WfauXQiwKUmKwr9nZuMlDUI57cGzK8s7M_78mO8DeBpHrgx0kXETh5rHuXUYUtZy4okpjNZlWGsdnozS40n8_jw534NRUwtD1yqbnFgn6nJW0B75K4TOIiL0L99c_uSkGkWnq42EhvbSCuXrmmJsH9ohMWO1oN0fjE7PmtwcyaCWd6VNbU5ymc05Z11Mh2CILmnlXGS55PnWTPVvvr52cFqX-1ROVxfXZqbhbbjpISXrrX3gDuzZ6i7cauQamI_eezAZYyK-mltGsI-eg9Vyvq5rYFRlwsZffs9nX0t2csbe_ajVi1h9o4DRZRD-iUg62Vv02F8Wbayu2OHH_ul9mAwH48Nj7lUVeIFLsSUv0lIYq-NEuiwzWSANTtMOkQfGMq03HEKiJLRSl2koU-OsjLTOrQhcqEWUltEDaFWzyj4EZq1GxGTyOMBPF1po42KduAQhicB1StaBoBlBVXjKcVK--K42ZMk06AoHXdGgq7wDL_6-crnm29hl_Jx-i6JYpAHTvqQAe0esVqoniWQBp2PRgYMtS4yhYru5-bHKx_BCbTzu_825IK64TIYdeNn4wqZ5R6efeXfZGE8X02-r6WJllA2puB_fjB7t7tNjuEGm692gA2gt51f2CeKjpenCfjY86kK7N-z3R_Q8-vxh0PWhgK2TsPcHjZkNMw |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9gAX3ohAAR-okEAW-_buoUJ9pEpoEqoqkXoz9q4NhHbTJmlJ_xy_jZmNlzQI5dbTHmyvrPE8Pj_mG4C3UWgLT-Up11GgeJQZiyZlDCeemFwrVQRVrcNuL2kNos8n8cka_K5zYehZZe0TK0ddjHI6I_-I0NkPCf2LT-cXnKpG0e1qXUJDudIKxXZFMeYSOw7N9S_cwk222_u43ltBcNDs77W4qzLAc9yaTHmeFL42KoqFTVOdekJj2LIYiVG3CX9bhAhxYIQqkkAk2hoRKpUZ37OB8sOkCPG_d2AjCqMMN38bu83e0XEdC0LhVeVk6RCdU3nO-l61St5D8EWPwjLup5ng2VJk_Dc-3LiordKLSqvKbzci4cFDuO8gLNuZ69wjWDPlY3hQl4dgzls8gUEfHf_l2DCCmfRtzqbjeR4Fo6wW1v9-PR79KFj3mLXPqmpJrHrBwOjxCf9CpKBsHy3kymAfo0q219k9egqDW5HvM1gvR6V5DswYhQhNZ5GHv86Vr7SNVGxjhEA-7ovSBni1BGXuKM6p0sapXJAzk9AlCl2S0GXWgPd_h5zP-T1WdX5HyyLJ9klgyqUw4OyIRUvuCCJ1wPDvN2BzqSfabL7cXC-sdD5jIhca_v_mzCduulQEDfhQ68KiecWkt5y6LDoPJ8Ofs-FkpqUJiEwAR4YvVs_pDdxt9bsd2Wn3Dl_CPRo2P4nahPXp-NK8Qmw21a-dATD4ets29weox0RC |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dTxsxDLdGJyFeBuNDdMCWBxDSpojLfeXusQMq2PgSaiXeouQu2dZtB2qvU_ffz76PlU4IaU_3kMSKHDu2L_bPAPth4HJPZwk3oa95mFqHKmUtJ5yYzGid-1Wvw8ur-GwYfrqL7po-p5M22719kqxrGgilqSiPHnJ3NC98Q8eFEqpSLpJU8nQJXoaEk4ACPfR77VUcSK_q5kr_sDl1x2yfNZ8isWCY_r2eH72TVtU9hdPFl0eGqL8GrxoPkvXqI38NL2yxDqttdwbWKOsGDAd4707HlpGXR9_TWTmuyxgYFZWwwdff4_tvObu8Zec_q2ZFrEogYJT7wa8Jk5OdoID-sjjH6oIdX3y82YRh_3RwfMabJgo8w8ir5FmcC2N1GEmXJCbxpEGr7NDRQNWl8MKhBxT5Vuo89mVsnJWB1qkVnvO1COI82IJOcV_YbWDWanSQTBp6SDrTQhsX6shF6IEIDEuSLngtB1XWIIxTo4sfao6NTExXyHRFTFdpF97_XfJQw2s8N_mQjkWR6hHDdFNBgLsjECvVk4SpgNZXdGF3YSaqTLY43B6salR2ojA2EwGFl_Lp4VQQNFwi_S58aGVhPvzMpg8acZlPHk1G32ejycwo61MtP64M3vwX1XewfHPSVxfnV593YIWI1L-FdqFTjqd2Dx2l0rytlOEPSR0Frg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Texture+Feature+Extraction+from+Thyroid+MR+Imaging+Using+High-Order+Derived+Mean+CLBP&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E6%8A%80%E6%9C%AF%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Zhe+Liu&rft.au=Cheng-Jian+Qiu&rft.au=Yu-Qing+Song&rft.au=Xiao-Hong+Liu&rft.date=2019&rft.pub=School+of+Computer+Science+and+Telecommunication%2C+Jiangsu+University%2C+Zhenjiang+212013%2C+China%25Department+of+Computer+Science%2C+University+of+Central+Arkansas%2C+Arkansas+72035%2C+U.S.A&rft.issn=1000-9000&rft.volume=34&rft.issue=1&rft.spage=35&rft.epage=46&rft_id=info:doi/10.1007%2Fs11390-019-1897-9&rft.externalDocID=jsjkxjsxb_e201901003 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxjsxb-e%2Fjsjkxjsxb-e.jpg |