Atomic force microscopy for quantitative understanding of peptide-induced lipid bilayer remodeling
•Membrane-permeabilizing peptides exhibit distinct remodeling modes.•AFM directly visualizes lipid bilayer remodeling in fluid.•Methods to achieve high precision AFM data & robust statistical analysis presented.•Localized pore-like voids & dispersed membrane-thinned regions detected.•Dynamic...
        Saved in:
      
    
          | Published in | Methods (San Diego, Calif.) Vol. 197; pp. 20 - 29 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Elsevier Inc
    
        01.01.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1046-2023 1095-9130 1095-9130  | 
| DOI | 10.1016/j.ymeth.2020.10.014 | 
Cover
| Abstract | •Membrane-permeabilizing peptides exhibit distinct remodeling modes.•AFM directly visualizes lipid bilayer remodeling in fluid.•Methods to achieve high precision AFM data & robust statistical analysis presented.•Localized pore-like voids & dispersed membrane-thinned regions detected.•Dynamics and colocalization of distinct remodeling modes can be studied.
A number of peptides are known to bind lipid bilayer membranes and cause these natural barriers to leak in an uncontrolled manner. Though membrane permeabilizing peptides play critical roles in cellular activity and may have promising future applications in the therapeutic arena, significant questions remain about their mechanisms of action. The atomic force microscope (AFM) is a single molecule imaging tool capable of addressing lipid bilayers in near-native fluid conditions. The apparatus complements traditional assays by providing local topographic maps of bilayer remodeling induced by membrane permeabilizing peptides. The information garnered from the AFM includes direct visualization and statistical analyses of distinct bilayer remodeling modes such as highly localized pore-like voids in the bilayer and dispersed thinned membrane regions. Colocalization of distinct remodeling modes can be studied. Here we examine recent work in the field and outline methods used to achieve precise AFM image data. Experimental challenges and common pitfalls are discussed as well as techniques for unbiased analysis including the Hessian blob detection algorithm, bootstrapping, and the Bayesian information criterion. When coupled with robust statistical analyses, high precision AFM data is poised to advance understanding of an important family of peptides that cause poration of membrane bilayers. | 
    
|---|---|
| AbstractList | A number of peptides are known to bind lipid bilayer membranes and cause these natural barriers to leak in an uncontrolled manner. Though membrane permeabilizing peptides play critical roles in cellular activity and may have promising future applications in the therapeutic arena, significant questions remain about their mechanisms of action. The atomic force microscope (AFM) is a single molecule imaging tool capable of addressing lipid bilayers in near-native fluid conditions. The apparatus complements traditional assays by providing local topographic maps of bilayer remodeling induced by membrane permeabilizing peptides. The information garnered from the AFM includes direct visualization and statistical analyses of distinct bilayer remodeling modes such as highly localized pore-like voids in the bilayer and dispersed thinned membrane regions. Colocalization of distinct remodeling modes can be studied. Here we examine recent work in the field and outline methods used to achieve precise AFM image data. Experimental challenges and common pitfalls are discussed as well as techniques for unbiased analysis including the Hessian blob detection algorithm, bootstrapping, and the Bayesian information criterion. When coupled with robust statistical analyses, high precision AFM data is poised to advance understanding of an important family of peptides that cause poration of membrane bilayers. A number of peptides are known to bind lipid bilayer membranes and cause these natural barriers to leak in an uncontrolled manner. Though membrane permeabilizing peptides play critical roles in cellular activity and may have promising future applications in the therapeutic arena, significant questions remain about their mechanisms of action. The atomic force microscope (AFM) is a single molecule imaging tool capable of addressing lipid bilayers in near-native fluid conditions. The apparatus complements traditional assays by providing local topographic maps of bilayer remodeling induced by membrane permeabilizing peptides. The information garnered from the AFM includes direct visualization and statistical analyses of distinct bilayer remodeling modes such as highly localized pore-like voids in the bilayer and dispersed thinned membrane regions. Colocalization of distinct remodeling modes can be studied. Here we examine recent work in the field and outline methods used to achieve precise AFM image data. Experimental challenges and common pitfalls are discussed as well as techniques for unbiased analysis including the Hessian blob detection algorithm, bootstrapping, and the Bayesian information criterion. When coupled with robust statistical analyses, high precision AFM data is poised to advance understanding of an important family of peptides that cause poration of membrane bilayers.A number of peptides are known to bind lipid bilayer membranes and cause these natural barriers to leak in an uncontrolled manner. Though membrane permeabilizing peptides play critical roles in cellular activity and may have promising future applications in the therapeutic arena, significant questions remain about their mechanisms of action. The atomic force microscope (AFM) is a single molecule imaging tool capable of addressing lipid bilayers in near-native fluid conditions. The apparatus complements traditional assays by providing local topographic maps of bilayer remodeling induced by membrane permeabilizing peptides. The information garnered from the AFM includes direct visualization and statistical analyses of distinct bilayer remodeling modes such as highly localized pore-like voids in the bilayer and dispersed thinned membrane regions. Colocalization of distinct remodeling modes can be studied. Here we examine recent work in the field and outline methods used to achieve precise AFM image data. Experimental challenges and common pitfalls are discussed as well as techniques for unbiased analysis including the Hessian blob detection algorithm, bootstrapping, and the Bayesian information criterion. When coupled with robust statistical analyses, high precision AFM data is poised to advance understanding of an important family of peptides that cause poration of membrane bilayers. •Membrane-permeabilizing peptides exhibit distinct remodeling modes.•AFM directly visualizes lipid bilayer remodeling in fluid.•Methods to achieve high precision AFM data & robust statistical analysis presented.•Localized pore-like voids & dispersed membrane-thinned regions detected.•Dynamics and colocalization of distinct remodeling modes can be studied. A number of peptides are known to bind lipid bilayer membranes and cause these natural barriers to leak in an uncontrolled manner. Though membrane permeabilizing peptides play critical roles in cellular activity and may have promising future applications in the therapeutic arena, significant questions remain about their mechanisms of action. The atomic force microscope (AFM) is a single molecule imaging tool capable of addressing lipid bilayers in near-native fluid conditions. The apparatus complements traditional assays by providing local topographic maps of bilayer remodeling induced by membrane permeabilizing peptides. The information garnered from the AFM includes direct visualization and statistical analyses of distinct bilayer remodeling modes such as highly localized pore-like voids in the bilayer and dispersed thinned membrane regions. Colocalization of distinct remodeling modes can be studied. Here we examine recent work in the field and outline methods used to achieve precise AFM image data. Experimental challenges and common pitfalls are discussed as well as techniques for unbiased analysis including the Hessian blob detection algorithm, bootstrapping, and the Bayesian information criterion. When coupled with robust statistical analyses, high precision AFM data is poised to advance understanding of an important family of peptides that cause poration of membrane bilayers.  | 
    
| Author | Schaefer, K.G. King, G.M. Pittman, A.E. Barrera, F.N.  | 
    
| AuthorAffiliation | 1. Department of Physics and Astronomy, University of Missouri-Columbia, Columbia MO 65211 USA 3. Department of Biochemistry, University of Missouri-Columbia, Columbia MO 65211 USA 2. Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996 USA  | 
    
| AuthorAffiliation_xml | – name: 2. Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996 USA – name: 3. Department of Biochemistry, University of Missouri-Columbia, Columbia MO 65211 USA – name: 1. Department of Physics and Astronomy, University of Missouri-Columbia, Columbia MO 65211 USA  | 
    
| Author_xml | – sequence: 1 givenname: K.G. surname: Schaefer fullname: Schaefer, K.G. organization: Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO 65211, USA – sequence: 2 givenname: A.E. surname: Pittman fullname: Pittman, A.E. organization: Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO 65211, USA – sequence: 3 givenname: F.N. surname: Barrera fullname: Barrera, F.N. organization: Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA – sequence: 4 givenname: G.M. surname: King fullname: King, G.M. email: kinggm@missouri.edu organization: Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO 65211, USA  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33164792$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkc1q3DAUhUVJaX7aJygULbvxVLJk2VqUEkLSFgLZtGshS9eJBltyJHlg3j5yJiltF8lK4t5zDof7naIjHzwg9JGSDSVUfNlu9hPku01N6nWyIZS_QSeUyKaSlJGj9c9FVdbsGJ2mtCWE0Lrt3qFjxqjgraxPUH-ew-QMHkI0gMsvhmTCvF8H-H7RPruss9sBXryFmLL21vlbHAY8w5ydhcp5uxiweHSzs7h3o95DxBGmYGEs2vfo7aDHBB-e3jP0--ry18WP6vrm-8-L8-vKcN7lqu0laa0QA--NgbaRjbGmNZqyrgVrOug721gqBettZ4u4p5RYTQ2TQhOQ7Ax9O-TOSz8VB_gc9ajm6CYd9ypop_7deHenbsNO0Zpy2TWsJHx-SojhfoGU1eSSgXHUHsKSVC2Y4LXkQrwu5U0nBaFy7fXp715_Cj1DKAJ5EKzHTxEGZR6PHtaablSUqBW42qpH4GoFvg4L8OJl_3mf4192fT24oPDYOYgqGQe-UHQRTFY2uBf9DziYyTE | 
    
| CitedBy_id | crossref_primary_10_1038_s41598_023_37910_7 crossref_primary_10_3390_membranes13110864 crossref_primary_10_1016_j_jbc_2022_102412 crossref_primary_10_7554_eLife_75490  | 
    
| Cites_doi | 10.1007/s12551-017-0356-5 10.1021/jp983996x 10.1007/s00216-012-6383-y 10.1016/S0006-3495(99)77275-9 10.1021/ja500462s 10.7554/eLife.36645 10.1021/acs.langmuir.7b00100 10.1021/acs.langmuir.8b00804 10.1021/acs.jpcb.6b02332 10.1021/acs.langmuir.9b01928 10.1021/acs.langmuir.0c00247 10.1021/bi060317x 10.1007/978-1-4939-8591-3_4 10.1021/nn403367c 10.1214/aos/1176344136 10.1126/sciadv.aav9404 10.1103/PhysRevLett.56.930 10.1016/S0014-5793(01)02636-9 10.1038/s41563-018-0194-2 10.1088/0034-4885/74/8/086601 10.1016/j.bbamem.2006.02.001 10.1038/nature17625 10.1096/fj.01-0377com 10.1021/jp2108126 10.1021/acs.biochem.5b00856 10.1038/nsb1096-842 10.3390/toxins12070451 10.1126/science.283.5408.1727 10.1128/AAC.49.10.4085-4092.2005 10.1016/j.bbamem.2009.12.019 10.1016/S0006-3495(01)76059-6 10.1021/acsnano.8b09234 10.1016/j.bcp.2018.08.017 10.1021/jacs.9b01970 10.1016/j.surfrep.2006.06.001 10.1038/nnano.2010.29 10.1021/la052687c 10.1021/la950580r 10.1038/srep12550 10.1016/j.tcb.2016.11.004 10.1016/S0196-9781(01)00498-3 10.1002/bip.20536 10.1103/PhysRevLett.95.216103 10.1021/jacs.6b11447 10.1038/s41598-018-19379-x 10.1021/acs.chemrev.8b00520 10.1016/j.addr.2003.10.041 10.1126/sciadv.aat8797 10.1016/j.bcp.2020.113813 10.1021/acs.nanolett.5b03166 10.1016/j.bbamem.2009.07.026 10.1016/0304-3991(92)90413-E 10.1063/1.1999856 10.1021/nn404530z 10.1364/OE.18.023924 10.1016/S0014-5793(01)02704-1 10.1039/D0NR00322K 10.1016/S0006-3495(85)83882-0 10.1021/nl204198w 10.1063/1.5010341 10.1016/S0006-3495(97)78195-5 10.1021/acs.jpcb.8b08614 10.1038/s41598-018-36528-4 10.1021/acs.langmuir.9b03606  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved.  | 
    
| Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM  | 
    
| DOI | 10.1016/j.ymeth.2020.10.014 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles)  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Anatomy & Physiology Chemistry  | 
    
| EISSN | 1095-9130 | 
    
| EndPage | 29 | 
    
| ExternalDocumentID | PMC12149853 33164792 10_1016_j_ymeth_2020_10_014 S1046202320302292  | 
    
| Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural  | 
    
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R35 GM140846 – fundername: NIGMS NIH HHS grantid: R01 GM120642  | 
    
| GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 123 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADFGL ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 DOVZS DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HMG HVGLF HZ~ IHE J1W K-O KOM LG5 LX2 LZ5 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBG SCC SDF SDG SDP SES SEW SIN SPCBC SSU SSZ T5K WUQ XPP Y6R ZGI ZMT ZU3 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AGCQF AGRNS BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 7S9 L.6 5PM  | 
    
| ID | FETCH-LOGICAL-c448t-7b907d66f4bcce7595cdc7ca1387edc8eb8d5d1963bd8db90b110da1c396a0e93 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 1046-2023 1095-9130  | 
    
| IngestDate | Tue Sep 30 17:03:07 EDT 2025 Wed Oct 01 13:59:50 EDT 2025 Sat Sep 27 21:17:45 EDT 2025 Sat Jun 14 01:30:57 EDT 2025 Sat Oct 25 06:03:39 EDT 2025 Thu Apr 24 22:58:50 EDT 2025 Fri Feb 23 02:43:40 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | AFM SLB Pore forming Supported lipid bilayer Scanning probe  | 
    
| Language | English | 
    
| License | Copyright © 2020 Elsevier Inc. All rights reserved. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c448t-7b907d66f4bcce7595cdc7ca1387edc8eb8d5d1963bd8db90b110da1c396a0e93 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Current address: St. Jude Children’s Research Hospital, 262 Danny Thomas Pl, Memphis, TN 38105 USA  | 
    
| PMID | 33164792 | 
    
| PQID | 2458960199 | 
    
| PQPubID | 23479 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_12149853 proquest_miscellaneous_2636429466 proquest_miscellaneous_2458960199 pubmed_primary_33164792 crossref_citationtrail_10_1016_j_ymeth_2020_10_014 crossref_primary_10_1016_j_ymeth_2020_10_014 elsevier_sciencedirect_doi_10_1016_j_ymeth_2020_10_014  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-01-01 | 
    
| PublicationDateYYYYMMDD | 2022-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationTitle | Methods (San Diego, Calif.) | 
    
| PublicationTitleAlternate | Methods | 
    
| PublicationYear | 2022 | 
    
| Publisher | Elsevier Inc | 
    
| Publisher_xml | – name: Elsevier Inc | 
    
| References | Edwards, Faulk, Sanders, Bull, Walder, LeBlanc, Sousa, Perkins (b0075) 2015; 15 Weisenhorn, Schmitt, Knoll, Hansma (b0100) 1992; 42–44 Castellana, Cremer (b0280) 2006; 61 Shai, Oren (b0020) 2001; 22 Tamm, McConnell (b0185) 1985; 47 Heenan, Perkins (b0220) 2019; 13 Chada, Chattrakun, Marsh, Mao, Bariya, King (b0090) 2018; 4 Rinia, de Kruijff (b0110) 2001; 504 Jackman, Costa, Park, Real, Park, Cardozo, Ferhan, Olmo, Moreira, Bambirra, Queiroz, Queiroz-Junior, Foureaux, Souza, Ribeiro, Yoon, Wynendaele, De Spiegeleer, Teixeira, Cho (b0200) 2018; 17 Rinia, Snel, van der Eerden, de Kruijff (b0105) 2001; 501 Connelly, Jang, Arce, Capone, Kotler, Ramachandran, Kagan, Nussinov, Lal (b0120) 2012; 116 Cosentino, Garcia-Saez (b0240) 2017; 27 Huang (b0305) 2006; 1758 Sigdel, Wilt, Marsh, Roberts, King (b0085) 2018; 156 Fantner, Barbero, Gray, Belcher (b0230) 2010; 5 Matin, Utjesanovic, Sigdel, Smith, Kosztin, King (b0190) 2020; 36 Acheson (b0315) 1990 Li, Nicol, Szoka (b0310) 2004; 56 Guha, Ghimire, Wu, Wimley (b0005) 2019; 119 Ando (b0235) 2018; 10 Binnig, Quate, Gerber (b0060) 1986; 56 Israelachvili (b0155) 2011 Berne, Pecora (b0205) 1976 Muller, Engel (b0260) 1997; 73 Matin, Sigdel, Utjesanovic, Marsh, Gallazzi, Smith, Kosztin, King (b0045) 2017; 33 Wiedman, Fuselier, He, Searson, Hristova, Wimley (b0300) 2014; 136 Fukuma, Kobayashi, Matsushige, Yamada (b0070) 2005; 87 Efron, Hastie (b0250) 2016 El Kirat, Dufrene, Lins, Brasseur (b0030) 2006; 45 Lin, Bhatia, Lal (b0125) 2001; 15 Ricci, D.; Braga, P. C., Recognizing and Avoiding Artifacts in AFM Imaging. In: Braga P.C., Ricci D. (eds) Atomic Force Microscopy. Methods in Molecular Biology. Humana Press: 2004. Wimley, White (b0180) 1996; 3 Jaafar, Pablo-Navarro, Berganza, Ares, Magen, Masseboeuf, Gatel, Snoeck, Gomez-Herrero, de Teresa, Asenjo (b0350) 2020; 12 King, Golovchenko (b0360) 2005; 95 Sanganna Gari, Chattrakun, Marsh, Mao, Chada, Randall, King (b0080) 2019; 5 Alves, Westerfield, Shi, Nguyen, Stefanski, Booth, Kim, Morrell-Falvey, Wang, Abel, Smith, Barrera (b0165) 2018; 7 Chada, Sigdel, Gari, Matin, Randall, King (b0215) 2015; 5 Churnside, King, Perkins (b0290) 2010; 18 Koenig, Kruger, Orts, Majkrzak, Berk, Silverton, Gawrisch (b0330) 1996; 12 Bippes, Muller (b0065) 2011; 74 Lind, Zielinska, Wacklin, Urbanczyk-Lipkowska, Cardenas (b0145) 2014; 8 Marsh, Chada, Sanganna Gari, Sigdel, King (b0320) 2018; 8 Garcia-Manyes, Sanz (b0265) 2010; 1798 Hristova, Dempsey, White (b0025) 2001; 80 Richter, Berat, Brisson (b0195) 2006; 22 Moyes, Wilson, Richardson, Mogavero, Tang, Wernecke, Hofs, Gratacap, Robbins, Runglall, Murciano, Blagojevic, Thavaraj, Forster, Hebecker, Kasper, Vizcay, Iancu, Kichik, Hader, Kurzai, Luo, Kruger, Kniemeyer, Cota, Bader, Wheeler, Gutsmann, Hube, Naglik (b0015) 2016; 532 Pan, Khadka (b0130) 2016; 120 Han, Kuan, Golovchenko, Branton (b0345) 2012; 12 Muller, Fotiadis, Scheuring, Muller, Engel (b0150) 1999; 76 Morandat, Azouzi, Beauvais, Mastouri, El Kirat (b0050) 2013; 405 El Kirat, Morandat, Dufrene (b0095) 2010; 1798 Raghuraman, Chattopadhyay (b0160) 2006; 83 Nguyen, Alves, Scott, Davis, Barrera (b0170) 2015; 54 Nguyen, Sigdel, Schaefer, Mensah, King, Roberts (b0255) 2020; 174 Wiedman, Kim, Zapata-Mercado, Wimley, Hristova (b0245) 2017; 139 Grandbois, Beyer, Rief, Clausen-Schaumann, Gaub (b0275) 1999; 283 Chattrakun, Hoogerheide, Mao, Randall, King (b0335) 2019; 35 Schwarz (b0325) 1978; 6 Sigdel, Pittman, Matin, King (b0355) 2018; 1814 Meincken, Holroyd, Rautenbach (b0115) 2005; 49 Saavedra, Fernandes, Milhiet, Costa (b0270) 2020; 36 Kim, Pittman, Zapata-Mercado, King, Wimley, Hristova (b0140) 2019; 141 Andrecka, Spillane, Ortega-Arroyo, Kukura (b0295) 2013; 7 Schaefer, Grau, Moore, Mingarro, King, Barrera (b0035) 2020 Schoch, Barel, Brown, Haran (b0225) 2018; 148 Hammond, Ryadnov, Hoogenboom (b0055) 2020 Cremer, Boxer (b0285) 1999; 103 El-Seedi, Abd El-Wahed, Yosri, Musharraf, Chen, Moustafa, Zou, Al-Mousawi, Guo, Khatib, Khalifa (b0010) 2020; 12 Pittman, Marsh, King (b0135) 2018; 34 Utjesanovic, Matin, Sigdel, King, Kosztin (b0040) 2019; 9 Mouritsen (b0175) 2005 Otosu, Yamaguchi (b0340) 2018; 122 Connelly (10.1016/j.ymeth.2020.10.014_b0120) 2012; 116 Meincken (10.1016/j.ymeth.2020.10.014_b0115) 2005; 49 Huang (10.1016/j.ymeth.2020.10.014_b0305) 2006; 1758 Wiedman (10.1016/j.ymeth.2020.10.014_b0245) 2017; 139 Nguyen (10.1016/j.ymeth.2020.10.014_b0255) 2020; 174 Efron (10.1016/j.ymeth.2020.10.014_b0250) 2016 Rinia (10.1016/j.ymeth.2020.10.014_b0110) 2001; 504 Acheson (10.1016/j.ymeth.2020.10.014_b0315) 1990 Cosentino (10.1016/j.ymeth.2020.10.014_b0240) 2017; 27 King (10.1016/j.ymeth.2020.10.014_b0360) 2005; 95 Heenan (10.1016/j.ymeth.2020.10.014_b0220) 2019; 13 Pittman (10.1016/j.ymeth.2020.10.014_b0135) 2018; 34 Schoch (10.1016/j.ymeth.2020.10.014_b0225) 2018; 148 Matin (10.1016/j.ymeth.2020.10.014_b0190) 2020; 36 Israelachvili (10.1016/j.ymeth.2020.10.014_b0155) 2011 Bippes (10.1016/j.ymeth.2020.10.014_b0065) 2011; 74 Marsh (10.1016/j.ymeth.2020.10.014_b0320) 2018; 8 Sigdel (10.1016/j.ymeth.2020.10.014_b0085) 2018; 156 Muller (10.1016/j.ymeth.2020.10.014_b0150) 1999; 76 Binnig (10.1016/j.ymeth.2020.10.014_b0060) 1986; 56 Lind (10.1016/j.ymeth.2020.10.014_b0145) 2014; 8 10.1016/j.ymeth.2020.10.014_b0210 Churnside (10.1016/j.ymeth.2020.10.014_b0290) 2010; 18 Han (10.1016/j.ymeth.2020.10.014_b0345) 2012; 12 Koenig (10.1016/j.ymeth.2020.10.014_b0330) 1996; 12 Wiedman (10.1016/j.ymeth.2020.10.014_b0300) 2014; 136 Fukuma (10.1016/j.ymeth.2020.10.014_b0070) 2005; 87 Wimley (10.1016/j.ymeth.2020.10.014_b0180) 1996; 3 Shai (10.1016/j.ymeth.2020.10.014_b0020) 2001; 22 Kim (10.1016/j.ymeth.2020.10.014_b0140) 2019; 141 Hristova (10.1016/j.ymeth.2020.10.014_b0025) 2001; 80 Morandat (10.1016/j.ymeth.2020.10.014_b0050) 2013; 405 Mouritsen (10.1016/j.ymeth.2020.10.014_b0175) 2005 Guha (10.1016/j.ymeth.2020.10.014_b0005) 2019; 119 El Kirat (10.1016/j.ymeth.2020.10.014_b0030) 2006; 45 Andrecka (10.1016/j.ymeth.2020.10.014_b0295) 2013; 7 Nguyen (10.1016/j.ymeth.2020.10.014_b0170) 2015; 54 Schwarz (10.1016/j.ymeth.2020.10.014_b0325) 1978; 6 Lin (10.1016/j.ymeth.2020.10.014_b0125) 2001; 15 Muller (10.1016/j.ymeth.2020.10.014_b0260) 1997; 73 Li (10.1016/j.ymeth.2020.10.014_b0310) 2004; 56 El-Seedi (10.1016/j.ymeth.2020.10.014_b0010) 2020; 12 Castellana (10.1016/j.ymeth.2020.10.014_b0280) 2006; 61 El Kirat (10.1016/j.ymeth.2020.10.014_b0095) 2010; 1798 Hammond (10.1016/j.ymeth.2020.10.014_b0055) 2020 Chada (10.1016/j.ymeth.2020.10.014_b0215) 2015; 5 Matin (10.1016/j.ymeth.2020.10.014_b0045) 2017; 33 Tamm (10.1016/j.ymeth.2020.10.014_b0185) 1985; 47 Chattrakun (10.1016/j.ymeth.2020.10.014_b0335) 2019; 35 Weisenhorn (10.1016/j.ymeth.2020.10.014_b0100) 1992; 42–44 Ando (10.1016/j.ymeth.2020.10.014_b0235) 2018; 10 Saavedra (10.1016/j.ymeth.2020.10.014_b0270) 2020; 36 Pan (10.1016/j.ymeth.2020.10.014_b0130) 2016; 120 Raghuraman (10.1016/j.ymeth.2020.10.014_b0160) 2006; 83 Fantner (10.1016/j.ymeth.2020.10.014_b0230) 2010; 5 Rinia (10.1016/j.ymeth.2020.10.014_b0105) 2001; 501 Cremer (10.1016/j.ymeth.2020.10.014_b0285) 1999; 103 Moyes (10.1016/j.ymeth.2020.10.014_b0015) 2016; 532 Jackman (10.1016/j.ymeth.2020.10.014_b0200) 2018; 17 Edwards (10.1016/j.ymeth.2020.10.014_b0075) 2015; 15 Chada (10.1016/j.ymeth.2020.10.014_b0090) 2018; 4 Richter (10.1016/j.ymeth.2020.10.014_b0195) 2006; 22 Otosu (10.1016/j.ymeth.2020.10.014_b0340) 2018; 122 Jaafar (10.1016/j.ymeth.2020.10.014_b0350) 2020; 12 Utjesanovic (10.1016/j.ymeth.2020.10.014_b0040) 2019; 9 Berne (10.1016/j.ymeth.2020.10.014_b0205) 1976 Grandbois (10.1016/j.ymeth.2020.10.014_b0275) 1999; 283 Garcia-Manyes (10.1016/j.ymeth.2020.10.014_b0265) 2010; 1798 Sigdel (10.1016/j.ymeth.2020.10.014_b0355) 2018; 1814 Sanganna Gari (10.1016/j.ymeth.2020.10.014_b0080) 2019; 5 Alves (10.1016/j.ymeth.2020.10.014_b0165) 2018; 7 Schaefer (10.1016/j.ymeth.2020.10.014_b0035) 2020  | 
    
| References_xml | – year: 2016 ident: b0250 article-title: Computer Age Statistical Inference: Algorithms, Evidence, and Data Science – volume: 5 start-page: eaav9404 year: 2019 ident: b0080 article-title: Direct visualization of the E. coli Sec translocase engaging precursor proteins in lipid bilayers publication-title: Sci. Adv. – volume: 148 year: 2018 ident: b0225 article-title: Lipid diffusion in the distal and proximal leaflets of supported lipid bilayer membranes studied by single particle tracking publication-title: J. Chem. Phys. – volume: 74 year: 2011 ident: b0065 article-title: High-resolution atomic force microscopy and spectroscopy of native membrane proteins publication-title: Rep. Prog. Phys. – volume: 136 start-page: 4724 year: 2014 end-page: 4731 ident: b0300 article-title: Highly efficient macromolecule-sized poration of lipid bilayers by a synthetically evolved peptide publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 937 year: 2017 end-page: 945 ident: b0245 article-title: pH-triggered, macromolecule-sized poration of lipid bilayers by synthetically evolved peptides publication-title: J. Am. Chem. Soc. – volume: 122 start-page: 10315 year: 2018 end-page: 10319 ident: b0340 article-title: Quantifying the diffusion of lipids in the proximal/distal leaflets of a supported lipid bilayer by two-dimensional fluorescence lifetime correlation spectroscopy publication-title: J. Phys. Chem. B – year: 1990 ident: b0315 article-title: Elementary Fluid Dynamics – volume: 17 start-page: 971 year: 2018 end-page: 977 ident: b0200 article-title: Therapeutic treatment of Zika virus infection using a brain-penetrating antiviral peptide publication-title: Nat. Mater. – volume: 95 year: 2005 ident: b0360 article-title: Probing nanotube-nanopore interactions publication-title: Phys. Rev. Lett. – volume: 87 year: 2005 ident: b0070 article-title: True atomic resolution in liquid by frequency-modulation atomic force microscopy publication-title: Appl. Phys. Lett. – volume: 34 start-page: 8393 year: 2018 end-page: 8399 ident: b0135 article-title: Conformations and dynamic transitions of a melittin derivative that forms macromolecule-sized pores in lipid bilayers publication-title: Langmuir – volume: 36 start-page: 2143 year: 2020 end-page: 2152 ident: b0190 article-title: Characterizing the locus of a peripheral membrane protein-lipid bilayer interaction underlying protein export activity in E. coli publication-title: Langmuir – volume: 5 start-page: 280 year: 2010 end-page: 285 ident: b0230 article-title: Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy publication-title: Nat. Nanotechnol. – year: 1976 ident: b0205 article-title: Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics – year: 2011 ident: b0155 article-title: Intermolecular and Surface Forces – volume: 12 year: 2020 ident: b0010 article-title: Antimicrobial properties of Apis mellifera's bee venom publication-title: Toxins (Basel) – volume: 12 start-page: 1343 year: 1996 end-page: 1350 ident: b0330 article-title: Neutron reflectivity and atomic force microscopy studies of a lipid bilayer in water adsorbed to the surface of a silicon single crystal publication-title: Langmuir – volume: 76 start-page: 1101 year: 1999 end-page: 1111 ident: b0150 article-title: Electrostatically balanced subnanometer imaging of biological specimens by atomic force microscope publication-title: Biophys. J. – volume: 156 start-page: 302 year: 2018 end-page: 311 ident: b0085 article-title: The conformation and dynamics of P-glycoprotein in a lipid bilayer investigated by atomic force microscopy publication-title: Biochem. Pharmacol. – volume: 141 start-page: 6706 year: 2019 end-page: 6718 ident: b0140 article-title: Mechanism of action of peptides that cause the ph-triggered macromolecular poration of lipid bilayers publication-title: J. Am. Chem. Soc. – reference: Ricci, D.; Braga, P. C., Recognizing and Avoiding Artifacts in AFM Imaging. In: Braga P.C., Ricci D. (eds) Atomic Force Microscopy. Methods in Molecular Biology. Humana Press: 2004. – volume: 3 start-page: 842 year: 1996 end-page: 848 ident: b0180 article-title: Experimentally determined hydrophobicity scale for proteins at membrane interfaces publication-title: Nat. Struct. Biol. – volume: 12 start-page: 10090 year: 2020 end-page: 10097 ident: b0350 article-title: Customized MFM probes based on magnetic nanorods publication-title: Nanoscale – volume: 1798 start-page: 741 year: 2010 end-page: 749 ident: b0265 article-title: Nanomechanics of lipid bilayers by force spectroscopy with AFM: a perspective publication-title: BBA – volume: 42–44 start-page: 1125 year: 1992 end-page: 1132 ident: b0100 article-title: Streptavidin binding observed with an atomic force microscope publication-title: Ultramicroscopy – volume: 103 start-page: 2554 year: 1999 end-page: 2559 ident: b0285 article-title: Formation and spreading of lipid bilayers on planar glass supports publication-title: J. Phys. Chem. B – volume: 120 start-page: 4625 year: 2016 end-page: 4634 ident: b0130 article-title: Kinetic defects induced by melittin in model lipid membranes: a solution atomic force microscopy study publication-title: J. Phys. Chem. B – volume: 47 start-page: 105 year: 1985 end-page: 113 ident: b0185 article-title: Supported phospholipid bilayers publication-title: Biophys. J. – volume: 1814 start-page: 49 year: 2018 end-page: 62 ident: b0355 article-title: High-resolution AFM-based force spectroscopy publication-title: Methods Mol. Biol. – volume: 116 start-page: 1728 year: 2012 end-page: 1735 ident: b0120 article-title: Atomic force microscopy and MD simulations reveal pore-like structures of all-D-enantiomer of Alzheimer's beta-amyloid peptide: relevance to the ion channel mechanism of AD pathology publication-title: J. Phys. Chem. B – volume: 13 start-page: 4220 year: 2019 end-page: 4229 ident: b0220 article-title: Imaging DNA equilibrated onto mica in liquid using biochemically relevant deposition conditions publication-title: ACS Nano – volume: 4 start-page: eaat8797 year: 2018 ident: b0090 article-title: Single-molecule observation of nucleotide induced conformational changes in basal SecA-ATP hydrolysis publication-title: Sci. Adv. – volume: 22 start-page: 1629 year: 2001 end-page: 1641 ident: b0020 article-title: From “carpet” mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides publication-title: Peptides – volume: 22 start-page: 3497 year: 2006 end-page: 3505 ident: b0195 article-title: Formation of solid-supported lipid bilayers: an integrated view publication-title: Langmuir – volume: 1758 start-page: 1292 year: 2006 end-page: 1302 ident: b0305 article-title: Molecular mechanism of antimicrobial peptides: the origin of cooperativity publication-title: BBA – year: 2020 ident: b0035 article-title: Controllable membrane remodeling by a modified fragment of the apoptotic protein Bax publication-title: Faraday Discuss. – volume: 73 start-page: 1633 year: 1997 end-page: 1644 ident: b0260 article-title: The height of biomolecules measured with the atomic force microscope depends on electrostatic interactions publication-title: Biophys. J. – year: 2020 ident: b0055 article-title: Atomic force microscopy to elucidate how peptides disrupt membranes publication-title: Biochim. Biophys. Acta, Biomembr. – volume: 45 start-page: 9336 year: 2006 end-page: 9341 ident: b0030 article-title: The SIV tilted peptide induces cylindrical reverse micelles in supported lipid bilayers publication-title: Biochemistry-Us – volume: 36 start-page: 5709 year: 2020 end-page: 5716 ident: b0270 article-title: Compression, rupture, and puncture of model membranes at the molecular scale publication-title: Langmuir – volume: 7 start-page: 10662 year: 2013 end-page: 10670 ident: b0295 article-title: Direct observation and control of supported lipid bilayer formation with interferometric scattering microscopy publication-title: ACS Nano – volume: 18 start-page: 23924 year: 2010 end-page: 23932 ident: b0290 article-title: Label-free optical imaging of membrane patches for atomic force microscopy publication-title: Opt. Express – volume: 8 start-page: 978 year: 2018 ident: b0320 article-title: The Hessian blob algorithm: precise particle detection in atomic force microscopy imagery publication-title: Sci. Rep. – volume: 405 start-page: 1445 year: 2013 end-page: 1461 ident: b0050 article-title: Atomic force microscopy of model lipid membranes publication-title: Anal. Bioanal. Chem. – volume: 504 start-page: 194 year: 2001 end-page: 199 ident: b0110 article-title: Imaging domains in model membranes with atomic force microscopy publication-title: FEBS Lett. – volume: 283 start-page: 1727 year: 1999 end-page: 1730 ident: b0275 article-title: How strong is a covalent bond? publication-title: Science – volume: 15 start-page: 7091 year: 2015 end-page: 7098 ident: b0075 article-title: Optimizing 1-mus-resolution single-molecule force spectroscopy on a commercial atomic force microscope publication-title: Nano Lett. – volume: 33 start-page: 4057 year: 2017 end-page: 4065 ident: b0045 article-title: Single-molecule peptide-lipid affinity assay reveals interplay between solution structure and partitioning publication-title: Langmuir – volume: 49 start-page: 4085 year: 2005 end-page: 4092 ident: b0115 article-title: Atomic force microscopy study of the effect of antimicrobial peptides on the cell envelope of Escherichia coli publication-title: Antimicrob. Agents Chemother. – volume: 10 start-page: 285 year: 2018 end-page: 292 ident: b0235 article-title: High-speed atomic force microscopy and its future prospects publication-title: Biophys. Rev. – volume: 174 year: 2020 ident: b0255 article-title: The effects of anthracycline drugs on the conformational distribution of mouse P-glycoprotein explains their transport rate differences publication-title: Biochem. Pharmacol. – volume: 532 start-page: 64-+ year: 2016 ident: b0015 article-title: Candidalysin is a fungal peptide toxin critical for mucosal infection publication-title: Nature – volume: 5 start-page: 12550 year: 2015 ident: b0215 article-title: Glass is a viable substrate for precision force microscopy of membrane proteins publication-title: Sci. Rep. – volume: 501 start-page: 92 year: 2001 end-page: 96 ident: b0105 article-title: Visualizing detergent resistant domains in model membranes with atomic force microscopy publication-title: FEBS Lett. – volume: 83 start-page: 111 year: 2006 end-page: 121 ident: b0160 article-title: Effect of ionic strength on folding and aggregation of the hemolytic peptide melittin in solution publication-title: Biopolymers – volume: 56 start-page: 967 year: 2004 end-page: 985 ident: b0310 article-title: GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery publication-title: Adv. Drug Deliv. Rev. – volume: 35 start-page: 12246 year: 2019 end-page: 12256 ident: b0335 article-title: Protein translocation activity in surface-supported lipid bilayers publication-title: Langmuir – volume: 27 start-page: 266 year: 2017 end-page: 275 ident: b0240 article-title: Bax and bak pores: are we closing the circle? publication-title: Trends Cell Biol. – volume: 12 start-page: 1018 year: 2012 end-page: 1021 ident: b0345 article-title: Nanopatterning on nonplanar and fragile substrates with ice resists publication-title: Nano Lett. – volume: 7 year: 2018 ident: b0165 article-title: A novel pH-dependent membrane peptide that binds to EphA2 and inhibits cell migration publication-title: Elife – volume: 61 start-page: 429 year: 2006 end-page: 444 ident: b0280 article-title: Solid supported lipid bilayers: from biophysical studies to sensor design publication-title: Surf. Sci. Rep. – volume: 9 start-page: 451 year: 2019 ident: b0040 article-title: Multiple stochastic pathways in forced peptide-lipid membrane detachment publication-title: Sci. Rep. – volume: 119 start-page: 6040 year: 2019 end-page: 6085 ident: b0005 article-title: Mechanistic landscape of membrane-permeabilizing peptides publication-title: Chem. Rev. – volume: 80 start-page: 801 year: 2001 end-page: 811 ident: b0025 article-title: Structure, location, and lipid perturbations of melittin at the membrane interface publication-title: Biophys. J . – volume: 15 start-page: 2433 year: 2001 end-page: 2444 ident: b0125 article-title: Amyloid beta protein forms ion channels: implications for Alzheimer's disease pathophysiology publication-title: FASEB J. – volume: 54 start-page: 6567 year: 2015 end-page: 6575 ident: b0170 article-title: A novel soluble peptide with ph-responsive membrane insertion publication-title: Biochemistry-Us – volume: 8 start-page: 396 year: 2014 end-page: 408 ident: b0145 article-title: Continuous flow atomic force microscopy imaging reveals fluidity and time-dependent interactions of antimicrobial dendrimer with model lipid membranes publication-title: ACS Nano – volume: 56 start-page: 930 year: 1986 end-page: 933 ident: b0060 article-title: Atomic force microscope publication-title: Phys. Rev. Lett. – volume: 1798 start-page: 750 year: 2010 end-page: 765 ident: b0095 article-title: Nanoscale analysis of supported lipid bilayers using atomic force microscopy publication-title: Bba-Biomembranes – year: 2005 ident: b0175 article-title: Life – As a Matter of Fat – volume: 6 start-page: 461 year: 1978 end-page: 646 ident: b0325 article-title: Estimating the dimension of a model publication-title: Ann. Statist. – volume: 10 start-page: 285 issue: 2 year: 2018 ident: 10.1016/j.ymeth.2020.10.014_b0235 article-title: High-speed atomic force microscopy and its future prospects publication-title: Biophys. Rev. doi: 10.1007/s12551-017-0356-5 – year: 1976 ident: 10.1016/j.ymeth.2020.10.014_b0205 – volume: 103 start-page: 2554 issue: 13 year: 1999 ident: 10.1016/j.ymeth.2020.10.014_b0285 article-title: Formation and spreading of lipid bilayers on planar glass supports publication-title: J. Phys. Chem. B doi: 10.1021/jp983996x – volume: 405 start-page: 1445 issue: 5 year: 2013 ident: 10.1016/j.ymeth.2020.10.014_b0050 article-title: Atomic force microscopy of model lipid membranes publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-012-6383-y – volume: 76 start-page: 1101 issue: 2 year: 1999 ident: 10.1016/j.ymeth.2020.10.014_b0150 article-title: Electrostatically balanced subnanometer imaging of biological specimens by atomic force microscope publication-title: Biophys. J. doi: 10.1016/S0006-3495(99)77275-9 – volume: 136 start-page: 4724 issue: 12 year: 2014 ident: 10.1016/j.ymeth.2020.10.014_b0300 article-title: Highly efficient macromolecule-sized poration of lipid bilayers by a synthetically evolved peptide publication-title: J. Am. Chem. Soc. doi: 10.1021/ja500462s – volume: 7 year: 2018 ident: 10.1016/j.ymeth.2020.10.014_b0165 article-title: A novel pH-dependent membrane peptide that binds to EphA2 and inhibits cell migration publication-title: Elife doi: 10.7554/eLife.36645 – year: 2005 ident: 10.1016/j.ymeth.2020.10.014_b0175 – volume: 33 start-page: 4057 issue: 16 year: 2017 ident: 10.1016/j.ymeth.2020.10.014_b0045 article-title: Single-molecule peptide-lipid affinity assay reveals interplay between solution structure and partitioning publication-title: Langmuir doi: 10.1021/acs.langmuir.7b00100 – year: 2016 ident: 10.1016/j.ymeth.2020.10.014_b0250 – volume: 34 start-page: 8393 issue: 28 year: 2018 ident: 10.1016/j.ymeth.2020.10.014_b0135 article-title: Conformations and dynamic transitions of a melittin derivative that forms macromolecule-sized pores in lipid bilayers publication-title: Langmuir doi: 10.1021/acs.langmuir.8b00804 – volume: 120 start-page: 4625 issue: 20 year: 2016 ident: 10.1016/j.ymeth.2020.10.014_b0130 article-title: Kinetic defects induced by melittin in model lipid membranes: a solution atomic force microscopy study publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.6b02332 – volume: 35 start-page: 12246 issue: 37 year: 2019 ident: 10.1016/j.ymeth.2020.10.014_b0335 article-title: Protein translocation activity in surface-supported lipid bilayers publication-title: Langmuir doi: 10.1021/acs.langmuir.9b01928 – volume: 36 start-page: 5709 issue: 21 year: 2020 ident: 10.1016/j.ymeth.2020.10.014_b0270 article-title: Compression, rupture, and puncture of model membranes at the molecular scale publication-title: Langmuir doi: 10.1021/acs.langmuir.0c00247 – ident: 10.1016/j.ymeth.2020.10.014_b0210 – volume: 45 start-page: 9336 issue: 30 year: 2006 ident: 10.1016/j.ymeth.2020.10.014_b0030 article-title: The SIV tilted peptide induces cylindrical reverse micelles in supported lipid bilayers publication-title: Biochemistry-Us doi: 10.1021/bi060317x – volume: 1814 start-page: 49 year: 2018 ident: 10.1016/j.ymeth.2020.10.014_b0355 article-title: High-resolution AFM-based force spectroscopy publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-8591-3_4 – year: 2020 ident: 10.1016/j.ymeth.2020.10.014_b0055 article-title: Atomic force microscopy to elucidate how peptides disrupt membranes publication-title: Biochim. Biophys. Acta, Biomembr. – volume: 7 start-page: 10662 issue: 12 year: 2013 ident: 10.1016/j.ymeth.2020.10.014_b0295 article-title: Direct observation and control of supported lipid bilayer formation with interferometric scattering microscopy publication-title: ACS Nano doi: 10.1021/nn403367c – volume: 6 start-page: 461 year: 1978 ident: 10.1016/j.ymeth.2020.10.014_b0325 article-title: Estimating the dimension of a model publication-title: Ann. Statist. doi: 10.1214/aos/1176344136 – volume: 5 start-page: eaav9404 issue: 6 year: 2019 ident: 10.1016/j.ymeth.2020.10.014_b0080 article-title: Direct visualization of the E. coli Sec translocase engaging precursor proteins in lipid bilayers publication-title: Sci. Adv. doi: 10.1126/sciadv.aav9404 – volume: 56 start-page: 930 issue: 9 year: 1986 ident: 10.1016/j.ymeth.2020.10.014_b0060 article-title: Atomic force microscope publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.56.930 – volume: 501 start-page: 92 issue: 1 year: 2001 ident: 10.1016/j.ymeth.2020.10.014_b0105 article-title: Visualizing detergent resistant domains in model membranes with atomic force microscopy publication-title: FEBS Lett. doi: 10.1016/S0014-5793(01)02636-9 – volume: 17 start-page: 971 issue: 11 year: 2018 ident: 10.1016/j.ymeth.2020.10.014_b0200 article-title: Therapeutic treatment of Zika virus infection using a brain-penetrating antiviral peptide publication-title: Nat. Mater. doi: 10.1038/s41563-018-0194-2 – volume: 74 issue: 8 year: 2011 ident: 10.1016/j.ymeth.2020.10.014_b0065 article-title: High-resolution atomic force microscopy and spectroscopy of native membrane proteins publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/74/8/086601 – volume: 1758 start-page: 1292 issue: 9 year: 2006 ident: 10.1016/j.ymeth.2020.10.014_b0305 article-title: Molecular mechanism of antimicrobial peptides: the origin of cooperativity publication-title: BBA doi: 10.1016/j.bbamem.2006.02.001 – volume: 532 start-page: 64-+ issue: 7597 year: 2016 ident: 10.1016/j.ymeth.2020.10.014_b0015 article-title: Candidalysin is a fungal peptide toxin critical for mucosal infection publication-title: Nature doi: 10.1038/nature17625 – volume: 15 start-page: 2433 issue: 13 year: 2001 ident: 10.1016/j.ymeth.2020.10.014_b0125 article-title: Amyloid beta protein forms ion channels: implications for Alzheimer's disease pathophysiology publication-title: FASEB J. doi: 10.1096/fj.01-0377com – volume: 116 start-page: 1728 issue: 5 year: 2012 ident: 10.1016/j.ymeth.2020.10.014_b0120 article-title: Atomic force microscopy and MD simulations reveal pore-like structures of all-D-enantiomer of Alzheimer's beta-amyloid peptide: relevance to the ion channel mechanism of AD pathology publication-title: J. Phys. Chem. B doi: 10.1021/jp2108126 – volume: 54 start-page: 6567 issue: 43 year: 2015 ident: 10.1016/j.ymeth.2020.10.014_b0170 article-title: A novel soluble peptide with ph-responsive membrane insertion publication-title: Biochemistry-Us doi: 10.1021/acs.biochem.5b00856 – volume: 3 start-page: 842 issue: 10 year: 1996 ident: 10.1016/j.ymeth.2020.10.014_b0180 article-title: Experimentally determined hydrophobicity scale for proteins at membrane interfaces publication-title: Nat. Struct. Biol. doi: 10.1038/nsb1096-842 – volume: 12 issue: 7 year: 2020 ident: 10.1016/j.ymeth.2020.10.014_b0010 article-title: Antimicrobial properties of Apis mellifera's bee venom publication-title: Toxins (Basel) doi: 10.3390/toxins12070451 – volume: 283 start-page: 1727 issue: 5408 year: 1999 ident: 10.1016/j.ymeth.2020.10.014_b0275 article-title: How strong is a covalent bond? publication-title: Science doi: 10.1126/science.283.5408.1727 – year: 2020 ident: 10.1016/j.ymeth.2020.10.014_b0035 article-title: Controllable membrane remodeling by a modified fragment of the apoptotic protein Bax publication-title: Faraday Discuss. – volume: 49 start-page: 4085 issue: 10 year: 2005 ident: 10.1016/j.ymeth.2020.10.014_b0115 article-title: Atomic force microscopy study of the effect of antimicrobial peptides on the cell envelope of Escherichia coli publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.49.10.4085-4092.2005 – volume: 1798 start-page: 741 issue: 4 year: 2010 ident: 10.1016/j.ymeth.2020.10.014_b0265 article-title: Nanomechanics of lipid bilayers by force spectroscopy with AFM: a perspective publication-title: BBA doi: 10.1016/j.bbamem.2009.12.019 – volume: 80 start-page: 801 issue: 2 year: 2001 ident: 10.1016/j.ymeth.2020.10.014_b0025 article-title: Structure, location, and lipid perturbations of melittin at the membrane interface publication-title: Biophys. J . doi: 10.1016/S0006-3495(01)76059-6 – volume: 13 start-page: 4220 issue: 4 year: 2019 ident: 10.1016/j.ymeth.2020.10.014_b0220 article-title: Imaging DNA equilibrated onto mica in liquid using biochemically relevant deposition conditions publication-title: ACS Nano doi: 10.1021/acsnano.8b09234 – volume: 156 start-page: 302 year: 2018 ident: 10.1016/j.ymeth.2020.10.014_b0085 article-title: The conformation and dynamics of P-glycoprotein in a lipid bilayer investigated by atomic force microscopy publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2018.08.017 – volume: 141 start-page: 6706 issue: 16 year: 2019 ident: 10.1016/j.ymeth.2020.10.014_b0140 article-title: Mechanism of action of peptides that cause the ph-triggered macromolecular poration of lipid bilayers publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b01970 – volume: 61 start-page: 429 issue: 10 year: 2006 ident: 10.1016/j.ymeth.2020.10.014_b0280 article-title: Solid supported lipid bilayers: from biophysical studies to sensor design publication-title: Surf. Sci. Rep. doi: 10.1016/j.surfrep.2006.06.001 – volume: 5 start-page: 280 issue: 4 year: 2010 ident: 10.1016/j.ymeth.2020.10.014_b0230 article-title: Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.29 – volume: 22 start-page: 3497 issue: 8 year: 2006 ident: 10.1016/j.ymeth.2020.10.014_b0195 article-title: Formation of solid-supported lipid bilayers: an integrated view publication-title: Langmuir doi: 10.1021/la052687c – year: 2011 ident: 10.1016/j.ymeth.2020.10.014_b0155 – volume: 12 start-page: 1343 issue: 5 year: 1996 ident: 10.1016/j.ymeth.2020.10.014_b0330 article-title: Neutron reflectivity and atomic force microscopy studies of a lipid bilayer in water adsorbed to the surface of a silicon single crystal publication-title: Langmuir doi: 10.1021/la950580r – volume: 5 start-page: 12550 year: 2015 ident: 10.1016/j.ymeth.2020.10.014_b0215 article-title: Glass is a viable substrate for precision force microscopy of membrane proteins publication-title: Sci. Rep. doi: 10.1038/srep12550 – volume: 27 start-page: 266 issue: 4 year: 2017 ident: 10.1016/j.ymeth.2020.10.014_b0240 article-title: Bax and bak pores: are we closing the circle? publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2016.11.004 – volume: 22 start-page: 1629 issue: 10 year: 2001 ident: 10.1016/j.ymeth.2020.10.014_b0020 article-title: From “carpet” mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides publication-title: Peptides doi: 10.1016/S0196-9781(01)00498-3 – volume: 83 start-page: 111 issue: 2 year: 2006 ident: 10.1016/j.ymeth.2020.10.014_b0160 article-title: Effect of ionic strength on folding and aggregation of the hemolytic peptide melittin in solution publication-title: Biopolymers doi: 10.1002/bip.20536 – volume: 95 issue: 21 year: 2005 ident: 10.1016/j.ymeth.2020.10.014_b0360 article-title: Probing nanotube-nanopore interactions publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.216103 – volume: 139 start-page: 937 issue: 2 year: 2017 ident: 10.1016/j.ymeth.2020.10.014_b0245 article-title: pH-triggered, macromolecule-sized poration of lipid bilayers by synthetically evolved peptides publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11447 – volume: 8 start-page: 978 issue: 1 year: 2018 ident: 10.1016/j.ymeth.2020.10.014_b0320 article-title: The Hessian blob algorithm: precise particle detection in atomic force microscopy imagery publication-title: Sci. Rep. doi: 10.1038/s41598-018-19379-x – volume: 119 start-page: 6040 issue: 9 year: 2019 ident: 10.1016/j.ymeth.2020.10.014_b0005 article-title: Mechanistic landscape of membrane-permeabilizing peptides publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00520 – volume: 56 start-page: 967 issue: 7 year: 2004 ident: 10.1016/j.ymeth.2020.10.014_b0310 article-title: GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2003.10.041 – volume: 4 start-page: eaat8797 issue: 10 year: 2018 ident: 10.1016/j.ymeth.2020.10.014_b0090 article-title: Single-molecule observation of nucleotide induced conformational changes in basal SecA-ATP hydrolysis publication-title: Sci. Adv. doi: 10.1126/sciadv.aat8797 – volume: 174 year: 2020 ident: 10.1016/j.ymeth.2020.10.014_b0255 article-title: The effects of anthracycline drugs on the conformational distribution of mouse P-glycoprotein explains their transport rate differences publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2020.113813 – year: 1990 ident: 10.1016/j.ymeth.2020.10.014_b0315 – volume: 15 start-page: 7091 issue: 10 year: 2015 ident: 10.1016/j.ymeth.2020.10.014_b0075 article-title: Optimizing 1-mus-resolution single-molecule force spectroscopy on a commercial atomic force microscope publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b03166 – volume: 1798 start-page: 750 issue: 4 year: 2010 ident: 10.1016/j.ymeth.2020.10.014_b0095 article-title: Nanoscale analysis of supported lipid bilayers using atomic force microscopy publication-title: Bba-Biomembranes doi: 10.1016/j.bbamem.2009.07.026 – volume: 42–44 start-page: 1125 issue: Pt B year: 1992 ident: 10.1016/j.ymeth.2020.10.014_b0100 article-title: Streptavidin binding observed with an atomic force microscope publication-title: Ultramicroscopy doi: 10.1016/0304-3991(92)90413-E – volume: 87 issue: 3 year: 2005 ident: 10.1016/j.ymeth.2020.10.014_b0070 article-title: True atomic resolution in liquid by frequency-modulation atomic force microscopy publication-title: Appl. Phys. Lett. doi: 10.1063/1.1999856 – volume: 8 start-page: 396 issue: 1 year: 2014 ident: 10.1016/j.ymeth.2020.10.014_b0145 article-title: Continuous flow atomic force microscopy imaging reveals fluidity and time-dependent interactions of antimicrobial dendrimer with model lipid membranes publication-title: ACS Nano doi: 10.1021/nn404530z – volume: 18 start-page: 23924 issue: 23 year: 2010 ident: 10.1016/j.ymeth.2020.10.014_b0290 article-title: Label-free optical imaging of membrane patches for atomic force microscopy publication-title: Opt. Express doi: 10.1364/OE.18.023924 – volume: 504 start-page: 194 issue: 3 year: 2001 ident: 10.1016/j.ymeth.2020.10.014_b0110 article-title: Imaging domains in model membranes with atomic force microscopy publication-title: FEBS Lett. doi: 10.1016/S0014-5793(01)02704-1 – volume: 12 start-page: 10090 issue: 18 year: 2020 ident: 10.1016/j.ymeth.2020.10.014_b0350 article-title: Customized MFM probes based on magnetic nanorods publication-title: Nanoscale doi: 10.1039/D0NR00322K – volume: 47 start-page: 105 issue: 1 year: 1985 ident: 10.1016/j.ymeth.2020.10.014_b0185 article-title: Supported phospholipid bilayers publication-title: Biophys. J. doi: 10.1016/S0006-3495(85)83882-0 – volume: 12 start-page: 1018 issue: 2 year: 2012 ident: 10.1016/j.ymeth.2020.10.014_b0345 article-title: Nanopatterning on nonplanar and fragile substrates with ice resists publication-title: Nano Lett. doi: 10.1021/nl204198w – volume: 148 issue: 12 year: 2018 ident: 10.1016/j.ymeth.2020.10.014_b0225 article-title: Lipid diffusion in the distal and proximal leaflets of supported lipid bilayer membranes studied by single particle tracking publication-title: J. Chem. Phys. doi: 10.1063/1.5010341 – volume: 73 start-page: 1633 issue: 3 year: 1997 ident: 10.1016/j.ymeth.2020.10.014_b0260 article-title: The height of biomolecules measured with the atomic force microscope depends on electrostatic interactions publication-title: Biophys. J. doi: 10.1016/S0006-3495(97)78195-5 – volume: 122 start-page: 10315 issue: 45 year: 2018 ident: 10.1016/j.ymeth.2020.10.014_b0340 article-title: Quantifying the diffusion of lipids in the proximal/distal leaflets of a supported lipid bilayer by two-dimensional fluorescence lifetime correlation spectroscopy publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.8b08614 – volume: 9 start-page: 451 issue: 1 year: 2019 ident: 10.1016/j.ymeth.2020.10.014_b0040 article-title: Multiple stochastic pathways in forced peptide-lipid membrane detachment publication-title: Sci. Rep. doi: 10.1038/s41598-018-36528-4 – volume: 36 start-page: 2143 issue: 8 year: 2020 ident: 10.1016/j.ymeth.2020.10.014_b0190 article-title: Characterizing the locus of a peripheral membrane protein-lipid bilayer interaction underlying protein export activity in E. coli publication-title: Langmuir doi: 10.1021/acs.langmuir.9b03606  | 
    
| SSID | ssj0001278 | 
    
| Score | 2.3939657 | 
    
| Snippet | •Membrane-permeabilizing peptides exhibit distinct remodeling modes.•AFM directly visualizes lipid bilayer remodeling in fluid.•Methods to achieve high... A number of peptides are known to bind lipid bilayer membranes and cause these natural barriers to leak in an uncontrolled manner. Though membrane...  | 
    
| SourceID | pubmedcentral proquest pubmed crossref elsevier  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 20 | 
    
| SubjectTerms | AFM algorithms atomic force microscopy Bayes Theorem Bayesian theory lipid bilayers Lipid Bilayers - chemistry Microscopy, Atomic Force - methods peptides Peptides - chemistry Pore forming Scanning probe Single Molecule Imaging SLB Supported lipid bilayer therapeutics  | 
    
| Title | Atomic force microscopy for quantitative understanding of peptide-induced lipid bilayer remodeling | 
    
| URI | https://dx.doi.org/10.1016/j.ymeth.2020.10.014 https://www.ncbi.nlm.nih.gov/pubmed/33164792 https://www.proquest.com/docview/2458960199 https://www.proquest.com/docview/2636429466 https://pubmed.ncbi.nlm.nih.gov/PMC12149853  | 
    
| Volume | 197 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1095-9130 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001278 issn: 1046-2023 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1095-9130 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001278 issn: 1046-2023 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1095-9130 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001278 issn: 1046-2023 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1095-9130 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001278 issn: 1046-2023 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-9130 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001278 issn: 1046-2023 databaseCode: AKRWK dateStart: 19900801 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB5V5QAXVFoeKVAZCXFim9hrr-1jFFEFEL1Apd5W60fEonQTSnLIhd_OjHc3NCBy4Do7lmzPeDyznvkG4LWRUVeFcpnzI5NJEVVmvSHYSs2dQ5-3Sq0TPl0W0yv54VpdH8Ckr4WhtMrO9rc2PVnrjjLsdnO4rOvhZ3qdpObfAvVUCEt2WEpNXQzOf_5O8-BCt-VwssiIu0ceSjleG2rTjEGiIMr5iMt_3U5_e59_JlHeuZUujuBh506ycTvjR3AQm2M4GTcYSt9s2BuWEjzTn_NjuD_pm7udgBuvqByZocvqI7uhrDyqT9kQgX1fV02qPUNLyNZ3q1_YYsaWlAcTYobBPKpFYPN6WQfm6nmF3ju7jam3DvI-hquLd18m06xrt5B5jNFWmXYYKIeimEnnfdTKKh-89hXPjcZlmuhMUIFOrAsmILND1yFU3Oe2qEbR5k_gsFk08Rkwy6O2PvCZtxiBRW6iDwRBapQSykkzANFvc-k7LHJqiTEv-6Szb2WSTUmyISLKZgBvt4OWLRTHfvail1-5o1ElXhb7B77qpV2iVOgBpWriYv2jFFIZjPi4tXt4ihxDOkLtH8DTVkO2s81zQm-zYgBmR3e2DIT1vfulqb8mzG8ucCPRtTr931U9hweCKjfS36MXcLi6XceX6E-t3Fk6MGdwb_z-4_TyFy2cIu4 | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELaqcigXBC2PAAUjIU5sE3vttX2MIqoAbS-0Um_W-hGxVboJJTnkwm9nxrubNkXNgat3VrI9s-P51jPfEPJRi6jKQrrM-YHOBI8yM14jbaVizkHMW6bWCadnxfhCfLuUlztk1NXCYFpl6_sbn568dTvSb3ezP6-q_g-8ncTm3xzslHMDfviRkFwhAjv6c5vnwbhq6uFEkaF4Rz2UkrxW2KcZUCLHkaMBEw8dT_-Gn_ezKO8cS8dPyZM2nqTDZsrPyE6s98nBsAYsfb2in2jK8Ey_zvfJ3qjr7nZA3HCB9cgUYlYf6TWm5WGBygoH6K9lWafiM3CFdHm3_IXOJnSOiTAhZoDmwS4CnVbzKlBXTUsI3-lNTM11QPY5uTj-cj4aZ22_hcwDSFtkygFSDkUxEc77qKSRPnjlS5ZrBcvU0ekgA36yLugAwg5ih1Ayn5uiHESTvyC79ayOrwg1LCrjA5t4AxAsMh19QA5SLSWXTuge4d02W9-SkWNPjKntss6ubNKNRd3gIOimRz6vX5o3XBzbxYtOf3bDpCycFttf_NBp24JW8AalrONs-dtyITVAPmbMFpkiB0yHtP098rKxkPVs8xzp2wzvEb1hO2sBJPvefFJXPxPpN-OwkRBbvf7fVb0ne-Pz0xN78vXs-xvymGMZR_qV9JbsLm6W8RCCq4V7lz6ev6zLJIM | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomic+force+microscopy+for+quantitative+understanding+of+peptide-induced+lipid+bilayer+remodeling&rft.jtitle=Methods+%28San+Diego%2C+Calif.%29&rft.au=Schaefer%2C+K.G.&rft.au=Pittman%2C+A.E.&rft.au=Barrera%2C+F.N.&rft.au=King%2C+G.M.&rft.date=2022-01-01&rft.issn=1046-2023&rft.volume=197&rft.spage=20&rft.epage=29&rft_id=info:doi/10.1016%2Fj.ymeth.2020.10.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ymeth_2020_10_014 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1046-2023&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1046-2023&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1046-2023&client=summon |