Atomic force microscopy for quantitative understanding of peptide-induced lipid bilayer remodeling

•Membrane-permeabilizing peptides exhibit distinct remodeling modes.•AFM directly visualizes lipid bilayer remodeling in fluid.•Methods to achieve high precision AFM data & robust statistical analysis presented.•Localized pore-like voids & dispersed membrane-thinned regions detected.•Dynamic...

Full description

Saved in:
Bibliographic Details
Published inMethods (San Diego, Calif.) Vol. 197; pp. 20 - 29
Main Authors Schaefer, K.G., Pittman, A.E., Barrera, F.N., King, G.M.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.01.2022
Subjects
Online AccessGet full text
ISSN1046-2023
1095-9130
1095-9130
DOI10.1016/j.ymeth.2020.10.014

Cover

Abstract •Membrane-permeabilizing peptides exhibit distinct remodeling modes.•AFM directly visualizes lipid bilayer remodeling in fluid.•Methods to achieve high precision AFM data & robust statistical analysis presented.•Localized pore-like voids & dispersed membrane-thinned regions detected.•Dynamics and colocalization of distinct remodeling modes can be studied. A number of peptides are known to bind lipid bilayer membranes and cause these natural barriers to leak in an uncontrolled manner. Though membrane permeabilizing peptides play critical roles in cellular activity and may have promising future applications in the therapeutic arena, significant questions remain about their mechanisms of action. The atomic force microscope (AFM) is a single molecule imaging tool capable of addressing lipid bilayers in near-native fluid conditions. The apparatus complements traditional assays by providing local topographic maps of bilayer remodeling induced by membrane permeabilizing peptides. The information garnered from the AFM includes direct visualization and statistical analyses of distinct bilayer remodeling modes such as highly localized pore-like voids in the bilayer and dispersed thinned membrane regions. Colocalization of distinct remodeling modes can be studied. Here we examine recent work in the field and outline methods used to achieve precise AFM image data. Experimental challenges and common pitfalls are discussed as well as techniques for unbiased analysis including the Hessian blob detection algorithm, bootstrapping, and the Bayesian information criterion. When coupled with robust statistical analyses, high precision AFM data is poised to advance understanding of an important family of peptides that cause poration of membrane bilayers.
AbstractList A number of peptides are known to bind lipid bilayer membranes and cause these natural barriers to leak in an uncontrolled manner. Though membrane permeabilizing peptides play critical roles in cellular activity and may have promising future applications in the therapeutic arena, significant questions remain about their mechanisms of action. The atomic force microscope (AFM) is a single molecule imaging tool capable of addressing lipid bilayers in near-native fluid conditions. The apparatus complements traditional assays by providing local topographic maps of bilayer remodeling induced by membrane permeabilizing peptides. The information garnered from the AFM includes direct visualization and statistical analyses of distinct bilayer remodeling modes such as highly localized pore-like voids in the bilayer and dispersed thinned membrane regions. Colocalization of distinct remodeling modes can be studied. Here we examine recent work in the field and outline methods used to achieve precise AFM image data. Experimental challenges and common pitfalls are discussed as well as techniques for unbiased analysis including the Hessian blob detection algorithm, bootstrapping, and the Bayesian information criterion. When coupled with robust statistical analyses, high precision AFM data is poised to advance understanding of an important family of peptides that cause poration of membrane bilayers.
A number of peptides are known to bind lipid bilayer membranes and cause these natural barriers to leak in an uncontrolled manner. Though membrane permeabilizing peptides play critical roles in cellular activity and may have promising future applications in the therapeutic arena, significant questions remain about their mechanisms of action. The atomic force microscope (AFM) is a single molecule imaging tool capable of addressing lipid bilayers in near-native fluid conditions. The apparatus complements traditional assays by providing local topographic maps of bilayer remodeling induced by membrane permeabilizing peptides. The information garnered from the AFM includes direct visualization and statistical analyses of distinct bilayer remodeling modes such as highly localized pore-like voids in the bilayer and dispersed thinned membrane regions. Colocalization of distinct remodeling modes can be studied. Here we examine recent work in the field and outline methods used to achieve precise AFM image data. Experimental challenges and common pitfalls are discussed as well as techniques for unbiased analysis including the Hessian blob detection algorithm, bootstrapping, and the Bayesian information criterion. When coupled with robust statistical analyses, high precision AFM data is poised to advance understanding of an important family of peptides that cause poration of membrane bilayers.A number of peptides are known to bind lipid bilayer membranes and cause these natural barriers to leak in an uncontrolled manner. Though membrane permeabilizing peptides play critical roles in cellular activity and may have promising future applications in the therapeutic arena, significant questions remain about their mechanisms of action. The atomic force microscope (AFM) is a single molecule imaging tool capable of addressing lipid bilayers in near-native fluid conditions. The apparatus complements traditional assays by providing local topographic maps of bilayer remodeling induced by membrane permeabilizing peptides. The information garnered from the AFM includes direct visualization and statistical analyses of distinct bilayer remodeling modes such as highly localized pore-like voids in the bilayer and dispersed thinned membrane regions. Colocalization of distinct remodeling modes can be studied. Here we examine recent work in the field and outline methods used to achieve precise AFM image data. Experimental challenges and common pitfalls are discussed as well as techniques for unbiased analysis including the Hessian blob detection algorithm, bootstrapping, and the Bayesian information criterion. When coupled with robust statistical analyses, high precision AFM data is poised to advance understanding of an important family of peptides that cause poration of membrane bilayers.
•Membrane-permeabilizing peptides exhibit distinct remodeling modes.•AFM directly visualizes lipid bilayer remodeling in fluid.•Methods to achieve high precision AFM data & robust statistical analysis presented.•Localized pore-like voids & dispersed membrane-thinned regions detected.•Dynamics and colocalization of distinct remodeling modes can be studied. A number of peptides are known to bind lipid bilayer membranes and cause these natural barriers to leak in an uncontrolled manner. Though membrane permeabilizing peptides play critical roles in cellular activity and may have promising future applications in the therapeutic arena, significant questions remain about their mechanisms of action. The atomic force microscope (AFM) is a single molecule imaging tool capable of addressing lipid bilayers in near-native fluid conditions. The apparatus complements traditional assays by providing local topographic maps of bilayer remodeling induced by membrane permeabilizing peptides. The information garnered from the AFM includes direct visualization and statistical analyses of distinct bilayer remodeling modes such as highly localized pore-like voids in the bilayer and dispersed thinned membrane regions. Colocalization of distinct remodeling modes can be studied. Here we examine recent work in the field and outline methods used to achieve precise AFM image data. Experimental challenges and common pitfalls are discussed as well as techniques for unbiased analysis including the Hessian blob detection algorithm, bootstrapping, and the Bayesian information criterion. When coupled with robust statistical analyses, high precision AFM data is poised to advance understanding of an important family of peptides that cause poration of membrane bilayers.
Author Schaefer, K.G.
King, G.M.
Pittman, A.E.
Barrera, F.N.
AuthorAffiliation 1. Department of Physics and Astronomy, University of Missouri-Columbia, Columbia MO 65211 USA
3. Department of Biochemistry, University of Missouri-Columbia, Columbia MO 65211 USA
2. Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996 USA
AuthorAffiliation_xml – name: 2. Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996 USA
– name: 3. Department of Biochemistry, University of Missouri-Columbia, Columbia MO 65211 USA
– name: 1. Department of Physics and Astronomy, University of Missouri-Columbia, Columbia MO 65211 USA
Author_xml – sequence: 1
  givenname: K.G.
  surname: Schaefer
  fullname: Schaefer, K.G.
  organization: Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO 65211, USA
– sequence: 2
  givenname: A.E.
  surname: Pittman
  fullname: Pittman, A.E.
  organization: Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO 65211, USA
– sequence: 3
  givenname: F.N.
  surname: Barrera
  fullname: Barrera, F.N.
  organization: Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
– sequence: 4
  givenname: G.M.
  surname: King
  fullname: King, G.M.
  email: kinggm@missouri.edu
  organization: Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO 65211, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33164792$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1q3DAUhUVJaX7aJygULbvxVLJk2VqUEkLSFgLZtGshS9eJBltyJHlg3j5yJiltF8lK4t5zDof7naIjHzwg9JGSDSVUfNlu9hPku01N6nWyIZS_QSeUyKaSlJGj9c9FVdbsGJ2mtCWE0Lrt3qFjxqjgraxPUH-ew-QMHkI0gMsvhmTCvF8H-H7RPruss9sBXryFmLL21vlbHAY8w5ydhcp5uxiweHSzs7h3o95DxBGmYGEs2vfo7aDHBB-e3jP0--ry18WP6vrm-8-L8-vKcN7lqu0laa0QA--NgbaRjbGmNZqyrgVrOug721gqBettZ4u4p5RYTQ2TQhOQ7Ax9O-TOSz8VB_gc9ajm6CYd9ypop_7deHenbsNO0Zpy2TWsJHx-SojhfoGU1eSSgXHUHsKSVC2Y4LXkQrwu5U0nBaFy7fXp715_Cj1DKAJ5EKzHTxEGZR6PHtaablSUqBW42qpH4GoFvg4L8OJl_3mf4192fT24oPDYOYgqGQe-UHQRTFY2uBf9DziYyTE
CitedBy_id crossref_primary_10_1038_s41598_023_37910_7
crossref_primary_10_3390_membranes13110864
crossref_primary_10_1016_j_jbc_2022_102412
crossref_primary_10_7554_eLife_75490
Cites_doi 10.1007/s12551-017-0356-5
10.1021/jp983996x
10.1007/s00216-012-6383-y
10.1016/S0006-3495(99)77275-9
10.1021/ja500462s
10.7554/eLife.36645
10.1021/acs.langmuir.7b00100
10.1021/acs.langmuir.8b00804
10.1021/acs.jpcb.6b02332
10.1021/acs.langmuir.9b01928
10.1021/acs.langmuir.0c00247
10.1021/bi060317x
10.1007/978-1-4939-8591-3_4
10.1021/nn403367c
10.1214/aos/1176344136
10.1126/sciadv.aav9404
10.1103/PhysRevLett.56.930
10.1016/S0014-5793(01)02636-9
10.1038/s41563-018-0194-2
10.1088/0034-4885/74/8/086601
10.1016/j.bbamem.2006.02.001
10.1038/nature17625
10.1096/fj.01-0377com
10.1021/jp2108126
10.1021/acs.biochem.5b00856
10.1038/nsb1096-842
10.3390/toxins12070451
10.1126/science.283.5408.1727
10.1128/AAC.49.10.4085-4092.2005
10.1016/j.bbamem.2009.12.019
10.1016/S0006-3495(01)76059-6
10.1021/acsnano.8b09234
10.1016/j.bcp.2018.08.017
10.1021/jacs.9b01970
10.1016/j.surfrep.2006.06.001
10.1038/nnano.2010.29
10.1021/la052687c
10.1021/la950580r
10.1038/srep12550
10.1016/j.tcb.2016.11.004
10.1016/S0196-9781(01)00498-3
10.1002/bip.20536
10.1103/PhysRevLett.95.216103
10.1021/jacs.6b11447
10.1038/s41598-018-19379-x
10.1021/acs.chemrev.8b00520
10.1016/j.addr.2003.10.041
10.1126/sciadv.aat8797
10.1016/j.bcp.2020.113813
10.1021/acs.nanolett.5b03166
10.1016/j.bbamem.2009.07.026
10.1016/0304-3991(92)90413-E
10.1063/1.1999856
10.1021/nn404530z
10.1364/OE.18.023924
10.1016/S0014-5793(01)02704-1
10.1039/D0NR00322K
10.1016/S0006-3495(85)83882-0
10.1021/nl204198w
10.1063/1.5010341
10.1016/S0006-3495(97)78195-5
10.1021/acs.jpcb.8b08614
10.1038/s41598-018-36528-4
10.1021/acs.langmuir.9b03606
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.ymeth.2020.10.014
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1095-9130
EndPage 29
ExternalDocumentID PMC12149853
33164792
10_1016_j_ymeth_2020_10_014
S1046202320302292
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM140846
– fundername: NIGMS NIH HHS
  grantid: R01 GM120642
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
123
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
DOVZS
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HMG
HVGLF
HZ~
IHE
J1W
K-O
KOM
LG5
LX2
LZ5
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SIN
SPCBC
SSU
SSZ
T5K
WUQ
XPP
Y6R
ZGI
ZMT
ZU3
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c448t-7b907d66f4bcce7595cdc7ca1387edc8eb8d5d1963bd8db90b110da1c396a0e93
IEDL.DBID .~1
ISSN 1046-2023
1095-9130
IngestDate Tue Sep 30 17:03:07 EDT 2025
Wed Oct 01 13:59:50 EDT 2025
Sat Sep 27 21:17:45 EDT 2025
Sat Jun 14 01:30:57 EDT 2025
Sat Oct 25 06:03:39 EDT 2025
Thu Apr 24 22:58:50 EDT 2025
Fri Feb 23 02:43:40 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords AFM
SLB
Pore forming
Supported lipid bilayer
Scanning probe
Language English
License Copyright © 2020 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c448t-7b907d66f4bcce7595cdc7ca1387edc8eb8d5d1963bd8db90b110da1c396a0e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Current address: St. Jude Children’s Research Hospital, 262 Danny Thomas Pl, Memphis, TN 38105 USA
PMID 33164792
PQID 2458960199
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_12149853
proquest_miscellaneous_2636429466
proquest_miscellaneous_2458960199
pubmed_primary_33164792
crossref_citationtrail_10_1016_j_ymeth_2020_10_014
crossref_primary_10_1016_j_ymeth_2020_10_014
elsevier_sciencedirect_doi_10_1016_j_ymeth_2020_10_014
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Methods (San Diego, Calif.)
PublicationTitleAlternate Methods
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Edwards, Faulk, Sanders, Bull, Walder, LeBlanc, Sousa, Perkins (b0075) 2015; 15
Weisenhorn, Schmitt, Knoll, Hansma (b0100) 1992; 42–44
Castellana, Cremer (b0280) 2006; 61
Shai, Oren (b0020) 2001; 22
Tamm, McConnell (b0185) 1985; 47
Heenan, Perkins (b0220) 2019; 13
Chada, Chattrakun, Marsh, Mao, Bariya, King (b0090) 2018; 4
Rinia, de Kruijff (b0110) 2001; 504
Jackman, Costa, Park, Real, Park, Cardozo, Ferhan, Olmo, Moreira, Bambirra, Queiroz, Queiroz-Junior, Foureaux, Souza, Ribeiro, Yoon, Wynendaele, De Spiegeleer, Teixeira, Cho (b0200) 2018; 17
Rinia, Snel, van der Eerden, de Kruijff (b0105) 2001; 501
Connelly, Jang, Arce, Capone, Kotler, Ramachandran, Kagan, Nussinov, Lal (b0120) 2012; 116
Cosentino, Garcia-Saez (b0240) 2017; 27
Huang (b0305) 2006; 1758
Sigdel, Wilt, Marsh, Roberts, King (b0085) 2018; 156
Fantner, Barbero, Gray, Belcher (b0230) 2010; 5
Matin, Utjesanovic, Sigdel, Smith, Kosztin, King (b0190) 2020; 36
Acheson (b0315) 1990
Li, Nicol, Szoka (b0310) 2004; 56
Guha, Ghimire, Wu, Wimley (b0005) 2019; 119
Ando (b0235) 2018; 10
Binnig, Quate, Gerber (b0060) 1986; 56
Israelachvili (b0155) 2011
Berne, Pecora (b0205) 1976
Muller, Engel (b0260) 1997; 73
Matin, Sigdel, Utjesanovic, Marsh, Gallazzi, Smith, Kosztin, King (b0045) 2017; 33
Wiedman, Fuselier, He, Searson, Hristova, Wimley (b0300) 2014; 136
Fukuma, Kobayashi, Matsushige, Yamada (b0070) 2005; 87
Efron, Hastie (b0250) 2016
El Kirat, Dufrene, Lins, Brasseur (b0030) 2006; 45
Lin, Bhatia, Lal (b0125) 2001; 15
Ricci, D.; Braga, P. C., Recognizing and Avoiding Artifacts in AFM Imaging. In: Braga P.C., Ricci D. (eds) Atomic Force Microscopy. Methods in Molecular Biology. Humana Press: 2004.
Wimley, White (b0180) 1996; 3
Jaafar, Pablo-Navarro, Berganza, Ares, Magen, Masseboeuf, Gatel, Snoeck, Gomez-Herrero, de Teresa, Asenjo (b0350) 2020; 12
King, Golovchenko (b0360) 2005; 95
Sanganna Gari, Chattrakun, Marsh, Mao, Chada, Randall, King (b0080) 2019; 5
Alves, Westerfield, Shi, Nguyen, Stefanski, Booth, Kim, Morrell-Falvey, Wang, Abel, Smith, Barrera (b0165) 2018; 7
Chada, Sigdel, Gari, Matin, Randall, King (b0215) 2015; 5
Churnside, King, Perkins (b0290) 2010; 18
Koenig, Kruger, Orts, Majkrzak, Berk, Silverton, Gawrisch (b0330) 1996; 12
Bippes, Muller (b0065) 2011; 74
Lind, Zielinska, Wacklin, Urbanczyk-Lipkowska, Cardenas (b0145) 2014; 8
Marsh, Chada, Sanganna Gari, Sigdel, King (b0320) 2018; 8
Garcia-Manyes, Sanz (b0265) 2010; 1798
Hristova, Dempsey, White (b0025) 2001; 80
Richter, Berat, Brisson (b0195) 2006; 22
Moyes, Wilson, Richardson, Mogavero, Tang, Wernecke, Hofs, Gratacap, Robbins, Runglall, Murciano, Blagojevic, Thavaraj, Forster, Hebecker, Kasper, Vizcay, Iancu, Kichik, Hader, Kurzai, Luo, Kruger, Kniemeyer, Cota, Bader, Wheeler, Gutsmann, Hube, Naglik (b0015) 2016; 532
Pan, Khadka (b0130) 2016; 120
Han, Kuan, Golovchenko, Branton (b0345) 2012; 12
Muller, Fotiadis, Scheuring, Muller, Engel (b0150) 1999; 76
Morandat, Azouzi, Beauvais, Mastouri, El Kirat (b0050) 2013; 405
El Kirat, Morandat, Dufrene (b0095) 2010; 1798
Raghuraman, Chattopadhyay (b0160) 2006; 83
Nguyen, Alves, Scott, Davis, Barrera (b0170) 2015; 54
Nguyen, Sigdel, Schaefer, Mensah, King, Roberts (b0255) 2020; 174
Wiedman, Kim, Zapata-Mercado, Wimley, Hristova (b0245) 2017; 139
Grandbois, Beyer, Rief, Clausen-Schaumann, Gaub (b0275) 1999; 283
Chattrakun, Hoogerheide, Mao, Randall, King (b0335) 2019; 35
Schwarz (b0325) 1978; 6
Sigdel, Pittman, Matin, King (b0355) 2018; 1814
Meincken, Holroyd, Rautenbach (b0115) 2005; 49
Saavedra, Fernandes, Milhiet, Costa (b0270) 2020; 36
Kim, Pittman, Zapata-Mercado, King, Wimley, Hristova (b0140) 2019; 141
Andrecka, Spillane, Ortega-Arroyo, Kukura (b0295) 2013; 7
Schaefer, Grau, Moore, Mingarro, King, Barrera (b0035) 2020
Schoch, Barel, Brown, Haran (b0225) 2018; 148
Hammond, Ryadnov, Hoogenboom (b0055) 2020
Cremer, Boxer (b0285) 1999; 103
El-Seedi, Abd El-Wahed, Yosri, Musharraf, Chen, Moustafa, Zou, Al-Mousawi, Guo, Khatib, Khalifa (b0010) 2020; 12
Pittman, Marsh, King (b0135) 2018; 34
Utjesanovic, Matin, Sigdel, King, Kosztin (b0040) 2019; 9
Mouritsen (b0175) 2005
Otosu, Yamaguchi (b0340) 2018; 122
Connelly (10.1016/j.ymeth.2020.10.014_b0120) 2012; 116
Meincken (10.1016/j.ymeth.2020.10.014_b0115) 2005; 49
Huang (10.1016/j.ymeth.2020.10.014_b0305) 2006; 1758
Wiedman (10.1016/j.ymeth.2020.10.014_b0245) 2017; 139
Nguyen (10.1016/j.ymeth.2020.10.014_b0255) 2020; 174
Efron (10.1016/j.ymeth.2020.10.014_b0250) 2016
Rinia (10.1016/j.ymeth.2020.10.014_b0110) 2001; 504
Acheson (10.1016/j.ymeth.2020.10.014_b0315) 1990
Cosentino (10.1016/j.ymeth.2020.10.014_b0240) 2017; 27
King (10.1016/j.ymeth.2020.10.014_b0360) 2005; 95
Heenan (10.1016/j.ymeth.2020.10.014_b0220) 2019; 13
Pittman (10.1016/j.ymeth.2020.10.014_b0135) 2018; 34
Schoch (10.1016/j.ymeth.2020.10.014_b0225) 2018; 148
Matin (10.1016/j.ymeth.2020.10.014_b0190) 2020; 36
Israelachvili (10.1016/j.ymeth.2020.10.014_b0155) 2011
Bippes (10.1016/j.ymeth.2020.10.014_b0065) 2011; 74
Marsh (10.1016/j.ymeth.2020.10.014_b0320) 2018; 8
Sigdel (10.1016/j.ymeth.2020.10.014_b0085) 2018; 156
Muller (10.1016/j.ymeth.2020.10.014_b0150) 1999; 76
Binnig (10.1016/j.ymeth.2020.10.014_b0060) 1986; 56
Lind (10.1016/j.ymeth.2020.10.014_b0145) 2014; 8
10.1016/j.ymeth.2020.10.014_b0210
Churnside (10.1016/j.ymeth.2020.10.014_b0290) 2010; 18
Han (10.1016/j.ymeth.2020.10.014_b0345) 2012; 12
Koenig (10.1016/j.ymeth.2020.10.014_b0330) 1996; 12
Wiedman (10.1016/j.ymeth.2020.10.014_b0300) 2014; 136
Fukuma (10.1016/j.ymeth.2020.10.014_b0070) 2005; 87
Wimley (10.1016/j.ymeth.2020.10.014_b0180) 1996; 3
Shai (10.1016/j.ymeth.2020.10.014_b0020) 2001; 22
Kim (10.1016/j.ymeth.2020.10.014_b0140) 2019; 141
Hristova (10.1016/j.ymeth.2020.10.014_b0025) 2001; 80
Morandat (10.1016/j.ymeth.2020.10.014_b0050) 2013; 405
Mouritsen (10.1016/j.ymeth.2020.10.014_b0175) 2005
Guha (10.1016/j.ymeth.2020.10.014_b0005) 2019; 119
El Kirat (10.1016/j.ymeth.2020.10.014_b0030) 2006; 45
Andrecka (10.1016/j.ymeth.2020.10.014_b0295) 2013; 7
Nguyen (10.1016/j.ymeth.2020.10.014_b0170) 2015; 54
Schwarz (10.1016/j.ymeth.2020.10.014_b0325) 1978; 6
Lin (10.1016/j.ymeth.2020.10.014_b0125) 2001; 15
Muller (10.1016/j.ymeth.2020.10.014_b0260) 1997; 73
Li (10.1016/j.ymeth.2020.10.014_b0310) 2004; 56
El-Seedi (10.1016/j.ymeth.2020.10.014_b0010) 2020; 12
Castellana (10.1016/j.ymeth.2020.10.014_b0280) 2006; 61
El Kirat (10.1016/j.ymeth.2020.10.014_b0095) 2010; 1798
Hammond (10.1016/j.ymeth.2020.10.014_b0055) 2020
Chada (10.1016/j.ymeth.2020.10.014_b0215) 2015; 5
Matin (10.1016/j.ymeth.2020.10.014_b0045) 2017; 33
Tamm (10.1016/j.ymeth.2020.10.014_b0185) 1985; 47
Chattrakun (10.1016/j.ymeth.2020.10.014_b0335) 2019; 35
Weisenhorn (10.1016/j.ymeth.2020.10.014_b0100) 1992; 42–44
Ando (10.1016/j.ymeth.2020.10.014_b0235) 2018; 10
Saavedra (10.1016/j.ymeth.2020.10.014_b0270) 2020; 36
Pan (10.1016/j.ymeth.2020.10.014_b0130) 2016; 120
Raghuraman (10.1016/j.ymeth.2020.10.014_b0160) 2006; 83
Fantner (10.1016/j.ymeth.2020.10.014_b0230) 2010; 5
Rinia (10.1016/j.ymeth.2020.10.014_b0105) 2001; 501
Cremer (10.1016/j.ymeth.2020.10.014_b0285) 1999; 103
Moyes (10.1016/j.ymeth.2020.10.014_b0015) 2016; 532
Jackman (10.1016/j.ymeth.2020.10.014_b0200) 2018; 17
Edwards (10.1016/j.ymeth.2020.10.014_b0075) 2015; 15
Chada (10.1016/j.ymeth.2020.10.014_b0090) 2018; 4
Richter (10.1016/j.ymeth.2020.10.014_b0195) 2006; 22
Otosu (10.1016/j.ymeth.2020.10.014_b0340) 2018; 122
Jaafar (10.1016/j.ymeth.2020.10.014_b0350) 2020; 12
Utjesanovic (10.1016/j.ymeth.2020.10.014_b0040) 2019; 9
Berne (10.1016/j.ymeth.2020.10.014_b0205) 1976
Grandbois (10.1016/j.ymeth.2020.10.014_b0275) 1999; 283
Garcia-Manyes (10.1016/j.ymeth.2020.10.014_b0265) 2010; 1798
Sigdel (10.1016/j.ymeth.2020.10.014_b0355) 2018; 1814
Sanganna Gari (10.1016/j.ymeth.2020.10.014_b0080) 2019; 5
Alves (10.1016/j.ymeth.2020.10.014_b0165) 2018; 7
Schaefer (10.1016/j.ymeth.2020.10.014_b0035) 2020
References_xml – year: 2016
  ident: b0250
  article-title: Computer Age Statistical Inference: Algorithms, Evidence, and Data Science
– volume: 5
  start-page: eaav9404
  year: 2019
  ident: b0080
  article-title: Direct visualization of the E. coli Sec translocase engaging precursor proteins in lipid bilayers
  publication-title: Sci. Adv.
– volume: 148
  year: 2018
  ident: b0225
  article-title: Lipid diffusion in the distal and proximal leaflets of supported lipid bilayer membranes studied by single particle tracking
  publication-title: J. Chem. Phys.
– volume: 74
  year: 2011
  ident: b0065
  article-title: High-resolution atomic force microscopy and spectroscopy of native membrane proteins
  publication-title: Rep. Prog. Phys.
– volume: 136
  start-page: 4724
  year: 2014
  end-page: 4731
  ident: b0300
  article-title: Highly efficient macromolecule-sized poration of lipid bilayers by a synthetically evolved peptide
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 937
  year: 2017
  end-page: 945
  ident: b0245
  article-title: pH-triggered, macromolecule-sized poration of lipid bilayers by synthetically evolved peptides
  publication-title: J. Am. Chem. Soc.
– volume: 122
  start-page: 10315
  year: 2018
  end-page: 10319
  ident: b0340
  article-title: Quantifying the diffusion of lipids in the proximal/distal leaflets of a supported lipid bilayer by two-dimensional fluorescence lifetime correlation spectroscopy
  publication-title: J. Phys. Chem. B
– year: 1990
  ident: b0315
  article-title: Elementary Fluid Dynamics
– volume: 17
  start-page: 971
  year: 2018
  end-page: 977
  ident: b0200
  article-title: Therapeutic treatment of Zika virus infection using a brain-penetrating antiviral peptide
  publication-title: Nat. Mater.
– volume: 95
  year: 2005
  ident: b0360
  article-title: Probing nanotube-nanopore interactions
  publication-title: Phys. Rev. Lett.
– volume: 87
  year: 2005
  ident: b0070
  article-title: True atomic resolution in liquid by frequency-modulation atomic force microscopy
  publication-title: Appl. Phys. Lett.
– volume: 34
  start-page: 8393
  year: 2018
  end-page: 8399
  ident: b0135
  article-title: Conformations and dynamic transitions of a melittin derivative that forms macromolecule-sized pores in lipid bilayers
  publication-title: Langmuir
– volume: 36
  start-page: 2143
  year: 2020
  end-page: 2152
  ident: b0190
  article-title: Characterizing the locus of a peripheral membrane protein-lipid bilayer interaction underlying protein export activity in E. coli
  publication-title: Langmuir
– volume: 5
  start-page: 280
  year: 2010
  end-page: 285
  ident: b0230
  article-title: Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy
  publication-title: Nat. Nanotechnol.
– year: 1976
  ident: b0205
  article-title: Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics
– year: 2011
  ident: b0155
  article-title: Intermolecular and Surface Forces
– volume: 12
  year: 2020
  ident: b0010
  article-title: Antimicrobial properties of Apis mellifera's bee venom
  publication-title: Toxins (Basel)
– volume: 12
  start-page: 1343
  year: 1996
  end-page: 1350
  ident: b0330
  article-title: Neutron reflectivity and atomic force microscopy studies of a lipid bilayer in water adsorbed to the surface of a silicon single crystal
  publication-title: Langmuir
– volume: 76
  start-page: 1101
  year: 1999
  end-page: 1111
  ident: b0150
  article-title: Electrostatically balanced subnanometer imaging of biological specimens by atomic force microscope
  publication-title: Biophys. J.
– volume: 156
  start-page: 302
  year: 2018
  end-page: 311
  ident: b0085
  article-title: The conformation and dynamics of P-glycoprotein in a lipid bilayer investigated by atomic force microscopy
  publication-title: Biochem. Pharmacol.
– volume: 141
  start-page: 6706
  year: 2019
  end-page: 6718
  ident: b0140
  article-title: Mechanism of action of peptides that cause the ph-triggered macromolecular poration of lipid bilayers
  publication-title: J. Am. Chem. Soc.
– reference: Ricci, D.; Braga, P. C., Recognizing and Avoiding Artifacts in AFM Imaging. In: Braga P.C., Ricci D. (eds) Atomic Force Microscopy. Methods in Molecular Biology. Humana Press: 2004.
– volume: 3
  start-page: 842
  year: 1996
  end-page: 848
  ident: b0180
  article-title: Experimentally determined hydrophobicity scale for proteins at membrane interfaces
  publication-title: Nat. Struct. Biol.
– volume: 12
  start-page: 10090
  year: 2020
  end-page: 10097
  ident: b0350
  article-title: Customized MFM probes based on magnetic nanorods
  publication-title: Nanoscale
– volume: 1798
  start-page: 741
  year: 2010
  end-page: 749
  ident: b0265
  article-title: Nanomechanics of lipid bilayers by force spectroscopy with AFM: a perspective
  publication-title: BBA
– volume: 42–44
  start-page: 1125
  year: 1992
  end-page: 1132
  ident: b0100
  article-title: Streptavidin binding observed with an atomic force microscope
  publication-title: Ultramicroscopy
– volume: 103
  start-page: 2554
  year: 1999
  end-page: 2559
  ident: b0285
  article-title: Formation and spreading of lipid bilayers on planar glass supports
  publication-title: J. Phys. Chem. B
– volume: 120
  start-page: 4625
  year: 2016
  end-page: 4634
  ident: b0130
  article-title: Kinetic defects induced by melittin in model lipid membranes: a solution atomic force microscopy study
  publication-title: J. Phys. Chem. B
– volume: 47
  start-page: 105
  year: 1985
  end-page: 113
  ident: b0185
  article-title: Supported phospholipid bilayers
  publication-title: Biophys. J.
– volume: 1814
  start-page: 49
  year: 2018
  end-page: 62
  ident: b0355
  article-title: High-resolution AFM-based force spectroscopy
  publication-title: Methods Mol. Biol.
– volume: 116
  start-page: 1728
  year: 2012
  end-page: 1735
  ident: b0120
  article-title: Atomic force microscopy and MD simulations reveal pore-like structures of all-D-enantiomer of Alzheimer's beta-amyloid peptide: relevance to the ion channel mechanism of AD pathology
  publication-title: J. Phys. Chem. B
– volume: 13
  start-page: 4220
  year: 2019
  end-page: 4229
  ident: b0220
  article-title: Imaging DNA equilibrated onto mica in liquid using biochemically relevant deposition conditions
  publication-title: ACS Nano
– volume: 4
  start-page: eaat8797
  year: 2018
  ident: b0090
  article-title: Single-molecule observation of nucleotide induced conformational changes in basal SecA-ATP hydrolysis
  publication-title: Sci. Adv.
– volume: 22
  start-page: 1629
  year: 2001
  end-page: 1641
  ident: b0020
  article-title: From “carpet” mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides
  publication-title: Peptides
– volume: 22
  start-page: 3497
  year: 2006
  end-page: 3505
  ident: b0195
  article-title: Formation of solid-supported lipid bilayers: an integrated view
  publication-title: Langmuir
– volume: 1758
  start-page: 1292
  year: 2006
  end-page: 1302
  ident: b0305
  article-title: Molecular mechanism of antimicrobial peptides: the origin of cooperativity
  publication-title: BBA
– year: 2020
  ident: b0035
  article-title: Controllable membrane remodeling by a modified fragment of the apoptotic protein Bax
  publication-title: Faraday Discuss.
– volume: 73
  start-page: 1633
  year: 1997
  end-page: 1644
  ident: b0260
  article-title: The height of biomolecules measured with the atomic force microscope depends on electrostatic interactions
  publication-title: Biophys. J.
– year: 2020
  ident: b0055
  article-title: Atomic force microscopy to elucidate how peptides disrupt membranes
  publication-title: Biochim. Biophys. Acta, Biomembr.
– volume: 45
  start-page: 9336
  year: 2006
  end-page: 9341
  ident: b0030
  article-title: The SIV tilted peptide induces cylindrical reverse micelles in supported lipid bilayers
  publication-title: Biochemistry-Us
– volume: 36
  start-page: 5709
  year: 2020
  end-page: 5716
  ident: b0270
  article-title: Compression, rupture, and puncture of model membranes at the molecular scale
  publication-title: Langmuir
– volume: 7
  start-page: 10662
  year: 2013
  end-page: 10670
  ident: b0295
  article-title: Direct observation and control of supported lipid bilayer formation with interferometric scattering microscopy
  publication-title: ACS Nano
– volume: 18
  start-page: 23924
  year: 2010
  end-page: 23932
  ident: b0290
  article-title: Label-free optical imaging of membrane patches for atomic force microscopy
  publication-title: Opt. Express
– volume: 8
  start-page: 978
  year: 2018
  ident: b0320
  article-title: The Hessian blob algorithm: precise particle detection in atomic force microscopy imagery
  publication-title: Sci. Rep.
– volume: 405
  start-page: 1445
  year: 2013
  end-page: 1461
  ident: b0050
  article-title: Atomic force microscopy of model lipid membranes
  publication-title: Anal. Bioanal. Chem.
– volume: 504
  start-page: 194
  year: 2001
  end-page: 199
  ident: b0110
  article-title: Imaging domains in model membranes with atomic force microscopy
  publication-title: FEBS Lett.
– volume: 283
  start-page: 1727
  year: 1999
  end-page: 1730
  ident: b0275
  article-title: How strong is a covalent bond?
  publication-title: Science
– volume: 15
  start-page: 7091
  year: 2015
  end-page: 7098
  ident: b0075
  article-title: Optimizing 1-mus-resolution single-molecule force spectroscopy on a commercial atomic force microscope
  publication-title: Nano Lett.
– volume: 33
  start-page: 4057
  year: 2017
  end-page: 4065
  ident: b0045
  article-title: Single-molecule peptide-lipid affinity assay reveals interplay between solution structure and partitioning
  publication-title: Langmuir
– volume: 49
  start-page: 4085
  year: 2005
  end-page: 4092
  ident: b0115
  article-title: Atomic force microscopy study of the effect of antimicrobial peptides on the cell envelope of Escherichia coli
  publication-title: Antimicrob. Agents Chemother.
– volume: 10
  start-page: 285
  year: 2018
  end-page: 292
  ident: b0235
  article-title: High-speed atomic force microscopy and its future prospects
  publication-title: Biophys. Rev.
– volume: 174
  year: 2020
  ident: b0255
  article-title: The effects of anthracycline drugs on the conformational distribution of mouse P-glycoprotein explains their transport rate differences
  publication-title: Biochem. Pharmacol.
– volume: 532
  start-page: 64-+
  year: 2016
  ident: b0015
  article-title: Candidalysin is a fungal peptide toxin critical for mucosal infection
  publication-title: Nature
– volume: 5
  start-page: 12550
  year: 2015
  ident: b0215
  article-title: Glass is a viable substrate for precision force microscopy of membrane proteins
  publication-title: Sci. Rep.
– volume: 501
  start-page: 92
  year: 2001
  end-page: 96
  ident: b0105
  article-title: Visualizing detergent resistant domains in model membranes with atomic force microscopy
  publication-title: FEBS Lett.
– volume: 83
  start-page: 111
  year: 2006
  end-page: 121
  ident: b0160
  article-title: Effect of ionic strength on folding and aggregation of the hemolytic peptide melittin in solution
  publication-title: Biopolymers
– volume: 56
  start-page: 967
  year: 2004
  end-page: 985
  ident: b0310
  article-title: GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery
  publication-title: Adv. Drug Deliv. Rev.
– volume: 35
  start-page: 12246
  year: 2019
  end-page: 12256
  ident: b0335
  article-title: Protein translocation activity in surface-supported lipid bilayers
  publication-title: Langmuir
– volume: 27
  start-page: 266
  year: 2017
  end-page: 275
  ident: b0240
  article-title: Bax and bak pores: are we closing the circle?
  publication-title: Trends Cell Biol.
– volume: 12
  start-page: 1018
  year: 2012
  end-page: 1021
  ident: b0345
  article-title: Nanopatterning on nonplanar and fragile substrates with ice resists
  publication-title: Nano Lett.
– volume: 7
  year: 2018
  ident: b0165
  article-title: A novel pH-dependent membrane peptide that binds to EphA2 and inhibits cell migration
  publication-title: Elife
– volume: 61
  start-page: 429
  year: 2006
  end-page: 444
  ident: b0280
  article-title: Solid supported lipid bilayers: from biophysical studies to sensor design
  publication-title: Surf. Sci. Rep.
– volume: 9
  start-page: 451
  year: 2019
  ident: b0040
  article-title: Multiple stochastic pathways in forced peptide-lipid membrane detachment
  publication-title: Sci. Rep.
– volume: 119
  start-page: 6040
  year: 2019
  end-page: 6085
  ident: b0005
  article-title: Mechanistic landscape of membrane-permeabilizing peptides
  publication-title: Chem. Rev.
– volume: 80
  start-page: 801
  year: 2001
  end-page: 811
  ident: b0025
  article-title: Structure, location, and lipid perturbations of melittin at the membrane interface
  publication-title: Biophys. J .
– volume: 15
  start-page: 2433
  year: 2001
  end-page: 2444
  ident: b0125
  article-title: Amyloid beta protein forms ion channels: implications for Alzheimer's disease pathophysiology
  publication-title: FASEB J.
– volume: 54
  start-page: 6567
  year: 2015
  end-page: 6575
  ident: b0170
  article-title: A novel soluble peptide with ph-responsive membrane insertion
  publication-title: Biochemistry-Us
– volume: 8
  start-page: 396
  year: 2014
  end-page: 408
  ident: b0145
  article-title: Continuous flow atomic force microscopy imaging reveals fluidity and time-dependent interactions of antimicrobial dendrimer with model lipid membranes
  publication-title: ACS Nano
– volume: 56
  start-page: 930
  year: 1986
  end-page: 933
  ident: b0060
  article-title: Atomic force microscope
  publication-title: Phys. Rev. Lett.
– volume: 1798
  start-page: 750
  year: 2010
  end-page: 765
  ident: b0095
  article-title: Nanoscale analysis of supported lipid bilayers using atomic force microscopy
  publication-title: Bba-Biomembranes
– year: 2005
  ident: b0175
  article-title: Life – As a Matter of Fat
– volume: 6
  start-page: 461
  year: 1978
  end-page: 646
  ident: b0325
  article-title: Estimating the dimension of a model
  publication-title: Ann. Statist.
– volume: 10
  start-page: 285
  issue: 2
  year: 2018
  ident: 10.1016/j.ymeth.2020.10.014_b0235
  article-title: High-speed atomic force microscopy and its future prospects
  publication-title: Biophys. Rev.
  doi: 10.1007/s12551-017-0356-5
– year: 1976
  ident: 10.1016/j.ymeth.2020.10.014_b0205
– volume: 103
  start-page: 2554
  issue: 13
  year: 1999
  ident: 10.1016/j.ymeth.2020.10.014_b0285
  article-title: Formation and spreading of lipid bilayers on planar glass supports
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp983996x
– volume: 405
  start-page: 1445
  issue: 5
  year: 2013
  ident: 10.1016/j.ymeth.2020.10.014_b0050
  article-title: Atomic force microscopy of model lipid membranes
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-012-6383-y
– volume: 76
  start-page: 1101
  issue: 2
  year: 1999
  ident: 10.1016/j.ymeth.2020.10.014_b0150
  article-title: Electrostatically balanced subnanometer imaging of biological specimens by atomic force microscope
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(99)77275-9
– volume: 136
  start-page: 4724
  issue: 12
  year: 2014
  ident: 10.1016/j.ymeth.2020.10.014_b0300
  article-title: Highly efficient macromolecule-sized poration of lipid bilayers by a synthetically evolved peptide
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja500462s
– volume: 7
  year: 2018
  ident: 10.1016/j.ymeth.2020.10.014_b0165
  article-title: A novel pH-dependent membrane peptide that binds to EphA2 and inhibits cell migration
  publication-title: Elife
  doi: 10.7554/eLife.36645
– year: 2005
  ident: 10.1016/j.ymeth.2020.10.014_b0175
– volume: 33
  start-page: 4057
  issue: 16
  year: 2017
  ident: 10.1016/j.ymeth.2020.10.014_b0045
  article-title: Single-molecule peptide-lipid affinity assay reveals interplay between solution structure and partitioning
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.7b00100
– year: 2016
  ident: 10.1016/j.ymeth.2020.10.014_b0250
– volume: 34
  start-page: 8393
  issue: 28
  year: 2018
  ident: 10.1016/j.ymeth.2020.10.014_b0135
  article-title: Conformations and dynamic transitions of a melittin derivative that forms macromolecule-sized pores in lipid bilayers
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b00804
– volume: 120
  start-page: 4625
  issue: 20
  year: 2016
  ident: 10.1016/j.ymeth.2020.10.014_b0130
  article-title: Kinetic defects induced by melittin in model lipid membranes: a solution atomic force microscopy study
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.6b02332
– volume: 35
  start-page: 12246
  issue: 37
  year: 2019
  ident: 10.1016/j.ymeth.2020.10.014_b0335
  article-title: Protein translocation activity in surface-supported lipid bilayers
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.9b01928
– volume: 36
  start-page: 5709
  issue: 21
  year: 2020
  ident: 10.1016/j.ymeth.2020.10.014_b0270
  article-title: Compression, rupture, and puncture of model membranes at the molecular scale
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.0c00247
– ident: 10.1016/j.ymeth.2020.10.014_b0210
– volume: 45
  start-page: 9336
  issue: 30
  year: 2006
  ident: 10.1016/j.ymeth.2020.10.014_b0030
  article-title: The SIV tilted peptide induces cylindrical reverse micelles in supported lipid bilayers
  publication-title: Biochemistry-Us
  doi: 10.1021/bi060317x
– volume: 1814
  start-page: 49
  year: 2018
  ident: 10.1016/j.ymeth.2020.10.014_b0355
  article-title: High-resolution AFM-based force spectroscopy
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-8591-3_4
– year: 2020
  ident: 10.1016/j.ymeth.2020.10.014_b0055
  article-title: Atomic force microscopy to elucidate how peptides disrupt membranes
  publication-title: Biochim. Biophys. Acta, Biomembr.
– volume: 7
  start-page: 10662
  issue: 12
  year: 2013
  ident: 10.1016/j.ymeth.2020.10.014_b0295
  article-title: Direct observation and control of supported lipid bilayer formation with interferometric scattering microscopy
  publication-title: ACS Nano
  doi: 10.1021/nn403367c
– volume: 6
  start-page: 461
  year: 1978
  ident: 10.1016/j.ymeth.2020.10.014_b0325
  article-title: Estimating the dimension of a model
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176344136
– volume: 5
  start-page: eaav9404
  issue: 6
  year: 2019
  ident: 10.1016/j.ymeth.2020.10.014_b0080
  article-title: Direct visualization of the E. coli Sec translocase engaging precursor proteins in lipid bilayers
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav9404
– volume: 56
  start-page: 930
  issue: 9
  year: 1986
  ident: 10.1016/j.ymeth.2020.10.014_b0060
  article-title: Atomic force microscope
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.56.930
– volume: 501
  start-page: 92
  issue: 1
  year: 2001
  ident: 10.1016/j.ymeth.2020.10.014_b0105
  article-title: Visualizing detergent resistant domains in model membranes with atomic force microscopy
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(01)02636-9
– volume: 17
  start-page: 971
  issue: 11
  year: 2018
  ident: 10.1016/j.ymeth.2020.10.014_b0200
  article-title: Therapeutic treatment of Zika virus infection using a brain-penetrating antiviral peptide
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0194-2
– volume: 74
  issue: 8
  year: 2011
  ident: 10.1016/j.ymeth.2020.10.014_b0065
  article-title: High-resolution atomic force microscopy and spectroscopy of native membrane proteins
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/74/8/086601
– volume: 1758
  start-page: 1292
  issue: 9
  year: 2006
  ident: 10.1016/j.ymeth.2020.10.014_b0305
  article-title: Molecular mechanism of antimicrobial peptides: the origin of cooperativity
  publication-title: BBA
  doi: 10.1016/j.bbamem.2006.02.001
– volume: 532
  start-page: 64-+
  issue: 7597
  year: 2016
  ident: 10.1016/j.ymeth.2020.10.014_b0015
  article-title: Candidalysin is a fungal peptide toxin critical for mucosal infection
  publication-title: Nature
  doi: 10.1038/nature17625
– volume: 15
  start-page: 2433
  issue: 13
  year: 2001
  ident: 10.1016/j.ymeth.2020.10.014_b0125
  article-title: Amyloid beta protein forms ion channels: implications for Alzheimer's disease pathophysiology
  publication-title: FASEB J.
  doi: 10.1096/fj.01-0377com
– volume: 116
  start-page: 1728
  issue: 5
  year: 2012
  ident: 10.1016/j.ymeth.2020.10.014_b0120
  article-title: Atomic force microscopy and MD simulations reveal pore-like structures of all-D-enantiomer of Alzheimer's beta-amyloid peptide: relevance to the ion channel mechanism of AD pathology
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp2108126
– volume: 54
  start-page: 6567
  issue: 43
  year: 2015
  ident: 10.1016/j.ymeth.2020.10.014_b0170
  article-title: A novel soluble peptide with ph-responsive membrane insertion
  publication-title: Biochemistry-Us
  doi: 10.1021/acs.biochem.5b00856
– volume: 3
  start-page: 842
  issue: 10
  year: 1996
  ident: 10.1016/j.ymeth.2020.10.014_b0180
  article-title: Experimentally determined hydrophobicity scale for proteins at membrane interfaces
  publication-title: Nat. Struct. Biol.
  doi: 10.1038/nsb1096-842
– volume: 12
  issue: 7
  year: 2020
  ident: 10.1016/j.ymeth.2020.10.014_b0010
  article-title: Antimicrobial properties of Apis mellifera's bee venom
  publication-title: Toxins (Basel)
  doi: 10.3390/toxins12070451
– volume: 283
  start-page: 1727
  issue: 5408
  year: 1999
  ident: 10.1016/j.ymeth.2020.10.014_b0275
  article-title: How strong is a covalent bond?
  publication-title: Science
  doi: 10.1126/science.283.5408.1727
– year: 2020
  ident: 10.1016/j.ymeth.2020.10.014_b0035
  article-title: Controllable membrane remodeling by a modified fragment of the apoptotic protein Bax
  publication-title: Faraday Discuss.
– volume: 49
  start-page: 4085
  issue: 10
  year: 2005
  ident: 10.1016/j.ymeth.2020.10.014_b0115
  article-title: Atomic force microscopy study of the effect of antimicrobial peptides on the cell envelope of Escherichia coli
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.49.10.4085-4092.2005
– volume: 1798
  start-page: 741
  issue: 4
  year: 2010
  ident: 10.1016/j.ymeth.2020.10.014_b0265
  article-title: Nanomechanics of lipid bilayers by force spectroscopy with AFM: a perspective
  publication-title: BBA
  doi: 10.1016/j.bbamem.2009.12.019
– volume: 80
  start-page: 801
  issue: 2
  year: 2001
  ident: 10.1016/j.ymeth.2020.10.014_b0025
  article-title: Structure, location, and lipid perturbations of melittin at the membrane interface
  publication-title: Biophys. J .
  doi: 10.1016/S0006-3495(01)76059-6
– volume: 13
  start-page: 4220
  issue: 4
  year: 2019
  ident: 10.1016/j.ymeth.2020.10.014_b0220
  article-title: Imaging DNA equilibrated onto mica in liquid using biochemically relevant deposition conditions
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b09234
– volume: 156
  start-page: 302
  year: 2018
  ident: 10.1016/j.ymeth.2020.10.014_b0085
  article-title: The conformation and dynamics of P-glycoprotein in a lipid bilayer investigated by atomic force microscopy
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2018.08.017
– volume: 141
  start-page: 6706
  issue: 16
  year: 2019
  ident: 10.1016/j.ymeth.2020.10.014_b0140
  article-title: Mechanism of action of peptides that cause the ph-triggered macromolecular poration of lipid bilayers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b01970
– volume: 61
  start-page: 429
  issue: 10
  year: 2006
  ident: 10.1016/j.ymeth.2020.10.014_b0280
  article-title: Solid supported lipid bilayers: from biophysical studies to sensor design
  publication-title: Surf. Sci. Rep.
  doi: 10.1016/j.surfrep.2006.06.001
– volume: 5
  start-page: 280
  issue: 4
  year: 2010
  ident: 10.1016/j.ymeth.2020.10.014_b0230
  article-title: Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.29
– volume: 22
  start-page: 3497
  issue: 8
  year: 2006
  ident: 10.1016/j.ymeth.2020.10.014_b0195
  article-title: Formation of solid-supported lipid bilayers: an integrated view
  publication-title: Langmuir
  doi: 10.1021/la052687c
– year: 2011
  ident: 10.1016/j.ymeth.2020.10.014_b0155
– volume: 12
  start-page: 1343
  issue: 5
  year: 1996
  ident: 10.1016/j.ymeth.2020.10.014_b0330
  article-title: Neutron reflectivity and atomic force microscopy studies of a lipid bilayer in water adsorbed to the surface of a silicon single crystal
  publication-title: Langmuir
  doi: 10.1021/la950580r
– volume: 5
  start-page: 12550
  year: 2015
  ident: 10.1016/j.ymeth.2020.10.014_b0215
  article-title: Glass is a viable substrate for precision force microscopy of membrane proteins
  publication-title: Sci. Rep.
  doi: 10.1038/srep12550
– volume: 27
  start-page: 266
  issue: 4
  year: 2017
  ident: 10.1016/j.ymeth.2020.10.014_b0240
  article-title: Bax and bak pores: are we closing the circle?
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2016.11.004
– volume: 22
  start-page: 1629
  issue: 10
  year: 2001
  ident: 10.1016/j.ymeth.2020.10.014_b0020
  article-title: From “carpet” mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides
  publication-title: Peptides
  doi: 10.1016/S0196-9781(01)00498-3
– volume: 83
  start-page: 111
  issue: 2
  year: 2006
  ident: 10.1016/j.ymeth.2020.10.014_b0160
  article-title: Effect of ionic strength on folding and aggregation of the hemolytic peptide melittin in solution
  publication-title: Biopolymers
  doi: 10.1002/bip.20536
– volume: 95
  issue: 21
  year: 2005
  ident: 10.1016/j.ymeth.2020.10.014_b0360
  article-title: Probing nanotube-nanopore interactions
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.216103
– volume: 139
  start-page: 937
  issue: 2
  year: 2017
  ident: 10.1016/j.ymeth.2020.10.014_b0245
  article-title: pH-triggered, macromolecule-sized poration of lipid bilayers by synthetically evolved peptides
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11447
– volume: 8
  start-page: 978
  issue: 1
  year: 2018
  ident: 10.1016/j.ymeth.2020.10.014_b0320
  article-title: The Hessian blob algorithm: precise particle detection in atomic force microscopy imagery
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-19379-x
– volume: 119
  start-page: 6040
  issue: 9
  year: 2019
  ident: 10.1016/j.ymeth.2020.10.014_b0005
  article-title: Mechanistic landscape of membrane-permeabilizing peptides
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00520
– volume: 56
  start-page: 967
  issue: 7
  year: 2004
  ident: 10.1016/j.ymeth.2020.10.014_b0310
  article-title: GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2003.10.041
– volume: 4
  start-page: eaat8797
  issue: 10
  year: 2018
  ident: 10.1016/j.ymeth.2020.10.014_b0090
  article-title: Single-molecule observation of nucleotide induced conformational changes in basal SecA-ATP hydrolysis
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aat8797
– volume: 174
  year: 2020
  ident: 10.1016/j.ymeth.2020.10.014_b0255
  article-title: The effects of anthracycline drugs on the conformational distribution of mouse P-glycoprotein explains their transport rate differences
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2020.113813
– year: 1990
  ident: 10.1016/j.ymeth.2020.10.014_b0315
– volume: 15
  start-page: 7091
  issue: 10
  year: 2015
  ident: 10.1016/j.ymeth.2020.10.014_b0075
  article-title: Optimizing 1-mus-resolution single-molecule force spectroscopy on a commercial atomic force microscope
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b03166
– volume: 1798
  start-page: 750
  issue: 4
  year: 2010
  ident: 10.1016/j.ymeth.2020.10.014_b0095
  article-title: Nanoscale analysis of supported lipid bilayers using atomic force microscopy
  publication-title: Bba-Biomembranes
  doi: 10.1016/j.bbamem.2009.07.026
– volume: 42–44
  start-page: 1125
  issue: Pt B
  year: 1992
  ident: 10.1016/j.ymeth.2020.10.014_b0100
  article-title: Streptavidin binding observed with an atomic force microscope
  publication-title: Ultramicroscopy
  doi: 10.1016/0304-3991(92)90413-E
– volume: 87
  issue: 3
  year: 2005
  ident: 10.1016/j.ymeth.2020.10.014_b0070
  article-title: True atomic resolution in liquid by frequency-modulation atomic force microscopy
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1999856
– volume: 8
  start-page: 396
  issue: 1
  year: 2014
  ident: 10.1016/j.ymeth.2020.10.014_b0145
  article-title: Continuous flow atomic force microscopy imaging reveals fluidity and time-dependent interactions of antimicrobial dendrimer with model lipid membranes
  publication-title: ACS Nano
  doi: 10.1021/nn404530z
– volume: 18
  start-page: 23924
  issue: 23
  year: 2010
  ident: 10.1016/j.ymeth.2020.10.014_b0290
  article-title: Label-free optical imaging of membrane patches for atomic force microscopy
  publication-title: Opt. Express
  doi: 10.1364/OE.18.023924
– volume: 504
  start-page: 194
  issue: 3
  year: 2001
  ident: 10.1016/j.ymeth.2020.10.014_b0110
  article-title: Imaging domains in model membranes with atomic force microscopy
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(01)02704-1
– volume: 12
  start-page: 10090
  issue: 18
  year: 2020
  ident: 10.1016/j.ymeth.2020.10.014_b0350
  article-title: Customized MFM probes based on magnetic nanorods
  publication-title: Nanoscale
  doi: 10.1039/D0NR00322K
– volume: 47
  start-page: 105
  issue: 1
  year: 1985
  ident: 10.1016/j.ymeth.2020.10.014_b0185
  article-title: Supported phospholipid bilayers
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(85)83882-0
– volume: 12
  start-page: 1018
  issue: 2
  year: 2012
  ident: 10.1016/j.ymeth.2020.10.014_b0345
  article-title: Nanopatterning on nonplanar and fragile substrates with ice resists
  publication-title: Nano Lett.
  doi: 10.1021/nl204198w
– volume: 148
  issue: 12
  year: 2018
  ident: 10.1016/j.ymeth.2020.10.014_b0225
  article-title: Lipid diffusion in the distal and proximal leaflets of supported lipid bilayer membranes studied by single particle tracking
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5010341
– volume: 73
  start-page: 1633
  issue: 3
  year: 1997
  ident: 10.1016/j.ymeth.2020.10.014_b0260
  article-title: The height of biomolecules measured with the atomic force microscope depends on electrostatic interactions
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(97)78195-5
– volume: 122
  start-page: 10315
  issue: 45
  year: 2018
  ident: 10.1016/j.ymeth.2020.10.014_b0340
  article-title: Quantifying the diffusion of lipids in the proximal/distal leaflets of a supported lipid bilayer by two-dimensional fluorescence lifetime correlation spectroscopy
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.8b08614
– volume: 9
  start-page: 451
  issue: 1
  year: 2019
  ident: 10.1016/j.ymeth.2020.10.014_b0040
  article-title: Multiple stochastic pathways in forced peptide-lipid membrane detachment
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-36528-4
– volume: 36
  start-page: 2143
  issue: 8
  year: 2020
  ident: 10.1016/j.ymeth.2020.10.014_b0190
  article-title: Characterizing the locus of a peripheral membrane protein-lipid bilayer interaction underlying protein export activity in E. coli
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.9b03606
SSID ssj0001278
Score 2.3939657
Snippet •Membrane-permeabilizing peptides exhibit distinct remodeling modes.•AFM directly visualizes lipid bilayer remodeling in fluid.•Methods to achieve high...
A number of peptides are known to bind lipid bilayer membranes and cause these natural barriers to leak in an uncontrolled manner. Though membrane...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20
SubjectTerms AFM
algorithms
atomic force microscopy
Bayes Theorem
Bayesian theory
lipid bilayers
Lipid Bilayers - chemistry
Microscopy, Atomic Force - methods
peptides
Peptides - chemistry
Pore forming
Scanning probe
Single Molecule Imaging
SLB
Supported lipid bilayer
therapeutics
Title Atomic force microscopy for quantitative understanding of peptide-induced lipid bilayer remodeling
URI https://dx.doi.org/10.1016/j.ymeth.2020.10.014
https://www.ncbi.nlm.nih.gov/pubmed/33164792
https://www.proquest.com/docview/2458960199
https://www.proquest.com/docview/2636429466
https://pubmed.ncbi.nlm.nih.gov/PMC12149853
Volume 197
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1095-9130
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001278
  issn: 1046-2023
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1095-9130
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001278
  issn: 1046-2023
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1095-9130
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001278
  issn: 1046-2023
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1095-9130
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001278
  issn: 1046-2023
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-9130
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001278
  issn: 1046-2023
  databaseCode: AKRWK
  dateStart: 19900801
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB5V5QAXVFoeKVAZCXFim9hrr-1jFFEFEL1Apd5W60fEonQTSnLIhd_OjHc3NCBy4Do7lmzPeDyznvkG4LWRUVeFcpnzI5NJEVVmvSHYSs2dQ5-3Sq0TPl0W0yv54VpdH8Ckr4WhtMrO9rc2PVnrjjLsdnO4rOvhZ3qdpObfAvVUCEt2WEpNXQzOf_5O8-BCt-VwssiIu0ceSjleG2rTjEGiIMr5iMt_3U5_e59_JlHeuZUujuBh506ycTvjR3AQm2M4GTcYSt9s2BuWEjzTn_NjuD_pm7udgBuvqByZocvqI7uhrDyqT9kQgX1fV02qPUNLyNZ3q1_YYsaWlAcTYobBPKpFYPN6WQfm6nmF3ju7jam3DvI-hquLd18m06xrt5B5jNFWmXYYKIeimEnnfdTKKh-89hXPjcZlmuhMUIFOrAsmILND1yFU3Oe2qEbR5k_gsFk08Rkwy6O2PvCZtxiBRW6iDwRBapQSykkzANFvc-k7LHJqiTEv-6Szb2WSTUmyISLKZgBvt4OWLRTHfvail1-5o1ElXhb7B77qpV2iVOgBpWriYv2jFFIZjPi4tXt4ihxDOkLtH8DTVkO2s81zQm-zYgBmR3e2DIT1vfulqb8mzG8ucCPRtTr931U9hweCKjfS36MXcLi6XceX6E-t3Fk6MGdwb_z-4_TyFy2cIu4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELaqcigXBC2PAAUjIU5sE3vttX2MIqoAbS-0Um_W-hGxVboJJTnkwm9nxrubNkXNgat3VrI9s-P51jPfEPJRi6jKQrrM-YHOBI8yM14jbaVizkHMW6bWCadnxfhCfLuUlztk1NXCYFpl6_sbn568dTvSb3ezP6-q_g-8ncTm3xzslHMDfviRkFwhAjv6c5vnwbhq6uFEkaF4Rz2UkrxW2KcZUCLHkaMBEw8dT_-Gn_ezKO8cS8dPyZM2nqTDZsrPyE6s98nBsAYsfb2in2jK8Ey_zvfJ3qjr7nZA3HCB9cgUYlYf6TWm5WGBygoH6K9lWafiM3CFdHm3_IXOJnSOiTAhZoDmwS4CnVbzKlBXTUsI3-lNTM11QPY5uTj-cj4aZ22_hcwDSFtkygFSDkUxEc77qKSRPnjlS5ZrBcvU0ekgA36yLugAwg5ih1Ayn5uiHESTvyC79ayOrwg1LCrjA5t4AxAsMh19QA5SLSWXTuge4d02W9-SkWNPjKntss6ubNKNRd3gIOimRz6vX5o3XBzbxYtOf3bDpCycFttf_NBp24JW8AalrONs-dtyITVAPmbMFpkiB0yHtP098rKxkPVs8xzp2wzvEb1hO2sBJPvefFJXPxPpN-OwkRBbvf7fVb0ne-Pz0xN78vXs-xvymGMZR_qV9JbsLm6W8RCCq4V7lz6ev6zLJIM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomic+force+microscopy+for+quantitative+understanding+of+peptide-induced+lipid+bilayer+remodeling&rft.jtitle=Methods+%28San+Diego%2C+Calif.%29&rft.au=Schaefer%2C+K.G.&rft.au=Pittman%2C+A.E.&rft.au=Barrera%2C+F.N.&rft.au=King%2C+G.M.&rft.date=2022-01-01&rft.issn=1046-2023&rft.volume=197&rft.spage=20&rft.epage=29&rft_id=info:doi/10.1016%2Fj.ymeth.2020.10.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ymeth_2020_10_014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1046-2023&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1046-2023&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1046-2023&client=summon