Microscopic Control and Detection of Ultracold Strontium in Optical-Tweezer Arrays
Optical tweezers provide a versatile platform for the manipulation and detection of single atoms. Here, we use optical tweezers to demonstrate a set of tools for the microscopic control of atomic strontium, which has two valence electrons. Compared to the single-valence-electron atoms typically used...
Saved in:
Published in | Physical review. X Vol. 8; no. 4; p. 041054 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
College Park
American Physical Society
28.12.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 2160-3308 2160-3308 |
DOI | 10.1103/PhysRevX.8.041054 |
Cover
Abstract | Optical tweezers provide a versatile platform for the manipulation and detection of single atoms. Here, we use optical tweezers to demonstrate a set of tools for the microscopic control of atomic strontium, which has two valence electrons. Compared to the single-valence-electron atoms typically used with tweezers, strontium has a more complex internal state structure with a variety of transition wavelengths and linewidths. We report single-atom loading into an array of subwavelength scale optical tweezers and light-shift-free control of a narrow-linewidth optical transition. We use this transition to perform three-dimensional ground-state cooling and to enable high-fidelity nondestructive imaging of single atoms on subwavelength spatial scales. These capabilities, combined with the rich internal structure of strontium, open new possibilities including tweezer-based metrology, new quantum computing architectures, and new paths to low-entropy many-body physics. |
---|---|
AbstractList | Optical tweezers provide a versatile platform for the manipulation and detection of single atoms. Here, we use optical tweezers to demonstrate a set of tools for the microscopic control of atomic strontium, which has two valence electrons. Compared to the single-valence-electron atoms typically used with tweezers, strontium has a more complex internal state structure with a variety of transition wavelengths and linewidths. We report single-atom loading into an array of subwavelength scale optical tweezers and light-shift-free control of a narrow-linewidth optical transition. We use this transition to perform three-dimensional ground-state cooling and to enable high-fidelity nondestructive imaging of single atoms on subwavelength spatial scales. These capabilities, combined with the rich internal structure of strontium, open new possibilities including tweezer-based metrology, new quantum computing architectures, and new paths to low-entropy many-body physics. |
ArticleNumber | 041054 |
Author | Kaufman, A. M. Young, A. W. Norcia, M. A. |
Author_xml | – sequence: 1 givenname: M. A. surname: Norcia fullname: Norcia, M. A. – sequence: 2 givenname: A. W. surname: Young fullname: Young, A. W. – sequence: 3 givenname: A. M. surname: Kaufman fullname: Kaufman, A. M. |
BookMark | eNp1UU1rGzEUFMWFOml-QG6CntfV1652j8ZNWkNCSupAb-LtWymRWa9crZzi_PrIcQIl0HfRQ8zMG2ZOyGQIgyXknLMZ50x-_fmwH2_t4-9ZPWOKs1J9IFPBK1ZIyerJP_sncjaOa5anYlxpPSW31x5jGDFsPdJFGFIMPYWho99ssph8GGhw9K5PETD0Hf2VAUPyuw31A73ZJo_QF6u_1j7ZSOcxwn78TD466Ed79vqekrvLi9XiR3F18325mF8VqFSdCs1KkIhMWNYK3gjXSYUKOq6cVhq6rpFQ8gyVgHXbNgI5AgPN0TbgtJOnZHnU7QKszTb6DcS9CeDNy0eI9wZiNthb41BboSrJm3ykbgW0EgQ6BCm0xvKg9eWotY3hz86OyazDLg7ZvhFlySou60pnlD6iDpGN0TqDPsEhpByP7w1n5tCHeevD1ObYR2byd8w3v__nPAN1FZLD |
CitedBy_id | crossref_primary_10_1103_PhysRevB_99_115114 crossref_primary_10_1103_PhysRevResearch_5_L012033 crossref_primary_10_1088_1361_6455_ab52ef crossref_primary_10_1103_PhysRevLett_132_150606 crossref_primary_10_1103_PhysRevA_101_053624 crossref_primary_10_1103_PhysRevA_104_052813 crossref_primary_10_1126_science_aay0644 crossref_primary_10_1088_1367_2630_ab31e8 crossref_primary_10_1103_PhysRevA_99_063421 crossref_primary_10_1116_5_0036562 crossref_primary_10_1088_2058_9565_aaf6ce crossref_primary_10_1103_PhysRevLett_133_073603 crossref_primary_10_1103_PhysRevResearch_5_043178 crossref_primary_10_1103_PhysRevResearch_6_023206 crossref_primary_10_1103_PhysRevLett_125_200506 crossref_primary_10_1103_PhysRevX_10_021054 crossref_primary_10_1103_PhysRevResearch_5_043175 crossref_primary_10_1103_PhysRevResearch_2_043315 crossref_primary_10_1103_PhysRevResearch_4_023207 crossref_primary_10_1103_PhysRevA_103_012415 crossref_primary_10_1103_PhysRevLett_123_130402 crossref_primary_10_1103_PhysRevResearch_3_013113 crossref_primary_10_1103_PhysRevA_105_052438 crossref_primary_10_1103_PhysRevApplied_11_034044 crossref_primary_10_1103_PhysRevResearch_4_033087 crossref_primary_10_1103_PhysRevX_10_021057 crossref_primary_10_1103_PRXQuantum_4_020336 crossref_primary_10_1103_PhysRevLett_133_013401 crossref_primary_10_1364_OE_388809 crossref_primary_10_1103_PhysRevB_104_245429 crossref_primary_10_1103_PhysRevA_100_052314 crossref_primary_10_1364_OE_443257 crossref_primary_10_1103_PhysRevX_8_041055 crossref_primary_10_1103_PhysRevA_110_033103 crossref_primary_10_21468_SciPostPhys_8_3_038 crossref_primary_10_1103_PhysRevResearch_2_013244 crossref_primary_10_20935_AcadQuant7467 crossref_primary_10_7498_aps_69_20200649 crossref_primary_10_1103_PhysRevLett_122_173201 crossref_primary_10_1103_PRXQuantum_2_030322 crossref_primary_10_21468_SciPostPhys_10_3_052 crossref_primary_10_1103_PhysRevB_109_214204 crossref_primary_10_1103_PhysRevA_110_063701 crossref_primary_10_1103_PhysRevResearch_4_033019 crossref_primary_10_1126_science_abo0608 crossref_primary_10_1103_PhysRevA_110_032819 crossref_primary_10_1103_PhysRevA_99_013624 crossref_primary_10_1364_PRJ_471547 crossref_primary_10_1103_PhysRevA_109_063105 crossref_primary_10_1103_PhysRevLett_133_223402 crossref_primary_10_1103_PhysRevResearch_3_043154 crossref_primary_10_1103_PRXQuantum_2_040345 crossref_primary_10_1103_PhysRevLett_129_150604 crossref_primary_10_1103_PhysRevLett_128_223202 crossref_primary_10_1103_PhysRevA_100_032320 crossref_primary_10_1103_PhysRevResearch_5_013219 crossref_primary_10_1126_science_adf4272 crossref_primary_10_1103_PhysRevLett_131_053202 crossref_primary_10_1364_OL_397993 crossref_primary_10_1364_JOSAB_504629 crossref_primary_10_1103_PhysRevResearch_7_013031 crossref_primary_10_1103_PhysRevX_14_021024 crossref_primary_10_1103_PRXQuantum_5_010344 crossref_primary_10_1364_OE_437396 crossref_primary_10_1103_PhysRevX_13_041035 crossref_primary_10_1103_PhysRevX_13_041034 crossref_primary_10_1103_PhysRevResearch_6_033282 crossref_primary_10_1088_1674_1056_ad84d0 crossref_primary_10_1103_PRXQuantum_3_010347 crossref_primary_10_1103_PhysRevA_101_013804 crossref_primary_10_1103_PhysRevA_106_033705 crossref_primary_10_1103_PhysRevA_106_053706 crossref_primary_10_1364_OE_423794 crossref_primary_10_1103_PhysRevA_102_053311 crossref_primary_10_1103_PhysRevResearch_5_033036 crossref_primary_10_1364_OE_538922 crossref_primary_10_1038_d41586_019_00935_y crossref_primary_10_1103_PhysRevA_105_052224 crossref_primary_10_1103_PhysRevA_107_023102 crossref_primary_10_1103_PhysRevLett_128_033201 crossref_primary_10_7566_JPSJ_94_014301 crossref_primary_10_1103_Physics_11_135 crossref_primary_10_1103_PhysRevX_12_021028 crossref_primary_10_1103_PRXQuantum_1_020302 crossref_primary_10_1103_PhysRevX_12_021027 crossref_primary_10_1103_PhysRevA_110_043116 crossref_primary_10_35848_1882_0786_ac0e16 crossref_primary_10_1103_PhysRevLett_130_193402 crossref_primary_10_1103_PhysRevResearch_4_023245 crossref_primary_10_1103_PhysRevLett_122_143002 crossref_primary_10_31857_S0044451023080060 crossref_primary_10_1103_PhysRevA_104_042422 crossref_primary_10_1103_PhysRevResearch_3_L032033 crossref_primary_10_1103_PRXQuantum_6_010331 crossref_primary_10_1134_S1063776123080162 crossref_primary_10_1103_PhysRevA_109_012613 crossref_primary_10_1088_1367_2630_ab0610 crossref_primary_10_1103_PhysRevA_100_013403 crossref_primary_10_1103_PhysRevA_108_023116 crossref_primary_10_1103_PhysRevResearch_2_013251 crossref_primary_10_1103_PhysRevA_100_041602 crossref_primary_10_1103_PRXQuantum_5_020316 crossref_primary_10_1103_PhysRevLett_125_233201 crossref_primary_10_1103_PhysRevLett_129_120401 crossref_primary_10_1103_PhysRevX_9_041052 crossref_primary_10_1103_PhysRevLett_131_203401 crossref_primary_10_1088_1674_1056_abd744 crossref_primary_10_1103_PhysRevLett_126_153403 crossref_primary_10_1103_PhysRevResearch_6_043106 crossref_primary_10_22331_q_2022_03_03_664 crossref_primary_10_1103_PhysRevX_15_011009 crossref_primary_10_1103_PhysRevResearch_2_013288 crossref_primary_10_1103_PRXQuantum_4_040333 crossref_primary_10_1103_PRXQuantum_3_020327 crossref_primary_10_1103_PhysRevLett_133_123403 crossref_primary_10_1088_1361_648X_adbb9b crossref_primary_10_1103_PhysRevLett_131_166401 crossref_primary_10_1088_2399_6528_acd51d crossref_primary_10_1103_PhysRevLett_125_263001 crossref_primary_10_1103_PhysRevResearch_4_013240 crossref_primary_10_1103_PhysRevA_108_053325 crossref_primary_10_1103_PhysRevResearch_2_023108 crossref_primary_10_1103_PhysRevResearch_5_033093 crossref_primary_10_1103_PhysRevLett_123_260505 crossref_primary_10_1103_PhysRevResearch_3_033165 crossref_primary_10_1103_PhysRevResearch_6_013319 crossref_primary_10_1103_PhysRevResearch_3_013178 crossref_primary_10_1103_PhysRevA_103_053304 crossref_primary_10_1103_PhysRevA_109_L021301 crossref_primary_10_1103_PhysRevLett_128_101301 |
Cites_doi | 10.1038/s41586-018-0450-2 10.1103/PhysRevLett.75.4011 10.1103/RevModPhys.75.281 10.1103/PhysRevA.84.032322 10.1126/science.1250057 10.1038/nphoton.2015.5 10.1103/PhysRevLett.107.165301 10.1103/PhysRevLett.120.243201 10.1103/RevModPhys.56.755 10.1038/nature24622 10.1103/PhysRevLett.91.053001 10.1103/PhysRevLett.115.263001 10.1038/nature09827 10.1126/science.1260364 10.1088/1367-2630/18/2/023016 10.1038/nature22338 10.1103/PhysRevX.8.041055 10.1038/nature22362 10.1103/PhysRevX.7.041063 10.1126/science.aah3752 10.1088/1367-2630/aaa950 10.1038/nature23458 10.1103/RevModPhys.82.2313 10.1080/00018732.2014.933502 10.1126/science.1148259 10.1038/nature18274 10.1038/nature12941 10.1038/35082512 10.1038/nature10748 10.1103/PhysRevA.92.040501 10.1126/science.aad9041 10.1103/RevModPhys.80.885 10.1103/PhysRevLett.112.103601 10.1103/RevModPhys.87.637 10.1103/PhysRevLett.108.103001 10.1088/0953-4075/44/18/184010 10.1140/epjd/e2013-30729-x 10.1126/science.1192368 10.1103/PhysRevA.96.043626 10.1103/PhysRevLett.103.135301 10.1038/nphoton.2016.231 10.1103/PhysRevLett.114.213002 10.1063/PT.3.3626 10.1103/PhysRevLett.114.100503 10.1103/PhysRevLett.110.253003 10.1126/science.aal3837 10.1103/PhysRevLett.101.170504 10.1103/PhysRevX.6.021030 10.1103/PhysRevA.80.052703 10.1007/s00340-009-3488-x 10.1063/1.3449176 10.1103/PhysRevLett.114.193001 10.1038/nature08482 10.1103/PhysRevLett.116.235301 10.1103/PhysRevLett.110.133001 10.1103/PhysRev.89.472 10.1038/s41586-018-0458-7 10.1103/PhysRevA.82.053624 10.1038/nature15750 10.1126/science.aar7797 10.1038/nature09378 10.1103/PhysRevA.81.023402 10.1126/science.aah3778 10.1088/0953-4075/44/18/184001 10.1103/PhysRevLett.121.225303 10.1103/PhysRevA.97.063423 10.1126/science.aaf6725 10.1103/PhysRevLett.98.070501 10.1103/PhysRevA.81.051603 10.1103/PhysRevLett.121.123603 10.1103/PhysRevX.2.041014 10.1126/science.aam5538 10.1126/science.1154622 10.1103/PhysRevX.8.021070 10.1038/nature08917 10.1103/PhysRevA.81.012115 |
ContentType | Journal Article |
Copyright | 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ L6V M2P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.1103/PhysRevX.8.041054 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Engineering Collection Science Database (via ProQuest SciTech Premium Collection) Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2160-3308 |
ExternalDocumentID | oai_doaj_org_article_fc7e246319d348b2ab3a2cfca3277c5f 10_1103_PhysRevX_8_041054 |
GroupedDBID | 3MX 5VS 88I AAYXX ABJCF ABSSX ABUWG ADBBV AENEX AFGMR AFKRA AGDNE ALMA_UNASSIGNED_HOLDINGS AUAIK AZQEC BCNDV BENPR BGLVJ CCPQU CITATION DWQXO EBS EJD FRP GNUQQ GROUPED_DOAJ HCIFZ KQ8 M2P M7S M~E OK1 PHGZM PHGZT PIMPY PTHSS ROL S7W 3V. 7XB 8FE 8FG 8FK L6V PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c448t-705a3cc02e0b2192fd34c4ad14f747add93a514483ac8bb92c1ca0a71ce9af7f3 |
IEDL.DBID | BENPR |
ISSN | 2160-3308 |
IngestDate | Wed Aug 27 01:31:44 EDT 2025 Fri Jul 25 11:49:27 EDT 2025 Thu Apr 24 23:02:43 EDT 2025 Tue Jul 01 01:33:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c448t-705a3cc02e0b2192fd34c4ad14f747add93a514483ac8bb92c1ca0a71ce9af7f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2550613867?pq-origsite=%requestingapplication%&accountid=15518 |
PQID | 2550613867 |
PQPubID | 5161131 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fc7e246319d348b2ab3a2cfca3277c5f proquest_journals_2550613867 crossref_citationtrail_10_1103_PhysRevX_8_041054 crossref_primary_10_1103_PhysRevX_8_041054 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-28 |
PublicationDateYYYYMMDD | 2018-12-28 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | College Park |
PublicationPlace_xml | – name: College Park |
PublicationTitle | Physical review. X |
PublicationYear | 2018 |
Publisher | American Physical Society |
Publisher_xml | – name: American Physical Society |
References | PhysRevX.8.041054Cc24R1 PhysRevX.8.041054Cc49R1 PhysRevX.8.041054Cc26R1 PhysRevX.8.041054Cc47R1 PhysRevX.8.041054Cc68R1 PhysRevX.8.041054Cc28R1 PhysRevX.8.041054Cc52R1 PhysRevX.8.041054Cc75R1 PhysRevX.8.041054Cc50R1 PhysRevX.8.041054Cc77R1 PhysRevX.8.041054Cc10R1 PhysRevX.8.041054Cc33R1 PhysRevX.8.041054Cc56R1 PhysRevX.8.041054Cc12R1 PhysRevX.8.041054Cc31R1 PhysRevX.8.041054Cc54R1 PhysRevX.8.041054Cc73R1 PhysRevX.8.041054Cc14R1 PhysRevX.8.041054Cc37R1 PhysRevX.8.041054Cc16R1 PhysRevX.8.041054Cc35R1 PhysRevX.8.041054Cc58R1 PhysRevX.8.041054Cc18R1 PhysRevX.8.041054Cc79R1 PhysRevX.8.041054Cc39R1 PhysRevX.8.041054Cc40R1 PhysRevX.8.041054Cc63R1 PhysRevX.8.041054Cc61R1 PhysRevX.8.041054Cc21R1 PhysRevX.8.041054Cc44R1 PhysRevX.8.041054Cc67R1 PhysRevX.8.041054Cc82R1 PhysRevX.8.041054Cc23R1 PhysRevX.8.041054Cc42R1 PhysRevX.8.041054Cc65R1 PhysRevX.8.041054Cc8R1 PhysRevX.8.041054Cc6R1 PhysRevX.8.041054Cc80R1 PhysRevX.8.041054Cc4R1 PhysRevX.8.041054Cc2R1 PhysRevX.8.041054Cc25R1 PhysRevX.8.041054Cc48R1 PhysRevX.8.041054Cc27R1 PhysRevX.8.041054Cc46R1 PhysRevX.8.041054Cc69R1 PhysRevX.8.041054Cc29R1 PhysRevX.8.041054Cc51R1 PhysRevX.8.041054Cc76R1 PhysRevX.8.041054Cc34R1 PhysRevX.8.041054Cc55R1 PhysRevX.8.041054Cc72R1 PhysRevX.8.041054Cc11R1 PhysRevX.8.041054Cc32R1 PhysRevX.8.041054Cc53R1 PhysRevX.8.041054Cc74R1 PhysRevX.8.041054Cc70R1 PhysRevX.8.041054Cc13R1 PhysRevX.8.041054Cc38R1 PhysRevX.8.041054Cc59R1 PhysRevX.8.041054Cc15R1 PhysRevX.8.041054Cc36R1 PhysRevX.8.041054Cc57R1 PhysRevX.8.041054Cc17R1 PhysRevX.8.041054Cc19R1 PhysRevX.8.041054Cc41R1 PhysRevX.8.041054Cc20R1 PhysRevX.8.041054Cc45R1 PhysRevX.8.041054Cc66R1 PhysRevX.8.041054Cc9R1 PhysRevX.8.041054Cc22R1 PhysRevX.8.041054Cc43R1 PhysRevX.8.041054Cc7R1 PhysRevX.8.041054Cc5R1 PhysRevX.8.041054Cc81R1 PhysRevX.8.041054Cc3R1 PhysRevX.8.041054Cc1R1 |
References_xml | – ident: PhysRevX.8.041054Cc17R1 doi: 10.1038/s41586-018-0450-2 – ident: PhysRevX.8.041054Cc68R1 doi: 10.1103/PhysRevLett.75.4011 – ident: PhysRevX.8.041054Cc70R1 doi: 10.1103/RevModPhys.75.281 – ident: PhysRevX.8.041054Cc29R1 doi: 10.1103/PhysRevA.84.032322 – ident: PhysRevX.8.041054Cc13R1 doi: 10.1126/science.1250057 – ident: PhysRevX.8.041054Cc36R1 doi: 10.1038/nphoton.2015.5 – ident: PhysRevX.8.041054Cc58R1 doi: 10.1103/PhysRevLett.107.165301 – ident: PhysRevX.8.041054Cc59R1 doi: 10.1103/PhysRevLett.120.243201 – ident: PhysRevX.8.041054Cc42R1 doi: 10.1103/RevModPhys.56.755 – ident: PhysRevX.8.041054Cc19R1 doi: 10.1038/nature24622 – ident: PhysRevX.8.041054Cc55R1 doi: 10.1103/PhysRevLett.91.053001 – ident: PhysRevX.8.041054Cc25R1 doi: 10.1103/PhysRevLett.115.263001 – ident: PhysRevX.8.041054Cc11R1 doi: 10.1038/nature09827 – ident: PhysRevX.8.041054Cc12R1 doi: 10.1126/science.1260364 – ident: PhysRevX.8.041054Cc38R1 doi: 10.1088/1367-2630/18/2/023016 – ident: PhysRevX.8.041054Cc40R1 doi: 10.1038/nature22338 – ident: PhysRevX.8.041054Cc77R1 doi: 10.1103/PhysRevX.8.041055 – ident: PhysRevX.8.041054Cc10R1 doi: 10.1038/nature22362 – ident: PhysRevX.8.041054Cc76R1 doi: 10.1103/PhysRevX.7.041063 – ident: PhysRevX.8.041054Cc15R1 doi: 10.1126/science.aah3752 – ident: PhysRevX.8.041054Cc63R1 doi: 10.1088/1367-2630/aaa950 – ident: PhysRevX.8.041054Cc61R1 doi: 10.1038/nature23458 – ident: PhysRevX.8.041054Cc56R1 doi: 10.1103/RevModPhys.82.2313 – ident: PhysRevX.8.041054Cc80R1 doi: 10.1080/00018732.2014.933502 – ident: PhysRevX.8.041054Cc65R1 doi: 10.1126/science.1148259 – ident: PhysRevX.8.041054Cc50R1 doi: 10.1038/nature18274 – ident: PhysRevX.8.041054Cc74R1 doi: 10.1038/nature12941 – ident: PhysRevX.8.041054Cc5R1 doi: 10.1038/35082512 – ident: PhysRevX.8.041054Cc7R1 doi: 10.1038/nature10748 – ident: PhysRevX.8.041054Cc79R1 doi: 10.1103/PhysRevA.92.040501 – ident: PhysRevX.8.041054Cc26R1 doi: 10.1126/science.aad9041 – ident: PhysRevX.8.041054Cc2R1 doi: 10.1103/RevModPhys.80.885 – ident: PhysRevX.8.041054Cc51R1 doi: 10.1103/PhysRevLett.112.103601 – ident: PhysRevX.8.041054Cc3R1 doi: 10.1103/RevModPhys.87.637 – ident: PhysRevX.8.041054Cc23R1 doi: 10.1103/PhysRevLett.108.103001 – ident: PhysRevX.8.041054Cc47R1 doi: 10.1088/0953-4075/44/18/184010 – ident: PhysRevX.8.041054Cc81R1 doi: 10.1140/epjd/e2013-30729-x – ident: PhysRevX.8.041054Cc22R1 doi: 10.1126/science.1192368 – ident: PhysRevX.8.041054Cc39R1 doi: 10.1103/PhysRevA.96.043626 – ident: PhysRevX.8.041054Cc32R1 doi: 10.1103/PhysRevLett.103.135301 – ident: PhysRevX.8.041054Cc35R1 doi: 10.1038/nphoton.2016.231 – ident: PhysRevX.8.041054Cc72R1 doi: 10.1103/PhysRevLett.114.213002 – ident: PhysRevX.8.041054Cc1R1 doi: 10.1063/PT.3.3626 – ident: PhysRevX.8.041054Cc8R1 doi: 10.1103/PhysRevLett.114.100503 – ident: PhysRevX.8.041054Cc49R1 doi: 10.1103/PhysRevLett.110.253003 – ident: PhysRevX.8.041054Cc4R1 doi: 10.1126/science.aal3837 – ident: PhysRevX.8.041054Cc28R1 doi: 10.1103/PhysRevLett.101.170504 – ident: PhysRevX.8.041054Cc45R1 doi: 10.1103/PhysRevX.6.021030 – ident: PhysRevX.8.041054Cc54R1 doi: 10.1103/PhysRevA.80.052703 – ident: PhysRevX.8.041054Cc37R1 doi: 10.1007/s00340-009-3488-x – ident: PhysRevX.8.041054Cc66R1 doi: 10.1063/1.3449176 – ident: PhysRevX.8.041054Cc52R1 doi: 10.1103/PhysRevLett.114.193001 – ident: PhysRevX.8.041054Cc6R1 doi: 10.1038/nature08482 – ident: PhysRevX.8.041054Cc27R1 doi: 10.1103/PhysRevLett.116.235301 – ident: PhysRevX.8.041054Cc67R1 doi: 10.1103/PhysRevLett.110.133001 – ident: PhysRevX.8.041054Cc69R1 doi: 10.1103/PhysRev.89.472 – ident: PhysRevX.8.041054Cc16R1 doi: 10.1038/s41586-018-0458-7 – ident: PhysRevX.8.041054Cc31R1 doi: 10.1103/PhysRevA.82.053624 – ident: PhysRevX.8.041054Cc18R1 doi: 10.1038/nature15750 – ident: PhysRevX.8.041054Cc41R1 doi: 10.1126/science.aar7797 – ident: PhysRevX.8.041054Cc21R1 doi: 10.1038/nature09378 – ident: PhysRevX.8.041054Cc73R1 doi: 10.1103/PhysRevA.81.023402 – ident: PhysRevX.8.041054Cc14R1 doi: 10.1126/science.aah3778 – ident: PhysRevX.8.041054Cc48R1 doi: 10.1088/0953-4075/44/18/184001 – ident: PhysRevX.8.041054Cc33R1 doi: 10.1103/PhysRevLett.121.225303 – ident: PhysRevX.8.041054Cc53R1 doi: 10.1103/PhysRevA.97.063423 – ident: PhysRevX.8.041054Cc9R1 doi: 10.1126/science.aaf6725 – ident: PhysRevX.8.041054Cc46R1 doi: 10.1103/PhysRevLett.98.070501 – ident: PhysRevX.8.041054Cc43R1 doi: 10.1103/PhysRevA.81.051603 – ident: PhysRevX.8.041054Cc57R1 doi: 10.1103/PhysRevLett.121.123603 – ident: PhysRevX.8.041054Cc24R1 doi: 10.1103/PhysRevX.2.041014 – ident: PhysRevX.8.041054Cc34R1 doi: 10.1126/science.aam5538 – ident: PhysRevX.8.041054Cc75R1 doi: 10.1126/science.1154622 – ident: PhysRevX.8.041054Cc20R1 doi: 10.1103/PhysRevX.8.021070 – ident: PhysRevX.8.041054Cc44R1 doi: 10.1038/nature08917 – ident: PhysRevX.8.041054Cc82R1 doi: 10.1103/PhysRevA.81.012115 |
SSID | ssj0000601477 |
Score | 2.6208007 |
Snippet | Optical tweezers provide a versatile platform for the manipulation and detection of single atoms. Here, we use optical tweezers to demonstrate a set of tools... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 041054 |
SubjectTerms | Accuracy Arrays Clockwork Cooling Electrons Ground state Numerical aperture Optical transition Quantum computing Robustness (mathematics) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1dSwQhFJUIgl6iT9q-8KGnYDZH3VEf-ySCCrZd2DfRq8JCTbE7FfXr05nZ2AjqpddBcTjXuZ7rHI8IHeYucngnQlZwJTOu8pApq4os9JxylDrlVTqcfHNbXA359ag3mrvqK2nCGnvgBrjjAMJTXsSZ4hiXlhrLDIUAhlEhoBdS9iWKzBVTTQ6O1F-I9jdmTthxElT2_euoK7skSRv5t4Wo9uv_kY7rNeZyFa205BCfNC-1hhZ8uY6WapEmTDdQ_yap59I5kjHgs0Zjjk3p8LmvakVViZ8CHj5Uk-RF7fB92uauxi-PeFziu-d61zobvHn_4SdxkIl5n26i4eXF4Owqa-9EyCAWUlUmSM8wAEI9sTHZ0BBRAW5czkMsDGKyUsxEDsQlMyCtVRRyMMSIHLwyQQS2hRbLp9JvI2wdeOC5sBFfbmIH6g3JnQyUGB4k7yAyA0hDaxie7q140HXhQJieYaqlbjDtoKOvLs-NW8ZvjU8T6l8Nk9F1_SCGX7fh13-Fv4P2ZjHT7dc31bFMSjRFFmLnP8bYRcuRJskkYqFyDy1Wkxe_H6lIZQ_qWfcJFWTfHA priority: 102 providerName: Directory of Open Access Journals |
Title | Microscopic Control and Detection of Ultracold Strontium in Optical-Tweezer Arrays |
URI | https://www.proquest.com/docview/2550613867 https://doaj.org/article/fc7e246319d348b2ab3a2cfca3277c5f |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9swFD60KYO9jO7GsnVBD3saqJVl2ZIexmi7ZmXQbGQN5E3IupRA52SOu7H--kqKnVEKfbUlLB9J37no0zkAHzIbbHjLPS6ZFJjJzGNZyRL7wkpLqZVOxsvJF5PyfMa-zYv5Dkz6uzCRVtljYgJquzQxRn4UTN-oekTJP69-41g1Kp6u9iU0dFdawX5KKcZ2YS9AckEGsHdyNvkx3UZdYvYRxnl3vJmR_CgSLafuz_xQHJJIeWT3FFTK4_8AppPuGe_Ds85oRMebWX4OO65-AU8SedOsX8L0IrLq4v2ShUGnG-450rVFX1ybmFY1Wno0u26bmKPaop8x_N0ubn6hRY2-r1I0G1_-de7WNeEjjf63fgWz8dnl6TnuaiVgExysFnNS6NwYQh2pAghRb3NmmLYZ88FhCCAmcx1sIyZybURVSWoyo4nmmXFSe-7z1zCol7V7A6iyxhmW8coF1a9DB-o0yazwlGjmBRsC6QWkTJdIPNazuFbJoSC56mWqhNrIdAgft11WmywajzU-iVLfNowJsNODZXOluv2kvOFheGUAkPCjoqK6CuM03uiccm4KP4SDfs5UtyvX6v8aevv463fwNBhGItJWqDiAQdvcuPfB-GirEeyK8ddRt65GyYW_A2pJ3jo |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKgQXxFOkFPABLkjber3O2j5UiL6U0iagkEi5uX6iSGWTbrZU5cfx2xhvdoMQUm-97tr7GI_Hn8ffzCD0LnWA4R0PSc6kSJhMQyKNzJPQc9JR6qSXMTh5MMz7E_Z52ptuoN9tLEykVbY2sTbUbm6jj3wXoG9cekTOPy4uk1g1Kp6utiU0dFNawe3VKcaawI5Tf3MNW7jl3skhjPd7So-Pxgf9pKkykFjYmlQJJz2dWUuoJwamLw0uY5Zpl7IAUBumv8w0oAomMm2FMZLa1GqieWq91IGHDJ57D22y6EDpoM39o-HX0drLE7OdMM6b49SUZLuR2DnyP6c7YodEiiX7Z0Gs6wb8tyzUa93xY_SoAan400qrnqANXzxF92uyqF0-Q6NBZPHFeJaZxQcrrjvWhcOHvqqZXQWeBzy5qMqYE9vhb9HdXs2ufuBZgb8sau95Mr72_pcv4SWlvlk-R5M7kdoL1CnmhX-JsHHWW5Zy4wFqaOhAvSapE4ESzYJgXURaASnbJC6P9TMuVL2BIZlqZaqEWsm0iz6suyxWWTtua7wfpb5uGBNu1xfm5XfVzF8VLIfPy8FgwY8KQ7WB77TB6oxybnuhi7bbMVONFViqvzq7dfvtt-hBfzw4U2cnw9NX6CGAMhEpM1Rso05VXvnXAHwq86bRLozO71qh_wDs0Bpp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microscopic+Control+and+Detection+of+Ultracold+Strontium+in+Optical-Tweezer+Arrays&rft.jtitle=Physical+review.+X&rft.au=Norcia%2C+M.%E2%80%89A.&rft.au=Young%2C+A.%E2%80%89W.&rft.au=Kaufman%2C+A.%E2%80%89M.&rft.date=2018-12-28&rft.issn=2160-3308&rft.eissn=2160-3308&rft.volume=8&rft.issue=4&rft_id=info:doi/10.1103%2FPhysRevX.8.041054&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PhysRevX_8_041054 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-3308&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-3308&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-3308&client=summon |