An automatic classification algorithm for submerged aquatic vegetation in shallow lakes using Landsat imagery
Submerged aquatic vegetation (SAV) is one of the main producers in inland lakes. Tracking the temporal and spatial changes in SAV is crucial for the identification of state changes in lacustrine ecosystems, such as changes in light, nutrients, and temperature. However, the available SAV classificati...
        Saved in:
      
    
          | Published in | Remote sensing of environment Vol. 260; p. 112459 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Elsevier Inc
    
        01.07.2021
     Elsevier BV  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0034-4257 1879-0704  | 
| DOI | 10.1016/j.rse.2021.112459 | 
Cover
| Abstract | Submerged aquatic vegetation (SAV) is one of the main producers in inland lakes. Tracking the temporal and spatial changes in SAV is crucial for the identification of state changes in lacustrine ecosystems, such as changes in light, nutrients, and temperature. However, the available SAV classification algorithms based on remote sensing are highly dependent on field survey data and/or human interventions, prohibiting the extraction of large-scale and/or long-term patterns. Here, we developed an automatic SAV classification algorithm using Landsat imagery, where the thresholds of two key parameters (the floating algae index (FAI) and reflectance in the shortwave-infrared (SWIR) band) are automatically determined. The algorithm was applied to eight Landsat images of four Yangtze Plain lakes and obtained a mean producer accuracy of 82.9% when gauged against field-surveyed datasets. The algorithm was further employed to obtain long-term SAV areal data from Changdang Lake on the Yangtze Plain from 1984 to 2018, and the result was highly consistent with lake transparency data. Numerical simulations indicated that our developed algorithm is insensitive to the Chl-a concentration of the water column. Yet, it has a detection limit of ~0.35 m below the water surface, and such a limit changes with different fractions of vegetation coverage within a pixel. The automatic classification algorithm proposed in this study has the potential to obtain the temporal and spatial distribution patterns of SAV in other shallow lakes where SAV grows in lakes sharing similar hydrological characteristics as the lakes in the Yangtze Plain.
•An automatic classification algorithm is developed for detecting submerged aquatic vegetation in shallow lakes.•FAI and reflectance in SWIR band are two key variables in the algorithm.•Submerged aquatic vegetation at a depth of 0–0.35 m can be detected.•The algorithm is insensitive to the Chl-a concentration of water.•Application of the algorithm to eight Landsat images indicates the potential robustness. | 
    
|---|---|
| AbstractList | Submerged aquatic vegetation (SAV) is one of the main producers in inland lakes. Tracking the temporal and spatial changes in SAV is crucial for the identification of state changes in lacustrine ecosystems, such as changes in light, nutrients, and temperature. However, the available SAV classification algorithms based on remote sensing are highly dependent on field survey data and/or human interventions, prohibiting the extraction of large-scale and/or long-term patterns. Here, we developed an automatic SAV classification algorithm using Landsat imagery, where the thresholds of two key parameters (the floating algae index (FAI) and reflectance in the shortwave-infrared (SWIR) band) are automatically determined. The algorithm was applied to eight Landsat images of four Yangtze Plain lakes and obtained a mean producer accuracy of 82.9% when gauged against field-surveyed datasets. The algorithm was further employed to obtain long-term SAV areal data from Changdang Lake on the Yangtze Plain from 1984 to 2018, and the result was highly consistent with lake transparency data. Numerical simulations indicated that our developed algorithm is insensitive to the Chl-a concentration of the water column. Yet, it has a detection limit of ~0.35 m below the water surface, and such a limit changes with different fractions of vegetation coverage within a pixel. The automatic classification algorithm proposed in this study has the potential to obtain the temporal and spatial distribution patterns of SAV in other shallow lakes where SAV grows in lakes sharing similar hydrological characteristics as the lakes in the Yangtze Plain. Submerged aquatic vegetation (SAV) is one of the main producers in inland lakes. Tracking the temporal and spatial changes in SAV is crucial for the identification of state changes in lacustrine ecosystems, such as changes in light, nutrients, and temperature. However, the available SAV classification algorithms based on remote sensing are highly dependent on field survey data and/or human interventions, prohibiting the extraction of large-scale and/or long-term patterns. Here, we developed an automatic SAV classification algorithm using Landsat imagery, where the thresholds of two key parameters (the floating algae index (FAI) and reflectance in the shortwave-infrared (SWIR) band) are automatically determined. The algorithm was applied to eight Landsat images of four Yangtze Plain lakes and obtained a mean producer accuracy of 82.9% when gauged against field-surveyed datasets. The algorithm was further employed to obtain long-term SAV areal data from Changdang Lake on the Yangtze Plain from 1984 to 2018, andthe result was highly consistent with lake transparency data. Numerical simulations indicated that our developed algorithm is insensitive to the Chl-a concentration of the water column. Yet, it has a detection limit of ~0.35 m below the water surface, and such a limit changes with different fractions of vegetation coverage within a pixel. The automatic classification algorithm proposed in this study has the potential to obtain the temporal and spatial distribution patterns of SAV in other shallow lakes where SAV grows in lakes sharing similar hydrological characteristics as the lakes in the Yangtze Plain. Submerged aquatic vegetation (SAV) is one of the main producers in inland lakes. Tracking the temporal and spatial changes in SAV is crucial for the identification of state changes in lacustrine ecosystems, such as changes in light, nutrients, and temperature. However, the available SAV classification algorithms based on remote sensing are highly dependent on field survey data and/or human interventions, prohibiting the extraction of large-scale and/or long-term patterns. Here, we developed an automatic SAV classification algorithm using Landsat imagery, where the thresholds of two key parameters (the floating algae index (FAI) and reflectance in the shortwave-infrared (SWIR) band) are automatically determined. The algorithm was applied to eight Landsat images of four Yangtze Plain lakes and obtained a mean producer accuracy of 82.9% when gauged against field-surveyed datasets. The algorithm was further employed to obtain long-term SAV areal data from Changdang Lake on the Yangtze Plain from 1984 to 2018, and the result was highly consistent with lake transparency data. Numerical simulations indicated that our developed algorithm is insensitive to the Chl-a concentration of the water column. Yet, it has a detection limit of ~0.35 m below the water surface, and such a limit changes with different fractions of vegetation coverage within a pixel. The automatic classification algorithm proposed in this study has the potential to obtain the temporal and spatial distribution patterns of SAV in other shallow lakes where SAV grows in lakes sharing similar hydrological characteristics as the lakes in the Yangtze Plain. •An automatic classification algorithm is developed for detecting submerged aquatic vegetation in shallow lakes.•FAI and reflectance in SWIR band are two key variables in the algorithm.•Submerged aquatic vegetation at a depth of 0–0.35 m can be detected.•The algorithm is insensitive to the Chl-a concentration of water.•Application of the algorithm to eight Landsat images indicates the potential robustness.  | 
    
| ArticleNumber | 112459 | 
    
| Author | Feng, Lian Hou, Xuejiao Tang, Jing Dai, Yanhui  | 
    
| Author_xml | – sequence: 1 givenname: Yanhui surname: Dai fullname: Dai, Yanhui organization: School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China – sequence: 2 givenname: Lian surname: Feng fullname: Feng, Lian organization: School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China – sequence: 3 givenname: Xuejiao surname: Hou fullname: Hou, Xuejiao email: houxj_92@163.com organization: School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China – sequence: 4 givenname: Jing surname: Tang fullname: Tang, Jing organization: Department of Physical Geography and Ecosystem Science, Lund University, Sweden  | 
    
| BookMark | eNp9kU1v3CAQhq0qlbpJ-wN6s9RLL7sdMDZYPUVRv6SVemnPCMOwyxabDWMnyr8vqaMecsgBIeB5mYHnsrqY0oRV9Z7BjgHrPp12mXDHgbMdY1y0_atqw5TstyBBXFQbgEZsBW_lm-qS6ATAWiXZphqvp9oscxrNHGxtoyEKPtiySuUgHlIO83Gsfco1LcOI-YCuNrfLP_wODzivaJhqOpoY030dzR-keqEwHeq9mRyZuQ6jOWB-eFu99iYSvnuar6rfX7_8uvm-3f_89uPmer-1Qqh52zY9gm0603HXeMaxbHsHA_esjB7QO-k9NFZJJUBxsJIpcH6Alnecm-aqMuu9dI_nZdDnXBrIDzqZoM8pzybqjIQm26OOiybUhYpPzybNHHTKK9BetlwL2Q1aoVW6a0TbWcNcC67U-LjWOOd0uyDNegxkMUYzYVpI87ZlPet62RT0wzP0lJY8lR8olBBcsk6IQrGVsjkRZfT_22agHyXrky6S9aNkvUouGfksY8NqZM4mxBeTn9ckFg93AbMmG3Cy6EJGO2uXwgvpv_PXxbU | 
    
| CitedBy_id | crossref_primary_10_1016_j_jag_2023_103202 crossref_primary_10_1016_j_rsma_2023_103117 crossref_primary_10_1016_j_xinn_2024_100784 crossref_primary_10_1016_j_scitotenv_2023_169404 crossref_primary_10_1016_j_ecoinf_2022_101954 crossref_primary_10_1080_15481603_2025_2479969 crossref_primary_10_1016_j_rse_2023_113480 crossref_primary_10_3390_rs14225771 crossref_primary_10_1109_JSTARS_2021_3085411 crossref_primary_10_1016_j_ecolmodel_2025_111074 crossref_primary_10_34133_remotesensing_0110 crossref_primary_10_1016_j_ecolind_2025_113168 crossref_primary_10_1016_j_scib_2024_05_009 crossref_primary_10_3390_su141912478 crossref_primary_10_1016_j_ecolind_2021_108144 crossref_primary_10_1016_j_scitotenv_2024_177895 crossref_primary_10_3390_rs16050867 crossref_primary_10_5194_hess_26_3517_2022 crossref_primary_10_1016_j_ecolind_2022_108607 crossref_primary_10_1007_s12518_025_00607_9 crossref_primary_10_3390_plants13213090 crossref_primary_10_3390_s25020503 crossref_primary_10_1109_TGRS_2024_3489883 crossref_primary_10_3390_rs15184488 crossref_primary_10_1016_j_ecolind_2023_110646 crossref_primary_10_1016_j_ecolind_2023_111539 crossref_primary_10_3390_rs14030640  | 
    
| Cites_doi | 10.1364/AO.41.005755 10.1080/014311698216396 10.1364/OE.18.026313 10.1007/BF02803529 10.1002/aqc.1144 10.1016/S0043-1354(01)00354-2 10.1080/01431169308904363 10.1016/j.rse.2014.04.031 10.3390/ijgi7080294 10.1029/2006JC004007 10.1364/AO.40.004790 10.1016/j.limno.2017.12.001 10.1016/j.aquabot.2016.04.004 10.1080/01431161.2010.481681 10.1016/j.rse.2015.04.004 10.3996/082016-JFWM-068 10.1016/j.scitotenv.2018.09.216 10.1007/s10452-008-9180-0 10.1007/s10661-007-9855-3 10.1016/j.rse.2010.12.010 10.1364/JOSA.44.000838 10.1016/j.rse.2009.03.011 10.1016/j.jglr.2010.07.009 10.1016/j.isprsjprs.2018.04.015 10.3390/geosciences9050235 10.3390/rs12111861 10.1016/j.rse.2008.01.020 10.1109/TIP.2013.2259833 10.1016/j.rse.2009.06.016 10.1038/ncomms13603 10.1007/s10750-009-9729-5 10.3176/biol.ecol.2004.2.02 10.1016/j.rse.2014.12.014 10.1016/j.ecolind.2015.07.029 10.1038/srep23867 10.1007/s10201-009-0293-5 10.1016/j.isprsjprs.2017.11.002 10.1016/j.rse.2009.05.012 10.1109/TGRS.2004.840720 10.1016/j.ecss.2014.07.014 10.1007/s10661-016-5506-x 10.1016/j.rse.2020.111829 10.1016/j.rse.2020.111890 10.1016/j.rse.2014.04.032 10.1016/j.rse.2015.10.020 10.1016/j.aquabot.2009.11.007 10.1126/science.222.4619.51 10.1016/j.rse.2016.04.015 10.1371/journal.pone.0018311 10.1016/0034-4257(87)90060-5 10.1016/j.rse.2016.12.006 10.1016/0304-3770(92)90022-B 10.1016/j.rse.2018.12.007 10.1007/s004420050121 10.1016/j.rse.2004.06.007 10.1023/A:1025497621547 10.1080/01431160903246709 10.1111/j.1365-2745.2007.01339.x 10.1016/j.earscirev.2017.08.013 10.1016/j.ecolind.2020.106285 10.1046/j.1365-2427.1998.00325.x 10.1016/0034-4257(93)90088-F 10.1016/j.rse.2018.09.002 10.1016/j.rse.2020.111998 10.3390/s8063988 10.1111/j.1365-2427.2009.02331.x 10.1046/j.1440-1703.2003.00563.x 10.1016/j.jenvman.2011.10.007 10.1007/BF00026060 10.1007/s10750-006-0521-5 10.1016/j.rse.2016.04.008  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 Elsevier Inc. Copyright Elsevier BV Jul 2021  | 
    
| Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright Elsevier BV Jul 2021  | 
    
| CorporateAuthor | Lunds universitet Naturvetenskapliga fakulteten Faculty of Science Lund University Dept of Physical Geography and Ecosystem Science Institutionen för naturgeografi och ekosystemvetenskap  | 
    
| CorporateAuthor_xml | – name: Dept of Physical Geography and Ecosystem Science – name: Naturvetenskapliga fakulteten – name: Lund University – name: Faculty of Science – name: Lunds universitet – name: Institutionen för naturgeografi och ekosystemvetenskap  | 
    
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 ADTPV AOWAS D95  | 
    
| DOI | 10.1016/j.rse.2021.112459 | 
    
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Meteorological & Geoastrophysical Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic SwePub SwePub Articles SWEPUB Lunds universitet  | 
    
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Meteorological & Geoastrophysical Abstracts Biotechnology Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | Materials Research Database AGRICOLA  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography Geology Environmental Sciences  | 
    
| EISSN | 1879-0704 | 
    
| ExternalDocumentID | oai_portal_research_lu_se_publications_1d068f80_f752_476b_8ec8_63456ca1d50d 10_1016_j_rse_2021_112459 S0034425721001772  | 
    
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 41~ 457 4G. 53G 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSE SSJ SSZ T5K TN5 TWZ VOH WH7 WUQ XOL ZCA ZMT ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD AGCQF C1K F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 ABUFD ADTPV AOWAS D95  | 
    
| ID | FETCH-LOGICAL-c448t-539e0c36a62d3f12ec44fd0b2f1b2f90efd7ff03c87840820c7180dfb052622a3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0034-4257 | 
    
| IngestDate | Tue Oct 21 03:42:58 EDT 2025 Wed Oct 01 13:40:20 EDT 2025 Wed Aug 13 09:49:57 EDT 2025 Wed Oct 01 05:16:16 EDT 2025 Thu Apr 24 23:07:38 EDT 2025 Fri Feb 23 02:43:43 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Dynamic threshold Classification Landsat SAV SWIR Aquatic vegetation Remote sensing FAI  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c448t-539e0c36a62d3f12ec44fd0b2f1b2f90efd7ff03c87840820c7180dfb052622a3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| PQID | 2544271644 | 
    
| PQPubID | 2045405 | 
    
| ParticipantIDs | swepub_primary_oai_portal_research_lu_se_publications_1d068f80_f752_476b_8ec8_63456ca1d50d proquest_miscellaneous_2551916973 proquest_journals_2544271644 crossref_primary_10_1016_j_rse_2021_112459 crossref_citationtrail_10_1016_j_rse_2021_112459 elsevier_sciencedirect_doi_10_1016_j_rse_2021_112459  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-07-01 | 
    
| PublicationDateYYYYMMDD | 2021-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | Remote sensing of environment | 
    
| PublicationYear | 2021 | 
    
| Publisher | Elsevier Inc Elsevier BV  | 
    
| Publisher_xml | – name: Elsevier Inc – name: Elsevier BV  | 
    
| References | James, Havens, Zhu, Qin (bb0145) 2009; 627 Mueller, Davis, Arnone, Frouin, Carder, Lee, Steward, Hooker, Mobley, McLean (bb0235) 2000; 2 Xiao, Dou, Liu (bb0365) 2010; 92 Yadav, Yoneda, Susaki, Tamura, Ishikawa, Yamashiki (bb0375) 2017 Cattaneo, Galanti, Gentinetta, Susana (bb0025) 1998; 39 Weisner, Strand, Sandsten (bb0355) 1997; 109 Hu (bb0130) 2009; 113 Batiuk, Orth, Moore, Dennison, Stevenson (bb0015) 1992 Lee, Ahn, Mobley, Arnone (bb0180) 2010; 18 Takamura, Kadono, Fukushima, Nakagawa, Kim (bb0315) 2003; 18 Zhu, Wang, Woodcock (bb0410) 2015; 159 Depew, Houben, Ozersky, Hecky, Guildford (bb0055) 2011; 37 Wang, Bailey (bb0345) 2001; 40 Cho, Lu (bb0040) 2010; 1 Guan, Feng, Hou, Schurgers, Zheng, Tang (bb0085) 2020; 246 Luo, Li, Ma, Li, Duan, Hu, Qin, Huang (bb0190) 2016; 60 Grabowska, Mazur-Marzec (bb0080) 2016; 188 Jing, Gong, Zhao, Pu, Deng (bb0150) 2017; 134 Qin, Xu, Wu, Luo, Zhang (bb0270) 2007; 581 Reinart, Paavel, Tuvikene (bb0275) 2004; 53 Vermote, Justice, Claverie, Franch (bb0325) 2016; 185 Guide (bb0095) 2018 Brooks, Grimm, Shuchman, Sayers, Jessee (bb0020) 2015; 157 Ma, Duan, Gu, Zhang (bb0200) 2008; 8 Wu, Cai, Zhang, Chen (bb0360) 2018; 69 Armstrong (bb0010) 1993; 14 Doron, Babin, Mangin, Hembise (bb0065) 2007; 112 Zhang, Jeppesen, Liu, Qin, Shi, Zhou, Thomaz, Deng (bb0390) 2017; 173 Irving, Connell, Russell (bb0140) 2011; 6 Phillips, Willby, Moss (bb0260) 2016; 135 Marshall, Lee (bb0215) 1994; 32 Held, Schneider von Deimling (bb0110) 2019; 9 Messager, Lehner, Grill, Nedeva, Schmitt (bb0220) 2016; 7 Michael Kemp, Batleson, Bergstrom, Carter, Gallegos, Hunley, Karrh, Koch, Landwehr, Moore, Murray, Naylor, Rybicki, Court Stevenson, Wilcox (bb0225) 2004; 27 Small (bb0305) 2004; 93 Dierberg, DeBusk, Jackson, Chimney, Pietro (bb0060) 2002; 36 Hou, Feng, Tang, Song, Liu, Zhang, Wang, Xu, Dai, Zheng, Zheng, Bryan (bb0125) 2020; 248 Phillips, Pietiläinen, Carvalho, Solimini, Lyche Solheim, Cardoso (bb0255) 2008; 42 Chabot, Dillon, Shemrock, Weissflog, Sager (bb0030) 2018; 7 Moorman, Augspurger, Stanton, Smith (bb0230) 2017; 8 Hunter, Gilvear, Tyler, Willby, Kelly (bb0135) 2010; 20 Pu, Bell, Meyer (bb0265) 2014; 149 Ke, Im, Lee, Gong, Ryu (bb0155) 2015; 164 SØNdergaard, Johansson, Lauridsen, JØRgensen, Liboriussen, Jeppesen (bb0310) 2010; 55 Wang, Gao, Li, Gao, Zhai, Zhou, Cheng (bb0350) 2019; 651 Hou, Feng, Duan, Chen, Sun, Shi (bb0115) 2017; 190 Chen, Zhu, Vogelmann, Gao, Jin (bb0035) 2011; 115 Cox, Munk (bb0050) 1954; 44 Lee, Carder, Arnone (bb0170) 2002; 41 Lee, Du, Arnone (bb0175) 2005; 110 Zhang, Liu, Qin, Shi, Deng, Zhou (bb0385) 2016; 6 Kutser, Vahtmäe, Praks (bb0165) 2009; 113 Oyama, Matsushita, Fukushima (bb0245) 2015; 157 Scheffer, de Redelijkheid, Noppert (bb0285) 1992; 42 Zhao, Lv, Jiang, Cai, Xu, An (bb0400) 2013; 8 Villa, Bresciani, Bolpagni, Pinardi, Giardino (bb0335) 2015; 171 Silva, Costa, Melack, Novo (bb0300) 2008; 140 Schott, Gerace, Woodcock, Wang, Zhu, Wynne, Blinn (bb0290) 2016; 185 Markham, Storey, Williams, Irons (bb0210) 2004; 42 Zhang (bb0380) 1998; 19 Ackleson, Klemas (bb0005) 1987; 22 He, Shi, Xie, Zhao (bb0105) 2010; 1 Vahtmäe, Kutser, Paavel (bb0320) 2020; 12 Guide (bb0090) 2018 Shi, Wang (bb0295) 2009; 113 Sand-Jensen, Pedersen, Thorsgaard, Moeslund, Borum, Brodersen (bb0280) 2008; 96 Peñuelas, Gamon, Griffin, Field (bb0250) 1993; 46 Havens (bb0100) 2003; 493 Feng, Hou, Zheng (bb0070) 2019; 221 Zhou, Yang, Sathyendranath, Platt (bb0405) 2020; 245 Li, Liu, Guan (bb0185) 2010; 11 Wabnitz, Andréfouët, Torres-Pulliza, Müller-Karger, Kramer (bb0340) 2008; 112 Hou, Feng, Chen, Zhang (bb0120) 2018; 141 Kirk (bb0160) 1994 Villa, Mousivand, Bresciani (bb0330) 2014; 30 Xu, Zhang, Chen, Li, Shi, Zhang (bb0370) 2020; 113 Malthus, Best, Dekker (bb0205) 1990; 191 Ghosh, Subudhi, Bruzzone (bb0075) 2013; 22 Luo, Duan, Ma, Jin, Li, Hu, Shi, Huang (bb0195) 2017; 57 Claverie, Ju, Masek, Dungan, Vermote, Roger, Skakun, Justice (bb0045) 2018; 219 Orth, Moore (bb0240) 1983; 222 Zhao, Jiang, Yang, Cai, Xu, An (bb0395) 2012; 95 Lee (10.1016/j.rse.2021.112459_bb0180) 2010; 18 Villa (10.1016/j.rse.2021.112459_bb0330) 2014; 30 Malthus (10.1016/j.rse.2021.112459_bb0205) 1990; 191 Chen (10.1016/j.rse.2021.112459_bb0035) 2011; 115 Grabowska (10.1016/j.rse.2021.112459_bb0080) 2016; 188 Peñuelas (10.1016/j.rse.2021.112459_bb0250) 1993; 46 Irving (10.1016/j.rse.2021.112459_bb0140) 2011; 6 Wabnitz (10.1016/j.rse.2021.112459_bb0340) 2008; 112 Havens (10.1016/j.rse.2021.112459_bb0100) 2003; 493 Moorman (10.1016/j.rse.2021.112459_bb0230) 2017; 8 Zhao (10.1016/j.rse.2021.112459_bb0400) 2013; 8 Kutser (10.1016/j.rse.2021.112459_bb0165) 2009; 113 Yadav (10.1016/j.rse.2021.112459_bb0375) 2017 Kirk (10.1016/j.rse.2021.112459_bb0160) 1994 Scheffer (10.1016/j.rse.2021.112459_bb0285) 1992; 42 Brooks (10.1016/j.rse.2021.112459_bb0020) 2015; 157 Cho (10.1016/j.rse.2021.112459_bb0040) 2010; 1 Armstrong (10.1016/j.rse.2021.112459_bb0010) 1993; 14 Mueller (10.1016/j.rse.2021.112459_bb0235) 2000; 2 Claverie (10.1016/j.rse.2021.112459_bb0045) 2018; 219 Dierberg (10.1016/j.rse.2021.112459_bb0060) 2002; 36 Cattaneo (10.1016/j.rse.2021.112459_bb0025) 1998; 39 Small (10.1016/j.rse.2021.112459_bb0305) 2004; 93 Lee (10.1016/j.rse.2021.112459_bb0175) 2005; 110 Guide (10.1016/j.rse.2021.112459_bb0095) 2018 Messager (10.1016/j.rse.2021.112459_bb0220) 2016; 7 Phillips (10.1016/j.rse.2021.112459_bb0260) 2016; 135 Wu (10.1016/j.rse.2021.112459_bb0360) 2018; 69 Sand-Jensen (10.1016/j.rse.2021.112459_bb0280) 2008; 96 Wang (10.1016/j.rse.2021.112459_bb0350) 2019; 651 Zhu (10.1016/j.rse.2021.112459_bb0410) 2015; 159 Weisner (10.1016/j.rse.2021.112459_bb0355) 1997; 109 Zhang (10.1016/j.rse.2021.112459_bb0380) 1998; 19 Luo (10.1016/j.rse.2021.112459_bb0190) 2016; 60 Silva (10.1016/j.rse.2021.112459_bb0300) 2008; 140 Villa (10.1016/j.rse.2021.112459_bb0335) 2015; 171 Shi (10.1016/j.rse.2021.112459_bb0295) 2009; 113 Depew (10.1016/j.rse.2021.112459_bb0055) 2011; 37 Phillips (10.1016/j.rse.2021.112459_bb0255) 2008; 42 Hou (10.1016/j.rse.2021.112459_bb0115) 2017; 190 Xu (10.1016/j.rse.2021.112459_bb0370) 2020; 113 Chabot (10.1016/j.rse.2021.112459_bb0030) 2018; 7 Held (10.1016/j.rse.2021.112459_bb0110) 2019; 9 Reinart (10.1016/j.rse.2021.112459_bb0275) 2004; 53 Schott (10.1016/j.rse.2021.112459_bb0290) 2016; 185 Vermote (10.1016/j.rse.2021.112459_bb0325) 2016; 185 Zhang (10.1016/j.rse.2021.112459_bb0385) 2016; 6 Takamura (10.1016/j.rse.2021.112459_bb0315) 2003; 18 Batiuk (10.1016/j.rse.2021.112459_bb0015) 1992 Cox (10.1016/j.rse.2021.112459_bb0050) 1954; 44 Luo (10.1016/j.rse.2021.112459_bb0195) 2017; 57 Oyama (10.1016/j.rse.2021.112459_bb0245) 2015; 157 Pu (10.1016/j.rse.2021.112459_bb0265) 2014; 149 Hunter (10.1016/j.rse.2021.112459_bb0135) 2010; 20 Michael Kemp (10.1016/j.rse.2021.112459_bb0225) 2004; 27 Hou (10.1016/j.rse.2021.112459_bb0120) 2018; 141 Wang (10.1016/j.rse.2021.112459_bb0345) 2001; 40 Zhou (10.1016/j.rse.2021.112459_bb0405) 2020; 245 Marshall (10.1016/j.rse.2021.112459_bb0215) 1994; 32 Guide (10.1016/j.rse.2021.112459_bb0090) 2018 Hou (10.1016/j.rse.2021.112459_bb0125) 2020; 248 Ackleson (10.1016/j.rse.2021.112459_bb0005) 1987; 22 Zhang (10.1016/j.rse.2021.112459_bb0390) 2017; 173 Ke (10.1016/j.rse.2021.112459_bb0155) 2015; 164 Zhao (10.1016/j.rse.2021.112459_bb0395) 2012; 95 Doron (10.1016/j.rse.2021.112459_bb0065) 2007; 112 Li (10.1016/j.rse.2021.112459_bb0185) 2010; 11 Qin (10.1016/j.rse.2021.112459_bb0270) 2007; 581 Lee (10.1016/j.rse.2021.112459_bb0170) 2002; 41 Orth (10.1016/j.rse.2021.112459_bb0240) 1983; 222 He (10.1016/j.rse.2021.112459_bb0105) 2010; 1 Ghosh (10.1016/j.rse.2021.112459_bb0075) 2013; 22 Xiao (10.1016/j.rse.2021.112459_bb0365) 2010; 92 James (10.1016/j.rse.2021.112459_bb0145) 2009; 627 Vahtmäe (10.1016/j.rse.2021.112459_bb0320) 2020; 12 Jing (10.1016/j.rse.2021.112459_bb0150) 2017; 134 Feng (10.1016/j.rse.2021.112459_bb0070) 2019; 221 Guan (10.1016/j.rse.2021.112459_bb0085) 2020; 246 Ma (10.1016/j.rse.2021.112459_bb0200) 2008; 8 Markham (10.1016/j.rse.2021.112459_bb0210) 2004; 42 SØNdergaard (10.1016/j.rse.2021.112459_bb0310) 2010; 55 Hu (10.1016/j.rse.2021.112459_bb0130) 2009; 113  | 
    
| References_xml | – volume: 11 start-page: 95 year: 2010 end-page: 101 ident: bb0185 article-title: Effects of nutrient levels in surface water and sediment on the growth of the floating-leaved macrophyte Trapa maximowiczii: implication for management of macrophytes in East Bay of Lake Taihu, China publication-title: Limnology – year: 1992 ident: bb0015 article-title: Chesapeake Bay Submerged Aquatic Vegetation Habitat Requirements and Restoration Targets: A Technical Synthesis – volume: 581 start-page: 3 year: 2007 end-page: 14 ident: bb0270 article-title: Environmental issues of Lake Taihu, China publication-title: Hydrobiologia – volume: 8 year: 2013 ident: bb0400 article-title: Spatio-temporal variability of aquatic vegetation in Taihu Lake over the past 30 years publication-title: PLoS One – volume: 60 start-page: 503 year: 2016 end-page: 513 ident: bb0190 article-title: Applying remote sensing techniques to monitoring seasonal and interannual changes of aquatic vegetation in Taihu Lake, China publication-title: Ecol. Indic. – volume: 39 start-page: 725 year: 1998 end-page: 740 ident: bb0025 article-title: Epiphytic algae and macroinvertebrates on submerged and floating-leaved macrophytes in an Italian lake publication-title: Freshw. Biol. – volume: 651 start-page: 367 year: 2019 end-page: 380 ident: bb0350 article-title: Long-term and inter-monthly dynamics of aquatic vegetation and its relation with environmental factors in Taihu Lake, China publication-title: Sci. Total Environ. – volume: 6 year: 2011 ident: bb0140 article-title: Restoring coastal plants to improve global carbon storage: reaping what we sow publication-title: PLoS One – volume: 6 start-page: 23867 year: 2016 ident: bb0385 article-title: Aquatic vegetation in response to increased eutrophication and degraded light climate in Eastern Lake Taihu: implications for lake ecological restoration publication-title: Sci. Rep. – volume: 110 year: 2005 ident: bb0175 article-title: A model for the diffuse attenuation coefficient of downwelling irradiance publication-title: J. Geophys. Res. Oceans – volume: 42 start-page: 2691 year: 2004 end-page: 2694 ident: bb0210 article-title: Landsat sensor performance: history and current status publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 113 start-page: 2118 year: 2009 end-page: 2129 ident: bb0130 article-title: A novel ocean color index to detect floating algae in the global oceans publication-title: Remote Sens. Environ. – volume: 22 start-page: 3087 year: 2013 end-page: 3096 ident: bb0075 article-title: Integration of Gibbs Markov random field and hopfield-type neural networks for unsupervised change detection in remotely sensed multitemporal images publication-title: IEEE Trans. Image Process. – volume: 69 start-page: 115 year: 2018 end-page: 124 ident: bb0360 article-title: Spatial and temporal heterogeneities in water quality and their potential drivers in Lake Poyang (China) from 2009 to 2015 publication-title: Limnologica – volume: 27 start-page: 363 year: 2004 end-page: 377 ident: bb0225 article-title: Habitat requirements for submerged aquatic vegetation in Chesapeake Bay: water quality, light regime, and physical-chemical factors publication-title: Estuaries – volume: 19 start-page: 11 year: 1998 end-page: 20 ident: bb0380 article-title: On the estimation of biomass of submerged vegetation using Landsat thematic mapper (TM) imagery: a case study of the Honghu Lake, PR China publication-title: Int. J. Remote Sens. – volume: 149 start-page: 68 year: 2014 end-page: 79 ident: bb0265 article-title: Mapping and assessing seagrass bed changes in Central Florida’s west coast using multitemporal Landsat TM imagery publication-title: Estuar. Coast. Shelf Sci. – volume: 191 start-page: 257 year: 1990 end-page: 263 ident: bb0205 article-title: An assessment of the importance of emergent and floating-leaved macrophytes to trophic status in the Loosdrecht Lakes (the Netherlands) publication-title: Hydrobiologia – volume: 627 start-page: 211 year: 2009 end-page: 231 ident: bb0145 article-title: Comparative analysis of nutrients, chlorophyll and transparency in two large shallow lakes (Lake Taihu, P.R. China and Lake Okeechobee, USA) publication-title: Hydrobiologia – volume: 1 start-page: 213 year: 2010 end-page: 221 ident: bb0105 article-title: Improving the normalized difference built-up index to map urban built-up areas using a semiautomatic segmentation approach publication-title: Remote Sensing Letters – volume: 42 start-page: 199 year: 1992 end-page: 216 ident: bb0285 article-title: Distribution and dynamics of submerged vegetation in a chain of shallow eutrophic lakes publication-title: Aquat. Bot. – volume: 53 start-page: 88 year: 2004 end-page: 105 ident: bb0275 article-title: Effect of coloured dissolved organic matter on the attenuation of photosynthetically active radiation in Lake Peipsi publication-title: Proc. Estonian Acad. Sci. Biol. Ecol – year: 1994 ident: bb0160 article-title: Light and Photosynthesis in Aquatic Ecosystems – volume: 112 year: 2007 ident: bb0065 article-title: Estimation of light penetration, and horizontal and vertical visibility in oceanic and coastal waters from surface reflectance publication-title: J. Geophys. Res. Oceans – volume: 164 start-page: 298 year: 2015 end-page: 313 ident: bb0155 article-title: Characteristics of Landsat 8 OLI-derived NDVI by comparison with multiple satellite sensors and in-situ observations publication-title: Remote Sens. Environ. – volume: 113 start-page: 2267 year: 2009 end-page: 2274 ident: bb0165 article-title: A sun glint correction method for hyperspectral imagery containing areas with non-negligible water leaving NIR signal publication-title: Remote Sens. Environ. – volume: 248 start-page: 111998 year: 2020 ident: bb0125 article-title: Anthropogenic transformation of Yangtze Plain freshwater lakes: patterns, drivers and impacts publication-title: Remote Sens. Environ. – volume: 96 start-page: 260 year: 2008 end-page: 271 ident: bb0280 article-title: 100 years of vegetation decline and recovery in Lake Fure, Denmark publication-title: J. Ecol. – volume: 246 start-page: 111890 year: 2020 ident: bb0085 article-title: Eutrophication changes in fifty large lakes on the Yangtze Plain of China derived from MERIS and OLCI observations publication-title: Remote Sens. Environ. – volume: 1 start-page: 29 year: 2010 end-page: 35 ident: bb0040 article-title: A water-depth correction algorithm for submerged vegetation spectra publication-title: Remote Sens. Lett. – volume: 221 start-page: 675 year: 2019 end-page: 686 ident: bb0070 article-title: Monitoring and understanding the water transparency changes of fifty large lakes on the Yangtze Plain based on long-term MODIS observations publication-title: Remote Sens. Environ. – volume: 92 start-page: 195 year: 2010 end-page: 199 ident: bb0365 article-title: Variation in vegetation and seed banks of freshwater lakes with contrasting intensity of aquaculture along the Yangtze River, China publication-title: Aquat. Bot. – volume: 46 start-page: 110 year: 1993 end-page: 118 ident: bb0250 article-title: Assessing community type, plant biomass, pigment composition, and photosynthetic efficiency of aquatic vegetation from spectral reflectance publication-title: Remote Sens. Environ. – start-page: 9 year: 2017 ident: bb0375 article-title: A satellite-based assessment of the distribution and biomass of submerged aquatic vegetation in the optically shallow basin of Lake Biwa publication-title: Remote Sens. – volume: 14 start-page: 621 year: 1993 end-page: 627 ident: bb0010 article-title: Remote sensing of submerged vegetation canopies for biomass estimation publication-title: Int. J. Remote Sens. – volume: 36 start-page: 1409 year: 2002 end-page: 1422 ident: bb0060 article-title: Submerged aquatic vegetation-based treatment wetlands for removing phosphorus from agricultural runoff: response to hydraulic and nutrient loading publication-title: Water Res. – volume: 222 start-page: 51 year: 1983 ident: bb0240 article-title: Chesapeake Bay: an unprecedented decline in submerged aquatic vegetation publication-title: Science – volume: 245 start-page: 111829 year: 2020 ident: bb0405 article-title: Canopy modeling of aquatic vegetation: a geometric optical approach (AVGO) publication-title: Remote Sens. Environ. – volume: 134 start-page: 122 year: 2017 end-page: 134 ident: bb0150 article-title: Above-bottom biomass retrieval of aquatic plants with regression models and SfM data acquired by a UAV platform – a case study in Wild Duck Lake Wetland, Beijing, China publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 190 start-page: 107 year: 2017 end-page: 121 ident: bb0115 article-title: Fifteen-year monitoring of the turbidity dynamics in large lakes and reservoirs in the middle and lower basin of the Yangtze River, China publication-title: Remote Sens. Environ. – volume: 493 start-page: 173 year: 2003 end-page: 186 ident: bb0100 article-title: Submerged aquatic vegetation correlations with depth and light attenuating materials in a shallow subtropical lake publication-title: Hydrobiologia – volume: 44 start-page: 838 year: 1954 end-page: 850 ident: bb0050 article-title: Measurement of the roughness of the sea surface from photographs of the sun’s glitter publication-title: J. Opt. Soc. Am. – year: 2018 ident: bb0090 article-title: Landsat 4–7 Surface Reflectance LEDAPS Product – volume: 7 year: 2018 ident: bb0030 article-title: An object-based image analysis workflow for monitoring shallow-water aquatic vegetation in multispectral drone imagery publication-title: ISPRS Int. J. Geo Inf. – volume: 171 start-page: 218 year: 2015 end-page: 233 ident: bb0335 article-title: A rule-based approach for mapping macrophyte communities using multi-temporal aquatic vegetation indices publication-title: Remote Sens. Environ. – volume: 157 start-page: 58 year: 2015 end-page: 71 ident: bb0020 article-title: A satellite-based multi-temporal assessment of the extent of nuisance Cladophora and related submerged aquatic vegetation for the Laurentian Great Lakes publication-title: Remote Sens. Environ. – year: 2018 ident: bb0095 article-title: Landsat 8 Surface Reflectance Code (LaSRC) Product – volume: 112 start-page: 3455 year: 2008 end-page: 3467 ident: bb0340 article-title: Regional-scale seagrass habitat mapping in the Wider Caribbean region using Landsat sensors: applications to conservation and ecology publication-title: Remote Sens. Environ. – volume: 135 start-page: 37 year: 2016 end-page: 45 ident: bb0260 article-title: Submerged macrophyte decline in shallow lakes: what have we learnt in the last forty years? publication-title: Aquat. Bot. – volume: 9 year: 2019 ident: bb0110 article-title: New feature classes for acoustic habitat mapping—a multibeam echosounder point cloud analysis for mapping submerged aquatic vegetation (SAV) publication-title: Geosciences – volume: 20 start-page: 717 year: 2010 end-page: 727 ident: bb0135 article-title: Mapping macrophytic vegetation in shallow lakes using the Compact Airborne Spectrographic Imager (CASI) publication-title: Aquat. Conserv. Mar. Freshwat. Ecosyst. – volume: 185 start-page: 46 year: 2016 end-page: 56 ident: bb0325 article-title: Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product publication-title: Remote Sens. Environ. – volume: 22 start-page: 235 year: 1987 end-page: 248 ident: bb0005 article-title: Remote sensing of submerged aquatic vegetation in lower chesapeake bay: a comparison of Landsat MSS to TM imagery publication-title: Remote Sens. Environ. – volume: 93 start-page: 1 year: 2004 end-page: 17 ident: bb0305 article-title: The Landsat ETM+ spectral mixing space publication-title: Remote Sens. Environ. – volume: 109 start-page: 592 year: 1997 end-page: 599 ident: bb0355 article-title: Mechanisms regulating abundance of submerged vegetation in shallow eutrophic lakes publication-title: Oecologia – volume: 41 start-page: 5755 year: 2002 end-page: 5772 ident: bb0170 article-title: Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters publication-title: Appl. Opt. – volume: 95 start-page: 98 year: 2012 end-page: 107 ident: bb0395 article-title: Remote sensing of aquatic vegetation distribution in Taihu Lake using an improved classification tree with modified thresholds publication-title: J. Environ. Manag. – volume: 173 start-page: 259 year: 2017 end-page: 265 ident: bb0390 article-title: Global loss of aquatic vegetation in lakes publication-title: Earth Sci. Rev. – volume: 42 start-page: 213 year: 2008 end-page: 226 ident: bb0255 article-title: Chlorophyll–nutrient relationships of different lake types using a large European dataset publication-title: Aquat. Ecol. – volume: 140 start-page: 131 year: 2008 end-page: 145 ident: bb0300 article-title: Remote sensing of aquatic vegetation: theory and applications publication-title: Environ. Monit. Assess. – volume: 2 start-page: 98 year: 2000 end-page: 107 ident: bb0235 article-title: Above-water radiance and remote sensing reflectance measurements and analysis protocols publication-title: Ocean Optics Protoc. Satell. Ocean Color Sens. Validation Revision – volume: 37 start-page: 72 year: 2011 end-page: 82 ident: bb0055 article-title: Submerged aquatic vegetation in Cook’s Bay, Lake Simcoe: assessment of changes in response to increased water transparency publication-title: J. Great Lakes Res. – volume: 141 start-page: 148 year: 2018 end-page: 160 ident: bb0120 article-title: Dynamics of the wetland vegetation in large lakes of the Yangtze Plain in response to both fertilizer consumption and climatic changes publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 30 start-page: 113 year: 2014 end-page: 127 ident: bb0330 article-title: Aquatic vegetation indices assessment through radiative transfer modeling and linear mixture simulation publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 7 start-page: 13603 year: 2016 ident: bb0220 article-title: Estimating the volume and age of water stored in global lakes using a geo-statistical approach publication-title: Nat. Commun. – volume: 18 start-page: 26313 year: 2010 end-page: 26324 ident: bb0180 article-title: Removal of surface-reflected light for the measurement of remote-sensing reflectance from an above-surface platform publication-title: Opt. Express – volume: 40 start-page: 4790 year: 2001 end-page: 4798 ident: bb0345 article-title: Correction of sun glint contamination on the SeaWiFS Ocean and atmosphere products publication-title: Appl. Opt. – volume: 115 start-page: 1053 year: 2011 end-page: 1064 ident: bb0035 article-title: A simple and effective method for filling gaps in Landsat ETM+ SLC-off images publication-title: Remote Sens. Environ. – volume: 157 start-page: 35 year: 2015 end-page: 47 ident: bb0245 article-title: Distinguishing surface cyanobacterial blooms and aquatic macrophytes using Landsat/TM and ETM+ shortwave infrared bands publication-title: Remote Sens. Environ. – volume: 8 start-page: 401 year: 2017 end-page: 417 ident: bb0230 article-title: Where’s the grass? Disappearing submerged aquatic vegetation and declining water quality in Lake Mattamuskeet publication-title: J. Fish Wildl. Manag. – volume: 159 start-page: 269 year: 2015 end-page: 277 ident: bb0410 article-title: Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and sentinel 2 images publication-title: Remote Sens. Environ. – volume: 32 start-page: 61 year: 1994 end-page: 66 ident: bb0215 article-title: Mapping aquatic macrophytes through digital image analysis of aerial photographs: an assessment publication-title: J. Aquat. Plant Manag. – volume: 185 start-page: 37 year: 2016 end-page: 45 ident: bb0290 article-title: The impact of improved signal-to-noise ratios on algorithm performance: case studies for Landsat class instruments publication-title: Remote Sens. Environ. – volume: 219 start-page: 145 year: 2018 end-page: 161 ident: bb0045 article-title: The Harmonized Landsat and Sentinel-2 surface reflectance data set publication-title: Remote Sens. Environ. – volume: 188 start-page: 488 year: 2016 ident: bb0080 article-title: The influence of hydrological conditions on phytoplankton community structure and cyanopeptide concentration in dammed lowland river publication-title: Environ. Monit. Assess. – volume: 113 start-page: 106285 year: 2020 ident: bb0370 article-title: Regime shifts in shallow lakes observed by remote sensing and the implications for management publication-title: Ecol. Indic. – volume: 57 start-page: 154 year: 2017 end-page: 165 ident: bb0195 article-title: Mapping species of submerged aquatic vegetation with multi-seasonal satellite images and considering life history information publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 55 start-page: 893 year: 2010 end-page: 908 ident: bb0310 article-title: Submerged macrophytes as indicators of the ecological quality of lakes publication-title: Freshw. Biol. – volume: 12 year: 2020 ident: bb0320 article-title: Performance and applicability of water column correction models in optically complex coastal waters publication-title: Remote Sens. – volume: 18 start-page: 381 year: 2003 end-page: 395 ident: bb0315 article-title: Effects of aquatic macrophytes on water quality and phytoplankton communities in shallow lakes publication-title: Ecol. Res. – volume: 113 start-page: 1587 year: 2009 end-page: 1597 ident: bb0295 article-title: An assessment of the black ocean pixel assumption for MODIS SWIR bands publication-title: Remote Sens. Environ. – volume: 8 year: 2008 ident: bb0200 article-title: Detecting aquatic vegetation changes in Taihu Lake, China using multi-temporal satellite imagery publication-title: Sensors – volume: 41 start-page: 5755 year: 2002 ident: 10.1016/j.rse.2021.112459_bb0170 article-title: Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters publication-title: Appl. Opt. doi: 10.1364/AO.41.005755 – start-page: 9 year: 2017 ident: 10.1016/j.rse.2021.112459_bb0375 article-title: A satellite-based assessment of the distribution and biomass of submerged aquatic vegetation in the optically shallow basin of Lake Biwa publication-title: Remote Sens. – volume: 30 start-page: 113 year: 2014 ident: 10.1016/j.rse.2021.112459_bb0330 article-title: Aquatic vegetation indices assessment through radiative transfer modeling and linear mixture simulation publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 19 start-page: 11 year: 1998 ident: 10.1016/j.rse.2021.112459_bb0380 article-title: On the estimation of biomass of submerged vegetation using Landsat thematic mapper (TM) imagery: a case study of the Honghu Lake, PR China publication-title: Int. J. Remote Sens. doi: 10.1080/014311698216396 – volume: 18 start-page: 26313 year: 2010 ident: 10.1016/j.rse.2021.112459_bb0180 article-title: Removal of surface-reflected light for the measurement of remote-sensing reflectance from an above-surface platform publication-title: Opt. Express doi: 10.1364/OE.18.026313 – volume: 27 start-page: 363 year: 2004 ident: 10.1016/j.rse.2021.112459_bb0225 article-title: Habitat requirements for submerged aquatic vegetation in Chesapeake Bay: water quality, light regime, and physical-chemical factors publication-title: Estuaries doi: 10.1007/BF02803529 – volume: 20 start-page: 717 year: 2010 ident: 10.1016/j.rse.2021.112459_bb0135 article-title: Mapping macrophytic vegetation in shallow lakes using the Compact Airborne Spectrographic Imager (CASI) publication-title: Aquat. Conserv. Mar. Freshwat. Ecosyst. doi: 10.1002/aqc.1144 – volume: 36 start-page: 1409 year: 2002 ident: 10.1016/j.rse.2021.112459_bb0060 article-title: Submerged aquatic vegetation-based treatment wetlands for removing phosphorus from agricultural runoff: response to hydraulic and nutrient loading publication-title: Water Res. doi: 10.1016/S0043-1354(01)00354-2 – year: 2018 ident: 10.1016/j.rse.2021.112459_bb0090 – volume: 14 start-page: 621 year: 1993 ident: 10.1016/j.rse.2021.112459_bb0010 article-title: Remote sensing of submerged vegetation canopies for biomass estimation publication-title: Int. J. Remote Sens. doi: 10.1080/01431169308904363 – volume: 157 start-page: 35 year: 2015 ident: 10.1016/j.rse.2021.112459_bb0245 article-title: Distinguishing surface cyanobacterial blooms and aquatic macrophytes using Landsat/TM and ETM+ shortwave infrared bands publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.04.031 – volume: 7 year: 2018 ident: 10.1016/j.rse.2021.112459_bb0030 article-title: An object-based image analysis workflow for monitoring shallow-water aquatic vegetation in multispectral drone imagery publication-title: ISPRS Int. J. Geo Inf. doi: 10.3390/ijgi7080294 – volume: 112 year: 2007 ident: 10.1016/j.rse.2021.112459_bb0065 article-title: Estimation of light penetration, and horizontal and vertical visibility in oceanic and coastal waters from surface reflectance publication-title: J. Geophys. Res. Oceans doi: 10.1029/2006JC004007 – volume: 32 start-page: 61 year: 1994 ident: 10.1016/j.rse.2021.112459_bb0215 article-title: Mapping aquatic macrophytes through digital image analysis of aerial photographs: an assessment publication-title: J. Aquat. Plant Manag. – volume: 40 start-page: 4790 year: 2001 ident: 10.1016/j.rse.2021.112459_bb0345 article-title: Correction of sun glint contamination on the SeaWiFS Ocean and atmosphere products publication-title: Appl. Opt. doi: 10.1364/AO.40.004790 – volume: 69 start-page: 115 year: 2018 ident: 10.1016/j.rse.2021.112459_bb0360 article-title: Spatial and temporal heterogeneities in water quality and their potential drivers in Lake Poyang (China) from 2009 to 2015 publication-title: Limnologica doi: 10.1016/j.limno.2017.12.001 – volume: 135 start-page: 37 year: 2016 ident: 10.1016/j.rse.2021.112459_bb0260 article-title: Submerged macrophyte decline in shallow lakes: what have we learnt in the last forty years? publication-title: Aquat. Bot. doi: 10.1016/j.aquabot.2016.04.004 – volume: 1 start-page: 213 year: 2010 ident: 10.1016/j.rse.2021.112459_bb0105 article-title: Improving the normalized difference built-up index to map urban built-up areas using a semiautomatic segmentation approach publication-title: Remote Sensing Letters doi: 10.1080/01431161.2010.481681 – volume: 164 start-page: 298 year: 2015 ident: 10.1016/j.rse.2021.112459_bb0155 article-title: Characteristics of Landsat 8 OLI-derived NDVI by comparison with multiple satellite sensors and in-situ observations publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.04.004 – volume: 8 start-page: 401 year: 2017 ident: 10.1016/j.rse.2021.112459_bb0230 article-title: Where’s the grass? Disappearing submerged aquatic vegetation and declining water quality in Lake Mattamuskeet publication-title: J. Fish Wildl. Manag. doi: 10.3996/082016-JFWM-068 – volume: 651 start-page: 367 year: 2019 ident: 10.1016/j.rse.2021.112459_bb0350 article-title: Long-term and inter-monthly dynamics of aquatic vegetation and its relation with environmental factors in Taihu Lake, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.09.216 – volume: 42 start-page: 213 year: 2008 ident: 10.1016/j.rse.2021.112459_bb0255 article-title: Chlorophyll–nutrient relationships of different lake types using a large European dataset publication-title: Aquat. Ecol. doi: 10.1007/s10452-008-9180-0 – volume: 140 start-page: 131 year: 2008 ident: 10.1016/j.rse.2021.112459_bb0300 article-title: Remote sensing of aquatic vegetation: theory and applications publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-007-9855-3 – volume: 115 start-page: 1053 year: 2011 ident: 10.1016/j.rse.2021.112459_bb0035 article-title: A simple and effective method for filling gaps in Landsat ETM+ SLC-off images publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.12.010 – volume: 44 start-page: 838 year: 1954 ident: 10.1016/j.rse.2021.112459_bb0050 article-title: Measurement of the roughness of the sea surface from photographs of the sun’s glitter publication-title: J. Opt. Soc. Am. doi: 10.1364/JOSA.44.000838 – volume: 113 start-page: 1587 year: 2009 ident: 10.1016/j.rse.2021.112459_bb0295 article-title: An assessment of the black ocean pixel assumption for MODIS SWIR bands publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.03.011 – volume: 37 start-page: 72 year: 2011 ident: 10.1016/j.rse.2021.112459_bb0055 article-title: Submerged aquatic vegetation in Cook’s Bay, Lake Simcoe: assessment of changes in response to increased water transparency publication-title: J. Great Lakes Res. doi: 10.1016/j.jglr.2010.07.009 – volume: 141 start-page: 148 year: 2018 ident: 10.1016/j.rse.2021.112459_bb0120 article-title: Dynamics of the wetland vegetation in large lakes of the Yangtze Plain in response to both fertilizer consumption and climatic changes publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.04.015 – volume: 9 year: 2019 ident: 10.1016/j.rse.2021.112459_bb0110 article-title: New feature classes for acoustic habitat mapping—a multibeam echosounder point cloud analysis for mapping submerged aquatic vegetation (SAV) publication-title: Geosciences doi: 10.3390/geosciences9050235 – volume: 12 year: 2020 ident: 10.1016/j.rse.2021.112459_bb0320 article-title: Performance and applicability of water column correction models in optically complex coastal waters publication-title: Remote Sens. doi: 10.3390/rs12111861 – volume: 112 start-page: 3455 year: 2008 ident: 10.1016/j.rse.2021.112459_bb0340 article-title: Regional-scale seagrass habitat mapping in the Wider Caribbean region using Landsat sensors: applications to conservation and ecology publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.01.020 – volume: 22 start-page: 3087 year: 2013 ident: 10.1016/j.rse.2021.112459_bb0075 article-title: Integration of Gibbs Markov random field and hopfield-type neural networks for unsupervised change detection in remotely sensed multitemporal images publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2013.2259833 – volume: 113 start-page: 2267 year: 2009 ident: 10.1016/j.rse.2021.112459_bb0165 article-title: A sun glint correction method for hyperspectral imagery containing areas with non-negligible water leaving NIR signal publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.06.016 – volume: 7 start-page: 13603 year: 2016 ident: 10.1016/j.rse.2021.112459_bb0220 article-title: Estimating the volume and age of water stored in global lakes using a geo-statistical approach publication-title: Nat. Commun. doi: 10.1038/ncomms13603 – volume: 627 start-page: 211 year: 2009 ident: 10.1016/j.rse.2021.112459_bb0145 article-title: Comparative analysis of nutrients, chlorophyll and transparency in two large shallow lakes (Lake Taihu, P.R. China and Lake Okeechobee, USA) publication-title: Hydrobiologia doi: 10.1007/s10750-009-9729-5 – volume: 53 start-page: 88 year: 2004 ident: 10.1016/j.rse.2021.112459_bb0275 article-title: Effect of coloured dissolved organic matter on the attenuation of photosynthetically active radiation in Lake Peipsi publication-title: Proc. Estonian Acad. Sci. Biol. Ecol doi: 10.3176/biol.ecol.2004.2.02 – volume: 159 start-page: 269 year: 2015 ident: 10.1016/j.rse.2021.112459_bb0410 article-title: Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and sentinel 2 images publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.12.014 – volume: 60 start-page: 503 year: 2016 ident: 10.1016/j.rse.2021.112459_bb0190 article-title: Applying remote sensing techniques to monitoring seasonal and interannual changes of aquatic vegetation in Taihu Lake, China publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2015.07.029 – volume: 6 start-page: 23867 year: 2016 ident: 10.1016/j.rse.2021.112459_bb0385 article-title: Aquatic vegetation in response to increased eutrophication and degraded light climate in Eastern Lake Taihu: implications for lake ecological restoration publication-title: Sci. Rep. doi: 10.1038/srep23867 – volume: 11 start-page: 95 year: 2010 ident: 10.1016/j.rse.2021.112459_bb0185 article-title: Effects of nutrient levels in surface water and sediment on the growth of the floating-leaved macrophyte Trapa maximowiczii: implication for management of macrophytes in East Bay of Lake Taihu, China publication-title: Limnology doi: 10.1007/s10201-009-0293-5 – volume: 134 start-page: 122 year: 2017 ident: 10.1016/j.rse.2021.112459_bb0150 article-title: Above-bottom biomass retrieval of aquatic plants with regression models and SfM data acquired by a UAV platform – a case study in Wild Duck Lake Wetland, Beijing, China publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.11.002 – volume: 113 start-page: 2118 year: 2009 ident: 10.1016/j.rse.2021.112459_bb0130 article-title: A novel ocean color index to detect floating algae in the global oceans publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.05.012 – volume: 42 start-page: 2691 year: 2004 ident: 10.1016/j.rse.2021.112459_bb0210 article-title: Landsat sensor performance: history and current status publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2004.840720 – volume: 110 year: 2005 ident: 10.1016/j.rse.2021.112459_bb0175 article-title: A model for the diffuse attenuation coefficient of downwelling irradiance publication-title: J. Geophys. Res. Oceans – volume: 149 start-page: 68 year: 2014 ident: 10.1016/j.rse.2021.112459_bb0265 article-title: Mapping and assessing seagrass bed changes in Central Florida’s west coast using multitemporal Landsat TM imagery publication-title: Estuar. Coast. Shelf Sci. doi: 10.1016/j.ecss.2014.07.014 – volume: 188 start-page: 488 year: 2016 ident: 10.1016/j.rse.2021.112459_bb0080 article-title: The influence of hydrological conditions on phytoplankton community structure and cyanopeptide concentration in dammed lowland river publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-016-5506-x – year: 1994 ident: 10.1016/j.rse.2021.112459_bb0160 – volume: 245 start-page: 111829 year: 2020 ident: 10.1016/j.rse.2021.112459_bb0405 article-title: Canopy modeling of aquatic vegetation: a geometric optical approach (AVGO) publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111829 – volume: 246 start-page: 111890 year: 2020 ident: 10.1016/j.rse.2021.112459_bb0085 article-title: Eutrophication changes in fifty large lakes on the Yangtze Plain of China derived from MERIS and OLCI observations publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111890 – volume: 157 start-page: 58 year: 2015 ident: 10.1016/j.rse.2021.112459_bb0020 article-title: A satellite-based multi-temporal assessment of the extent of nuisance Cladophora and related submerged aquatic vegetation for the Laurentian Great Lakes publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.04.032 – volume: 171 start-page: 218 year: 2015 ident: 10.1016/j.rse.2021.112459_bb0335 article-title: A rule-based approach for mapping macrophyte communities using multi-temporal aquatic vegetation indices publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.10.020 – volume: 92 start-page: 195 year: 2010 ident: 10.1016/j.rse.2021.112459_bb0365 article-title: Variation in vegetation and seed banks of freshwater lakes with contrasting intensity of aquaculture along the Yangtze River, China publication-title: Aquat. Bot. doi: 10.1016/j.aquabot.2009.11.007 – volume: 222 start-page: 51 year: 1983 ident: 10.1016/j.rse.2021.112459_bb0240 article-title: Chesapeake Bay: an unprecedented decline in submerged aquatic vegetation publication-title: Science doi: 10.1126/science.222.4619.51 – volume: 185 start-page: 37 year: 2016 ident: 10.1016/j.rse.2021.112459_bb0290 article-title: The impact of improved signal-to-noise ratios on algorithm performance: case studies for Landsat class instruments publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.04.015 – volume: 6 year: 2011 ident: 10.1016/j.rse.2021.112459_bb0140 article-title: Restoring coastal plants to improve global carbon storage: reaping what we sow publication-title: PLoS One doi: 10.1371/journal.pone.0018311 – volume: 22 start-page: 235 year: 1987 ident: 10.1016/j.rse.2021.112459_bb0005 article-title: Remote sensing of submerged aquatic vegetation in lower chesapeake bay: a comparison of Landsat MSS to TM imagery publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(87)90060-5 – volume: 190 start-page: 107 year: 2017 ident: 10.1016/j.rse.2021.112459_bb0115 article-title: Fifteen-year monitoring of the turbidity dynamics in large lakes and reservoirs in the middle and lower basin of the Yangtze River, China publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.12.006 – volume: 8 year: 2013 ident: 10.1016/j.rse.2021.112459_bb0400 article-title: Spatio-temporal variability of aquatic vegetation in Taihu Lake over the past 30 years publication-title: PLoS One – volume: 42 start-page: 199 year: 1992 ident: 10.1016/j.rse.2021.112459_bb0285 article-title: Distribution and dynamics of submerged vegetation in a chain of shallow eutrophic lakes publication-title: Aquat. Bot. doi: 10.1016/0304-3770(92)90022-B – volume: 221 start-page: 675 year: 2019 ident: 10.1016/j.rse.2021.112459_bb0070 article-title: Monitoring and understanding the water transparency changes of fifty large lakes on the Yangtze Plain based on long-term MODIS observations publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.12.007 – volume: 109 start-page: 592 year: 1997 ident: 10.1016/j.rse.2021.112459_bb0355 article-title: Mechanisms regulating abundance of submerged vegetation in shallow eutrophic lakes publication-title: Oecologia doi: 10.1007/s004420050121 – volume: 2 start-page: 98 year: 2000 ident: 10.1016/j.rse.2021.112459_bb0235 article-title: Above-water radiance and remote sensing reflectance measurements and analysis protocols publication-title: Ocean Optics Protoc. Satell. Ocean Color Sens. Validation Revision – volume: 93 start-page: 1 year: 2004 ident: 10.1016/j.rse.2021.112459_bb0305 article-title: The Landsat ETM+ spectral mixing space publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.06.007 – volume: 493 start-page: 173 year: 2003 ident: 10.1016/j.rse.2021.112459_bb0100 article-title: Submerged aquatic vegetation correlations with depth and light attenuating materials in a shallow subtropical lake publication-title: Hydrobiologia doi: 10.1023/A:1025497621547 – year: 1992 ident: 10.1016/j.rse.2021.112459_bb0015 – volume: 1 start-page: 29 year: 2010 ident: 10.1016/j.rse.2021.112459_bb0040 article-title: A water-depth correction algorithm for submerged vegetation spectra publication-title: Remote Sens. Lett. doi: 10.1080/01431160903246709 – volume: 96 start-page: 260 year: 2008 ident: 10.1016/j.rse.2021.112459_bb0280 article-title: 100 years of vegetation decline and recovery in Lake Fure, Denmark publication-title: J. Ecol. doi: 10.1111/j.1365-2745.2007.01339.x – volume: 173 start-page: 259 year: 2017 ident: 10.1016/j.rse.2021.112459_bb0390 article-title: Global loss of aquatic vegetation in lakes publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2017.08.013 – volume: 113 start-page: 106285 year: 2020 ident: 10.1016/j.rse.2021.112459_bb0370 article-title: Regime shifts in shallow lakes observed by remote sensing and the implications for management publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2020.106285 – volume: 39 start-page: 725 year: 1998 ident: 10.1016/j.rse.2021.112459_bb0025 article-title: Epiphytic algae and macroinvertebrates on submerged and floating-leaved macrophytes in an Italian lake publication-title: Freshw. Biol. doi: 10.1046/j.1365-2427.1998.00325.x – volume: 46 start-page: 110 year: 1993 ident: 10.1016/j.rse.2021.112459_bb0250 article-title: Assessing community type, plant biomass, pigment composition, and photosynthetic efficiency of aquatic vegetation from spectral reflectance publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(93)90088-F – volume: 219 start-page: 145 year: 2018 ident: 10.1016/j.rse.2021.112459_bb0045 article-title: The Harmonized Landsat and Sentinel-2 surface reflectance data set publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.09.002 – volume: 248 start-page: 111998 year: 2020 ident: 10.1016/j.rse.2021.112459_bb0125 article-title: Anthropogenic transformation of Yangtze Plain freshwater lakes: patterns, drivers and impacts publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111998 – volume: 8 year: 2008 ident: 10.1016/j.rse.2021.112459_bb0200 article-title: Detecting aquatic vegetation changes in Taihu Lake, China using multi-temporal satellite imagery publication-title: Sensors doi: 10.3390/s8063988 – volume: 55 start-page: 893 year: 2010 ident: 10.1016/j.rse.2021.112459_bb0310 article-title: Submerged macrophytes as indicators of the ecological quality of lakes publication-title: Freshw. Biol. doi: 10.1111/j.1365-2427.2009.02331.x – volume: 57 start-page: 154 year: 2017 ident: 10.1016/j.rse.2021.112459_bb0195 article-title: Mapping species of submerged aquatic vegetation with multi-seasonal satellite images and considering life history information publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 18 start-page: 381 year: 2003 ident: 10.1016/j.rse.2021.112459_bb0315 article-title: Effects of aquatic macrophytes on water quality and phytoplankton communities in shallow lakes publication-title: Ecol. Res. doi: 10.1046/j.1440-1703.2003.00563.x – volume: 95 start-page: 98 year: 2012 ident: 10.1016/j.rse.2021.112459_bb0395 article-title: Remote sensing of aquatic vegetation distribution in Taihu Lake using an improved classification tree with modified thresholds publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2011.10.007 – volume: 191 start-page: 257 year: 1990 ident: 10.1016/j.rse.2021.112459_bb0205 article-title: An assessment of the importance of emergent and floating-leaved macrophytes to trophic status in the Loosdrecht Lakes (the Netherlands) publication-title: Hydrobiologia doi: 10.1007/BF00026060 – volume: 581 start-page: 3 year: 2007 ident: 10.1016/j.rse.2021.112459_bb0270 article-title: Environmental issues of Lake Taihu, China publication-title: Hydrobiologia doi: 10.1007/s10750-006-0521-5 – volume: 185 start-page: 46 year: 2016 ident: 10.1016/j.rse.2021.112459_bb0325 article-title: Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.04.008 – year: 2018 ident: 10.1016/j.rse.2021.112459_bb0095  | 
    
| SSID | ssj0015871 | 
    
| Score | 2.5168948 | 
    
| Snippet | Submerged aquatic vegetation (SAV) is one of the main producers in inland lakes. Tracking the temporal and spatial changes in SAV is crucial for the... | 
    
| SourceID | swepub proquest crossref elsevier  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 112459 | 
    
| SubjectTerms | Algae Algorithms Aquatic plants Aquatic vegetation Automatic classification Biologi Biological Sciences Classification data collection detection limit Distribution patterns Dynamic threshold Ecology (including Biodiversity Conservation) Ekologi environment FAI humans Hydrology Lakes Landsat Landsat satellites Natural Sciences Naturvetenskap Numerical simulations Nutrients Reflectance Remote sensing Satellite imagery SAV Short wave radiation Spatial distribution submerged aquatic plants surveys SWIR temperature Vegetation Water circulation Water column  | 
    
| Title | An automatic classification algorithm for submerged aquatic vegetation in shallow lakes using Landsat imagery | 
    
| URI | https://dx.doi.org/10.1016/j.rse.2021.112459 https://www.proquest.com/docview/2544271644 https://www.proquest.com/docview/2551916973  | 
    
| Volume | 260 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Science Direct Freedom Collection customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLemIQQXBIWJsjEZiRNSmGM7cXqspo3ytROTJi6W44820CZdk4B64W_HL3FKkdAOHHJIbCeOn5_fe_Z7v4fQa6JNZplmUcy9icI50VHukjxKWU4sdQAoDvuQn6_S2TX_cJPcHKDzIRYG3CrD2t-v6d1qHZ6chdE8WxcFxPgyDjOOAoyQVxIhgp0LyGLw9tfOzSNOMtFnzWM8gtrDyWbn47WpASmTxhBIwwGu9N-yaV_33McT7WTQ5WP0KCiPeNr37wk6sOUIHV38iVXzhYFZ6xF6EBKcL7YjdP9dl8F3-xStpiVWbVN1UK1Yg_IM3kIdgbBazqtN0SxW2OuyuAZZuZlbg9Vt21X_YefBPREXJa4hEUv1Ey_Vd1tj8KCf408QOqwaXKwAHGP7DF1fXnw5n0Uh50KkvaHWRAmbWKJZqlJqmIup9Y-dITl1sb8mxDojnCNMZyKDXNVEe-FGjMsBN4ZSxY7QYVmV9jnCIuda2IzlPDacMJH792o45VHGUaHoGJFhtKUOgOSQF2MpB8-zb9ITSAKBZE-gMXqza7Lu0TjuqswHEsq_ppT00uKuZicDuWXg51oCkBsF05KP0atdsedEOF5Rpa1aqOO14TidCDZGX_tpsuskgHj39pQMIE4LuWyl__J6b3dWxoakmcuI9ExCJRdpLjOrM5kyr-dqFZuEmBf_91vH6CHc9Z7GJ-iw2bT2pdenmvy0Y5hTdG_6_uPs6jdqOiEJ | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfGEBoXBIWJwgAjcUIKc2wnTo_TtFGg22mTJi6W4482o01Kk4J64W_HL3FKkdAOHHLxR-L4-fm9Z7_3ewi9I9pklmkWxdybKJwTHeUuyaOU5cRSB4DicA55cZmOr_nnm-RmD532sTDgVhn2_m5Pb3frUHIcZvN4WRQQ48s4rDgKMEJeSbyH7vOECrDAPvza-nnESSa6tHmMR9C8v9psnbxWNUBl0hgiaTjglf5bOO0qn7uAoq0QOn-MHgXtEZ90A3yC9mw5QIdnf4LVfGXg1nqADkKG89lmgB58bFP4bp6ixUmJ1bqpWqxWrEF7BnehlkJYzafVqmhmC-yVWVyDsFxNrcHq-7pt_sNOg38iLkpcQyaW6ieeq2-2xuBCP8UTiB1WDS4WgI6xeYauz8-uTsdRSLoQaW-pNVHCRpZolqqUGuZian2xMySnLvbPiFhnhHOE6UxkkKyaaC_diHE5AMdQqtgh2i-r0j5HWORcC5uxnMeGEyZy_14N1zzKOCoUHSLSz7bUAZEcEmPMZe96dis9gSQQSHYEGqL32y7LDo7jrsa8J6H8a01JLy7u6nbUk1sGhq4lILlRsC35EL3dVntWhPsVVdpqDW28OhynI8GG6Gu3TLaDBBTvzqCSAcVpJudr6b-83DmelbEhaeYyIj2XUMlFmsvM6kymzCu6WsUmIebF__3WG3QwvrqYyMmnyy8v0UOo6dyOj9B-s1rbV165avLXLfP8BuHFIp4 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+automatic+classification+algorithm+for+submerged+aquatic+vegetation+in+shallow+lakes+using+Landsat+imagery&rft.jtitle=Remote+sensing+of+environment&rft.au=Dai%2C+Yanhui&rft.au=Feng%2C+Lian&rft.au=Hou%2C+Xuejiao&rft.au=Tang%2C+Jing&rft.date=2021-07-01&rft.pub=Elsevier+BV&rft.issn=0034-4257&rft.eissn=1879-0704&rft.volume=260&rft.spage=1&rft_id=info:doi/10.1016%2Fj.rse.2021.112459&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |