An automatic classification algorithm for submerged aquatic vegetation in shallow lakes using Landsat imagery

Submerged aquatic vegetation (SAV) is one of the main producers in inland lakes. Tracking the temporal and spatial changes in SAV is crucial for the identification of state changes in lacustrine ecosystems, such as changes in light, nutrients, and temperature. However, the available SAV classificati...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing of environment Vol. 260; p. 112459
Main Authors Dai, Yanhui, Feng, Lian, Hou, Xuejiao, Tang, Jing
Format Journal Article
LanguageEnglish
Published New York Elsevier Inc 01.07.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN0034-4257
1879-0704
DOI10.1016/j.rse.2021.112459

Cover

Abstract Submerged aquatic vegetation (SAV) is one of the main producers in inland lakes. Tracking the temporal and spatial changes in SAV is crucial for the identification of state changes in lacustrine ecosystems, such as changes in light, nutrients, and temperature. However, the available SAV classification algorithms based on remote sensing are highly dependent on field survey data and/or human interventions, prohibiting the extraction of large-scale and/or long-term patterns. Here, we developed an automatic SAV classification algorithm using Landsat imagery, where the thresholds of two key parameters (the floating algae index (FAI) and reflectance in the shortwave-infrared (SWIR) band) are automatically determined. The algorithm was applied to eight Landsat images of four Yangtze Plain lakes and obtained a mean producer accuracy of 82.9% when gauged against field-surveyed datasets. The algorithm was further employed to obtain long-term SAV areal data from Changdang Lake on the Yangtze Plain from 1984 to 2018, and the result was highly consistent with lake transparency data. Numerical simulations indicated that our developed algorithm is insensitive to the Chl-a concentration of the water column. Yet, it has a detection limit of ~0.35 m below the water surface, and such a limit changes with different fractions of vegetation coverage within a pixel. The automatic classification algorithm proposed in this study has the potential to obtain the temporal and spatial distribution patterns of SAV in other shallow lakes where SAV grows in lakes sharing similar hydrological characteristics as the lakes in the Yangtze Plain. •An automatic classification algorithm is developed for detecting submerged aquatic vegetation in shallow lakes.•FAI and reflectance in SWIR band are two key variables in the algorithm.•Submerged aquatic vegetation at a depth of 0–0.35 m can be detected.•The algorithm is insensitive to the Chl-a concentration of water.•Application of the algorithm to eight Landsat images indicates the potential robustness.
AbstractList Submerged aquatic vegetation (SAV) is one of the main producers in inland lakes. Tracking the temporal and spatial changes in SAV is crucial for the identification of state changes in lacustrine ecosystems, such as changes in light, nutrients, and temperature. However, the available SAV classification algorithms based on remote sensing are highly dependent on field survey data and/or human interventions, prohibiting the extraction of large-scale and/or long-term patterns. Here, we developed an automatic SAV classification algorithm using Landsat imagery, where the thresholds of two key parameters (the floating algae index (FAI) and reflectance in the shortwave-infrared (SWIR) band) are automatically determined. The algorithm was applied to eight Landsat images of four Yangtze Plain lakes and obtained a mean producer accuracy of 82.9% when gauged against field-surveyed datasets. The algorithm was further employed to obtain long-term SAV areal data from Changdang Lake on the Yangtze Plain from 1984 to 2018, and the result was highly consistent with lake transparency data. Numerical simulations indicated that our developed algorithm is insensitive to the Chl-a concentration of the water column. Yet, it has a detection limit of ~0.35 m below the water surface, and such a limit changes with different fractions of vegetation coverage within a pixel. The automatic classification algorithm proposed in this study has the potential to obtain the temporal and spatial distribution patterns of SAV in other shallow lakes where SAV grows in lakes sharing similar hydrological characteristics as the lakes in the Yangtze Plain.
Submerged aquatic vegetation (SAV) is one of the main producers in inland lakes. Tracking the temporal and spatial changes in SAV is crucial for the identification of state changes in lacustrine ecosystems, such as changes in light, nutrients, and temperature. However, the available SAV classification algorithms based on remote sensing are highly dependent on field survey data and/or human interventions, prohibiting the extraction of large-scale and/or long-term patterns. Here, we developed an automatic SAV classification algorithm using Landsat imagery, where the thresholds of two key parameters (the floating algae index (FAI) and reflectance in the shortwave-infrared (SWIR) band) are automatically determined. The algorithm was applied to eight Landsat images of four Yangtze Plain lakes and obtained a mean producer accuracy of 82.9% when gauged against field-surveyed datasets. The algorithm was further employed to obtain long-term SAV areal data from Changdang Lake on the Yangtze Plain from 1984 to 2018, andthe result was highly consistent with lake transparency data. Numerical simulations indicated that our developed algorithm is insensitive to the Chl-a concentration of the water column. Yet, it has a detection limit of ~0.35 m below the water surface, and such a limit changes with different fractions of vegetation coverage within a pixel. The automatic classification algorithm proposed in this study has the potential to obtain the temporal and spatial distribution patterns of SAV in other shallow lakes where SAV grows in lakes sharing similar hydrological characteristics as the lakes in the Yangtze Plain.
Submerged aquatic vegetation (SAV) is one of the main producers in inland lakes. Tracking the temporal and spatial changes in SAV is crucial for the identification of state changes in lacustrine ecosystems, such as changes in light, nutrients, and temperature. However, the available SAV classification algorithms based on remote sensing are highly dependent on field survey data and/or human interventions, prohibiting the extraction of large-scale and/or long-term patterns. Here, we developed an automatic SAV classification algorithm using Landsat imagery, where the thresholds of two key parameters (the floating algae index (FAI) and reflectance in the shortwave-infrared (SWIR) band) are automatically determined. The algorithm was applied to eight Landsat images of four Yangtze Plain lakes and obtained a mean producer accuracy of 82.9% when gauged against field-surveyed datasets. The algorithm was further employed to obtain long-term SAV areal data from Changdang Lake on the Yangtze Plain from 1984 to 2018, and the result was highly consistent with lake transparency data. Numerical simulations indicated that our developed algorithm is insensitive to the Chl-a concentration of the water column. Yet, it has a detection limit of ~0.35 m below the water surface, and such a limit changes with different fractions of vegetation coverage within a pixel. The automatic classification algorithm proposed in this study has the potential to obtain the temporal and spatial distribution patterns of SAV in other shallow lakes where SAV grows in lakes sharing similar hydrological characteristics as the lakes in the Yangtze Plain. •An automatic classification algorithm is developed for detecting submerged aquatic vegetation in shallow lakes.•FAI and reflectance in SWIR band are two key variables in the algorithm.•Submerged aquatic vegetation at a depth of 0–0.35 m can be detected.•The algorithm is insensitive to the Chl-a concentration of water.•Application of the algorithm to eight Landsat images indicates the potential robustness.
ArticleNumber 112459
Author Feng, Lian
Hou, Xuejiao
Tang, Jing
Dai, Yanhui
Author_xml – sequence: 1
  givenname: Yanhui
  surname: Dai
  fullname: Dai, Yanhui
  organization: School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
– sequence: 2
  givenname: Lian
  surname: Feng
  fullname: Feng, Lian
  organization: School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
– sequence: 3
  givenname: Xuejiao
  surname: Hou
  fullname: Hou, Xuejiao
  email: houxj_92@163.com
  organization: School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
– sequence: 4
  givenname: Jing
  surname: Tang
  fullname: Tang, Jing
  organization: Department of Physical Geography and Ecosystem Science, Lund University, Sweden
BookMark eNp9kU1v3CAQhq0qlbpJ-wN6s9RLL7sdMDZYPUVRv6SVemnPCMOwyxabDWMnyr8vqaMecsgBIeB5mYHnsrqY0oRV9Z7BjgHrPp12mXDHgbMdY1y0_atqw5TstyBBXFQbgEZsBW_lm-qS6ATAWiXZphqvp9oscxrNHGxtoyEKPtiySuUgHlIO83Gsfco1LcOI-YCuNrfLP_wODzivaJhqOpoY030dzR-keqEwHeq9mRyZuQ6jOWB-eFu99iYSvnuar6rfX7_8uvm-3f_89uPmer-1Qqh52zY9gm0603HXeMaxbHsHA_esjB7QO-k9NFZJJUBxsJIpcH6Alnecm-aqMuu9dI_nZdDnXBrIDzqZoM8pzybqjIQm26OOiybUhYpPzybNHHTKK9BetlwL2Q1aoVW6a0TbWcNcC67U-LjWOOd0uyDNegxkMUYzYVpI87ZlPet62RT0wzP0lJY8lR8olBBcsk6IQrGVsjkRZfT_22agHyXrky6S9aNkvUouGfksY8NqZM4mxBeTn9ckFg93AbMmG3Cy6EJGO2uXwgvpv_PXxbU
CitedBy_id crossref_primary_10_1016_j_jag_2023_103202
crossref_primary_10_1016_j_rsma_2023_103117
crossref_primary_10_1016_j_xinn_2024_100784
crossref_primary_10_1016_j_scitotenv_2023_169404
crossref_primary_10_1016_j_ecoinf_2022_101954
crossref_primary_10_1080_15481603_2025_2479969
crossref_primary_10_1016_j_rse_2023_113480
crossref_primary_10_3390_rs14225771
crossref_primary_10_1109_JSTARS_2021_3085411
crossref_primary_10_1016_j_ecolmodel_2025_111074
crossref_primary_10_34133_remotesensing_0110
crossref_primary_10_1016_j_ecolind_2025_113168
crossref_primary_10_1016_j_scib_2024_05_009
crossref_primary_10_3390_su141912478
crossref_primary_10_1016_j_ecolind_2021_108144
crossref_primary_10_1016_j_scitotenv_2024_177895
crossref_primary_10_3390_rs16050867
crossref_primary_10_5194_hess_26_3517_2022
crossref_primary_10_1016_j_ecolind_2022_108607
crossref_primary_10_1007_s12518_025_00607_9
crossref_primary_10_3390_plants13213090
crossref_primary_10_3390_s25020503
crossref_primary_10_1109_TGRS_2024_3489883
crossref_primary_10_3390_rs15184488
crossref_primary_10_1016_j_ecolind_2023_110646
crossref_primary_10_1016_j_ecolind_2023_111539
crossref_primary_10_3390_rs14030640
Cites_doi 10.1364/AO.41.005755
10.1080/014311698216396
10.1364/OE.18.026313
10.1007/BF02803529
10.1002/aqc.1144
10.1016/S0043-1354(01)00354-2
10.1080/01431169308904363
10.1016/j.rse.2014.04.031
10.3390/ijgi7080294
10.1029/2006JC004007
10.1364/AO.40.004790
10.1016/j.limno.2017.12.001
10.1016/j.aquabot.2016.04.004
10.1080/01431161.2010.481681
10.1016/j.rse.2015.04.004
10.3996/082016-JFWM-068
10.1016/j.scitotenv.2018.09.216
10.1007/s10452-008-9180-0
10.1007/s10661-007-9855-3
10.1016/j.rse.2010.12.010
10.1364/JOSA.44.000838
10.1016/j.rse.2009.03.011
10.1016/j.jglr.2010.07.009
10.1016/j.isprsjprs.2018.04.015
10.3390/geosciences9050235
10.3390/rs12111861
10.1016/j.rse.2008.01.020
10.1109/TIP.2013.2259833
10.1016/j.rse.2009.06.016
10.1038/ncomms13603
10.1007/s10750-009-9729-5
10.3176/biol.ecol.2004.2.02
10.1016/j.rse.2014.12.014
10.1016/j.ecolind.2015.07.029
10.1038/srep23867
10.1007/s10201-009-0293-5
10.1016/j.isprsjprs.2017.11.002
10.1016/j.rse.2009.05.012
10.1109/TGRS.2004.840720
10.1016/j.ecss.2014.07.014
10.1007/s10661-016-5506-x
10.1016/j.rse.2020.111829
10.1016/j.rse.2020.111890
10.1016/j.rse.2014.04.032
10.1016/j.rse.2015.10.020
10.1016/j.aquabot.2009.11.007
10.1126/science.222.4619.51
10.1016/j.rse.2016.04.015
10.1371/journal.pone.0018311
10.1016/0034-4257(87)90060-5
10.1016/j.rse.2016.12.006
10.1016/0304-3770(92)90022-B
10.1016/j.rse.2018.12.007
10.1007/s004420050121
10.1016/j.rse.2004.06.007
10.1023/A:1025497621547
10.1080/01431160903246709
10.1111/j.1365-2745.2007.01339.x
10.1016/j.earscirev.2017.08.013
10.1016/j.ecolind.2020.106285
10.1046/j.1365-2427.1998.00325.x
10.1016/0034-4257(93)90088-F
10.1016/j.rse.2018.09.002
10.1016/j.rse.2020.111998
10.3390/s8063988
10.1111/j.1365-2427.2009.02331.x
10.1046/j.1440-1703.2003.00563.x
10.1016/j.jenvman.2011.10.007
10.1007/BF00026060
10.1007/s10750-006-0521-5
10.1016/j.rse.2016.04.008
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright Elsevier BV Jul 2021
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright Elsevier BV Jul 2021
CorporateAuthor Lunds universitet
Naturvetenskapliga fakulteten
Faculty of Science
Lund University
Dept of Physical Geography and Ecosystem Science
Institutionen för naturgeografi och ekosystemvetenskap
CorporateAuthor_xml – name: Dept of Physical Geography and Ecosystem Science
– name: Naturvetenskapliga fakulteten
– name: Lund University
– name: Faculty of Science
– name: Lunds universitet
– name: Institutionen för naturgeografi och ekosystemvetenskap
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
ADTPV
AOWAS
D95
DOI 10.1016/j.rse.2021.112459
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
SwePub
SwePub Articles
SWEPUB Lunds universitet
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Meteorological & Geoastrophysical Abstracts
Biotechnology Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
AGRICOLA


DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
EISSN 1879-0704
ExternalDocumentID oai_portal_research_lu_se_publications_1d068f80_f752_476b_8ec8_63456ca1d50d
10_1016_j_rse_2021_112459
S0034425721001772
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
41~
457
4G.
53G
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
VOH
WH7
WUQ
XOL
ZCA
ZMT
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
AGCQF
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
ABUFD
ADTPV
AOWAS
D95
ID FETCH-LOGICAL-c448t-539e0c36a62d3f12ec44fd0b2f1b2f90efd7ff03c87840820c7180dfb052622a3
IEDL.DBID .~1
ISSN 0034-4257
IngestDate Tue Oct 21 03:42:58 EDT 2025
Wed Oct 01 13:40:20 EDT 2025
Wed Aug 13 09:49:57 EDT 2025
Wed Oct 01 05:16:16 EDT 2025
Thu Apr 24 23:07:38 EDT 2025
Fri Feb 23 02:43:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Dynamic threshold
Classification
Landsat
SAV
SWIR
Aquatic vegetation
Remote sensing
FAI
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c448t-539e0c36a62d3f12ec44fd0b2f1b2f90efd7ff03c87840820c7180dfb052622a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2544271644
PQPubID 2045405
ParticipantIDs swepub_primary_oai_portal_research_lu_se_publications_1d068f80_f752_476b_8ec8_63456ca1d50d
proquest_miscellaneous_2551916973
proquest_journals_2544271644
crossref_primary_10_1016_j_rse_2021_112459
crossref_citationtrail_10_1016_j_rse_2021_112459
elsevier_sciencedirect_doi_10_1016_j_rse_2021_112459
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Remote sensing of environment
PublicationYear 2021
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References James, Havens, Zhu, Qin (bb0145) 2009; 627
Mueller, Davis, Arnone, Frouin, Carder, Lee, Steward, Hooker, Mobley, McLean (bb0235) 2000; 2
Xiao, Dou, Liu (bb0365) 2010; 92
Yadav, Yoneda, Susaki, Tamura, Ishikawa, Yamashiki (bb0375) 2017
Cattaneo, Galanti, Gentinetta, Susana (bb0025) 1998; 39
Weisner, Strand, Sandsten (bb0355) 1997; 109
Hu (bb0130) 2009; 113
Batiuk, Orth, Moore, Dennison, Stevenson (bb0015) 1992
Lee, Ahn, Mobley, Arnone (bb0180) 2010; 18
Takamura, Kadono, Fukushima, Nakagawa, Kim (bb0315) 2003; 18
Zhu, Wang, Woodcock (bb0410) 2015; 159
Depew, Houben, Ozersky, Hecky, Guildford (bb0055) 2011; 37
Wang, Bailey (bb0345) 2001; 40
Cho, Lu (bb0040) 2010; 1
Guan, Feng, Hou, Schurgers, Zheng, Tang (bb0085) 2020; 246
Luo, Li, Ma, Li, Duan, Hu, Qin, Huang (bb0190) 2016; 60
Grabowska, Mazur-Marzec (bb0080) 2016; 188
Jing, Gong, Zhao, Pu, Deng (bb0150) 2017; 134
Qin, Xu, Wu, Luo, Zhang (bb0270) 2007; 581
Reinart, Paavel, Tuvikene (bb0275) 2004; 53
Vermote, Justice, Claverie, Franch (bb0325) 2016; 185
Guide (bb0095) 2018
Brooks, Grimm, Shuchman, Sayers, Jessee (bb0020) 2015; 157
Ma, Duan, Gu, Zhang (bb0200) 2008; 8
Wu, Cai, Zhang, Chen (bb0360) 2018; 69
Armstrong (bb0010) 1993; 14
Doron, Babin, Mangin, Hembise (bb0065) 2007; 112
Zhang, Jeppesen, Liu, Qin, Shi, Zhou, Thomaz, Deng (bb0390) 2017; 173
Irving, Connell, Russell (bb0140) 2011; 6
Phillips, Willby, Moss (bb0260) 2016; 135
Marshall, Lee (bb0215) 1994; 32
Held, Schneider von Deimling (bb0110) 2019; 9
Messager, Lehner, Grill, Nedeva, Schmitt (bb0220) 2016; 7
Michael Kemp, Batleson, Bergstrom, Carter, Gallegos, Hunley, Karrh, Koch, Landwehr, Moore, Murray, Naylor, Rybicki, Court Stevenson, Wilcox (bb0225) 2004; 27
Small (bb0305) 2004; 93
Dierberg, DeBusk, Jackson, Chimney, Pietro (bb0060) 2002; 36
Hou, Feng, Tang, Song, Liu, Zhang, Wang, Xu, Dai, Zheng, Zheng, Bryan (bb0125) 2020; 248
Phillips, Pietiläinen, Carvalho, Solimini, Lyche Solheim, Cardoso (bb0255) 2008; 42
Chabot, Dillon, Shemrock, Weissflog, Sager (bb0030) 2018; 7
Moorman, Augspurger, Stanton, Smith (bb0230) 2017; 8
Hunter, Gilvear, Tyler, Willby, Kelly (bb0135) 2010; 20
Pu, Bell, Meyer (bb0265) 2014; 149
Ke, Im, Lee, Gong, Ryu (bb0155) 2015; 164
SØNdergaard, Johansson, Lauridsen, JØRgensen, Liboriussen, Jeppesen (bb0310) 2010; 55
Wang, Gao, Li, Gao, Zhai, Zhou, Cheng (bb0350) 2019; 651
Hou, Feng, Duan, Chen, Sun, Shi (bb0115) 2017; 190
Chen, Zhu, Vogelmann, Gao, Jin (bb0035) 2011; 115
Cox, Munk (bb0050) 1954; 44
Lee, Carder, Arnone (bb0170) 2002; 41
Lee, Du, Arnone (bb0175) 2005; 110
Zhang, Liu, Qin, Shi, Deng, Zhou (bb0385) 2016; 6
Kutser, Vahtmäe, Praks (bb0165) 2009; 113
Oyama, Matsushita, Fukushima (bb0245) 2015; 157
Scheffer, de Redelijkheid, Noppert (bb0285) 1992; 42
Zhao, Lv, Jiang, Cai, Xu, An (bb0400) 2013; 8
Villa, Bresciani, Bolpagni, Pinardi, Giardino (bb0335) 2015; 171
Silva, Costa, Melack, Novo (bb0300) 2008; 140
Schott, Gerace, Woodcock, Wang, Zhu, Wynne, Blinn (bb0290) 2016; 185
Markham, Storey, Williams, Irons (bb0210) 2004; 42
Zhang (bb0380) 1998; 19
Ackleson, Klemas (bb0005) 1987; 22
He, Shi, Xie, Zhao (bb0105) 2010; 1
Vahtmäe, Kutser, Paavel (bb0320) 2020; 12
Guide (bb0090) 2018
Shi, Wang (bb0295) 2009; 113
Sand-Jensen, Pedersen, Thorsgaard, Moeslund, Borum, Brodersen (bb0280) 2008; 96
Peñuelas, Gamon, Griffin, Field (bb0250) 1993; 46
Havens (bb0100) 2003; 493
Feng, Hou, Zheng (bb0070) 2019; 221
Zhou, Yang, Sathyendranath, Platt (bb0405) 2020; 245
Li, Liu, Guan (bb0185) 2010; 11
Wabnitz, Andréfouët, Torres-Pulliza, Müller-Karger, Kramer (bb0340) 2008; 112
Hou, Feng, Chen, Zhang (bb0120) 2018; 141
Kirk (bb0160) 1994
Villa, Mousivand, Bresciani (bb0330) 2014; 30
Xu, Zhang, Chen, Li, Shi, Zhang (bb0370) 2020; 113
Malthus, Best, Dekker (bb0205) 1990; 191
Ghosh, Subudhi, Bruzzone (bb0075) 2013; 22
Luo, Duan, Ma, Jin, Li, Hu, Shi, Huang (bb0195) 2017; 57
Claverie, Ju, Masek, Dungan, Vermote, Roger, Skakun, Justice (bb0045) 2018; 219
Orth, Moore (bb0240) 1983; 222
Zhao, Jiang, Yang, Cai, Xu, An (bb0395) 2012; 95
Lee (10.1016/j.rse.2021.112459_bb0180) 2010; 18
Villa (10.1016/j.rse.2021.112459_bb0330) 2014; 30
Malthus (10.1016/j.rse.2021.112459_bb0205) 1990; 191
Chen (10.1016/j.rse.2021.112459_bb0035) 2011; 115
Grabowska (10.1016/j.rse.2021.112459_bb0080) 2016; 188
Peñuelas (10.1016/j.rse.2021.112459_bb0250) 1993; 46
Irving (10.1016/j.rse.2021.112459_bb0140) 2011; 6
Wabnitz (10.1016/j.rse.2021.112459_bb0340) 2008; 112
Havens (10.1016/j.rse.2021.112459_bb0100) 2003; 493
Moorman (10.1016/j.rse.2021.112459_bb0230) 2017; 8
Zhao (10.1016/j.rse.2021.112459_bb0400) 2013; 8
Kutser (10.1016/j.rse.2021.112459_bb0165) 2009; 113
Yadav (10.1016/j.rse.2021.112459_bb0375) 2017
Kirk (10.1016/j.rse.2021.112459_bb0160) 1994
Scheffer (10.1016/j.rse.2021.112459_bb0285) 1992; 42
Brooks (10.1016/j.rse.2021.112459_bb0020) 2015; 157
Cho (10.1016/j.rse.2021.112459_bb0040) 2010; 1
Armstrong (10.1016/j.rse.2021.112459_bb0010) 1993; 14
Mueller (10.1016/j.rse.2021.112459_bb0235) 2000; 2
Claverie (10.1016/j.rse.2021.112459_bb0045) 2018; 219
Dierberg (10.1016/j.rse.2021.112459_bb0060) 2002; 36
Cattaneo (10.1016/j.rse.2021.112459_bb0025) 1998; 39
Small (10.1016/j.rse.2021.112459_bb0305) 2004; 93
Lee (10.1016/j.rse.2021.112459_bb0175) 2005; 110
Guide (10.1016/j.rse.2021.112459_bb0095) 2018
Messager (10.1016/j.rse.2021.112459_bb0220) 2016; 7
Phillips (10.1016/j.rse.2021.112459_bb0260) 2016; 135
Wu (10.1016/j.rse.2021.112459_bb0360) 2018; 69
Sand-Jensen (10.1016/j.rse.2021.112459_bb0280) 2008; 96
Wang (10.1016/j.rse.2021.112459_bb0350) 2019; 651
Zhu (10.1016/j.rse.2021.112459_bb0410) 2015; 159
Weisner (10.1016/j.rse.2021.112459_bb0355) 1997; 109
Zhang (10.1016/j.rse.2021.112459_bb0380) 1998; 19
Luo (10.1016/j.rse.2021.112459_bb0190) 2016; 60
Silva (10.1016/j.rse.2021.112459_bb0300) 2008; 140
Villa (10.1016/j.rse.2021.112459_bb0335) 2015; 171
Shi (10.1016/j.rse.2021.112459_bb0295) 2009; 113
Depew (10.1016/j.rse.2021.112459_bb0055) 2011; 37
Phillips (10.1016/j.rse.2021.112459_bb0255) 2008; 42
Hou (10.1016/j.rse.2021.112459_bb0115) 2017; 190
Xu (10.1016/j.rse.2021.112459_bb0370) 2020; 113
Chabot (10.1016/j.rse.2021.112459_bb0030) 2018; 7
Held (10.1016/j.rse.2021.112459_bb0110) 2019; 9
Reinart (10.1016/j.rse.2021.112459_bb0275) 2004; 53
Schott (10.1016/j.rse.2021.112459_bb0290) 2016; 185
Vermote (10.1016/j.rse.2021.112459_bb0325) 2016; 185
Zhang (10.1016/j.rse.2021.112459_bb0385) 2016; 6
Takamura (10.1016/j.rse.2021.112459_bb0315) 2003; 18
Batiuk (10.1016/j.rse.2021.112459_bb0015) 1992
Cox (10.1016/j.rse.2021.112459_bb0050) 1954; 44
Luo (10.1016/j.rse.2021.112459_bb0195) 2017; 57
Oyama (10.1016/j.rse.2021.112459_bb0245) 2015; 157
Pu (10.1016/j.rse.2021.112459_bb0265) 2014; 149
Hunter (10.1016/j.rse.2021.112459_bb0135) 2010; 20
Michael Kemp (10.1016/j.rse.2021.112459_bb0225) 2004; 27
Hou (10.1016/j.rse.2021.112459_bb0120) 2018; 141
Wang (10.1016/j.rse.2021.112459_bb0345) 2001; 40
Zhou (10.1016/j.rse.2021.112459_bb0405) 2020; 245
Marshall (10.1016/j.rse.2021.112459_bb0215) 1994; 32
Guide (10.1016/j.rse.2021.112459_bb0090) 2018
Hou (10.1016/j.rse.2021.112459_bb0125) 2020; 248
Ackleson (10.1016/j.rse.2021.112459_bb0005) 1987; 22
Zhang (10.1016/j.rse.2021.112459_bb0390) 2017; 173
Ke (10.1016/j.rse.2021.112459_bb0155) 2015; 164
Zhao (10.1016/j.rse.2021.112459_bb0395) 2012; 95
Doron (10.1016/j.rse.2021.112459_bb0065) 2007; 112
Li (10.1016/j.rse.2021.112459_bb0185) 2010; 11
Qin (10.1016/j.rse.2021.112459_bb0270) 2007; 581
Lee (10.1016/j.rse.2021.112459_bb0170) 2002; 41
Orth (10.1016/j.rse.2021.112459_bb0240) 1983; 222
He (10.1016/j.rse.2021.112459_bb0105) 2010; 1
Ghosh (10.1016/j.rse.2021.112459_bb0075) 2013; 22
Xiao (10.1016/j.rse.2021.112459_bb0365) 2010; 92
James (10.1016/j.rse.2021.112459_bb0145) 2009; 627
Vahtmäe (10.1016/j.rse.2021.112459_bb0320) 2020; 12
Jing (10.1016/j.rse.2021.112459_bb0150) 2017; 134
Feng (10.1016/j.rse.2021.112459_bb0070) 2019; 221
Guan (10.1016/j.rse.2021.112459_bb0085) 2020; 246
Ma (10.1016/j.rse.2021.112459_bb0200) 2008; 8
Markham (10.1016/j.rse.2021.112459_bb0210) 2004; 42
SØNdergaard (10.1016/j.rse.2021.112459_bb0310) 2010; 55
Hu (10.1016/j.rse.2021.112459_bb0130) 2009; 113
References_xml – volume: 11
  start-page: 95
  year: 2010
  end-page: 101
  ident: bb0185
  article-title: Effects of nutrient levels in surface water and sediment on the growth of the floating-leaved macrophyte Trapa maximowiczii: implication for management of macrophytes in East Bay of Lake Taihu, China
  publication-title: Limnology
– year: 1992
  ident: bb0015
  article-title: Chesapeake Bay Submerged Aquatic Vegetation Habitat Requirements and Restoration Targets: A Technical Synthesis
– volume: 581
  start-page: 3
  year: 2007
  end-page: 14
  ident: bb0270
  article-title: Environmental issues of Lake Taihu, China
  publication-title: Hydrobiologia
– volume: 8
  year: 2013
  ident: bb0400
  article-title: Spatio-temporal variability of aquatic vegetation in Taihu Lake over the past 30 years
  publication-title: PLoS One
– volume: 60
  start-page: 503
  year: 2016
  end-page: 513
  ident: bb0190
  article-title: Applying remote sensing techniques to monitoring seasonal and interannual changes of aquatic vegetation in Taihu Lake, China
  publication-title: Ecol. Indic.
– volume: 39
  start-page: 725
  year: 1998
  end-page: 740
  ident: bb0025
  article-title: Epiphytic algae and macroinvertebrates on submerged and floating-leaved macrophytes in an Italian lake
  publication-title: Freshw. Biol.
– volume: 651
  start-page: 367
  year: 2019
  end-page: 380
  ident: bb0350
  article-title: Long-term and inter-monthly dynamics of aquatic vegetation and its relation with environmental factors in Taihu Lake, China
  publication-title: Sci. Total Environ.
– volume: 6
  year: 2011
  ident: bb0140
  article-title: Restoring coastal plants to improve global carbon storage: reaping what we sow
  publication-title: PLoS One
– volume: 6
  start-page: 23867
  year: 2016
  ident: bb0385
  article-title: Aquatic vegetation in response to increased eutrophication and degraded light climate in Eastern Lake Taihu: implications for lake ecological restoration
  publication-title: Sci. Rep.
– volume: 110
  year: 2005
  ident: bb0175
  article-title: A model for the diffuse attenuation coefficient of downwelling irradiance
  publication-title: J. Geophys. Res. Oceans
– volume: 42
  start-page: 2691
  year: 2004
  end-page: 2694
  ident: bb0210
  article-title: Landsat sensor performance: history and current status
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 113
  start-page: 2118
  year: 2009
  end-page: 2129
  ident: bb0130
  article-title: A novel ocean color index to detect floating algae in the global oceans
  publication-title: Remote Sens. Environ.
– volume: 22
  start-page: 3087
  year: 2013
  end-page: 3096
  ident: bb0075
  article-title: Integration of Gibbs Markov random field and hopfield-type neural networks for unsupervised change detection in remotely sensed multitemporal images
  publication-title: IEEE Trans. Image Process.
– volume: 69
  start-page: 115
  year: 2018
  end-page: 124
  ident: bb0360
  article-title: Spatial and temporal heterogeneities in water quality and their potential drivers in Lake Poyang (China) from 2009 to 2015
  publication-title: Limnologica
– volume: 27
  start-page: 363
  year: 2004
  end-page: 377
  ident: bb0225
  article-title: Habitat requirements for submerged aquatic vegetation in Chesapeake Bay: water quality, light regime, and physical-chemical factors
  publication-title: Estuaries
– volume: 19
  start-page: 11
  year: 1998
  end-page: 20
  ident: bb0380
  article-title: On the estimation of biomass of submerged vegetation using Landsat thematic mapper (TM) imagery: a case study of the Honghu Lake, PR China
  publication-title: Int. J. Remote Sens.
– volume: 149
  start-page: 68
  year: 2014
  end-page: 79
  ident: bb0265
  article-title: Mapping and assessing seagrass bed changes in Central Florida’s west coast using multitemporal Landsat TM imagery
  publication-title: Estuar. Coast. Shelf Sci.
– volume: 191
  start-page: 257
  year: 1990
  end-page: 263
  ident: bb0205
  article-title: An assessment of the importance of emergent and floating-leaved macrophytes to trophic status in the Loosdrecht Lakes (the Netherlands)
  publication-title: Hydrobiologia
– volume: 627
  start-page: 211
  year: 2009
  end-page: 231
  ident: bb0145
  article-title: Comparative analysis of nutrients, chlorophyll and transparency in two large shallow lakes (Lake Taihu, P.R. China and Lake Okeechobee, USA)
  publication-title: Hydrobiologia
– volume: 1
  start-page: 213
  year: 2010
  end-page: 221
  ident: bb0105
  article-title: Improving the normalized difference built-up index to map urban built-up areas using a semiautomatic segmentation approach
  publication-title: Remote Sensing Letters
– volume: 42
  start-page: 199
  year: 1992
  end-page: 216
  ident: bb0285
  article-title: Distribution and dynamics of submerged vegetation in a chain of shallow eutrophic lakes
  publication-title: Aquat. Bot.
– volume: 53
  start-page: 88
  year: 2004
  end-page: 105
  ident: bb0275
  article-title: Effect of coloured dissolved organic matter on the attenuation of photosynthetically active radiation in Lake Peipsi
  publication-title: Proc. Estonian Acad. Sci. Biol. Ecol
– year: 1994
  ident: bb0160
  article-title: Light and Photosynthesis in Aquatic Ecosystems
– volume: 112
  year: 2007
  ident: bb0065
  article-title: Estimation of light penetration, and horizontal and vertical visibility in oceanic and coastal waters from surface reflectance
  publication-title: J. Geophys. Res. Oceans
– volume: 164
  start-page: 298
  year: 2015
  end-page: 313
  ident: bb0155
  article-title: Characteristics of Landsat 8 OLI-derived NDVI by comparison with multiple satellite sensors and in-situ observations
  publication-title: Remote Sens. Environ.
– volume: 113
  start-page: 2267
  year: 2009
  end-page: 2274
  ident: bb0165
  article-title: A sun glint correction method for hyperspectral imagery containing areas with non-negligible water leaving NIR signal
  publication-title: Remote Sens. Environ.
– volume: 248
  start-page: 111998
  year: 2020
  ident: bb0125
  article-title: Anthropogenic transformation of Yangtze Plain freshwater lakes: patterns, drivers and impacts
  publication-title: Remote Sens. Environ.
– volume: 96
  start-page: 260
  year: 2008
  end-page: 271
  ident: bb0280
  article-title: 100 years of vegetation decline and recovery in Lake Fure, Denmark
  publication-title: J. Ecol.
– volume: 246
  start-page: 111890
  year: 2020
  ident: bb0085
  article-title: Eutrophication changes in fifty large lakes on the Yangtze Plain of China derived from MERIS and OLCI observations
  publication-title: Remote Sens. Environ.
– volume: 1
  start-page: 29
  year: 2010
  end-page: 35
  ident: bb0040
  article-title: A water-depth correction algorithm for submerged vegetation spectra
  publication-title: Remote Sens. Lett.
– volume: 221
  start-page: 675
  year: 2019
  end-page: 686
  ident: bb0070
  article-title: Monitoring and understanding the water transparency changes of fifty large lakes on the Yangtze Plain based on long-term MODIS observations
  publication-title: Remote Sens. Environ.
– volume: 92
  start-page: 195
  year: 2010
  end-page: 199
  ident: bb0365
  article-title: Variation in vegetation and seed banks of freshwater lakes with contrasting intensity of aquaculture along the Yangtze River, China
  publication-title: Aquat. Bot.
– volume: 46
  start-page: 110
  year: 1993
  end-page: 118
  ident: bb0250
  article-title: Assessing community type, plant biomass, pigment composition, and photosynthetic efficiency of aquatic vegetation from spectral reflectance
  publication-title: Remote Sens. Environ.
– start-page: 9
  year: 2017
  ident: bb0375
  article-title: A satellite-based assessment of the distribution and biomass of submerged aquatic vegetation in the optically shallow basin of Lake Biwa
  publication-title: Remote Sens.
– volume: 14
  start-page: 621
  year: 1993
  end-page: 627
  ident: bb0010
  article-title: Remote sensing of submerged vegetation canopies for biomass estimation
  publication-title: Int. J. Remote Sens.
– volume: 36
  start-page: 1409
  year: 2002
  end-page: 1422
  ident: bb0060
  article-title: Submerged aquatic vegetation-based treatment wetlands for removing phosphorus from agricultural runoff: response to hydraulic and nutrient loading
  publication-title: Water Res.
– volume: 222
  start-page: 51
  year: 1983
  ident: bb0240
  article-title: Chesapeake Bay: an unprecedented decline in submerged aquatic vegetation
  publication-title: Science
– volume: 245
  start-page: 111829
  year: 2020
  ident: bb0405
  article-title: Canopy modeling of aquatic vegetation: a geometric optical approach (AVGO)
  publication-title: Remote Sens. Environ.
– volume: 134
  start-page: 122
  year: 2017
  end-page: 134
  ident: bb0150
  article-title: Above-bottom biomass retrieval of aquatic plants with regression models and SfM data acquired by a UAV platform – a case study in Wild Duck Lake Wetland, Beijing, China
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 190
  start-page: 107
  year: 2017
  end-page: 121
  ident: bb0115
  article-title: Fifteen-year monitoring of the turbidity dynamics in large lakes and reservoirs in the middle and lower basin of the Yangtze River, China
  publication-title: Remote Sens. Environ.
– volume: 493
  start-page: 173
  year: 2003
  end-page: 186
  ident: bb0100
  article-title: Submerged aquatic vegetation correlations with depth and light attenuating materials in a shallow subtropical lake
  publication-title: Hydrobiologia
– volume: 44
  start-page: 838
  year: 1954
  end-page: 850
  ident: bb0050
  article-title: Measurement of the roughness of the sea surface from photographs of the sun’s glitter
  publication-title: J. Opt. Soc. Am.
– year: 2018
  ident: bb0090
  article-title: Landsat 4–7 Surface Reflectance LEDAPS Product
– volume: 7
  year: 2018
  ident: bb0030
  article-title: An object-based image analysis workflow for monitoring shallow-water aquatic vegetation in multispectral drone imagery
  publication-title: ISPRS Int. J. Geo Inf.
– volume: 171
  start-page: 218
  year: 2015
  end-page: 233
  ident: bb0335
  article-title: A rule-based approach for mapping macrophyte communities using multi-temporal aquatic vegetation indices
  publication-title: Remote Sens. Environ.
– volume: 157
  start-page: 58
  year: 2015
  end-page: 71
  ident: bb0020
  article-title: A satellite-based multi-temporal assessment of the extent of nuisance Cladophora and related submerged aquatic vegetation for the Laurentian Great Lakes
  publication-title: Remote Sens. Environ.
– year: 2018
  ident: bb0095
  article-title: Landsat 8 Surface Reflectance Code (LaSRC) Product
– volume: 112
  start-page: 3455
  year: 2008
  end-page: 3467
  ident: bb0340
  article-title: Regional-scale seagrass habitat mapping in the Wider Caribbean region using Landsat sensors: applications to conservation and ecology
  publication-title: Remote Sens. Environ.
– volume: 135
  start-page: 37
  year: 2016
  end-page: 45
  ident: bb0260
  article-title: Submerged macrophyte decline in shallow lakes: what have we learnt in the last forty years?
  publication-title: Aquat. Bot.
– volume: 9
  year: 2019
  ident: bb0110
  article-title: New feature classes for acoustic habitat mapping—a multibeam echosounder point cloud analysis for mapping submerged aquatic vegetation (SAV)
  publication-title: Geosciences
– volume: 20
  start-page: 717
  year: 2010
  end-page: 727
  ident: bb0135
  article-title: Mapping macrophytic vegetation in shallow lakes using the Compact Airborne Spectrographic Imager (CASI)
  publication-title: Aquat. Conserv. Mar. Freshwat. Ecosyst.
– volume: 185
  start-page: 46
  year: 2016
  end-page: 56
  ident: bb0325
  article-title: Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product
  publication-title: Remote Sens. Environ.
– volume: 22
  start-page: 235
  year: 1987
  end-page: 248
  ident: bb0005
  article-title: Remote sensing of submerged aquatic vegetation in lower chesapeake bay: a comparison of Landsat MSS to TM imagery
  publication-title: Remote Sens. Environ.
– volume: 93
  start-page: 1
  year: 2004
  end-page: 17
  ident: bb0305
  article-title: The Landsat ETM+ spectral mixing space
  publication-title: Remote Sens. Environ.
– volume: 109
  start-page: 592
  year: 1997
  end-page: 599
  ident: bb0355
  article-title: Mechanisms regulating abundance of submerged vegetation in shallow eutrophic lakes
  publication-title: Oecologia
– volume: 41
  start-page: 5755
  year: 2002
  end-page: 5772
  ident: bb0170
  article-title: Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters
  publication-title: Appl. Opt.
– volume: 95
  start-page: 98
  year: 2012
  end-page: 107
  ident: bb0395
  article-title: Remote sensing of aquatic vegetation distribution in Taihu Lake using an improved classification tree with modified thresholds
  publication-title: J. Environ. Manag.
– volume: 173
  start-page: 259
  year: 2017
  end-page: 265
  ident: bb0390
  article-title: Global loss of aquatic vegetation in lakes
  publication-title: Earth Sci. Rev.
– volume: 42
  start-page: 213
  year: 2008
  end-page: 226
  ident: bb0255
  article-title: Chlorophyll–nutrient relationships of different lake types using a large European dataset
  publication-title: Aquat. Ecol.
– volume: 140
  start-page: 131
  year: 2008
  end-page: 145
  ident: bb0300
  article-title: Remote sensing of aquatic vegetation: theory and applications
  publication-title: Environ. Monit. Assess.
– volume: 2
  start-page: 98
  year: 2000
  end-page: 107
  ident: bb0235
  article-title: Above-water radiance and remote sensing reflectance measurements and analysis protocols
  publication-title: Ocean Optics Protoc. Satell. Ocean Color Sens. Validation Revision
– volume: 37
  start-page: 72
  year: 2011
  end-page: 82
  ident: bb0055
  article-title: Submerged aquatic vegetation in Cook’s Bay, Lake Simcoe: assessment of changes in response to increased water transparency
  publication-title: J. Great Lakes Res.
– volume: 141
  start-page: 148
  year: 2018
  end-page: 160
  ident: bb0120
  article-title: Dynamics of the wetland vegetation in large lakes of the Yangtze Plain in response to both fertilizer consumption and climatic changes
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 30
  start-page: 113
  year: 2014
  end-page: 127
  ident: bb0330
  article-title: Aquatic vegetation indices assessment through radiative transfer modeling and linear mixture simulation
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 7
  start-page: 13603
  year: 2016
  ident: bb0220
  article-title: Estimating the volume and age of water stored in global lakes using a geo-statistical approach
  publication-title: Nat. Commun.
– volume: 18
  start-page: 26313
  year: 2010
  end-page: 26324
  ident: bb0180
  article-title: Removal of surface-reflected light for the measurement of remote-sensing reflectance from an above-surface platform
  publication-title: Opt. Express
– volume: 40
  start-page: 4790
  year: 2001
  end-page: 4798
  ident: bb0345
  article-title: Correction of sun glint contamination on the SeaWiFS Ocean and atmosphere products
  publication-title: Appl. Opt.
– volume: 115
  start-page: 1053
  year: 2011
  end-page: 1064
  ident: bb0035
  article-title: A simple and effective method for filling gaps in Landsat ETM+ SLC-off images
  publication-title: Remote Sens. Environ.
– volume: 157
  start-page: 35
  year: 2015
  end-page: 47
  ident: bb0245
  article-title: Distinguishing surface cyanobacterial blooms and aquatic macrophytes using Landsat/TM and ETM+ shortwave infrared bands
  publication-title: Remote Sens. Environ.
– volume: 8
  start-page: 401
  year: 2017
  end-page: 417
  ident: bb0230
  article-title: Where’s the grass? Disappearing submerged aquatic vegetation and declining water quality in Lake Mattamuskeet
  publication-title: J. Fish Wildl. Manag.
– volume: 159
  start-page: 269
  year: 2015
  end-page: 277
  ident: bb0410
  article-title: Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and sentinel 2 images
  publication-title: Remote Sens. Environ.
– volume: 32
  start-page: 61
  year: 1994
  end-page: 66
  ident: bb0215
  article-title: Mapping aquatic macrophytes through digital image analysis of aerial photographs: an assessment
  publication-title: J. Aquat. Plant Manag.
– volume: 185
  start-page: 37
  year: 2016
  end-page: 45
  ident: bb0290
  article-title: The impact of improved signal-to-noise ratios on algorithm performance: case studies for Landsat class instruments
  publication-title: Remote Sens. Environ.
– volume: 219
  start-page: 145
  year: 2018
  end-page: 161
  ident: bb0045
  article-title: The Harmonized Landsat and Sentinel-2 surface reflectance data set
  publication-title: Remote Sens. Environ.
– volume: 188
  start-page: 488
  year: 2016
  ident: bb0080
  article-title: The influence of hydrological conditions on phytoplankton community structure and cyanopeptide concentration in dammed lowland river
  publication-title: Environ. Monit. Assess.
– volume: 113
  start-page: 106285
  year: 2020
  ident: bb0370
  article-title: Regime shifts in shallow lakes observed by remote sensing and the implications for management
  publication-title: Ecol. Indic.
– volume: 57
  start-page: 154
  year: 2017
  end-page: 165
  ident: bb0195
  article-title: Mapping species of submerged aquatic vegetation with multi-seasonal satellite images and considering life history information
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 55
  start-page: 893
  year: 2010
  end-page: 908
  ident: bb0310
  article-title: Submerged macrophytes as indicators of the ecological quality of lakes
  publication-title: Freshw. Biol.
– volume: 12
  year: 2020
  ident: bb0320
  article-title: Performance and applicability of water column correction models in optically complex coastal waters
  publication-title: Remote Sens.
– volume: 18
  start-page: 381
  year: 2003
  end-page: 395
  ident: bb0315
  article-title: Effects of aquatic macrophytes on water quality and phytoplankton communities in shallow lakes
  publication-title: Ecol. Res.
– volume: 113
  start-page: 1587
  year: 2009
  end-page: 1597
  ident: bb0295
  article-title: An assessment of the black ocean pixel assumption for MODIS SWIR bands
  publication-title: Remote Sens. Environ.
– volume: 8
  year: 2008
  ident: bb0200
  article-title: Detecting aquatic vegetation changes in Taihu Lake, China using multi-temporal satellite imagery
  publication-title: Sensors
– volume: 41
  start-page: 5755
  year: 2002
  ident: 10.1016/j.rse.2021.112459_bb0170
  article-title: Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters
  publication-title: Appl. Opt.
  doi: 10.1364/AO.41.005755
– start-page: 9
  year: 2017
  ident: 10.1016/j.rse.2021.112459_bb0375
  article-title: A satellite-based assessment of the distribution and biomass of submerged aquatic vegetation in the optically shallow basin of Lake Biwa
  publication-title: Remote Sens.
– volume: 30
  start-page: 113
  year: 2014
  ident: 10.1016/j.rse.2021.112459_bb0330
  article-title: Aquatic vegetation indices assessment through radiative transfer modeling and linear mixture simulation
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 19
  start-page: 11
  year: 1998
  ident: 10.1016/j.rse.2021.112459_bb0380
  article-title: On the estimation of biomass of submerged vegetation using Landsat thematic mapper (TM) imagery: a case study of the Honghu Lake, PR China
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311698216396
– volume: 18
  start-page: 26313
  year: 2010
  ident: 10.1016/j.rse.2021.112459_bb0180
  article-title: Removal of surface-reflected light for the measurement of remote-sensing reflectance from an above-surface platform
  publication-title: Opt. Express
  doi: 10.1364/OE.18.026313
– volume: 27
  start-page: 363
  year: 2004
  ident: 10.1016/j.rse.2021.112459_bb0225
  article-title: Habitat requirements for submerged aquatic vegetation in Chesapeake Bay: water quality, light regime, and physical-chemical factors
  publication-title: Estuaries
  doi: 10.1007/BF02803529
– volume: 20
  start-page: 717
  year: 2010
  ident: 10.1016/j.rse.2021.112459_bb0135
  article-title: Mapping macrophytic vegetation in shallow lakes using the Compact Airborne Spectrographic Imager (CASI)
  publication-title: Aquat. Conserv. Mar. Freshwat. Ecosyst.
  doi: 10.1002/aqc.1144
– volume: 36
  start-page: 1409
  year: 2002
  ident: 10.1016/j.rse.2021.112459_bb0060
  article-title: Submerged aquatic vegetation-based treatment wetlands for removing phosphorus from agricultural runoff: response to hydraulic and nutrient loading
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(01)00354-2
– year: 2018
  ident: 10.1016/j.rse.2021.112459_bb0090
– volume: 14
  start-page: 621
  year: 1993
  ident: 10.1016/j.rse.2021.112459_bb0010
  article-title: Remote sensing of submerged vegetation canopies for biomass estimation
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169308904363
– volume: 157
  start-page: 35
  year: 2015
  ident: 10.1016/j.rse.2021.112459_bb0245
  article-title: Distinguishing surface cyanobacterial blooms and aquatic macrophytes using Landsat/TM and ETM+ shortwave infrared bands
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.04.031
– volume: 7
  year: 2018
  ident: 10.1016/j.rse.2021.112459_bb0030
  article-title: An object-based image analysis workflow for monitoring shallow-water aquatic vegetation in multispectral drone imagery
  publication-title: ISPRS Int. J. Geo Inf.
  doi: 10.3390/ijgi7080294
– volume: 112
  year: 2007
  ident: 10.1016/j.rse.2021.112459_bb0065
  article-title: Estimation of light penetration, and horizontal and vertical visibility in oceanic and coastal waters from surface reflectance
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1029/2006JC004007
– volume: 32
  start-page: 61
  year: 1994
  ident: 10.1016/j.rse.2021.112459_bb0215
  article-title: Mapping aquatic macrophytes through digital image analysis of aerial photographs: an assessment
  publication-title: J. Aquat. Plant Manag.
– volume: 40
  start-page: 4790
  year: 2001
  ident: 10.1016/j.rse.2021.112459_bb0345
  article-title: Correction of sun glint contamination on the SeaWiFS Ocean and atmosphere products
  publication-title: Appl. Opt.
  doi: 10.1364/AO.40.004790
– volume: 69
  start-page: 115
  year: 2018
  ident: 10.1016/j.rse.2021.112459_bb0360
  article-title: Spatial and temporal heterogeneities in water quality and their potential drivers in Lake Poyang (China) from 2009 to 2015
  publication-title: Limnologica
  doi: 10.1016/j.limno.2017.12.001
– volume: 135
  start-page: 37
  year: 2016
  ident: 10.1016/j.rse.2021.112459_bb0260
  article-title: Submerged macrophyte decline in shallow lakes: what have we learnt in the last forty years?
  publication-title: Aquat. Bot.
  doi: 10.1016/j.aquabot.2016.04.004
– volume: 1
  start-page: 213
  year: 2010
  ident: 10.1016/j.rse.2021.112459_bb0105
  article-title: Improving the normalized difference built-up index to map urban built-up areas using a semiautomatic segmentation approach
  publication-title: Remote Sensing Letters
  doi: 10.1080/01431161.2010.481681
– volume: 164
  start-page: 298
  year: 2015
  ident: 10.1016/j.rse.2021.112459_bb0155
  article-title: Characteristics of Landsat 8 OLI-derived NDVI by comparison with multiple satellite sensors and in-situ observations
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.04.004
– volume: 8
  start-page: 401
  year: 2017
  ident: 10.1016/j.rse.2021.112459_bb0230
  article-title: Where’s the grass? Disappearing submerged aquatic vegetation and declining water quality in Lake Mattamuskeet
  publication-title: J. Fish Wildl. Manag.
  doi: 10.3996/082016-JFWM-068
– volume: 651
  start-page: 367
  year: 2019
  ident: 10.1016/j.rse.2021.112459_bb0350
  article-title: Long-term and inter-monthly dynamics of aquatic vegetation and its relation with environmental factors in Taihu Lake, China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.09.216
– volume: 42
  start-page: 213
  year: 2008
  ident: 10.1016/j.rse.2021.112459_bb0255
  article-title: Chlorophyll–nutrient relationships of different lake types using a large European dataset
  publication-title: Aquat. Ecol.
  doi: 10.1007/s10452-008-9180-0
– volume: 140
  start-page: 131
  year: 2008
  ident: 10.1016/j.rse.2021.112459_bb0300
  article-title: Remote sensing of aquatic vegetation: theory and applications
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-007-9855-3
– volume: 115
  start-page: 1053
  year: 2011
  ident: 10.1016/j.rse.2021.112459_bb0035
  article-title: A simple and effective method for filling gaps in Landsat ETM+ SLC-off images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.12.010
– volume: 44
  start-page: 838
  year: 1954
  ident: 10.1016/j.rse.2021.112459_bb0050
  article-title: Measurement of the roughness of the sea surface from photographs of the sun’s glitter
  publication-title: J. Opt. Soc. Am.
  doi: 10.1364/JOSA.44.000838
– volume: 113
  start-page: 1587
  year: 2009
  ident: 10.1016/j.rse.2021.112459_bb0295
  article-title: An assessment of the black ocean pixel assumption for MODIS SWIR bands
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.03.011
– volume: 37
  start-page: 72
  year: 2011
  ident: 10.1016/j.rse.2021.112459_bb0055
  article-title: Submerged aquatic vegetation in Cook’s Bay, Lake Simcoe: assessment of changes in response to increased water transparency
  publication-title: J. Great Lakes Res.
  doi: 10.1016/j.jglr.2010.07.009
– volume: 141
  start-page: 148
  year: 2018
  ident: 10.1016/j.rse.2021.112459_bb0120
  article-title: Dynamics of the wetland vegetation in large lakes of the Yangtze Plain in response to both fertilizer consumption and climatic changes
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.04.015
– volume: 9
  year: 2019
  ident: 10.1016/j.rse.2021.112459_bb0110
  article-title: New feature classes for acoustic habitat mapping—a multibeam echosounder point cloud analysis for mapping submerged aquatic vegetation (SAV)
  publication-title: Geosciences
  doi: 10.3390/geosciences9050235
– volume: 12
  year: 2020
  ident: 10.1016/j.rse.2021.112459_bb0320
  article-title: Performance and applicability of water column correction models in optically complex coastal waters
  publication-title: Remote Sens.
  doi: 10.3390/rs12111861
– volume: 112
  start-page: 3455
  year: 2008
  ident: 10.1016/j.rse.2021.112459_bb0340
  article-title: Regional-scale seagrass habitat mapping in the Wider Caribbean region using Landsat sensors: applications to conservation and ecology
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.01.020
– volume: 22
  start-page: 3087
  year: 2013
  ident: 10.1016/j.rse.2021.112459_bb0075
  article-title: Integration of Gibbs Markov random field and hopfield-type neural networks for unsupervised change detection in remotely sensed multitemporal images
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2013.2259833
– volume: 113
  start-page: 2267
  year: 2009
  ident: 10.1016/j.rse.2021.112459_bb0165
  article-title: A sun glint correction method for hyperspectral imagery containing areas with non-negligible water leaving NIR signal
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.06.016
– volume: 7
  start-page: 13603
  year: 2016
  ident: 10.1016/j.rse.2021.112459_bb0220
  article-title: Estimating the volume and age of water stored in global lakes using a geo-statistical approach
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13603
– volume: 627
  start-page: 211
  year: 2009
  ident: 10.1016/j.rse.2021.112459_bb0145
  article-title: Comparative analysis of nutrients, chlorophyll and transparency in two large shallow lakes (Lake Taihu, P.R. China and Lake Okeechobee, USA)
  publication-title: Hydrobiologia
  doi: 10.1007/s10750-009-9729-5
– volume: 53
  start-page: 88
  year: 2004
  ident: 10.1016/j.rse.2021.112459_bb0275
  article-title: Effect of coloured dissolved organic matter on the attenuation of photosynthetically active radiation in Lake Peipsi
  publication-title: Proc. Estonian Acad. Sci. Biol. Ecol
  doi: 10.3176/biol.ecol.2004.2.02
– volume: 159
  start-page: 269
  year: 2015
  ident: 10.1016/j.rse.2021.112459_bb0410
  article-title: Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and sentinel 2 images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.12.014
– volume: 60
  start-page: 503
  year: 2016
  ident: 10.1016/j.rse.2021.112459_bb0190
  article-title: Applying remote sensing techniques to monitoring seasonal and interannual changes of aquatic vegetation in Taihu Lake, China
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2015.07.029
– volume: 6
  start-page: 23867
  year: 2016
  ident: 10.1016/j.rse.2021.112459_bb0385
  article-title: Aquatic vegetation in response to increased eutrophication and degraded light climate in Eastern Lake Taihu: implications for lake ecological restoration
  publication-title: Sci. Rep.
  doi: 10.1038/srep23867
– volume: 11
  start-page: 95
  year: 2010
  ident: 10.1016/j.rse.2021.112459_bb0185
  article-title: Effects of nutrient levels in surface water and sediment on the growth of the floating-leaved macrophyte Trapa maximowiczii: implication for management of macrophytes in East Bay of Lake Taihu, China
  publication-title: Limnology
  doi: 10.1007/s10201-009-0293-5
– volume: 134
  start-page: 122
  year: 2017
  ident: 10.1016/j.rse.2021.112459_bb0150
  article-title: Above-bottom biomass retrieval of aquatic plants with regression models and SfM data acquired by a UAV platform – a case study in Wild Duck Lake Wetland, Beijing, China
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.11.002
– volume: 113
  start-page: 2118
  year: 2009
  ident: 10.1016/j.rse.2021.112459_bb0130
  article-title: A novel ocean color index to detect floating algae in the global oceans
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.05.012
– volume: 42
  start-page: 2691
  year: 2004
  ident: 10.1016/j.rse.2021.112459_bb0210
  article-title: Landsat sensor performance: history and current status
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2004.840720
– volume: 110
  year: 2005
  ident: 10.1016/j.rse.2021.112459_bb0175
  article-title: A model for the diffuse attenuation coefficient of downwelling irradiance
  publication-title: J. Geophys. Res. Oceans
– volume: 149
  start-page: 68
  year: 2014
  ident: 10.1016/j.rse.2021.112459_bb0265
  article-title: Mapping and assessing seagrass bed changes in Central Florida’s west coast using multitemporal Landsat TM imagery
  publication-title: Estuar. Coast. Shelf Sci.
  doi: 10.1016/j.ecss.2014.07.014
– volume: 188
  start-page: 488
  year: 2016
  ident: 10.1016/j.rse.2021.112459_bb0080
  article-title: The influence of hydrological conditions on phytoplankton community structure and cyanopeptide concentration in dammed lowland river
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-016-5506-x
– year: 1994
  ident: 10.1016/j.rse.2021.112459_bb0160
– volume: 245
  start-page: 111829
  year: 2020
  ident: 10.1016/j.rse.2021.112459_bb0405
  article-title: Canopy modeling of aquatic vegetation: a geometric optical approach (AVGO)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111829
– volume: 246
  start-page: 111890
  year: 2020
  ident: 10.1016/j.rse.2021.112459_bb0085
  article-title: Eutrophication changes in fifty large lakes on the Yangtze Plain of China derived from MERIS and OLCI observations
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111890
– volume: 157
  start-page: 58
  year: 2015
  ident: 10.1016/j.rse.2021.112459_bb0020
  article-title: A satellite-based multi-temporal assessment of the extent of nuisance Cladophora and related submerged aquatic vegetation for the Laurentian Great Lakes
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.04.032
– volume: 171
  start-page: 218
  year: 2015
  ident: 10.1016/j.rse.2021.112459_bb0335
  article-title: A rule-based approach for mapping macrophyte communities using multi-temporal aquatic vegetation indices
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.10.020
– volume: 92
  start-page: 195
  year: 2010
  ident: 10.1016/j.rse.2021.112459_bb0365
  article-title: Variation in vegetation and seed banks of freshwater lakes with contrasting intensity of aquaculture along the Yangtze River, China
  publication-title: Aquat. Bot.
  doi: 10.1016/j.aquabot.2009.11.007
– volume: 222
  start-page: 51
  year: 1983
  ident: 10.1016/j.rse.2021.112459_bb0240
  article-title: Chesapeake Bay: an unprecedented decline in submerged aquatic vegetation
  publication-title: Science
  doi: 10.1126/science.222.4619.51
– volume: 185
  start-page: 37
  year: 2016
  ident: 10.1016/j.rse.2021.112459_bb0290
  article-title: The impact of improved signal-to-noise ratios on algorithm performance: case studies for Landsat class instruments
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.04.015
– volume: 6
  year: 2011
  ident: 10.1016/j.rse.2021.112459_bb0140
  article-title: Restoring coastal plants to improve global carbon storage: reaping what we sow
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0018311
– volume: 22
  start-page: 235
  year: 1987
  ident: 10.1016/j.rse.2021.112459_bb0005
  article-title: Remote sensing of submerged aquatic vegetation in lower chesapeake bay: a comparison of Landsat MSS to TM imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(87)90060-5
– volume: 190
  start-page: 107
  year: 2017
  ident: 10.1016/j.rse.2021.112459_bb0115
  article-title: Fifteen-year monitoring of the turbidity dynamics in large lakes and reservoirs in the middle and lower basin of the Yangtze River, China
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.12.006
– volume: 8
  year: 2013
  ident: 10.1016/j.rse.2021.112459_bb0400
  article-title: Spatio-temporal variability of aquatic vegetation in Taihu Lake over the past 30 years
  publication-title: PLoS One
– volume: 42
  start-page: 199
  year: 1992
  ident: 10.1016/j.rse.2021.112459_bb0285
  article-title: Distribution and dynamics of submerged vegetation in a chain of shallow eutrophic lakes
  publication-title: Aquat. Bot.
  doi: 10.1016/0304-3770(92)90022-B
– volume: 221
  start-page: 675
  year: 2019
  ident: 10.1016/j.rse.2021.112459_bb0070
  article-title: Monitoring and understanding the water transparency changes of fifty large lakes on the Yangtze Plain based on long-term MODIS observations
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.12.007
– volume: 109
  start-page: 592
  year: 1997
  ident: 10.1016/j.rse.2021.112459_bb0355
  article-title: Mechanisms regulating abundance of submerged vegetation in shallow eutrophic lakes
  publication-title: Oecologia
  doi: 10.1007/s004420050121
– volume: 2
  start-page: 98
  year: 2000
  ident: 10.1016/j.rse.2021.112459_bb0235
  article-title: Above-water radiance and remote sensing reflectance measurements and analysis protocols
  publication-title: Ocean Optics Protoc. Satell. Ocean Color Sens. Validation Revision
– volume: 93
  start-page: 1
  year: 2004
  ident: 10.1016/j.rse.2021.112459_bb0305
  article-title: The Landsat ETM+ spectral mixing space
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2004.06.007
– volume: 493
  start-page: 173
  year: 2003
  ident: 10.1016/j.rse.2021.112459_bb0100
  article-title: Submerged aquatic vegetation correlations with depth and light attenuating materials in a shallow subtropical lake
  publication-title: Hydrobiologia
  doi: 10.1023/A:1025497621547
– year: 1992
  ident: 10.1016/j.rse.2021.112459_bb0015
– volume: 1
  start-page: 29
  year: 2010
  ident: 10.1016/j.rse.2021.112459_bb0040
  article-title: A water-depth correction algorithm for submerged vegetation spectra
  publication-title: Remote Sens. Lett.
  doi: 10.1080/01431160903246709
– volume: 96
  start-page: 260
  year: 2008
  ident: 10.1016/j.rse.2021.112459_bb0280
  article-title: 100 years of vegetation decline and recovery in Lake Fure, Denmark
  publication-title: J. Ecol.
  doi: 10.1111/j.1365-2745.2007.01339.x
– volume: 173
  start-page: 259
  year: 2017
  ident: 10.1016/j.rse.2021.112459_bb0390
  article-title: Global loss of aquatic vegetation in lakes
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2017.08.013
– volume: 113
  start-page: 106285
  year: 2020
  ident: 10.1016/j.rse.2021.112459_bb0370
  article-title: Regime shifts in shallow lakes observed by remote sensing and the implications for management
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2020.106285
– volume: 39
  start-page: 725
  year: 1998
  ident: 10.1016/j.rse.2021.112459_bb0025
  article-title: Epiphytic algae and macroinvertebrates on submerged and floating-leaved macrophytes in an Italian lake
  publication-title: Freshw. Biol.
  doi: 10.1046/j.1365-2427.1998.00325.x
– volume: 46
  start-page: 110
  year: 1993
  ident: 10.1016/j.rse.2021.112459_bb0250
  article-title: Assessing community type, plant biomass, pigment composition, and photosynthetic efficiency of aquatic vegetation from spectral reflectance
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(93)90088-F
– volume: 219
  start-page: 145
  year: 2018
  ident: 10.1016/j.rse.2021.112459_bb0045
  article-title: The Harmonized Landsat and Sentinel-2 surface reflectance data set
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.09.002
– volume: 248
  start-page: 111998
  year: 2020
  ident: 10.1016/j.rse.2021.112459_bb0125
  article-title: Anthropogenic transformation of Yangtze Plain freshwater lakes: patterns, drivers and impacts
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111998
– volume: 8
  year: 2008
  ident: 10.1016/j.rse.2021.112459_bb0200
  article-title: Detecting aquatic vegetation changes in Taihu Lake, China using multi-temporal satellite imagery
  publication-title: Sensors
  doi: 10.3390/s8063988
– volume: 55
  start-page: 893
  year: 2010
  ident: 10.1016/j.rse.2021.112459_bb0310
  article-title: Submerged macrophytes as indicators of the ecological quality of lakes
  publication-title: Freshw. Biol.
  doi: 10.1111/j.1365-2427.2009.02331.x
– volume: 57
  start-page: 154
  year: 2017
  ident: 10.1016/j.rse.2021.112459_bb0195
  article-title: Mapping species of submerged aquatic vegetation with multi-seasonal satellite images and considering life history information
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 18
  start-page: 381
  year: 2003
  ident: 10.1016/j.rse.2021.112459_bb0315
  article-title: Effects of aquatic macrophytes on water quality and phytoplankton communities in shallow lakes
  publication-title: Ecol. Res.
  doi: 10.1046/j.1440-1703.2003.00563.x
– volume: 95
  start-page: 98
  year: 2012
  ident: 10.1016/j.rse.2021.112459_bb0395
  article-title: Remote sensing of aquatic vegetation distribution in Taihu Lake using an improved classification tree with modified thresholds
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2011.10.007
– volume: 191
  start-page: 257
  year: 1990
  ident: 10.1016/j.rse.2021.112459_bb0205
  article-title: An assessment of the importance of emergent and floating-leaved macrophytes to trophic status in the Loosdrecht Lakes (the Netherlands)
  publication-title: Hydrobiologia
  doi: 10.1007/BF00026060
– volume: 581
  start-page: 3
  year: 2007
  ident: 10.1016/j.rse.2021.112459_bb0270
  article-title: Environmental issues of Lake Taihu, China
  publication-title: Hydrobiologia
  doi: 10.1007/s10750-006-0521-5
– volume: 185
  start-page: 46
  year: 2016
  ident: 10.1016/j.rse.2021.112459_bb0325
  article-title: Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.04.008
– year: 2018
  ident: 10.1016/j.rse.2021.112459_bb0095
SSID ssj0015871
Score 2.5168948
Snippet Submerged aquatic vegetation (SAV) is one of the main producers in inland lakes. Tracking the temporal and spatial changes in SAV is crucial for the...
SourceID swepub
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112459
SubjectTerms Algae
Algorithms
Aquatic plants
Aquatic vegetation
Automatic classification
Biologi
Biological Sciences
Classification
data collection
detection limit
Distribution patterns
Dynamic threshold
Ecology (including Biodiversity Conservation)
Ekologi
environment
FAI
humans
Hydrology
Lakes
Landsat
Landsat satellites
Natural Sciences
Naturvetenskap
Numerical simulations
Nutrients
Reflectance
Remote sensing
Satellite imagery
SAV
Short wave radiation
Spatial distribution
submerged aquatic plants
surveys
SWIR
temperature
Vegetation
Water circulation
Water column
Title An automatic classification algorithm for submerged aquatic vegetation in shallow lakes using Landsat imagery
URI https://dx.doi.org/10.1016/j.rse.2021.112459
https://www.proquest.com/docview/2544271644
https://www.proquest.com/docview/2551916973
Volume 260
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Freedom Collection
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLemIQQXBIWJsjEZiRNSmGM7cXqspo3ytROTJi6W44820CZdk4B64W_HL3FKkdAOHHJIbCeOn5_fe_Z7v4fQa6JNZplmUcy9icI50VHukjxKWU4sdQAoDvuQn6_S2TX_cJPcHKDzIRYG3CrD2t-v6d1qHZ6chdE8WxcFxPgyDjOOAoyQVxIhgp0LyGLw9tfOzSNOMtFnzWM8gtrDyWbn47WpASmTxhBIwwGu9N-yaV_33McT7WTQ5WP0KCiPeNr37wk6sOUIHV38iVXzhYFZ6xF6EBKcL7YjdP9dl8F3-xStpiVWbVN1UK1Yg_IM3kIdgbBazqtN0SxW2OuyuAZZuZlbg9Vt21X_YefBPREXJa4hEUv1Ey_Vd1tj8KCf408QOqwaXKwAHGP7DF1fXnw5n0Uh50KkvaHWRAmbWKJZqlJqmIup9Y-dITl1sb8mxDojnCNMZyKDXNVEe-FGjMsBN4ZSxY7QYVmV9jnCIuda2IzlPDacMJH792o45VHGUaHoGJFhtKUOgOSQF2MpB8-zb9ITSAKBZE-gMXqza7Lu0TjuqswHEsq_ppT00uKuZicDuWXg51oCkBsF05KP0atdsedEOF5Rpa1aqOO14TidCDZGX_tpsuskgHj39pQMIE4LuWyl__J6b3dWxoakmcuI9ExCJRdpLjOrM5kyr-dqFZuEmBf_91vH6CHc9Z7GJ-iw2bT2pdenmvy0Y5hTdG_6_uPs6jdqOiEJ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfGEBoXBIWJwgAjcUIKc2wnTo_TtFGg22mTJi6W4482o01Kk4J64W_HL3FKkdAOHHLxR-L4-fm9Z7_3ewi9I9pklmkWxdybKJwTHeUuyaOU5cRSB4DicA55cZmOr_nnm-RmD532sTDgVhn2_m5Pb3frUHIcZvN4WRQQ48s4rDgKMEJeSbyH7vOECrDAPvza-nnESSa6tHmMR9C8v9psnbxWNUBl0hgiaTjglf5bOO0qn7uAoq0QOn-MHgXtEZ90A3yC9mw5QIdnf4LVfGXg1nqADkKG89lmgB58bFP4bp6ixUmJ1bqpWqxWrEF7BnehlkJYzafVqmhmC-yVWVyDsFxNrcHq-7pt_sNOg38iLkpcQyaW6ieeq2-2xuBCP8UTiB1WDS4WgI6xeYauz8-uTsdRSLoQaW-pNVHCRpZolqqUGuZian2xMySnLvbPiFhnhHOE6UxkkKyaaC_diHE5AMdQqtgh2i-r0j5HWORcC5uxnMeGEyZy_14N1zzKOCoUHSLSz7bUAZEcEmPMZe96dis9gSQQSHYEGqL32y7LDo7jrsa8J6H8a01JLy7u6nbUk1sGhq4lILlRsC35EL3dVntWhPsVVdpqDW28OhynI8GG6Gu3TLaDBBTvzqCSAcVpJudr6b-83DmelbEhaeYyIj2XUMlFmsvM6kymzCu6WsUmIebF__3WG3QwvrqYyMmnyy8v0UOo6dyOj9B-s1rbV165avLXLfP8BuHFIp4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+automatic+classification+algorithm+for+submerged+aquatic+vegetation+in+shallow+lakes+using+Landsat+imagery&rft.jtitle=Remote+sensing+of+environment&rft.au=Dai%2C+Yanhui&rft.au=Feng%2C+Lian&rft.au=Hou%2C+Xuejiao&rft.au=Tang%2C+Jing&rft.date=2021-07-01&rft.pub=Elsevier+BV&rft.issn=0034-4257&rft.eissn=1879-0704&rft.volume=260&rft.spage=1&rft_id=info:doi/10.1016%2Fj.rse.2021.112459&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon