NetKet: A machine learning toolkit for many-body quantum systems

We introduce NetKet, a comprehensive open source framework for the study of many-body quantum systems using machine learning techniques. The framework is built around a general and flexible implementation of neural-network quantum states, which are used as a variational ansatz for quantum wavefuncti...

Full description

Saved in:
Bibliographic Details
Published inSoftwareX Vol. 10; p. 100311
Main Authors Carleo, Giuseppe, Choo, Kenny, Hofmann, Damian, Smith, James E.T., Westerhout, Tom, Alet, Fabien, Davis, Emily J., Efthymiou, Stavros, Glasser, Ivan, Lin, Sheng-Hsuan, Mauri, Marta, Mazzola, Guglielmo, Mendl, Christian B., van Nieuwenburg, Evert, O’Reilly, Ossian, Théveniaut, Hugo, Torlai, Giacomo, Vicentini, Filippo, Wietek, Alexander
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2019
Elsevier
Subjects
Online AccessGet full text
ISSN2352-7110
2352-7110
DOI10.1016/j.softx.2019.100311

Cover

Abstract We introduce NetKet, a comprehensive open source framework for the study of many-body quantum systems using machine learning techniques. The framework is built around a general and flexible implementation of neural-network quantum states, which are used as a variational ansatz for quantum wavefunctions. NetKet provides algorithms for several key tasks in quantum many-body physics and quantum technology, namely quantum state tomography, supervised learning from wavefunction data, and ground state searches for a wide range of customizable lattice models. Our aim is to provide a common platform for open research and to stimulate the collaborative development of computational methods at the interface of machine learning and many-body physics.
AbstractList We introduce NetKet, a comprehensive open source framework for the study of many-body quantum systems using machine learning techniques. The framework is built around a general and flexible implementation of neural-network quantum states, which are used as a variational ansatz for quantum wavefunctions. NetKet provides algorithms for several key tasks in quantum many-body physics and quantum technology, namely quantum state tomography, supervised learning from wavefunction data, and ground state searches for a wide range of customizable lattice models. Our aim is to provide a common platform for open research and to stimulate the collaborative development of computational methods at the interface of machine learning and many-body physics.
We introduce NetKet, a comprehensive open source framework for the study of many-body quantum systems using machine learning techniques. The framework is built around a general and flexible implementation of neural-network quantum states, which are used as a variational ansatz for quantum wavefunctions. NetKet provides algorithms for several key tasks in quantum many-body physics and quantum technology, namely quantum state tomography, supervised learning from wavefunction data, and ground state searches for a wide range of customizable lattice models. Our aim is to provide a common platform for open research and to stimulate the collaborative development of computational methods at the interface of machine learning and many-body physics. Keywords: Neural-network quantum states, Variational Monte Carlo, Quantum state tomography, Machine learning, Supervised learning
ArticleNumber 100311
Author van Nieuwenburg, Evert
Carleo, Giuseppe
Mazzola, Guglielmo
Davis, Emily J.
Lin, Sheng-Hsuan
Hofmann, Damian
Mauri, Marta
Théveniaut, Hugo
Torlai, Giacomo
Westerhout, Tom
Smith, James E.T.
Glasser, Ivan
Vicentini, Filippo
Mendl, Christian B.
Efthymiou, Stavros
Wietek, Alexander
Choo, Kenny
Alet, Fabien
O’Reilly, Ossian
Author_xml – sequence: 1
  givenname: Giuseppe
  surname: Carleo
  fullname: Carleo, Giuseppe
  email: gcarleo@flatironinstitute.org
  organization: Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, NY 10010, New York, USA
– sequence: 2
  givenname: Kenny
  surname: Choo
  fullname: Choo, Kenny
  organization: Department of Physics, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
– sequence: 3
  givenname: Damian
  surname: Hofmann
  fullname: Hofmann, Damian
  organization: Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
– sequence: 4
  givenname: James E.T.
  surname: Smith
  fullname: Smith, James E.T.
  organization: Department of Chemistry, University of Colorado Boulder, Boulder, CO 80302, USA
– sequence: 5
  givenname: Tom
  surname: Westerhout
  fullname: Westerhout, Tom
  organization: Institute for Molecules and Materials, Radboud University, NL-6525 AJ Nijmegen, The Netherlands
– sequence: 6
  givenname: Fabien
  surname: Alet
  fullname: Alet, Fabien
  organization: Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
– sequence: 7
  givenname: Emily J.
  surname: Davis
  fullname: Davis, Emily J.
  organization: Department of Physics, Stanford University, Stanford, CA 94305, USA
– sequence: 8
  givenname: Stavros
  surname: Efthymiou
  fullname: Efthymiou, Stavros
  organization: Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching bei München, Germany
– sequence: 9
  givenname: Ivan
  surname: Glasser
  fullname: Glasser, Ivan
  organization: Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching bei München, Germany
– sequence: 10
  givenname: Sheng-Hsuan
  surname: Lin
  fullname: Lin, Sheng-Hsuan
  organization: Department of Physics, T42, Technische Universität München, James-Franck-Straße 1, 85748 Garching bei München, Germany
– sequence: 11
  givenname: Marta
  surname: Mauri
  fullname: Mauri, Marta
  organization: Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, NY 10010, New York, USA
– sequence: 12
  givenname: Guglielmo
  surname: Mazzola
  fullname: Mazzola, Guglielmo
  organization: Theoretische Physik, ETH Zürich, 8093 Zürich, Switzerland
– sequence: 13
  givenname: Christian B.
  surname: Mendl
  fullname: Mendl, Christian B.
  organization: Technische Universität Dresden, Institute of Scientific Computing, Zellescher Weg 12-14, 01069 Dresden, Germany
– sequence: 14
  givenname: Evert
  surname: van Nieuwenburg
  fullname: van Nieuwenburg, Evert
  organization: Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125, USA
– sequence: 15
  givenname: Ossian
  surname: O’Reilly
  fullname: O’Reilly, Ossian
  organization: Southern California Earthquake Center, University of Southern California, 3651 Trousdale Pkwy, Los Angeles, CA 90089, USA
– sequence: 16
  givenname: Hugo
  surname: Théveniaut
  fullname: Théveniaut, Hugo
  organization: Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
– sequence: 17
  givenname: Giacomo
  surname: Torlai
  fullname: Torlai, Giacomo
  organization: Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, NY 10010, New York, USA
– sequence: 18
  givenname: Filippo
  surname: Vicentini
  fullname: Vicentini, Filippo
  organization: Université de Paris, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, F-75013, Paris, France
– sequence: 19
  givenname: Alexander
  surname: Wietek
  fullname: Wietek, Alexander
  organization: Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, NY 10010, New York, USA
BackLink https://hal.science/hal-02346742$$DView record in HAL
BookMark eNp9kU9PGzEQxa2KSg2UT9DLXjlsGHvt_YNUqVFEARGVCz1bXnsWnG7sYjtR8-1xWCrRHjjZep73G8-8Y3LkvENCvlCYU6D1-Xoe_ZD-zBnQLitQUfqBzFglWNlQCkdv7p_IaYxrAKCCtYLxGfn2A9MtpotiUWyUfrQOixFVcNY9FMn78ZdNxeBDfnT7svdmXzxtlUvbTRH3MeEmfiYfBzVGPH09T8jP75f3y-tydXd1s1ysSs15m0pRtcJ0mnFdV6rBnlMQ-fc9msbQYYBOKcM5gmAIIEQnsGp7M2ikTBvkojohNxPXeLWWv4PdqLCXXln5IvjwIFVIVo8oTaZ1qLumrzPT0A50g2IQwNta1bXOrLOJ9ajGf1DXi5U8aMAqXjec7Wiu7aZaHXyMAQepbVLJepeCsqOkIA8pyLV8SUEeUpBTCtlb_ef92-x919fJhXmdO4tBRm3RaTQ2oE55Xvuu_xn9nqLH
CitedBy_id crossref_primary_10_1088_1361_6382_ad7c14
crossref_primary_10_7566_JPSJ_89_094002
crossref_primary_10_7566_JPSJ_94_031002
crossref_primary_10_1029_2021MS002717
crossref_primary_10_1103_PhysRevResearch_5_L032001
crossref_primary_10_21468_SciPostPhys_13_3_063
crossref_primary_10_1016_j_meatsci_2024_109437
crossref_primary_10_1103_PhysRevResearch_4_L012010
crossref_primary_10_1103_PhysRevResearch_2_033075
crossref_primary_10_1038_s42005_025_01955_z
crossref_primary_10_1103_PhysRevB_107_205119
crossref_primary_10_1088_1402_4896_ac5ff6
crossref_primary_10_1088_2632_2153_abcb50
crossref_primary_10_1103_PhysRevResearch_5_033116
crossref_primary_10_1103_PhysRevE_110_065305
crossref_primary_10_1103_PhysRevResearch_4_023126
crossref_primary_10_1103_PhysRevB_106_L081111
crossref_primary_10_1103_PhysRevLett_131_036502
crossref_primary_10_1103_PhysRevB_102_024440
crossref_primary_10_1103_PhysRevB_104_045123
crossref_primary_10_1103_PhysRevLett_134_076502
crossref_primary_10_22331_q_2024_02_08_1245
crossref_primary_10_1088_1742_6596_2719_1_012006
crossref_primary_10_1103_PhysRevLett_124_097201
crossref_primary_10_1002_pssb_202100172
crossref_primary_10_1038_s41467_021_27396_0
crossref_primary_10_1103_PhysRevX_11_041021
crossref_primary_10_1103_PhysRevB_108_094410
crossref_primary_10_1088_1361_648X_ac43ff
crossref_primary_10_1103_PhysRevLett_127_150504
crossref_primary_10_1038_s42005_025_02005_4
crossref_primary_10_1103_PhysRevResearch_3_033102
crossref_primary_10_1103_PhysRevE_101_053301
crossref_primary_10_1088_1361_648X_abbe7b
crossref_primary_10_21468_SciPostPhysCore_7_2_026
crossref_primary_10_21468_SciPostPhysCodeb_7
crossref_primary_10_1103_PhysRevB_110_035108
crossref_primary_10_1146_annurev_conmatphys_031119_050651
crossref_primary_10_21468_SciPostPhysCodeb_2
crossref_primary_10_1007_s11128_019_2514_0
crossref_primary_10_1016_j_jcp_2024_113351
crossref_primary_10_1038_s42005_021_00609_0
crossref_primary_10_1103_PhysRevE_100_043301
crossref_primary_10_1038_s41598_021_95523_4
crossref_primary_10_1073_pnas_2122059119
crossref_primary_10_1103_PhysRevB_101_241105
crossref_primary_10_3952_physics_v61i4_4639
crossref_primary_10_1103_PhysRevLett_127_060601
crossref_primary_10_1103_PhysRevX_15_011047
crossref_primary_10_1103_PhysRevResearch_4_023138
crossref_primary_10_21468_SciPostPhys_12_5_165
crossref_primary_10_1103_PRXQuantum_5_020202
crossref_primary_10_1007_s40843_023_2800_x
crossref_primary_10_1088_2632_2153_abd614
crossref_primary_10_22331_q_2023_10_10_1131
crossref_primary_10_1007_JHEP06_2024_211
crossref_primary_10_1038_s41467_020_15724_9
crossref_primary_10_1103_PhysRevE_104_015311
crossref_primary_10_1016_j_cpc_2024_109169
crossref_primary_10_1103_PRXQuantum_4_020327
crossref_primary_10_1103_PhysRevB_110_104411
crossref_primary_10_1103_PhysRevLett_127_276402
crossref_primary_10_1088_1751_8121_ab7210
crossref_primary_10_21468_SciPostPhysCore_6_4_088
crossref_primary_10_7566_JPSJ_90_114002
crossref_primary_10_1103_PhysRevA_102_022412
crossref_primary_10_1103_PhysRevA_109_062215
crossref_primary_10_1109_ACCESS_2020_3010470
crossref_primary_10_1088_2632_2153_ac3ddf
crossref_primary_10_21105_joss_03419
crossref_primary_10_1103_PhysRevB_103_245111
crossref_primary_10_1140_epjp_s13360_024_04983_w
crossref_primary_10_22331_q_2024_05_23_1358
crossref_primary_10_1103_PhysRevB_100_125124
crossref_primary_10_1088_1361_6382_ad84af
crossref_primary_10_1103_PhysRevB_109_184422
crossref_primary_10_1038_s41467_024_53672_w
crossref_primary_10_1103_PhysRevResearch_2_022060
crossref_primary_10_1103_PhysRevResearch_5_043084
crossref_primary_10_21468_SciPostPhys_18_1_011
crossref_primary_10_22331_q_2023_08_29_1096
crossref_primary_10_21468_SciPostPhys_15_6_229
Cites_doi 10.1063/1.1604379
10.7566/JPSJ.86.093001
10.1103/PhysRevB.99.214306
10.1103/PhysRevLett.57.2607
10.1162/089976698300017746
10.1016/j.jmmm.2006.10.304
10.1103/PhysRevB.97.035116
10.1103/PhysRevLett.122.250501
10.1103/PhysRevA.64.052312
10.1016/j.patcog.2017.10.013
10.7566/JPSJ.87.014001
10.1103/PhysRevLett.122.250502
10.1088/1742-5468/2011/05/P05001
10.1126/science.aag2302
10.1063/1.1699114
10.1103/PhysRevB.55.2164
10.1103/PhysRevB.98.024311
10.1103/RevModPhys.63.1
10.1103/PhysRevLett.120.240503
10.1016/0021-9991(81)90056-5
10.1103/PhysRevB.97.195136
10.1038/srep00243
10.1103/PhysRevLett.80.4558
10.25080/Majora-4af1f417-011
10.1016/j.aop.2010.09.012
10.1126/science.1127647
10.1103/PhysRevLett.69.2863
10.1103/PhysRevLett.121.167204
10.1038/nature14539
10.1038/s41567-018-0048-5
10.1103/PhysRevLett.122.250503
ContentType Journal Article
Copyright 2019 The Authors
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2019 The Authors
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 6I.
AAFTH
AAYXX
CITATION
1XC
VOOES
DOA
DOI 10.1016/j.softx.2019.100311
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Physics
EISSN 2352-7110
ExternalDocumentID oai_doaj_org_article_d09a9ec97b6d44d190c7e5f50486a66c
oai_HAL_hal_02346742v1
10_1016_j_softx_2019_100311
S2352711019300974
GroupedDBID 0R~
0SF
457
5VS
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
IPNFZ
IXB
KQ8
M~E
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
1XC
VOOES
ID FETCH-LOGICAL-c448t-5385d9c24c63a7eb4105101bed7d1ff09aad44e052e005595e38bdfce12cde453
IEDL.DBID DOA
ISSN 2352-7110
IngestDate Wed Aug 27 01:23:35 EDT 2025
Fri Sep 12 12:32:23 EDT 2025
Tue Jul 01 02:31:32 EDT 2025
Thu Apr 24 22:55:53 EDT 2025
Wed May 17 00:17:11 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Neural-network quantum states
Supervised learning
Quantum state tomography
Variational Monte Carlo
Machine learning
Language English
License This is an open access article under the CC BY license.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c448t-5385d9c24c63a7eb4105101bed7d1ff09aad44e052e005595e38bdfce12cde453
ORCID 0000-0003-0802-6128
0000-0003-3333-3648
0000-0002-4367-3438
OpenAccessLink https://doaj.org/article/d09a9ec97b6d44d190c7e5f50486a66c
ParticipantIDs doaj_primary_oai_doaj_org_article_d09a9ec97b6d44d190c7e5f50486a66c
hal_primary_oai_HAL_hal_02346742v1
crossref_citationtrail_10_1016_j_softx_2019_100311
crossref_primary_10_1016_j_softx_2019_100311
elsevier_sciencedirect_doi_10_1016_j_softx_2019_100311
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July-December 2019
2019-07-00
2019-07
2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: July-December 2019
PublicationDecade 2010
PublicationTitle SoftwareX
PublicationYear 2019
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Jónsson, Bauer, Carleo (b11) 2018
James, Kwiat, Munro, White (b38) 2001; 64
Torlai, Mazzola, Carrasquilla, Troyer, Melko, Carleo (b4) 2018; 14
Abadi, Agarwal, Barham, Brevdo, Chen, Citro, Corrado, Davis, Dean, Devin, Ghemawat, Goodfellow, Harp, Irving, Isard, Jia, Jozefowicz, Kaiser, Kudlur, Levenberg, Mané, Monga, Moore, Murray, Olah, Schuster, Shlens, Steiner, Sutskever, Talwar, Tucker, Vanhoucke, Vasudevan, Viégas, Vinyals, Warden, Wattenberg, Wicke, Yu, Zheng (b50) 2015
Czischek, Gärttner, Gasenzer (b10) 2018; 98
Guennebaud, Jacob (b19) 2010
LeCun, Bengio, Hinton (b30) 2015; 521
PyPI – the Python package index.
[Accessed 6 March 2019].
Jupyter P, Bussonnier M, Forde J, Freeman J, Granger B, Head T, Holdgraf C, Kelley K, Nalvarte G, Osheroff A, Pacer M, Panda Y, Perez F, Ragan-Kelley B, Willing C. Binder 2.0 - Reproducible, interactive, sharable environments for science at scale. In: Fatih Akici and David Lippa and Dillon Niederhut and M Pacer, editors, Proceedings of the 17th python in science conference. 2018. p. 113–20.
White (b26) 1992; 69
Becca, Sorella (b25) 2017
Metropolis, Rosenbluth, Rosenbluth, Teller, Teller (b39) 1953; 21
McBrian K, Carleo G, Khatami E. Ground state phase diagram of the one-dimensional bose-Hubbard model from restricted Boltzmann machines.
Cai, Liu (b3) 2018; 97
Saito, Kato (b9) 2018; 87
Jones, Oliphant, Peterson (b18) 2001
Kaubruegger, Pastori, Budich (b7) 2018; 97
.
Choo, Carleo, Regnault, Neupert (b5) 2018; 121
LeCun, Bottou, Orr, Müller (b34) 2012
Glasser, Pancotti, August, Rodriguez, Cirac (b6) 2018; 8
Vieijra T, Casert C, Nys J, De Neve W, Haegeman J, Ryckebusch J, Verstraete F. Restricted Boltzmann machines for quantum states with nonabelian or anyonic symmetries.
Rommer, Östlund (b27) 1997; 55
Nair V, Hinton GE. Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th international conference on machine learning. 2010. p. 807–14. URL
Gu, Wang, Kuen, Ma, Shahroudy, Shuai, Liu, Wang, Wang, Cai, Chen (b32) 2018; 77
Schollwöck (b28) 2011; 326
Choo K, Neupert T, Carleo G. Study of the two-dimensional frustrated J1-J2 model with neural network quantum states.
Manousakis (b24) 1991; 63
Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A. Automatic differentiation in PyTorch. In: NIPS-W. 2017.
Sorella (b41) 1998; 80
Cullum, Willoughby (b55) 1985
URL
Saito (b8) 2017; 86
Swendsen, Wang (b40) 1986; 57
Hartmann, Carleo (b12) 2019; 122
Hinton (b29) 2006; 313
Yoshioka, Hamazaki (b13) 2019; 99
Lohmann (b21) 2019
Carleo, Cirac, Cranmer, Daudet, Schuld, Tishby, Vogt-Maranto, Zdeborová (b1) 2019
Goodfellow, Bengio, Courville (b31) 2016
Bauer, Carr, Evertz, Feiguin, Freire, Fuchs, Gamper, Gukelberger, Gull, Guertler, Hehn, Igarashi, Isakov, Koop, Ma, Mates, Matsuo, Parcollet, Pawłowski, Picon, Pollet, Santos, Scarola, Schollwöck, Silva, Surer, Todo, Trebst, Troyer, Wall, Werner, Wessel (b52) 2011; 2011
Pilati S, Inack EM, Pieri P. Self-learning projective quantum Monte Carlo simulations guided by restricted Boltzmann machines.
Cullum, Willoughby (b54) 1981; 44
Duchi, Hazan, Singer (b35) 2011; 12
Jakob, Rhinelander, Moldovan (b16) 2019
Amari (b43) 1998; 10
Choo K, Mezzacapo A, Carleo G. Quantum Chemistry with Neural-Network Quantum States [in preparation].
Carleo, Troyer (b2) 2017; 355
Kingma, Ba (b36) 2014
Reddi SJ, Kale S, Kumar S. On the convergence of adam and beyond. In: International conference on learning representations. 2018. URL
Casula, Sorella (b42) 2003; 119
Carleo, Becca, Schiro, Fabrizio (b51) 2012; 2
Torlai, Melko (b17) 2018; 120
Vicentini, Biella, Regnault, Ciuti (b15) 2019; 122
Nagy, Savona (b14) 2019; 122
Oliphant (b20) 2006
Albuquerque, Alet, Corboz, Dayal, Feiguin, Fuchs, Gamper, Gull, Gürtler, Honecker, Igarashi, Körner, Kozhevnikov, Läuchli, Manmana, Matsumoto, McCulloch, Michel, Noack, Pawłowski, Pollet, Pruschke, Schollwöck, Todo, Trebst, Troyer, Werner, Wessel (b53) 2007; 310
Saito (10.1016/j.softx.2019.100311_b8) 2017; 86
Cullum (10.1016/j.softx.2019.100311_b55) 1985
Duchi (10.1016/j.softx.2019.100311_b35) 2011; 12
Metropolis (10.1016/j.softx.2019.100311_b39) 1953; 21
Jakob (10.1016/j.softx.2019.100311_b16) 2019
Nagy (10.1016/j.softx.2019.100311_b14) 2019; 122
Lohmann (10.1016/j.softx.2019.100311_b21) 2019
10.1016/j.softx.2019.100311_b22
10.1016/j.softx.2019.100311_b23
Oliphant (10.1016/j.softx.2019.100311_b20) 2006
Torlai (10.1016/j.softx.2019.100311_b17) 2018; 120
Manousakis (10.1016/j.softx.2019.100311_b24) 1991; 63
Albuquerque (10.1016/j.softx.2019.100311_b53) 2007; 310
Carleo (10.1016/j.softx.2019.100311_b1) 2019
Cai (10.1016/j.softx.2019.100311_b3) 2018; 97
Kingma (10.1016/j.softx.2019.100311_b36) 2014
Jónsson (10.1016/j.softx.2019.100311_b11) 2018
James (10.1016/j.softx.2019.100311_b38) 2001; 64
Carleo (10.1016/j.softx.2019.100311_b2) 2017; 355
Choo (10.1016/j.softx.2019.100311_b5) 2018; 121
Sorella (10.1016/j.softx.2019.100311_b41) 1998; 80
Glasser (10.1016/j.softx.2019.100311_b6) 2018; 8
Torlai (10.1016/j.softx.2019.100311_b4) 2018; 14
Bauer (10.1016/j.softx.2019.100311_b52) 2011; 2011
Kaubruegger (10.1016/j.softx.2019.100311_b7) 2018; 97
Goodfellow (10.1016/j.softx.2019.100311_b31) 2016
Gu (10.1016/j.softx.2019.100311_b32) 2018; 77
Guennebaud (10.1016/j.softx.2019.100311_b19) 2010
Schollwöck (10.1016/j.softx.2019.100311_b28) 2011; 326
10.1016/j.softx.2019.100311_b48
10.1016/j.softx.2019.100311_b47
Yoshioka (10.1016/j.softx.2019.100311_b13) 2019; 99
10.1016/j.softx.2019.100311_b49
Czischek (10.1016/j.softx.2019.100311_b10) 2018; 98
Vicentini (10.1016/j.softx.2019.100311_b15) 2019; 122
10.1016/j.softx.2019.100311_b44
Rommer (10.1016/j.softx.2019.100311_b27) 1997; 55
10.1016/j.softx.2019.100311_b46
10.1016/j.softx.2019.100311_b45
Jones (10.1016/j.softx.2019.100311_b18) 2001
Carleo (10.1016/j.softx.2019.100311_b51) 2012; 2
LeCun (10.1016/j.softx.2019.100311_b34) 2012
White (10.1016/j.softx.2019.100311_b26) 1992; 69
Amari (10.1016/j.softx.2019.100311_b43) 1998; 10
Becca (10.1016/j.softx.2019.100311_b25) 2017
10.1016/j.softx.2019.100311_b37
Swendsen (10.1016/j.softx.2019.100311_b40) 1986; 57
Casula (10.1016/j.softx.2019.100311_b42) 2003; 119
Abadi (10.1016/j.softx.2019.100311_b50) 2015
Saito (10.1016/j.softx.2019.100311_b9) 2018; 87
Hartmann (10.1016/j.softx.2019.100311_b12) 2019; 122
10.1016/j.softx.2019.100311_b33
Cullum (10.1016/j.softx.2019.100311_b54) 1981; 44
Hinton (10.1016/j.softx.2019.100311_b29) 2006; 313
LeCun (10.1016/j.softx.2019.100311_b30) 2015; 521
References_xml – volume: 8
  start-page: 011006
  year: 2018
  ident: b6
  article-title: Neural-network quantum states, string-bond states, and chiral topological states
  publication-title: Phys. Rev. X
– volume: 63
  start-page: 1
  year: 1991
  end-page: 62
  ident: b24
  article-title: The spin-
  publication-title: Rev Modern Phys
– volume: 44
  start-page: 329
  year: 1981
  end-page: 358
  ident: b54
  article-title: Computing eigenvalues of very large symmetric matrices—An implementation of a lanczos algorithm with no reorthogonalization
  publication-title: J Comput Phys
– volume: 97
  start-page: 195136
  year: 2018
  ident: b7
  article-title: Chiral topological phases from artificial neural networks
  publication-title: Phys. Rev. B
– reference: . URL
– reference: Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A. Automatic differentiation in PyTorch. In: NIPS-W. 2017.
– reference: Jupyter P, Bussonnier M, Forde J, Freeman J, Granger B, Head T, Holdgraf C, Kelley K, Nalvarte G, Osheroff A, Pacer M, Panda Y, Perez F, Ragan-Kelley B, Willing C. Binder 2.0 - Reproducible, interactive, sharable environments for science at scale. In: Fatih Akici and David Lippa and Dillon Niederhut and M Pacer, editors, Proceedings of the 17th python in science conference. 2018. p. 113–20.
– year: 2015
  ident: b50
  article-title: TensorFlow: Large-scale machine learning on heterogeneous systems
– year: 1985
  ident: b55
  article-title: Lanczos Algorithms for Large Symmetric Eigenvalue Computations Vol. I Theory (Progress in Scientific Computing) (Volume 1)
– start-page: 9
  year: 2012
  end-page: 48
  ident: b34
  article-title: Efficient BackProp
  publication-title: Neural Networks: Tricks of the Trade
– volume: 10
  start-page: 251
  year: 1998
  end-page: 276
  ident: b43
  article-title: Natural gradient works efficiently in learning
  publication-title: Neural Comput
– year: 2010
  ident: b19
  article-title: Eigen v3
– volume: 55
  start-page: 2164
  year: 1997
  end-page: 2181
  ident: b27
  article-title: Class of ansatz wave functions for one-dimensional spin systems and their relation to the density matrix renormalization group
  publication-title: Phys Rev B
– volume: 69
  start-page: 2863
  year: 1992
  end-page: 2866
  ident: b26
  article-title: Density matrix formulation for quantum renormalization groups
  publication-title: Phys Rev Lett
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b30
  article-title: Deep learning
  publication-title: Nature
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: b29
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 326
  start-page: 96
  year: 2011
  end-page: 192
  ident: b28
  article-title: The density-matrix renormalization group in the age of matrix product states
  publication-title: Ann Physics
– volume: 98
  start-page: 024311
  year: 2018
  ident: b10
  article-title: Quenches near ising quantum criticality as a challenge for artificial neural networks
  publication-title: Phys. Rev. B
– year: 2001
  ident: b18
  article-title: SciPy: Open source scientific tools for Python
– year: 2017
  ident: b25
  article-title: Quantum Monte Carlo Approaches for Correlated Systems
– year: 2014
  ident: b36
  article-title: Adam: A method for stochastic optimization
– volume: 122
  start-page: 250502
  year: 2019
  ident: b12
  article-title: Neural-network approach to dissipative quantum many-body dynamics
  publication-title: Phys Rev Lett
– volume: 2
  start-page: 243
  year: 2012
  ident: b51
  article-title: Localization and glassy dynamics of many-body quantum systems
  publication-title: Sci Rep
– volume: 57
  start-page: 2607
  year: 1986
  end-page: 2609
  ident: b40
  article-title: Replica Monte Carlo simulation of spin-glasses
  publication-title: Phys Rev Lett
– volume: 99
  start-page: 214306
  year: 2019
  ident: b13
  article-title: Constructing neural stationary states for open quantum many-body systems
  publication-title: Phys Rev B
– volume: 119
  start-page: 6500
  year: 2003
  end-page: 6511
  ident: b42
  article-title: Geminal wave functions with Jastrow correlation: A first application to atoms
  publication-title: J Chem Phys
– volume: 121
  start-page: 167204
  year: 2018
  ident: b5
  article-title: Symmetries and many-body excitations with neural-network quantum states
  publication-title: Phys Rev Lett
– reference: Choo K, Mezzacapo A, Carleo G. Quantum Chemistry with Neural-Network Quantum States [in preparation].
– volume: 14
  start-page: 447
  year: 2018
  end-page: 450
  ident: b4
  article-title: Neural-network quantum state tomography
  publication-title: Nat Phys
– reference: McBrian K, Carleo G, Khatami E. Ground state phase diagram of the one-dimensional bose-Hubbard model from restricted Boltzmann machines.
– year: 2019
  ident: b16
  article-title: Pybind11 – seamless operability between c++11 and python
– volume: 2011
  start-page: P05001
  year: 2011
  ident: b52
  article-title: The ALPS project release 2.0: open source software for strongly correlated systems
  publication-title: J Stat Mech Theory Exp
– reference: Pilati S, Inack EM, Pieri P. Self-learning projective quantum Monte Carlo simulations guided by restricted Boltzmann machines.
– year: 2019
  ident: b1
  article-title: Machine learning and the physical sciences
– volume: 64
  start-page: 052312
  year: 2001
  ident: b38
  article-title: Measurement of qubits
  publication-title: Phys. Rev. A
– volume: 80
  start-page: 4558
  year: 1998
  end-page: 4561
  ident: b41
  article-title: Green function Monte Carlo with stochastic reconfiguration
  publication-title: Phys Rev Lett
– volume: 97
  start-page: 035116
  year: 2018
  ident: b3
  article-title: Approximating quantum many-body wave functions using artificial neural networks
  publication-title: Phys Rev B
– reference: Choo K, Neupert T, Carleo G. Study of the two-dimensional frustrated J1-J2 model with neural network quantum states.
– volume: 86
  start-page: 093001
  year: 2017
  ident: b8
  article-title: Solving the bose-hubbard model with machine learning
  publication-title: J Phys Soc Japan
– volume: 21
  start-page: 1087
  year: 1953
  end-page: 1092
  ident: b39
  article-title: Equation of state calculations by fast computing machines
  publication-title: J Chem Phys
– volume: 122
  start-page: 250501
  year: 2019
  ident: b14
  article-title: Variational quantum monte carlo method with a neural-network ansatz for open quantum systems
  publication-title: Phys Rev Lett
– volume: 77
  start-page: 354
  year: 2018
  end-page: 377
  ident: b32
  article-title: Recent advances in convolutional neural networks
  publication-title: Pattern Recognit
– reference: Nair V, Hinton GE. Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th international conference on machine learning. 2010. p. 807–14. URL
– reference: PyPI – the Python package index.
– year: 2016
  ident: b31
  article-title: Deep Learning
– volume: 120
  start-page: 240503
  year: 2018
  ident: b17
  article-title: Latent space purification via neural density operators
  publication-title: Phys Rev Lett
– reference: .
– volume: 87
  start-page: 014001
  year: 2018
  ident: b9
  article-title: Machine learning technique to find quantum many-body ground states of bosons on a lattice
  publication-title: J Phys Soc Japan
– reference: . [Accessed 6 March 2019].
– year: 2019
  ident: b21
  article-title: JSON for modern C++
  publication-title: GitHub Repository
– year: 2018
  ident: b11
  article-title: Neural-network states for the classical simulation of quantum computing
– year: 2006
  ident: b20
  article-title: NumPy: A Guide to NumPy
– reference: Vieijra T, Casert C, Nys J, De Neve W, Haegeman J, Ryckebusch J, Verstraete F. Restricted Boltzmann machines for quantum states with nonabelian or anyonic symmetries.
– volume: 122
  start-page: 250503
  year: 2019
  ident: b15
  article-title: Variational neural-network ansatz for steady states in open quantum systems
  publication-title: Phys Rev Lett
– reference: Reddi SJ, Kale S, Kumar S. On the convergence of adam and beyond. In: International conference on learning representations. 2018. URL
– volume: 355
  start-page: 602
  year: 2017
  end-page: 606
  ident: b2
  article-title: Solving the quantum many-body problem with artificial neural networks
  publication-title: Science
– volume: 12
  start-page: 2121
  year: 2011
  end-page: 2159
  ident: b35
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J Mach Learn Res
– volume: 310
  start-page: 1187
  year: 2007
  end-page: 1193
  ident: b53
  article-title: The ALPS project release 1.3: Open-source software for strongly correlated systems
  publication-title: J Magn Magn Mater
– volume: 119
  start-page: 6500
  issue: 13
  year: 2003
  ident: 10.1016/j.softx.2019.100311_b42
  article-title: Geminal wave functions with Jastrow correlation: A first application to atoms
  publication-title: J Chem Phys
  doi: 10.1063/1.1604379
– volume: 8
  start-page: 011006
  year: 2018
  ident: 10.1016/j.softx.2019.100311_b6
  article-title: Neural-network quantum states, string-bond states, and chiral topological states
  publication-title: Phys. Rev. X
– ident: 10.1016/j.softx.2019.100311_b48
– volume: 86
  start-page: 093001
  issue: 9
  year: 2017
  ident: 10.1016/j.softx.2019.100311_b8
  article-title: Solving the bose-hubbard model with machine learning
  publication-title: J Phys Soc Japan
  doi: 10.7566/JPSJ.86.093001
– volume: 99
  start-page: 214306
  issue: 21
  year: 2019
  ident: 10.1016/j.softx.2019.100311_b13
  article-title: Constructing neural stationary states for open quantum many-body systems
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.99.214306
– volume: 57
  start-page: 2607
  year: 1986
  ident: 10.1016/j.softx.2019.100311_b40
  article-title: Replica Monte Carlo simulation of spin-glasses
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.57.2607
– volume: 10
  start-page: 251
  issue: 2
  year: 1998
  ident: 10.1016/j.softx.2019.100311_b43
  article-title: Natural gradient works efficiently in learning
  publication-title: Neural Comput
  doi: 10.1162/089976698300017746
– volume: 310
  start-page: 1187
  issue: 2
  year: 2007
  ident: 10.1016/j.softx.2019.100311_b53
  article-title: The ALPS project release 1.3: Open-source software for strongly correlated systems
  publication-title: J Magn Magn Mater
  doi: 10.1016/j.jmmm.2006.10.304
– year: 2015
  ident: 10.1016/j.softx.2019.100311_b50
– year: 2019
  ident: 10.1016/j.softx.2019.100311_b16
– ident: 10.1016/j.softx.2019.100311_b44
– volume: 97
  start-page: 035116
  issue: 3
  year: 2018
  ident: 10.1016/j.softx.2019.100311_b3
  article-title: Approximating quantum many-body wave functions using artificial neural networks
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.97.035116
– volume: 122
  start-page: 250501
  issue: 25
  year: 2019
  ident: 10.1016/j.softx.2019.100311_b14
  article-title: Variational quantum monte carlo method with a neural-network ansatz for open quantum systems
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.122.250501
– year: 2006
  ident: 10.1016/j.softx.2019.100311_b20
– volume: 64
  start-page: 052312
  year: 2001
  ident: 10.1016/j.softx.2019.100311_b38
  article-title: Measurement of qubits
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.64.052312
– volume: 77
  start-page: 354
  year: 2018
  ident: 10.1016/j.softx.2019.100311_b32
  article-title: Recent advances in convolutional neural networks
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2017.10.013
– volume: 87
  start-page: 014001
  issue: 1
  year: 2018
  ident: 10.1016/j.softx.2019.100311_b9
  article-title: Machine learning technique to find quantum many-body ground states of bosons on a lattice
  publication-title: J Phys Soc Japan
  doi: 10.7566/JPSJ.87.014001
– ident: 10.1016/j.softx.2019.100311_b49
– year: 2014
  ident: 10.1016/j.softx.2019.100311_b36
– volume: 122
  start-page: 250502
  year: 2019
  ident: 10.1016/j.softx.2019.100311_b12
  article-title: Neural-network approach to dissipative quantum many-body dynamics
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.122.250502
– volume: 2011
  start-page: P05001
  issue: 05
  year: 2011
  ident: 10.1016/j.softx.2019.100311_b52
  article-title: The ALPS project release 2.0: open source software for strongly correlated systems
  publication-title: J Stat Mech Theory Exp
  doi: 10.1088/1742-5468/2011/05/P05001
– volume: 355
  start-page: 602
  issue: 6325
  year: 2017
  ident: 10.1016/j.softx.2019.100311_b2
  article-title: Solving the quantum many-body problem with artificial neural networks
  publication-title: Science
  doi: 10.1126/science.aag2302
– volume: 21
  start-page: 1087
  issue: 6
  year: 1953
  ident: 10.1016/j.softx.2019.100311_b39
  article-title: Equation of state calculations by fast computing machines
  publication-title: J Chem Phys
  doi: 10.1063/1.1699114
– volume: 12
  start-page: 2121
  issue: Jul
  year: 2011
  ident: 10.1016/j.softx.2019.100311_b35
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J Mach Learn Res
– volume: 55
  start-page: 2164
  issue: 4
  year: 1997
  ident: 10.1016/j.softx.2019.100311_b27
  article-title: Class of ansatz wave functions for one-dimensional spin systems and their relation to the density matrix renormalization group
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.55.2164
– ident: 10.1016/j.softx.2019.100311_b46
– volume: 98
  start-page: 024311
  year: 2018
  ident: 10.1016/j.softx.2019.100311_b10
  article-title: Quenches near ising quantum criticality as a challenge for artificial neural networks
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.024311
– volume: 63
  start-page: 1
  year: 1991
  ident: 10.1016/j.softx.2019.100311_b24
  article-title: The spin-12 heisenberg antiferromagnet on a square lattice and its application to the cuprous oxides
  publication-title: Rev Modern Phys
  doi: 10.1103/RevModPhys.63.1
– volume: 120
  start-page: 240503
  issue: 24
  year: 2018
  ident: 10.1016/j.softx.2019.100311_b17
  article-title: Latent space purification via neural density operators
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.120.240503
– volume: 44
  start-page: 329
  issue: 2
  year: 1981
  ident: 10.1016/j.softx.2019.100311_b54
  article-title: Computing eigenvalues of very large symmetric matrices—An implementation of a lanczos algorithm with no reorthogonalization
  publication-title: J Comput Phys
  doi: 10.1016/0021-9991(81)90056-5
– year: 2019
  ident: 10.1016/j.softx.2019.100311_b1
– volume: 97
  start-page: 195136
  year: 2018
  ident: 10.1016/j.softx.2019.100311_b7
  article-title: Chiral topological phases from artificial neural networks
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.97.195136
– start-page: 9
  year: 2012
  ident: 10.1016/j.softx.2019.100311_b34
  article-title: Efficient BackProp
– ident: 10.1016/j.softx.2019.100311_b23
– volume: 2
  start-page: 243
  year: 2012
  ident: 10.1016/j.softx.2019.100311_b51
  article-title: Localization and glassy dynamics of many-body quantum systems
  publication-title: Sci Rep
  doi: 10.1038/srep00243
– ident: 10.1016/j.softx.2019.100311_b37
– ident: 10.1016/j.softx.2019.100311_b33
– volume: 80
  start-page: 4558
  year: 1998
  ident: 10.1016/j.softx.2019.100311_b41
  article-title: Green function Monte Carlo with stochastic reconfiguration
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.80.4558
– year: 1985
  ident: 10.1016/j.softx.2019.100311_b55
– ident: 10.1016/j.softx.2019.100311_b45
  doi: 10.25080/Majora-4af1f417-011
– ident: 10.1016/j.softx.2019.100311_b47
– volume: 326
  start-page: 96
  issue: 1
  year: 2011
  ident: 10.1016/j.softx.2019.100311_b28
  article-title: The density-matrix renormalization group in the age of matrix product states
  publication-title: Ann Physics
  doi: 10.1016/j.aop.2010.09.012
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10.1016/j.softx.2019.100311_b29
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– year: 2016
  ident: 10.1016/j.softx.2019.100311_b31
– volume: 69
  start-page: 2863
  issue: 19
  year: 1992
  ident: 10.1016/j.softx.2019.100311_b26
  article-title: Density matrix formulation for quantum renormalization groups
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.69.2863
– year: 2018
  ident: 10.1016/j.softx.2019.100311_b11
– volume: 121
  start-page: 167204
  year: 2018
  ident: 10.1016/j.softx.2019.100311_b5
  article-title: Symmetries and many-body excitations with neural-network quantum states
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.121.167204
– year: 2001
  ident: 10.1016/j.softx.2019.100311_b18
– ident: 10.1016/j.softx.2019.100311_b22
– year: 2019
  ident: 10.1016/j.softx.2019.100311_b21
  article-title: JSON for modern C++
  publication-title: GitHub Repository
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.softx.2019.100311_b30
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 14
  start-page: 447
  issue: 5
  year: 2018
  ident: 10.1016/j.softx.2019.100311_b4
  article-title: Neural-network quantum state tomography
  publication-title: Nat Phys
  doi: 10.1038/s41567-018-0048-5
– year: 2017
  ident: 10.1016/j.softx.2019.100311_b25
– year: 2010
  ident: 10.1016/j.softx.2019.100311_b19
– volume: 122
  start-page: 250503
  issue: 25
  year: 2019
  ident: 10.1016/j.softx.2019.100311_b15
  article-title: Variational neural-network ansatz for steady states in open quantum systems
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.122.250503
SSID ssj0001528524
Score 2.4995928
Snippet We introduce NetKet, a comprehensive open source framework for the study of many-body quantum systems using machine learning techniques. The framework is built...
SourceID doaj
hal
crossref
elsevier
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 100311
SubjectTerms Condensed Matter
Machine learning
Neural-network quantum states
Physics
Quantum state tomography
Supervised learning
Variational Monte Carlo
SummonAdditionalLinks – databaseName: ScienceDirect Free & Delayed Access Titles
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKT1ygQCu2LchCHIk2cex43RPbimrFoxeotDcrtidl-9j0ka3ov2fGcYr20gPHOH7EY2dmbH3zDWMfid8jL6XKGgdlJgWeWZ1q6swLJ7Q2VW1iurcfJ9XsVH6dq_kGOxpiYQhWmXR_r9Ojtk4l4yTN8fViMf4p0HfQaL3QBaFoBOIEpahSCuKbH_67Z1FiomJuW6qfUYOBfCjCvO5Q2_0hiJchwEBZFGsGKvL4r9mpZ7-HG9dogY632IvkOvJp_3Wv2AYsX7OXQ1oGnv7SN-zzCXTfoDvgU34VoZLAU26IM9617eXFouPoquLL5UPm2vDAb1Yo39UV72md77bZ6fGXX0ezLCVKyDyerroMlZYKxgvpq7LW4Ai6idNzEHQomiY3dR2khFwJIM4to6CcuNB4KIQPIFW5wzaX7RLeMl4XjXE6d0F5PMugrVKgKUXSxElZh7wYMTFIx_rEIk7JLC7tABc7t1GklkRqe5GO2KfHRtc9icbT1Q9J7I9ViQE7FrS3ZzZtARtwVga80a7CuQX0a7wG1SiiEKyryo9YNSyaXdtQ2NXi6dE_4BKvDT6bfrdUhv4NJWcR98Xu__a-x57TUw_43Web3e0K3qFb07n3cd_-BdZ78hY
  priority: 102
  providerName: Elsevier
Title NetKet: A machine learning toolkit for many-body quantum systems
URI https://dx.doi.org/10.1016/j.softx.2019.100311
https://hal.science/hal-02346742
https://doaj.org/article/d09a9ec97b6d44d190c7e5f50486a66c
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUKXLgA5UMsbZFVcSQicex4zakLAm27hUNVxN6s2J4ALbsL3SyCf9-xnSD2AhcuOThO7DxPPDPR5D1C9jy_R5pzkVQG8oQzzFmNqMrEMsOkVEWpgtzb2XnRv-A_hmL4QurL14RFeuAI3IFLVanAKmkKx7lD_2UliEp4qriyKKzffVOVvkim4v_BrCuCoi3DCCOR6ORayqFQ3DXFPe7RF3YpXyaQZ9mcWwrs_XPeaeG6_c4a_M7pGllpAkbaixP9SD7AeJ2stmIMtHk3N8i3c6gHUB_SHh2FAkmgjSLEFa0nk9u_NzXFABVPjp8SM3FP9H6GqM5GNJI5TzfJxenJ7-N-0sgjJBZzqjrBrUo4ZRm3RV5KML5gEx_PgJMuqyrErUTEIBUMPNOWEpB3jassZMw64CLfIovjyRi2CS2zShmZGicsZjDooQRIL4zUNZyXLs06hLXoaNtwh3sJi1vdFon90QFS7SHVEdIO2X--6C5SZ7ze_cjD_tzV816HBrQG3ViDfssaOqRoF003IUQMDfBWN6-P_hWXeG7wfu-n9m0Y1XhJFvaQ7bzHFD-RZT9uLPn9TBbrfzP4goFNbXbJUm_w63KwG2wZj9-HR_8BeiP0Og
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZ4HNpLC32o20Kxqh4bbeLY8ZoTCypayrIXQNqbFT8C28KGQrYq_54ZxwHthQNXP-PxZGZsff6GkO_I75HmXCSV8XnCGZxZjajKxDLDpFRFqUK6t5NJMTrnv6ZiukIOurcwCKuMtr-16cFax5J-lGb_ZjbrnzKIHSR4LwhB8DUCXyXrEA2kqNpH0_2nixbBBiIkt8UOCfbo2IcCzusOzN1_xHgpRAzkWbbkoQKR_5KjWr3srlyDCzrcIG9i7EiH7edtkhU_f0fednkZaPxN35O9iW-OfbNLh_Q6YCU9jckhLmhT11d_Zg2FWBUq5_eJqd09_bsAAS-uacvrfPeBnB_-PDsYJTFTQmLheNUkYLWEU5ZxW-Sl9Aaxm7A84510WVWlqiwd5z4VzCPplhI-HxhXWZ8x6zwX-UeyNq_n_hOhZVYpI1PjhIXDDDgr4SXmSBoYzkuXZj3COuloG2nEMZvFle7wYr91EKlGkepWpD3y47HTTcui8XzzfRT7Y1OkwA4F9e2FjjqgHaxKeaukKWBtDgIbK72oBHIIlkVhe6ToNk0vaRQMNXt-9m-wxUuTj4ZjjWUQ4GB2FvYv-_zS0XfIq9HZyViPjybHX8hrrGnRv1tkrbld-G2IcRrzNejwAxMy9Tk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NetKet%3A+A+machine+learning+toolkit+for+many-body+quantum+systems&rft.jtitle=SoftwareX&rft.au=Giuseppe+Carleo&rft.au=Kenny+Choo&rft.au=Damian+Hofmann&rft.au=James+E.T.+Smith&rft.date=2019-07-01&rft.pub=Elsevier&rft.issn=2352-7110&rft.eissn=2352-7110&rft.volume=10&rft_id=info:doi/10.1016%2Fj.softx.2019.100311&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d09a9ec97b6d44d190c7e5f50486a66c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-7110&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-7110&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-7110&client=summon