Texture Feature Extraction from Thyroid MR Imaging Using High-Order Derived Mean CLBP

In the field of medical imaging, the traditional local binary pattern (LBP) and its improved algorithms are often sensitive to noise. Traditional LBPs are solely based on the signal information from local differences, and the binary quantization method oversimplifies the local texture features while...

Full description

Saved in:
Bibliographic Details
Published inJournal of computer science and technology Vol. 34; no. 1; pp. 35 - 46
Main Authors Liu, Zhe, Qiu, Cheng-Jian, Song, Yu-Qing, Liu, Xiao-Hong, Wang, Juan, Sheng, Victor S.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2019
Springer
Springer Nature B.V
School of Computer Science and Telecommunication, Jiangsu University, Zhenjiang 212013, China%Department of Computer Science, University of Central Arkansas, Arkansas 72035, U.S.A
Subjects
Online AccessGet full text
ISSN1000-9000
1860-4749
DOI10.1007/s11390-019-1897-9

Cover

Abstract In the field of medical imaging, the traditional local binary pattern (LBP) and its improved algorithms are often sensitive to noise. Traditional LBPs are solely based on the signal information from local differences, and the binary quantization method oversimplifies the local texture features while disregarding the imaging information from the concaveconvex regions between the high-order pixels and the neighboring sampling points. Therefore, we propose an improved Derived Mean Complete Local Binary Pattern (DM CLBP) algorithm based on high-order derivatives. In the DM CLBP method, the grey value of a single pixel is replaced by the mean grey value of the rectangular area block, and the difference between pixel values in the area is obtained using the second-order differentiation method. Based on the calculation concept of the complete local binary pattern (CLBP) algorithm, the cascade signs and magnitudes of the two components are encoded and recombined in DM CLBP using a uniform pattern. The results from the experiments showed that the proposed DM CLBP descriptors achieved a classification accuracy of 94.4%. Compared with LBP and other improved algorithms, the DM CLBP algorithm presented in this study can effectively differentiate between lesion areas and normal areas in thyroid MR (magnetic resonance) images and shows the improved accuracy of area classification.
AbstractList In the field of medical imaging, the traditional local binary pattern (LBP) and its improved algorithms are often sensitive to noise. Traditional LBPs are solely based on the signal information from local differences, and the binary quantization method oversimplifies the local texture features while disregarding the imaging information from the concave-convex regions between the high-order pixels and the neighboring sampling points. Therefore, we propose an improved Derived Mean Complete Local Binary Pattern (DM_CLBP) algorithm based on high-order derivatives. In the DM_CLBP method, the grey value of a single pixel is replaced by the mean grey value of the rectangular area block, and the difference between pixel values in the area is obtained using the second-order differentiation method. Based on the calculation concept of the complete local binary pattern (CLBP) algorithm, the cascade signs and magnitudes of the two components are encoded and recombined in DM_CLBP using a uniform pattern. The results from the experiments showed that the proposed DM_CLBP descriptors achieved a classification accuracy of 94.4%. Compared with LBP and other improved algorithms, the DM_CLBP algorithm presented in this study can effectively differentiate between lesion areas and normal areas in thyroid MR (magnetic resonance) images and shows the improved accuracy of area classification.
In the field of medical imaging, the traditional local binary pattern (LBP) and its improved algorithms are often sensitive to noise. Traditional LBPs are solely based on the signal information from local differences, and the binary quantization method oversimplifies the local texture features while disregarding the imaging information from the concave-convex regions between the high-order pixels and the neighboring sampling points. Therefore, we propose an improved Derived Mean Complete Local Binary Pattern (DM_CLBP) algorithm based on high-order derivatives. In the DM_CLBP method, the grey value of a single pixel is replaced by the mean grey value of the rectangular area block, and the difference between pixel values in the area is obtained using the second-order differentiation method. Based on the calculation concept of the complete local binary pattern (CLBP) algorithm, the cascade signs and magnitudes of the two components are encoded and recombined in DM_CLBP using a uniform pattern. The results from the experiments showed that the proposed DM_CLBP descriptors achieved a classification accuracy of 94.4%. Compared with LBP and other improved algorithms, the DM_CLBP algorithm presented in this study can effectively differentiate between lesion areas and normal areas in thyroid MR (magnetic resonance) images and shows the improved accuracy of area classification.
In the field of medical imaging, the traditional local binary pattern (LBP) and its improved algorithms are often sensitive to noise. Traditional LBPs are solely based on the signal information from local differences, and the binary quantization method oversimplifies the local texture features while disregarding the imaging information from the concaveconvex regions between the high-order pixels and the neighboring sampling points. Therefore, we propose an improved Derived Mean Complete Local Binary Pattern (DM CLBP) algorithm based on high-order derivatives. In the DM CLBP method, the grey value of a single pixel is replaced by the mean grey value of the rectangular area block, and the difference between pixel values in the area is obtained using the second-order differentiation method. Based on the calculation concept of the complete local binary pattern (CLBP) algorithm, the cascade signs and magnitudes of the two components are encoded and recombined in DM CLBP using a uniform pattern. The results from the experiments showed that the proposed DM CLBP descriptors achieved a classification accuracy of 94.4%. Compared with LBP and other improved algorithms, the DM CLBP algorithm presented in this study can effectively differentiate between lesion areas and normal areas in thyroid MR (magnetic resonance) images and shows the improved accuracy of area classification.
In the field of medical imaging, the traditional local binary pattern (LBP) and its improved algorithms are often sensitive to noise. Traditional LBPs are solely based on the signal information from local differences, and the binary quantization method oversimplifies the local texture features while disregarding the imaging information from the concave-convex regions between the high-order pixels and the neighboring sampling points. Therefore, we propose an improved Derived Mean Complete Local Binary Pattern (DM_CLBP) algorithm based on high-order derivatives. In the DM_CLBP method, the grey value of a single pixel is replaced by the mean grey value of the rectangular area block, and the difference between pixel values in the area is obtained using the second-order differentiation method. Based on the calculation concept of the complete local binary pattern (CLBP) algorithm, the cascade signs and magnitudes of the two components are encoded and recombined in DM_CLBP using a uniform pattern. The results from the experiments showed that the proposed DM_CLBP descriptors achieved a classification accuracy of 94.4%. Compared with LBP and other improved algorithms, the DM_CLBP algorithm presented in this study can effectively differentiate between lesion areas and normal areas in thyroid MR (magnetic resonance) images and shows the improved accuracy of area classification. Keywords thyroid magnetic resonance imaging (MRI), local binary pattern, texture feature, complete local binary pattern (CLBP)
Audience Academic
Author Liu, Zhe
Sheng, Victor S.
Song, Yu-Qing
Liu, Xiao-Hong
Wang, Juan
Qiu, Cheng-Jian
AuthorAffiliation School of Computer Science and Telecommunication, Jiangsu University, Zhenjiang 212013, China%Department of Computer Science, University of Central Arkansas, Arkansas 72035, U.S.A
AuthorAffiliation_xml – name: School of Computer Science and Telecommunication, Jiangsu University, Zhenjiang 212013, China%Department of Computer Science, University of Central Arkansas, Arkansas 72035, U.S.A
Author_xml – sequence: 1
  givenname: Zhe
  surname: Liu
  fullname: Liu, Zhe
  organization: School of Computer Science and Telecommunication, Jiangsu University
– sequence: 2
  givenname: Cheng-Jian
  surname: Qiu
  fullname: Qiu, Cheng-Jian
  organization: School of Computer Science and Telecommunication, Jiangsu University
– sequence: 3
  givenname: Yu-Qing
  surname: Song
  fullname: Song, Yu-Qing
  organization: School of Computer Science and Telecommunication, Jiangsu University
– sequence: 4
  givenname: Xiao-Hong
  surname: Liu
  fullname: Liu, Xiao-Hong
  organization: School of Computer Science and Telecommunication, Jiangsu University
– sequence: 5
  givenname: Juan
  surname: Wang
  fullname: Wang, Juan
  organization: School of Computer Science and Telecommunication, Jiangsu University
– sequence: 6
  givenname: Victor S.
  surname: Sheng
  fullname: Sheng, Victor S.
  email: ssheng@uca.edu
  organization: Department of Computer Science, University of Central Arkansas
BookMark eNp9kcFu1DAQhiNUJNrCA3CLxJWUmcSJ7WNZWlppURHaPVtOMk4dNk6xs7B9exyCtAJBZWlsWd9na-Y_S07c6ChJXiNcIAB_FxALCRmgzFBInslnySmKCjLGmTyJZwDIZCwvkrMQeoCCA2OnyXZDh2nvKb0m_Wu_OkxeN5MdXWr8OKSb-0c_2jb99CW9HXRnXZduw1xvbHef3fmWfPqBvP1OkSHt0tX6_eeXyXOjd4Fe_d7Pk-311WZ1k63vPt6uLtdZw5iYsqZqsSbNSm6EqAXwGnJmoKqAibxENFBWZU5ct1XOq9oQL7SWhGByjUXVFufJ2-XdH9oZ7TrVj3vv4o-qD_3XQx8OtaI8DgVi_0XE3yz4gx-_7SlMRz6XKEpZCJ4_SSHHAhlDfqQ6vSNlnRnnuQ02NOqSo5Sy4gIjdfEPKq6WBtvECI2N938IfBEaP4bgyajGTnqOI4p2pxDUnLda8laxNTXnrWQ08S_zwdtB-8cnnXxxQmRdR_7Y6v-ln9dMul8
CitedBy_id crossref_primary_10_4018_IJBAN_292058
crossref_primary_10_1038_s41598_023_48432_7
Cites_doi 10.1109/TIP.2010.2044957
10.1016/j.patcog.2012.04.003
10.1053/j.sult.2012.01.001
10.1210/jc.2010-0440
10.1016/j.media.2018.03.015
10.1016/j.compbiomed.2016.06.014
10.1016/j.dsp.2013.12.005
10.1016/j.media.2014.04.002
10.1109/IMCEC.2016.7867573
10.1109/ELECSYM.2016.7861053
10.1109/CBMS.2015.32
10.1109/ICCKE.2014.6993392
10.1371/journal.pone.0078868
10.1007/978-3-540-76390-1_66
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
COPYRIGHT 2019 Springer
Journal of Computer Science and Technology is a copyright of Springer, (2019). All Rights Reserved.
Springer Science+Business Media, LLC, part of Springer Nature 2019.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: COPYRIGHT 2019 Springer
– notice: Journal of Computer Science and Technology is a copyright of Springer, (2019). All Rights Reserved.
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2019.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s11390-019-1897-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList

ABI/INFORM Global (Corporate)


ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1860-4749
EndPage 46
ExternalDocumentID jsjkxjsxb_e201901003
A719996781
10_1007_s11390_019_1897_9
GrantInformation_xml – fundername: the National Natural Science Foundation of China under Grant Nos. 61728205, 61772242, 61402204, and 61572239, and the Natural Science Foundation of Jiangsu Province of China under Grant No. BK20130529, the Research Fund for Advanced Talents of Jiangsu University of China under Grant No. 14JDG141, the Science and Technology Project of Zhenjiang City of China under Grant No. SH20140110, the Special Software Development Foundation of Zhenjiang City of China under Grant No. 201322, and the Science and Technology Support Foundation of Zhenjiang City under Grant No. GY2014013
  funderid: (Industrial) under Grant No. GY2014013
GroupedDBID -4Z
-59
-5G
-BR
-EM
-SI
-S~
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
28-
29K
2B.
2C0
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VR
5VS
5XA
5XJ
67Z
6NX
7WY
8FE
8FG
8FL
8TC
8UJ
92H
92I
92R
93N
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CAJEI
CCEZO
CCPQU
CHBEP
COF
CS3
CSCUP
CUBFJ
CW9
D-I
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q--
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCL
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TCJ
TGT
TSG
TSK
TSV
TUC
U1G
U2A
U5S
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z7R
Z7U
Z7X
Z81
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
IVC
PHGZM
PHGZT
PQGLB
PUEGO
TGMPQ
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L6V
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
4A8
PMFND
PSX
ID FETCH-LOGICAL-c448t-c6d1bea457f88b807b024f0660482511f05652e7ad6276bfe73aa9e10f2a136d3
IEDL.DBID BENPR
ISSN 1000-9000
IngestDate Thu May 29 04:00:16 EDT 2025
Sun Sep 07 23:49:07 EDT 2025
Fri Jul 25 12:21:55 EDT 2025
Mon Oct 20 22:21:12 EDT 2025
Mon Oct 20 16:25:01 EDT 2025
Thu Apr 24 22:56:44 EDT 2025
Wed Oct 01 02:32:15 EDT 2025
Fri Feb 21 02:40:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords texture feature
local binary pattern
thyroid magnetic resonance imaging (MRI)
complete local binary pattern (CLBP)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c448t-c6d1bea457f88b807b024f0660482511f05652e7ad6276bfe73aa9e10f2a136d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2171314417
PQPubID 326258
PageCount 12
ParticipantIDs wanfang_journals_jsjkxjsxb_e201901003
proquest_journals_2918593872
proquest_journals_2171314417
gale_infotracmisc_A719996781
gale_infotracacademiconefile_A719996781
crossref_citationtrail_10_1007_s11390_019_1897_9
crossref_primary_10_1007_s11390_019_1897_9
springer_journals_10_1007_s11390_019_1897_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190100
2019-1-00
20190101
2019
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 1
  year: 2019
  text: 20190100
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Beijing
PublicationTitle Journal of computer science and technology
PublicationTitleAbbrev J. Comput. Sci. Technol
PublicationTitle_FL Journal of Computer Science & Technology
PublicationYear 2019
Publisher Springer US
Springer
Springer Nature B.V
School of Computer Science and Telecommunication, Jiangsu University, Zhenjiang 212013, China%Department of Computer Science, University of Central Arkansas, Arkansas 72035, U.S.A
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
– name: School of Computer Science and Telecommunication, Jiangsu University, Zhenjiang 212013, China%Department of Computer Science, University of Central Arkansas, Arkansas 72035, U.S.A
References CR2
Guo, Zhao, Pietikäinen (CR19) 2012; 45
CR6
Wu, Mazur, Ruan (CR3) 2018; 47
CR5
CR7
CR18
Guo, Zhang, Zhang (CR9) 2010; 19
CR16
CR15
CR13
Juliano, Cunnane (CR14) 2012; 33
CR12
CR11
CR20
Zhou, Wu, Liang (CR8) 2017; 53
Shin, Yoo, Kwon (CR4) 2016; 75
Guo, Zhang, Zhang (CR21) 2010; 19
Zhao, Okada, Rosenbaum (CR22) 2014; 18
Yuan (CR17) 2014; 26
Paes, Hua, Nagy (CR1) 2010; 95
Liu, Xie, Wei (CR10) 2014; 19
1897_CR7
1897_CR5
1897_CR6
1897_CR18
YX Zhou (1897_CR8) 2017; 53
1897_CR2
J Wu (1897_CR3) 2018; 47
F Yuan (1897_CR17) 2014; 26
L Liu (1897_CR10) 2014; 19
1897_CR20
AF Juliano (1897_CR14) 2012; 33
1897_CR13
1897_CR12
JE Paes (1897_CR1) 2010; 95
1897_CR11
Y Guo (1897_CR19) 2012; 45
Z Guo (1897_CR21) 2010; 19
Q Zhao (1897_CR22) 2014; 18
1897_CR16
YG Shin (1897_CR4) 2016; 75
1897_CR15
Z Guo (1897_CR9) 2010; 19
References_xml – volume: 53
  start-page: 163
  issue: 4
  year: 2017
  end-page: 169
  ident: CR8
  article-title: Facial expression recognition based on discriminative CLBP
  publication-title: Computer Engineering and Applications
– ident: CR18
– volume: 19
  start-page: 1657
  issue: 6
  year: 2010
  end-page: 1663
  ident: CR9
  article-title: A completed modeling of local binary pattern operator for texture classification
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2010.2044957
– ident: CR15
– ident: CR2
– ident: CR16
– volume: 45
  start-page: 3834
  issue: 10
  year: 2012
  end-page: 3843
  ident: CR19
  article-title: Discriminative features for texture description
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2012.04.003
– volume: 33
  start-page: 130
  issue: 2
  year: 2012
  end-page: 137
  ident: CR14
  article-title: Benign conditions of the thyroid gland
  publication-title: Seminars Ultrasound, CT and MRI
  doi: 10.1053/j.sult.2012.01.001
– volume: 19
  start-page: 1657
  issue: 6
  year: 2010
  end-page: 1663
  ident: CR21
  article-title: A completed modeling of local binary pattern operator for texture classification
  publication-title: IEEE Trans. Image Process
  doi: 10.1109/TIP.2010.2044957
– volume: 95
  start-page: 4244
  issue: 9
  year: 2010
  end-page: 4250
  ident: CR1
  article-title: The relationship between body mass index and thyroid cancer pathology features and outcomes: A clinicopathological cohort study
  publication-title: The Journal of Clinical Endocrinology & Metabolism
  doi: 10.1210/jc.2010-0440
– ident: CR12
– ident: CR13
– ident: CR11
– volume: 47
  start-page: 68
  year: 2018
  end-page: 80
  ident: CR3
  article-title: A deep Boltzmann machine-driven level set method for heart motion tracking using cine MRI images
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2018.03.015
– ident: CR6
– ident: CR5
– ident: CR7
– volume: 19
  start-page: 1696
  issue: 12
  year: 2014
  end-page: 1720
  ident: CR10
  article-title: A review of local binary pattern methods
  publication-title: Journal of Image and Graphics
– volume: 75
  start-page: 257
  year: 2016
  end-page: 266
  ident: CR4
  article-title: Histogram and gray level co-occurrence matrix on gray-scale ultrasound images for diagnosing lymphocytic thyroiditis
  publication-title: Computers in Biology & Medicine
  doi: 10.1016/j.compbiomed.2016.06.014
– volume: 26
  start-page: 142
  year: 2014
  end-page: 152
  ident: CR17
  article-title: Rotation and scale invariant local binary pattern based on high order directional derivatives for texture classification
  publication-title: Digital Signal Processing
  doi: 10.1016/j.dsp.2013.12.005
– ident: CR20
– volume: 18
  start-page: 699
  issue: 5
  year: 2014
  end-page: 710
  ident: CR22
  article-title: Digital facial dysmorphology for genetic screening: Hierarchical constrained local model using ICA
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2014.04.002
– ident: 1897_CR6
  doi: 10.1109/IMCEC.2016.7867573
– ident: 1897_CR16
  doi: 10.1109/ELECSYM.2016.7861053
– volume: 19
  start-page: 1657
  issue: 6
  year: 2010
  ident: 1897_CR21
  publication-title: IEEE Trans. Image Process
  doi: 10.1109/TIP.2010.2044957
– volume: 75
  start-page: 257
  year: 2016
  ident: 1897_CR4
  publication-title: Computers in Biology & Medicine
  doi: 10.1016/j.compbiomed.2016.06.014
– volume: 45
  start-page: 3834
  issue: 10
  year: 2012
  ident: 1897_CR19
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2012.04.003
– ident: 1897_CR20
  doi: 10.1109/CBMS.2015.32
– ident: 1897_CR5
  doi: 10.1109/ELECSYM.2016.7861053
– volume: 19
  start-page: 1657
  issue: 6
  year: 2010
  ident: 1897_CR9
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2010.2044957
– ident: 1897_CR13
– volume: 18
  start-page: 699
  issue: 5
  year: 2014
  ident: 1897_CR22
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2014.04.002
– volume: 53
  start-page: 163
  issue: 4
  year: 2017
  ident: 1897_CR8
  publication-title: Computer Engineering and Applications
– ident: 1897_CR15
– volume: 19
  start-page: 1696
  issue: 12
  year: 2014
  ident: 1897_CR10
  publication-title: Journal of Image and Graphics
– ident: 1897_CR11
– volume: 26
  start-page: 142
  year: 2014
  ident: 1897_CR17
  publication-title: Digital Signal Processing
  doi: 10.1016/j.dsp.2013.12.005
– volume: 33
  start-page: 130
  issue: 2
  year: 2012
  ident: 1897_CR14
  publication-title: Seminars Ultrasound, CT and MRI
  doi: 10.1053/j.sult.2012.01.001
– volume: 95
  start-page: 4244
  issue: 9
  year: 2010
  ident: 1897_CR1
  publication-title: The Journal of Clinical Endocrinology & Metabolism
  doi: 10.1210/jc.2010-0440
– volume: 47
  start-page: 68
  year: 2018
  ident: 1897_CR3
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2018.03.015
– ident: 1897_CR18
  doi: 10.1109/ICCKE.2014.6993392
– ident: 1897_CR2
  doi: 10.1371/journal.pone.0078868
– ident: 1897_CR12
  doi: 10.1007/978-3-540-76390-1_66
– ident: 1897_CR7
SSID ssj0037044
Score 2.167656
Snippet In the field of medical imaging, the traditional local binary pattern (LBP) and its improved algorithms are often sensitive to noise. Traditional LBPs are...
SourceID wanfang
proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 35
SubjectTerms Algorithms
Area classification
Artificial Intelligence
Coding
Computer Science
Data Structures and Information Theory
Feature extraction
Image classification
Information Systems Applications (incl.Internet)
Magnetic resonance imaging
Medical imaging
Medical imaging equipment
Noise sensitivity
Pixels
Regular Paper
Software Engineering
Texture
Theory of Computation
Thyroid gland
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dTxQxEJ_g8eKLKGg8RdIHDYmmZL9uu_t4wiEqoDF3CT417W4LHLqYuz1z8tczs9t6HCEkPO1DP9Kdzlfbmd8AvE1iWwaqyLhOIsWT3FgUKWM44cQUWqkyamodHh2nB6Pky0nvxOVxT320u3-SbDT1ItkNnRUKosp5mOWC549gtYHb6sBq_9PPrwOvgGMRNDVc6eaaU01M_5h51yRL5ui2Ur7xOtrk9FRWVac3zM_-Ggz9wtuok4udWa13iqtbmI4P_LOn8MS5o6zf8s8zWDHVOqz5Ug_MSf4GjIaoxGcTw8hlpO9gXk_anAhGGSpsePZvcnlesqMf7PPvpvIRa6IRGAWS8G8E8Mn2kNv_GuxjVMV2Dz9-fw6j_cFw94C7igy8wGNczYu0DLVRSU_YLNNZIDSaeIteC-oBOqtYdKd6kRGqTCORamtErFRuwsBGKozTMn4BneqyMi-BGaPQ29J5EuDUhQqVtonqWdxRSqVNsi4EfmNk4eDKqWrGL7kAWiaySSSbJLLJvAvv_w_502J13Nd5m3ZbkhwTwZRLR8DVESKW7AsCaEBTHnZhc6knyl-x3Oz5RTr5n0o86IUxnVXF3c15SDhzmYi68MHzxKL5nkW_c1y46Dyeji_m4-lcSxMRMACOjF89aNbX8JhGthdLm9CpJzPzBl2tWm850boGhm0bZA
  priority: 102
  providerName: Springer Nature
Title Texture Feature Extraction from Thyroid MR Imaging Using High-Order Derived Mean CLBP
URI https://link.springer.com/article/10.1007/s11390-019-1897-9
https://www.proquest.com/docview/2171314417
https://www.proquest.com/docview/2918593872
https://d.wanfangdata.com.cn/periodical/jsjkxjsxb-e201901003
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1860-4749
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1860-4749
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1860-4749
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1860-4749
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB61yYULb0SgRD6AkEAW631594BQUpKWR0NVJVI5WfauXQiwKUmKwr9nZuMlDUI57cGzK8s7M_78mO8DeBpHrgx0kXETh5rHuXUYUtZy4okpjNZlWGsdnozS40n8_jw534NRUwtD1yqbnFgn6nJW0B75K4TOIiL0L99c_uSkGkWnq42EhvbSCuXrmmJsH9ohMWO1oN0fjE7PmtwcyaCWd6VNbU5ymc05Z11Mh2CILmnlXGS55PnWTPVvvr52cFqX-1ROVxfXZqbhbbjpISXrrX3gDuzZ6i7cauQamI_eezAZYyK-mltGsI-eg9Vyvq5rYFRlwsZffs9nX0t2csbe_ajVi1h9o4DRZRD-iUg62Vv02F8Wbayu2OHH_ul9mAwH48Nj7lUVeIFLsSUv0lIYq-NEuiwzWSANTtMOkQfGMq03HEKiJLRSl2koU-OsjLTOrQhcqEWUltEDaFWzyj4EZq1GxGTyOMBPF1po42KduAQhicB1StaBoBlBVXjKcVK--K42ZMk06AoHXdGgq7wDL_6-crnm29hl_Jx-i6JYpAHTvqQAe0esVqoniWQBp2PRgYMtS4yhYru5-bHKx_BCbTzu_825IK64TIYdeNn4wqZ5R6efeXfZGE8X02-r6WJllA2puB_fjB7t7tNjuEGm692gA2gt51f2CeKjpenCfjY86kK7N-z3R_Q8-vxh0PWhgK2TsPcHjZkNMw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9gAX3ohAAR-okEAW-_buoUJ9pEpoEqoqkXoz9q4NhHbTJmlJ_xy_jZmNlzQI5dbTHmyvrPE8Pj_mG4C3UWgLT-Up11GgeJQZiyZlDCeemFwrVQRVrcNuL2kNos8n8cka_K5zYehZZe0TK0ddjHI6I_-I0NkPCf2LT-cXnKpG0e1qXUJDudIKxXZFMeYSOw7N9S_cwk222_u43ltBcNDs77W4qzLAc9yaTHmeFL42KoqFTVOdekJj2LIYiVG3CX9bhAhxYIQqkkAk2hoRKpUZ37OB8sOkCPG_d2AjCqMMN38bu83e0XEdC0LhVeVk6RCdU3nO-l61St5D8EWPwjLup5ng2VJk_Dc-3LiordKLSqvKbzci4cFDuO8gLNuZ69wjWDPlY3hQl4dgzls8gUEfHf_l2DCCmfRtzqbjeR4Fo6wW1v9-PR79KFj3mLXPqmpJrHrBwOjxCf9CpKBsHy3kymAfo0q219k9egqDW5HvM1gvR6V5DswYhQhNZ5GHv86Vr7SNVGxjhEA-7ovSBni1BGXuKM6p0sapXJAzk9AlCl2S0GXWgPd_h5zP-T1WdX5HyyLJ9klgyqUw4OyIRUvuCCJ1wPDvN2BzqSfabL7cXC-sdD5jIhca_v_mzCduulQEDfhQ68KiecWkt5y6LDoPJ8Ofs-FkpqUJiEwAR4YvVs_pDdxt9bsd2Wn3Dl_CPRo2P4nahPXp-NK8Qmw21a-dATD4ets29weox0RC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dTxsxDLdGJyFeBuNDdMCWBxDSpojLfeXusQMq2PgSaiXeouQu2dZtB2qvU_ffz76PlU4IaU_3kMSKHDu2L_bPAPth4HJPZwk3oa95mFqHKmUtJ5yYzGid-1Wvw8ur-GwYfrqL7po-p5M22719kqxrGgilqSiPHnJ3NC98Q8eFEqpSLpJU8nQJXoaEk4ACPfR77VUcSK_q5kr_sDl1x2yfNZ8isWCY_r2eH72TVtU9hdPFl0eGqL8GrxoPkvXqI38NL2yxDqttdwbWKOsGDAd4707HlpGXR9_TWTmuyxgYFZWwwdff4_tvObu8Zec_q2ZFrEogYJT7wa8Jk5OdoID-sjjH6oIdX3y82YRh_3RwfMabJgo8w8ir5FmcC2N1GEmXJCbxpEGr7NDRQNWl8MKhBxT5Vuo89mVsnJWB1qkVnvO1COI82IJOcV_YbWDWanSQTBp6SDrTQhsX6shF6IEIDEuSLngtB1XWIIxTo4sfao6NTExXyHRFTFdpF97_XfJQw2s8N_mQjkWR6hHDdFNBgLsjECvVk4SpgNZXdGF3YSaqTLY43B6salR2ojA2EwGFl_Lp4VQQNFwi_S58aGVhPvzMpg8acZlPHk1G32ejycwo61MtP64M3vwX1XewfHPSVxfnV593YIWI1L-FdqFTjqd2Dx2l0rytlOEPSR0Frg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Texture+Feature+Extraction+from+Thyroid+MR+Imaging+Using+High-Order+Derived+Mean+CLBP&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E6%8A%80%E6%9C%AF%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Zhe+Liu&rft.au=Cheng-Jian+Qiu&rft.au=Yu-Qing+Song&rft.au=Xiao-Hong+Liu&rft.date=2019&rft.pub=School+of+Computer+Science+and+Telecommunication%2C+Jiangsu+University%2C+Zhenjiang+212013%2C+China%25Department+of+Computer+Science%2C+University+of+Central+Arkansas%2C+Arkansas+72035%2C+U.S.A&rft.issn=1000-9000&rft.volume=34&rft.issue=1&rft.spage=35&rft.epage=46&rft_id=info:doi/10.1007%2Fs11390-019-1897-9&rft.externalDocID=jsjkxjsxb_e201901003
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxjsxb-e%2Fjsjkxjsxb-e.jpg