Microscopic Control and Detection of Ultracold Strontium in Optical-Tweezer Arrays

Optical tweezers provide a versatile platform for the manipulation and detection of single atoms. Here, we use optical tweezers to demonstrate a set of tools for the microscopic control of atomic strontium, which has two valence electrons. Compared to the single-valence-electron atoms typically used...

Full description

Saved in:
Bibliographic Details
Published inPhysical review. X Vol. 8; no. 4; p. 041054
Main Authors Norcia, M. A., Young, A. W., Kaufman, A. M.
Format Journal Article
LanguageEnglish
Published College Park American Physical Society 28.12.2018
Subjects
Online AccessGet full text
ISSN2160-3308
2160-3308
DOI10.1103/PhysRevX.8.041054

Cover

Abstract Optical tweezers provide a versatile platform for the manipulation and detection of single atoms. Here, we use optical tweezers to demonstrate a set of tools for the microscopic control of atomic strontium, which has two valence electrons. Compared to the single-valence-electron atoms typically used with tweezers, strontium has a more complex internal state structure with a variety of transition wavelengths and linewidths. We report single-atom loading into an array of subwavelength scale optical tweezers and light-shift-free control of a narrow-linewidth optical transition. We use this transition to perform three-dimensional ground-state cooling and to enable high-fidelity nondestructive imaging of single atoms on subwavelength spatial scales. These capabilities, combined with the rich internal structure of strontium, open new possibilities including tweezer-based metrology, new quantum computing architectures, and new paths to low-entropy many-body physics.
AbstractList Optical tweezers provide a versatile platform for the manipulation and detection of single atoms. Here, we use optical tweezers to demonstrate a set of tools for the microscopic control of atomic strontium, which has two valence electrons. Compared to the single-valence-electron atoms typically used with tweezers, strontium has a more complex internal state structure with a variety of transition wavelengths and linewidths. We report single-atom loading into an array of subwavelength scale optical tweezers and light-shift-free control of a narrow-linewidth optical transition. We use this transition to perform three-dimensional ground-state cooling and to enable high-fidelity nondestructive imaging of single atoms on subwavelength spatial scales. These capabilities, combined with the rich internal structure of strontium, open new possibilities including tweezer-based metrology, new quantum computing architectures, and new paths to low-entropy many-body physics.
ArticleNumber 041054
Author Kaufman, A. M.
Young, A. W.
Norcia, M. A.
Author_xml – sequence: 1
  givenname: M. A.
  surname: Norcia
  fullname: Norcia, M. A.
– sequence: 2
  givenname: A. W.
  surname: Young
  fullname: Young, A. W.
– sequence: 3
  givenname: A. M.
  surname: Kaufman
  fullname: Kaufman, A. M.
BookMark eNp1UU1rGzEUFMWFOml-QG6CntfV1652j8ZNWkNCSupAb-LtWymRWa9crZzi_PrIcQIl0HfRQ8zMG2ZOyGQIgyXknLMZ50x-_fmwH2_t4-9ZPWOKs1J9IFPBK1ZIyerJP_sncjaOa5anYlxpPSW31x5jGDFsPdJFGFIMPYWho99ssph8GGhw9K5PETD0Hf2VAUPyuw31A73ZJo_QF6u_1j7ZSOcxwn78TD466Ed79vqekrvLi9XiR3F18325mF8VqFSdCs1KkIhMWNYK3gjXSYUKOq6cVhq6rpFQ8gyVgHXbNgI5AgPN0TbgtJOnZHnU7QKszTb6DcS9CeDNy0eI9wZiNthb41BboSrJm3ykbgW0EgQ6BCm0xvKg9eWotY3hz86OyazDLg7ZvhFlySou60pnlD6iDpGN0TqDPsEhpByP7w1n5tCHeevD1ObYR2byd8w3v__nPAN1FZLD
CitedBy_id crossref_primary_10_1103_PhysRevB_99_115114
crossref_primary_10_1103_PhysRevResearch_5_L012033
crossref_primary_10_1088_1361_6455_ab52ef
crossref_primary_10_1103_PhysRevLett_132_150606
crossref_primary_10_1103_PhysRevA_101_053624
crossref_primary_10_1103_PhysRevA_104_052813
crossref_primary_10_1126_science_aay0644
crossref_primary_10_1088_1367_2630_ab31e8
crossref_primary_10_1103_PhysRevA_99_063421
crossref_primary_10_1116_5_0036562
crossref_primary_10_1088_2058_9565_aaf6ce
crossref_primary_10_1103_PhysRevLett_133_073603
crossref_primary_10_1103_PhysRevResearch_5_043178
crossref_primary_10_1103_PhysRevResearch_6_023206
crossref_primary_10_1103_PhysRevLett_125_200506
crossref_primary_10_1103_PhysRevX_10_021054
crossref_primary_10_1103_PhysRevResearch_5_043175
crossref_primary_10_1103_PhysRevResearch_2_043315
crossref_primary_10_1103_PhysRevResearch_4_023207
crossref_primary_10_1103_PhysRevA_103_012415
crossref_primary_10_1103_PhysRevLett_123_130402
crossref_primary_10_1103_PhysRevResearch_3_013113
crossref_primary_10_1103_PhysRevA_105_052438
crossref_primary_10_1103_PhysRevApplied_11_034044
crossref_primary_10_1103_PhysRevResearch_4_033087
crossref_primary_10_1103_PhysRevX_10_021057
crossref_primary_10_1103_PRXQuantum_4_020336
crossref_primary_10_1103_PhysRevLett_133_013401
crossref_primary_10_1364_OE_388809
crossref_primary_10_1103_PhysRevB_104_245429
crossref_primary_10_1103_PhysRevA_100_052314
crossref_primary_10_1364_OE_443257
crossref_primary_10_1103_PhysRevX_8_041055
crossref_primary_10_1103_PhysRevA_110_033103
crossref_primary_10_21468_SciPostPhys_8_3_038
crossref_primary_10_1103_PhysRevResearch_2_013244
crossref_primary_10_20935_AcadQuant7467
crossref_primary_10_7498_aps_69_20200649
crossref_primary_10_1103_PhysRevLett_122_173201
crossref_primary_10_1103_PRXQuantum_2_030322
crossref_primary_10_21468_SciPostPhys_10_3_052
crossref_primary_10_1103_PhysRevB_109_214204
crossref_primary_10_1103_PhysRevA_110_063701
crossref_primary_10_1103_PhysRevResearch_4_033019
crossref_primary_10_1126_science_abo0608
crossref_primary_10_1103_PhysRevA_110_032819
crossref_primary_10_1103_PhysRevA_99_013624
crossref_primary_10_1364_PRJ_471547
crossref_primary_10_1103_PhysRevA_109_063105
crossref_primary_10_1103_PhysRevLett_133_223402
crossref_primary_10_1103_PhysRevResearch_3_043154
crossref_primary_10_1103_PRXQuantum_2_040345
crossref_primary_10_1103_PhysRevLett_129_150604
crossref_primary_10_1103_PhysRevLett_128_223202
crossref_primary_10_1103_PhysRevA_100_032320
crossref_primary_10_1103_PhysRevResearch_5_013219
crossref_primary_10_1126_science_adf4272
crossref_primary_10_1103_PhysRevLett_131_053202
crossref_primary_10_1364_OL_397993
crossref_primary_10_1364_JOSAB_504629
crossref_primary_10_1103_PhysRevResearch_7_013031
crossref_primary_10_1103_PhysRevX_14_021024
crossref_primary_10_1103_PRXQuantum_5_010344
crossref_primary_10_1364_OE_437396
crossref_primary_10_1103_PhysRevX_13_041035
crossref_primary_10_1103_PhysRevX_13_041034
crossref_primary_10_1103_PhysRevResearch_6_033282
crossref_primary_10_1088_1674_1056_ad84d0
crossref_primary_10_1103_PRXQuantum_3_010347
crossref_primary_10_1103_PhysRevA_101_013804
crossref_primary_10_1103_PhysRevA_106_033705
crossref_primary_10_1103_PhysRevA_106_053706
crossref_primary_10_1364_OE_423794
crossref_primary_10_1103_PhysRevA_102_053311
crossref_primary_10_1103_PhysRevResearch_5_033036
crossref_primary_10_1364_OE_538922
crossref_primary_10_1038_d41586_019_00935_y
crossref_primary_10_1103_PhysRevA_105_052224
crossref_primary_10_1103_PhysRevA_107_023102
crossref_primary_10_1103_PhysRevLett_128_033201
crossref_primary_10_7566_JPSJ_94_014301
crossref_primary_10_1103_Physics_11_135
crossref_primary_10_1103_PhysRevX_12_021028
crossref_primary_10_1103_PRXQuantum_1_020302
crossref_primary_10_1103_PhysRevX_12_021027
crossref_primary_10_1103_PhysRevA_110_043116
crossref_primary_10_35848_1882_0786_ac0e16
crossref_primary_10_1103_PhysRevLett_130_193402
crossref_primary_10_1103_PhysRevResearch_4_023245
crossref_primary_10_1103_PhysRevLett_122_143002
crossref_primary_10_31857_S0044451023080060
crossref_primary_10_1103_PhysRevA_104_042422
crossref_primary_10_1103_PhysRevResearch_3_L032033
crossref_primary_10_1103_PRXQuantum_6_010331
crossref_primary_10_1134_S1063776123080162
crossref_primary_10_1103_PhysRevA_109_012613
crossref_primary_10_1088_1367_2630_ab0610
crossref_primary_10_1103_PhysRevA_100_013403
crossref_primary_10_1103_PhysRevA_108_023116
crossref_primary_10_1103_PhysRevResearch_2_013251
crossref_primary_10_1103_PhysRevA_100_041602
crossref_primary_10_1103_PRXQuantum_5_020316
crossref_primary_10_1103_PhysRevLett_125_233201
crossref_primary_10_1103_PhysRevLett_129_120401
crossref_primary_10_1103_PhysRevX_9_041052
crossref_primary_10_1103_PhysRevLett_131_203401
crossref_primary_10_1088_1674_1056_abd744
crossref_primary_10_1103_PhysRevLett_126_153403
crossref_primary_10_1103_PhysRevResearch_6_043106
crossref_primary_10_22331_q_2022_03_03_664
crossref_primary_10_1103_PhysRevX_15_011009
crossref_primary_10_1103_PhysRevResearch_2_013288
crossref_primary_10_1103_PRXQuantum_4_040333
crossref_primary_10_1103_PRXQuantum_3_020327
crossref_primary_10_1103_PhysRevLett_133_123403
crossref_primary_10_1088_1361_648X_adbb9b
crossref_primary_10_1103_PhysRevLett_131_166401
crossref_primary_10_1088_2399_6528_acd51d
crossref_primary_10_1103_PhysRevLett_125_263001
crossref_primary_10_1103_PhysRevResearch_4_013240
crossref_primary_10_1103_PhysRevA_108_053325
crossref_primary_10_1103_PhysRevResearch_2_023108
crossref_primary_10_1103_PhysRevResearch_5_033093
crossref_primary_10_1103_PhysRevLett_123_260505
crossref_primary_10_1103_PhysRevResearch_3_033165
crossref_primary_10_1103_PhysRevResearch_6_013319
crossref_primary_10_1103_PhysRevResearch_3_013178
crossref_primary_10_1103_PhysRevA_103_053304
crossref_primary_10_1103_PhysRevA_109_L021301
crossref_primary_10_1103_PhysRevLett_128_101301
Cites_doi 10.1038/s41586-018-0450-2
10.1103/PhysRevLett.75.4011
10.1103/RevModPhys.75.281
10.1103/PhysRevA.84.032322
10.1126/science.1250057
10.1038/nphoton.2015.5
10.1103/PhysRevLett.107.165301
10.1103/PhysRevLett.120.243201
10.1103/RevModPhys.56.755
10.1038/nature24622
10.1103/PhysRevLett.91.053001
10.1103/PhysRevLett.115.263001
10.1038/nature09827
10.1126/science.1260364
10.1088/1367-2630/18/2/023016
10.1038/nature22338
10.1103/PhysRevX.8.041055
10.1038/nature22362
10.1103/PhysRevX.7.041063
10.1126/science.aah3752
10.1088/1367-2630/aaa950
10.1038/nature23458
10.1103/RevModPhys.82.2313
10.1080/00018732.2014.933502
10.1126/science.1148259
10.1038/nature18274
10.1038/nature12941
10.1038/35082512
10.1038/nature10748
10.1103/PhysRevA.92.040501
10.1126/science.aad9041
10.1103/RevModPhys.80.885
10.1103/PhysRevLett.112.103601
10.1103/RevModPhys.87.637
10.1103/PhysRevLett.108.103001
10.1088/0953-4075/44/18/184010
10.1140/epjd/e2013-30729-x
10.1126/science.1192368
10.1103/PhysRevA.96.043626
10.1103/PhysRevLett.103.135301
10.1038/nphoton.2016.231
10.1103/PhysRevLett.114.213002
10.1063/PT.3.3626
10.1103/PhysRevLett.114.100503
10.1103/PhysRevLett.110.253003
10.1126/science.aal3837
10.1103/PhysRevLett.101.170504
10.1103/PhysRevX.6.021030
10.1103/PhysRevA.80.052703
10.1007/s00340-009-3488-x
10.1063/1.3449176
10.1103/PhysRevLett.114.193001
10.1038/nature08482
10.1103/PhysRevLett.116.235301
10.1103/PhysRevLett.110.133001
10.1103/PhysRev.89.472
10.1038/s41586-018-0458-7
10.1103/PhysRevA.82.053624
10.1038/nature15750
10.1126/science.aar7797
10.1038/nature09378
10.1103/PhysRevA.81.023402
10.1126/science.aah3778
10.1088/0953-4075/44/18/184001
10.1103/PhysRevLett.121.225303
10.1103/PhysRevA.97.063423
10.1126/science.aaf6725
10.1103/PhysRevLett.98.070501
10.1103/PhysRevA.81.051603
10.1103/PhysRevLett.121.123603
10.1103/PhysRevX.2.041014
10.1126/science.aam5538
10.1126/science.1154622
10.1103/PhysRevX.8.021070
10.1038/nature08917
10.1103/PhysRevA.81.012115
ContentType Journal Article
Copyright 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M2P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.1103/PhysRevX.8.041054
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Engineering Collection
Science Database (via ProQuest SciTech Premium Collection)
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2160-3308
ExternalDocumentID oai_doaj_org_article_fc7e246319d348b2ab3a2cfca3277c5f
10_1103_PhysRevX_8_041054
GroupedDBID 3MX
5VS
88I
AAYXX
ABJCF
ABSSX
ABUWG
ADBBV
AENEX
AFGMR
AFKRA
AGDNE
ALMA_UNASSIGNED_HOLDINGS
AUAIK
AZQEC
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
EBS
EJD
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
KQ8
M2P
M7S
M~E
OK1
PHGZM
PHGZT
PIMPY
PTHSS
ROL
S7W
3V.
7XB
8FE
8FG
8FK
L6V
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c448t-705a3cc02e0b2192fd34c4ad14f747add93a514483ac8bb92c1ca0a71ce9af7f3
IEDL.DBID BENPR
ISSN 2160-3308
IngestDate Wed Aug 27 01:31:44 EDT 2025
Fri Jul 25 11:49:27 EDT 2025
Thu Apr 24 23:02:43 EDT 2025
Tue Jul 01 01:33:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c448t-705a3cc02e0b2192fd34c4ad14f747add93a514483ac8bb92c1ca0a71ce9af7f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2550613867?pq-origsite=%requestingapplication%&accountid=15518
PQID 2550613867
PQPubID 5161131
ParticipantIDs doaj_primary_oai_doaj_org_article_fc7e246319d348b2ab3a2cfca3277c5f
proquest_journals_2550613867
crossref_citationtrail_10_1103_PhysRevX_8_041054
crossref_primary_10_1103_PhysRevX_8_041054
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-28
PublicationDateYYYYMMDD 2018-12-28
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-28
  day: 28
PublicationDecade 2010
PublicationPlace College Park
PublicationPlace_xml – name: College Park
PublicationTitle Physical review. X
PublicationYear 2018
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References PhysRevX.8.041054Cc24R1
PhysRevX.8.041054Cc49R1
PhysRevX.8.041054Cc26R1
PhysRevX.8.041054Cc47R1
PhysRevX.8.041054Cc68R1
PhysRevX.8.041054Cc28R1
PhysRevX.8.041054Cc52R1
PhysRevX.8.041054Cc75R1
PhysRevX.8.041054Cc50R1
PhysRevX.8.041054Cc77R1
PhysRevX.8.041054Cc10R1
PhysRevX.8.041054Cc33R1
PhysRevX.8.041054Cc56R1
PhysRevX.8.041054Cc12R1
PhysRevX.8.041054Cc31R1
PhysRevX.8.041054Cc54R1
PhysRevX.8.041054Cc73R1
PhysRevX.8.041054Cc14R1
PhysRevX.8.041054Cc37R1
PhysRevX.8.041054Cc16R1
PhysRevX.8.041054Cc35R1
PhysRevX.8.041054Cc58R1
PhysRevX.8.041054Cc18R1
PhysRevX.8.041054Cc79R1
PhysRevX.8.041054Cc39R1
PhysRevX.8.041054Cc40R1
PhysRevX.8.041054Cc63R1
PhysRevX.8.041054Cc61R1
PhysRevX.8.041054Cc21R1
PhysRevX.8.041054Cc44R1
PhysRevX.8.041054Cc67R1
PhysRevX.8.041054Cc82R1
PhysRevX.8.041054Cc23R1
PhysRevX.8.041054Cc42R1
PhysRevX.8.041054Cc65R1
PhysRevX.8.041054Cc8R1
PhysRevX.8.041054Cc6R1
PhysRevX.8.041054Cc80R1
PhysRevX.8.041054Cc4R1
PhysRevX.8.041054Cc2R1
PhysRevX.8.041054Cc25R1
PhysRevX.8.041054Cc48R1
PhysRevX.8.041054Cc27R1
PhysRevX.8.041054Cc46R1
PhysRevX.8.041054Cc69R1
PhysRevX.8.041054Cc29R1
PhysRevX.8.041054Cc51R1
PhysRevX.8.041054Cc76R1
PhysRevX.8.041054Cc34R1
PhysRevX.8.041054Cc55R1
PhysRevX.8.041054Cc72R1
PhysRevX.8.041054Cc11R1
PhysRevX.8.041054Cc32R1
PhysRevX.8.041054Cc53R1
PhysRevX.8.041054Cc74R1
PhysRevX.8.041054Cc70R1
PhysRevX.8.041054Cc13R1
PhysRevX.8.041054Cc38R1
PhysRevX.8.041054Cc59R1
PhysRevX.8.041054Cc15R1
PhysRevX.8.041054Cc36R1
PhysRevX.8.041054Cc57R1
PhysRevX.8.041054Cc17R1
PhysRevX.8.041054Cc19R1
PhysRevX.8.041054Cc41R1
PhysRevX.8.041054Cc20R1
PhysRevX.8.041054Cc45R1
PhysRevX.8.041054Cc66R1
PhysRevX.8.041054Cc9R1
PhysRevX.8.041054Cc22R1
PhysRevX.8.041054Cc43R1
PhysRevX.8.041054Cc7R1
PhysRevX.8.041054Cc5R1
PhysRevX.8.041054Cc81R1
PhysRevX.8.041054Cc3R1
PhysRevX.8.041054Cc1R1
References_xml – ident: PhysRevX.8.041054Cc17R1
  doi: 10.1038/s41586-018-0450-2
– ident: PhysRevX.8.041054Cc68R1
  doi: 10.1103/PhysRevLett.75.4011
– ident: PhysRevX.8.041054Cc70R1
  doi: 10.1103/RevModPhys.75.281
– ident: PhysRevX.8.041054Cc29R1
  doi: 10.1103/PhysRevA.84.032322
– ident: PhysRevX.8.041054Cc13R1
  doi: 10.1126/science.1250057
– ident: PhysRevX.8.041054Cc36R1
  doi: 10.1038/nphoton.2015.5
– ident: PhysRevX.8.041054Cc58R1
  doi: 10.1103/PhysRevLett.107.165301
– ident: PhysRevX.8.041054Cc59R1
  doi: 10.1103/PhysRevLett.120.243201
– ident: PhysRevX.8.041054Cc42R1
  doi: 10.1103/RevModPhys.56.755
– ident: PhysRevX.8.041054Cc19R1
  doi: 10.1038/nature24622
– ident: PhysRevX.8.041054Cc55R1
  doi: 10.1103/PhysRevLett.91.053001
– ident: PhysRevX.8.041054Cc25R1
  doi: 10.1103/PhysRevLett.115.263001
– ident: PhysRevX.8.041054Cc11R1
  doi: 10.1038/nature09827
– ident: PhysRevX.8.041054Cc12R1
  doi: 10.1126/science.1260364
– ident: PhysRevX.8.041054Cc38R1
  doi: 10.1088/1367-2630/18/2/023016
– ident: PhysRevX.8.041054Cc40R1
  doi: 10.1038/nature22338
– ident: PhysRevX.8.041054Cc77R1
  doi: 10.1103/PhysRevX.8.041055
– ident: PhysRevX.8.041054Cc10R1
  doi: 10.1038/nature22362
– ident: PhysRevX.8.041054Cc76R1
  doi: 10.1103/PhysRevX.7.041063
– ident: PhysRevX.8.041054Cc15R1
  doi: 10.1126/science.aah3752
– ident: PhysRevX.8.041054Cc63R1
  doi: 10.1088/1367-2630/aaa950
– ident: PhysRevX.8.041054Cc61R1
  doi: 10.1038/nature23458
– ident: PhysRevX.8.041054Cc56R1
  doi: 10.1103/RevModPhys.82.2313
– ident: PhysRevX.8.041054Cc80R1
  doi: 10.1080/00018732.2014.933502
– ident: PhysRevX.8.041054Cc65R1
  doi: 10.1126/science.1148259
– ident: PhysRevX.8.041054Cc50R1
  doi: 10.1038/nature18274
– ident: PhysRevX.8.041054Cc74R1
  doi: 10.1038/nature12941
– ident: PhysRevX.8.041054Cc5R1
  doi: 10.1038/35082512
– ident: PhysRevX.8.041054Cc7R1
  doi: 10.1038/nature10748
– ident: PhysRevX.8.041054Cc79R1
  doi: 10.1103/PhysRevA.92.040501
– ident: PhysRevX.8.041054Cc26R1
  doi: 10.1126/science.aad9041
– ident: PhysRevX.8.041054Cc2R1
  doi: 10.1103/RevModPhys.80.885
– ident: PhysRevX.8.041054Cc51R1
  doi: 10.1103/PhysRevLett.112.103601
– ident: PhysRevX.8.041054Cc3R1
  doi: 10.1103/RevModPhys.87.637
– ident: PhysRevX.8.041054Cc23R1
  doi: 10.1103/PhysRevLett.108.103001
– ident: PhysRevX.8.041054Cc47R1
  doi: 10.1088/0953-4075/44/18/184010
– ident: PhysRevX.8.041054Cc81R1
  doi: 10.1140/epjd/e2013-30729-x
– ident: PhysRevX.8.041054Cc22R1
  doi: 10.1126/science.1192368
– ident: PhysRevX.8.041054Cc39R1
  doi: 10.1103/PhysRevA.96.043626
– ident: PhysRevX.8.041054Cc32R1
  doi: 10.1103/PhysRevLett.103.135301
– ident: PhysRevX.8.041054Cc35R1
  doi: 10.1038/nphoton.2016.231
– ident: PhysRevX.8.041054Cc72R1
  doi: 10.1103/PhysRevLett.114.213002
– ident: PhysRevX.8.041054Cc1R1
  doi: 10.1063/PT.3.3626
– ident: PhysRevX.8.041054Cc8R1
  doi: 10.1103/PhysRevLett.114.100503
– ident: PhysRevX.8.041054Cc49R1
  doi: 10.1103/PhysRevLett.110.253003
– ident: PhysRevX.8.041054Cc4R1
  doi: 10.1126/science.aal3837
– ident: PhysRevX.8.041054Cc28R1
  doi: 10.1103/PhysRevLett.101.170504
– ident: PhysRevX.8.041054Cc45R1
  doi: 10.1103/PhysRevX.6.021030
– ident: PhysRevX.8.041054Cc54R1
  doi: 10.1103/PhysRevA.80.052703
– ident: PhysRevX.8.041054Cc37R1
  doi: 10.1007/s00340-009-3488-x
– ident: PhysRevX.8.041054Cc66R1
  doi: 10.1063/1.3449176
– ident: PhysRevX.8.041054Cc52R1
  doi: 10.1103/PhysRevLett.114.193001
– ident: PhysRevX.8.041054Cc6R1
  doi: 10.1038/nature08482
– ident: PhysRevX.8.041054Cc27R1
  doi: 10.1103/PhysRevLett.116.235301
– ident: PhysRevX.8.041054Cc67R1
  doi: 10.1103/PhysRevLett.110.133001
– ident: PhysRevX.8.041054Cc69R1
  doi: 10.1103/PhysRev.89.472
– ident: PhysRevX.8.041054Cc16R1
  doi: 10.1038/s41586-018-0458-7
– ident: PhysRevX.8.041054Cc31R1
  doi: 10.1103/PhysRevA.82.053624
– ident: PhysRevX.8.041054Cc18R1
  doi: 10.1038/nature15750
– ident: PhysRevX.8.041054Cc41R1
  doi: 10.1126/science.aar7797
– ident: PhysRevX.8.041054Cc21R1
  doi: 10.1038/nature09378
– ident: PhysRevX.8.041054Cc73R1
  doi: 10.1103/PhysRevA.81.023402
– ident: PhysRevX.8.041054Cc14R1
  doi: 10.1126/science.aah3778
– ident: PhysRevX.8.041054Cc48R1
  doi: 10.1088/0953-4075/44/18/184001
– ident: PhysRevX.8.041054Cc33R1
  doi: 10.1103/PhysRevLett.121.225303
– ident: PhysRevX.8.041054Cc53R1
  doi: 10.1103/PhysRevA.97.063423
– ident: PhysRevX.8.041054Cc9R1
  doi: 10.1126/science.aaf6725
– ident: PhysRevX.8.041054Cc46R1
  doi: 10.1103/PhysRevLett.98.070501
– ident: PhysRevX.8.041054Cc43R1
  doi: 10.1103/PhysRevA.81.051603
– ident: PhysRevX.8.041054Cc57R1
  doi: 10.1103/PhysRevLett.121.123603
– ident: PhysRevX.8.041054Cc24R1
  doi: 10.1103/PhysRevX.2.041014
– ident: PhysRevX.8.041054Cc34R1
  doi: 10.1126/science.aam5538
– ident: PhysRevX.8.041054Cc75R1
  doi: 10.1126/science.1154622
– ident: PhysRevX.8.041054Cc20R1
  doi: 10.1103/PhysRevX.8.021070
– ident: PhysRevX.8.041054Cc44R1
  doi: 10.1038/nature08917
– ident: PhysRevX.8.041054Cc82R1
  doi: 10.1103/PhysRevA.81.012115
SSID ssj0000601477
Score 2.6208007
Snippet Optical tweezers provide a versatile platform for the manipulation and detection of single atoms. Here, we use optical tweezers to demonstrate a set of tools...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 041054
SubjectTerms Accuracy
Arrays
Clockwork
Cooling
Electrons
Ground state
Numerical aperture
Optical transition
Quantum computing
Robustness (mathematics)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1dSwQhFJUIgl6iT9q-8KGnYDZH3VEf-ySCCrZd2DfRq8JCTbE7FfXr05nZ2AjqpddBcTjXuZ7rHI8IHeYucngnQlZwJTOu8pApq4os9JxylDrlVTqcfHNbXA359ag3mrvqK2nCGnvgBrjjAMJTXsSZ4hiXlhrLDIUAhlEhoBdS9iWKzBVTTQ6O1F-I9jdmTthxElT2_euoK7skSRv5t4Wo9uv_kY7rNeZyFa205BCfNC-1hhZ8uY6WapEmTDdQ_yap59I5kjHgs0Zjjk3p8LmvakVViZ8CHj5Uk-RF7fB92uauxi-PeFziu-d61zobvHn_4SdxkIl5n26i4eXF4Owqa-9EyCAWUlUmSM8wAEI9sTHZ0BBRAW5czkMsDGKyUsxEDsQlMyCtVRRyMMSIHLwyQQS2hRbLp9JvI2wdeOC5sBFfbmIH6g3JnQyUGB4k7yAyA0hDaxie7q140HXhQJieYaqlbjDtoKOvLs-NW8ZvjU8T6l8Nk9F1_SCGX7fh13-Fv4P2ZjHT7dc31bFMSjRFFmLnP8bYRcuRJskkYqFyDy1Wkxe_H6lIZQ_qWfcJFWTfHA
  priority: 102
  providerName: Directory of Open Access Journals
Title Microscopic Control and Detection of Ultracold Strontium in Optical-Tweezer Arrays
URI https://www.proquest.com/docview/2550613867
https://doaj.org/article/fc7e246319d348b2ab3a2cfca3277c5f
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9swFD60KYO9jO7GsnVBD3saqJVl2ZIexmi7ZmXQbGQN5E3IupRA52SOu7H--kqKnVEKfbUlLB9J37no0zkAHzIbbHjLPS6ZFJjJzGNZyRL7wkpLqZVOxsvJF5PyfMa-zYv5Dkz6uzCRVtljYgJquzQxRn4UTN-oekTJP69-41g1Kp6u9iU0dFdawX5KKcZ2YS9AckEGsHdyNvkx3UZdYvYRxnl3vJmR_CgSLafuz_xQHJJIeWT3FFTK4_8AppPuGe_Ds85oRMebWX4OO65-AU8SedOsX8L0IrLq4v2ShUGnG-450rVFX1ybmFY1Wno0u26bmKPaop8x_N0ubn6hRY2-r1I0G1_-de7WNeEjjf63fgWz8dnl6TnuaiVgExysFnNS6NwYQh2pAghRb3NmmLYZ88FhCCAmcx1sIyZybURVSWoyo4nmmXFSe-7z1zCol7V7A6iyxhmW8coF1a9DB-o0yazwlGjmBRsC6QWkTJdIPNazuFbJoSC56mWqhNrIdAgft11WmywajzU-iVLfNowJsNODZXOluv2kvOFheGUAkPCjoqK6CuM03uiccm4KP4SDfs5UtyvX6v8aevv463fwNBhGItJWqDiAQdvcuPfB-GirEeyK8ddRt65GyYW_A2pJ3jo
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKgQXxFOkFPABLkjber3O2j5UiL6U0iagkEi5uX6iSGWTbrZU5cfx2xhvdoMQUm-97tr7GI_Hn8ffzCD0LnWA4R0PSc6kSJhMQyKNzJPQc9JR6qSXMTh5MMz7E_Z52ptuoN9tLEykVbY2sTbUbm6jj3wXoG9cekTOPy4uk1g1Kp6utiU0dFNawe3VKcaawI5Tf3MNW7jl3skhjPd7So-Pxgf9pKkykFjYmlQJJz2dWUuoJwamLw0uY5Zpl7IAUBumv8w0oAomMm2FMZLa1GqieWq91IGHDJ57D22y6EDpoM39o-HX0drLE7OdMM6b49SUZLuR2DnyP6c7YodEiiX7Z0Gs6wb8tyzUa93xY_SoAan400qrnqANXzxF92uyqF0-Q6NBZPHFeJaZxQcrrjvWhcOHvqqZXQWeBzy5qMqYE9vhb9HdXs2ufuBZgb8sau95Mr72_pcv4SWlvlk-R5M7kdoL1CnmhX-JsHHWW5Zy4wFqaOhAvSapE4ESzYJgXURaASnbJC6P9TMuVL2BIZlqZaqEWsm0iz6suyxWWTtua7wfpb5uGBNu1xfm5XfVzF8VLIfPy8FgwY8KQ7WB77TB6oxybnuhi7bbMVONFViqvzq7dfvtt-hBfzw4U2cnw9NX6CGAMhEpM1Rso05VXvnXAHwq86bRLozO71qh_wDs0Bpp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microscopic+Control+and+Detection+of+Ultracold+Strontium+in+Optical-Tweezer+Arrays&rft.jtitle=Physical+review.+X&rft.au=Norcia%2C+M.%E2%80%89A.&rft.au=Young%2C+A.%E2%80%89W.&rft.au=Kaufman%2C+A.%E2%80%89M.&rft.date=2018-12-28&rft.issn=2160-3308&rft.eissn=2160-3308&rft.volume=8&rft.issue=4&rft_id=info:doi/10.1103%2FPhysRevX.8.041054&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PhysRevX_8_041054
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-3308&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-3308&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-3308&client=summon