NetKet: A machine learning toolkit for many-body quantum systems
We introduce NetKet, a comprehensive open source framework for the study of many-body quantum systems using machine learning techniques. The framework is built around a general and flexible implementation of neural-network quantum states, which are used as a variational ansatz for quantum wavefuncti...
Saved in:
Published in | SoftwareX Vol. 10; p. 100311 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2019
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2352-7110 2352-7110 |
DOI | 10.1016/j.softx.2019.100311 |
Cover
Abstract | We introduce NetKet, a comprehensive open source framework for the study of many-body quantum systems using machine learning techniques. The framework is built around a general and flexible implementation of neural-network quantum states, which are used as a variational ansatz for quantum wavefunctions. NetKet provides algorithms for several key tasks in quantum many-body physics and quantum technology, namely quantum state tomography, supervised learning from wavefunction data, and ground state searches for a wide range of customizable lattice models. Our aim is to provide a common platform for open research and to stimulate the collaborative development of computational methods at the interface of machine learning and many-body physics. |
---|---|
AbstractList | We introduce NetKet, a comprehensive open source framework for the study of many-body quantum systems using machine learning techniques. The framework is built around a general and flexible implementation of neural-network quantum states, which are used as a variational ansatz for quantum wavefunctions. NetKet provides algorithms for several key tasks in quantum many-body physics and quantum technology, namely quantum state tomography, supervised learning from wavefunction data, and ground state searches for a wide range of customizable lattice models. Our aim is to provide a common platform for open research and to stimulate the collaborative development of computational methods at the interface of machine learning and many-body physics. We introduce NetKet, a comprehensive open source framework for the study of many-body quantum systems using machine learning techniques. The framework is built around a general and flexible implementation of neural-network quantum states, which are used as a variational ansatz for quantum wavefunctions. NetKet provides algorithms for several key tasks in quantum many-body physics and quantum technology, namely quantum state tomography, supervised learning from wavefunction data, and ground state searches for a wide range of customizable lattice models. Our aim is to provide a common platform for open research and to stimulate the collaborative development of computational methods at the interface of machine learning and many-body physics. Keywords: Neural-network quantum states, Variational Monte Carlo, Quantum state tomography, Machine learning, Supervised learning |
ArticleNumber | 100311 |
Author | van Nieuwenburg, Evert Carleo, Giuseppe Mazzola, Guglielmo Davis, Emily J. Lin, Sheng-Hsuan Hofmann, Damian Mauri, Marta Théveniaut, Hugo Torlai, Giacomo Westerhout, Tom Smith, James E.T. Glasser, Ivan Vicentini, Filippo Mendl, Christian B. Efthymiou, Stavros Wietek, Alexander Choo, Kenny Alet, Fabien O’Reilly, Ossian |
Author_xml | – sequence: 1 givenname: Giuseppe surname: Carleo fullname: Carleo, Giuseppe email: gcarleo@flatironinstitute.org organization: Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, NY 10010, New York, USA – sequence: 2 givenname: Kenny surname: Choo fullname: Choo, Kenny organization: Department of Physics, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland – sequence: 3 givenname: Damian surname: Hofmann fullname: Hofmann, Damian organization: Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany – sequence: 4 givenname: James E.T. surname: Smith fullname: Smith, James E.T. organization: Department of Chemistry, University of Colorado Boulder, Boulder, CO 80302, USA – sequence: 5 givenname: Tom surname: Westerhout fullname: Westerhout, Tom organization: Institute for Molecules and Materials, Radboud University, NL-6525 AJ Nijmegen, The Netherlands – sequence: 6 givenname: Fabien surname: Alet fullname: Alet, Fabien organization: Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France – sequence: 7 givenname: Emily J. surname: Davis fullname: Davis, Emily J. organization: Department of Physics, Stanford University, Stanford, CA 94305, USA – sequence: 8 givenname: Stavros surname: Efthymiou fullname: Efthymiou, Stavros organization: Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching bei München, Germany – sequence: 9 givenname: Ivan surname: Glasser fullname: Glasser, Ivan organization: Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching bei München, Germany – sequence: 10 givenname: Sheng-Hsuan surname: Lin fullname: Lin, Sheng-Hsuan organization: Department of Physics, T42, Technische Universität München, James-Franck-Straße 1, 85748 Garching bei München, Germany – sequence: 11 givenname: Marta surname: Mauri fullname: Mauri, Marta organization: Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, NY 10010, New York, USA – sequence: 12 givenname: Guglielmo surname: Mazzola fullname: Mazzola, Guglielmo organization: Theoretische Physik, ETH Zürich, 8093 Zürich, Switzerland – sequence: 13 givenname: Christian B. surname: Mendl fullname: Mendl, Christian B. organization: Technische Universität Dresden, Institute of Scientific Computing, Zellescher Weg 12-14, 01069 Dresden, Germany – sequence: 14 givenname: Evert surname: van Nieuwenburg fullname: van Nieuwenburg, Evert organization: Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125, USA – sequence: 15 givenname: Ossian surname: O’Reilly fullname: O’Reilly, Ossian organization: Southern California Earthquake Center, University of Southern California, 3651 Trousdale Pkwy, Los Angeles, CA 90089, USA – sequence: 16 givenname: Hugo surname: Théveniaut fullname: Théveniaut, Hugo organization: Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France – sequence: 17 givenname: Giacomo surname: Torlai fullname: Torlai, Giacomo organization: Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, NY 10010, New York, USA – sequence: 18 givenname: Filippo surname: Vicentini fullname: Vicentini, Filippo organization: Université de Paris, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, F-75013, Paris, France – sequence: 19 givenname: Alexander surname: Wietek fullname: Wietek, Alexander organization: Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, NY 10010, New York, USA |
BackLink | https://hal.science/hal-02346742$$DView record in HAL |
BookMark | eNp9kU9PGzEQxa2KSg2UT9DLXjlsGHvt_YNUqVFEARGVCz1bXnsWnG7sYjtR8-1xWCrRHjjZep73G8-8Y3LkvENCvlCYU6D1-Xoe_ZD-zBnQLitQUfqBzFglWNlQCkdv7p_IaYxrAKCCtYLxGfn2A9MtpotiUWyUfrQOixFVcNY9FMn78ZdNxeBDfnT7svdmXzxtlUvbTRH3MeEmfiYfBzVGPH09T8jP75f3y-tydXd1s1ysSs15m0pRtcJ0mnFdV6rBnlMQ-fc9msbQYYBOKcM5gmAIIEQnsGp7M2ikTBvkojohNxPXeLWWv4PdqLCXXln5IvjwIFVIVo8oTaZ1qLumrzPT0A50g2IQwNta1bXOrLOJ9ajGf1DXi5U8aMAqXjec7Wiu7aZaHXyMAQepbVLJepeCsqOkIA8pyLV8SUEeUpBTCtlb_ef92-x919fJhXmdO4tBRm3RaTQ2oE55Xvuu_xn9nqLH |
CitedBy_id | crossref_primary_10_1088_1361_6382_ad7c14 crossref_primary_10_7566_JPSJ_89_094002 crossref_primary_10_7566_JPSJ_94_031002 crossref_primary_10_1029_2021MS002717 crossref_primary_10_1103_PhysRevResearch_5_L032001 crossref_primary_10_21468_SciPostPhys_13_3_063 crossref_primary_10_1016_j_meatsci_2024_109437 crossref_primary_10_1103_PhysRevResearch_4_L012010 crossref_primary_10_1103_PhysRevResearch_2_033075 crossref_primary_10_1038_s42005_025_01955_z crossref_primary_10_1103_PhysRevB_107_205119 crossref_primary_10_1088_1402_4896_ac5ff6 crossref_primary_10_1088_2632_2153_abcb50 crossref_primary_10_1103_PhysRevResearch_5_033116 crossref_primary_10_1103_PhysRevE_110_065305 crossref_primary_10_1103_PhysRevResearch_4_023126 crossref_primary_10_1103_PhysRevB_106_L081111 crossref_primary_10_1103_PhysRevLett_131_036502 crossref_primary_10_1103_PhysRevB_102_024440 crossref_primary_10_1103_PhysRevB_104_045123 crossref_primary_10_1103_PhysRevLett_134_076502 crossref_primary_10_22331_q_2024_02_08_1245 crossref_primary_10_1088_1742_6596_2719_1_012006 crossref_primary_10_1103_PhysRevLett_124_097201 crossref_primary_10_1002_pssb_202100172 crossref_primary_10_1038_s41467_021_27396_0 crossref_primary_10_1103_PhysRevX_11_041021 crossref_primary_10_1103_PhysRevB_108_094410 crossref_primary_10_1088_1361_648X_ac43ff crossref_primary_10_1103_PhysRevLett_127_150504 crossref_primary_10_1038_s42005_025_02005_4 crossref_primary_10_1103_PhysRevResearch_3_033102 crossref_primary_10_1103_PhysRevE_101_053301 crossref_primary_10_1088_1361_648X_abbe7b crossref_primary_10_21468_SciPostPhysCore_7_2_026 crossref_primary_10_21468_SciPostPhysCodeb_7 crossref_primary_10_1103_PhysRevB_110_035108 crossref_primary_10_1146_annurev_conmatphys_031119_050651 crossref_primary_10_21468_SciPostPhysCodeb_2 crossref_primary_10_1007_s11128_019_2514_0 crossref_primary_10_1016_j_jcp_2024_113351 crossref_primary_10_1038_s42005_021_00609_0 crossref_primary_10_1103_PhysRevE_100_043301 crossref_primary_10_1038_s41598_021_95523_4 crossref_primary_10_1073_pnas_2122059119 crossref_primary_10_1103_PhysRevB_101_241105 crossref_primary_10_3952_physics_v61i4_4639 crossref_primary_10_1103_PhysRevLett_127_060601 crossref_primary_10_1103_PhysRevX_15_011047 crossref_primary_10_1103_PhysRevResearch_4_023138 crossref_primary_10_21468_SciPostPhys_12_5_165 crossref_primary_10_1103_PRXQuantum_5_020202 crossref_primary_10_1007_s40843_023_2800_x crossref_primary_10_1088_2632_2153_abd614 crossref_primary_10_22331_q_2023_10_10_1131 crossref_primary_10_1007_JHEP06_2024_211 crossref_primary_10_1038_s41467_020_15724_9 crossref_primary_10_1103_PhysRevE_104_015311 crossref_primary_10_1016_j_cpc_2024_109169 crossref_primary_10_1103_PRXQuantum_4_020327 crossref_primary_10_1103_PhysRevB_110_104411 crossref_primary_10_1103_PhysRevLett_127_276402 crossref_primary_10_1088_1751_8121_ab7210 crossref_primary_10_21468_SciPostPhysCore_6_4_088 crossref_primary_10_7566_JPSJ_90_114002 crossref_primary_10_1103_PhysRevA_102_022412 crossref_primary_10_1103_PhysRevA_109_062215 crossref_primary_10_1109_ACCESS_2020_3010470 crossref_primary_10_1088_2632_2153_ac3ddf crossref_primary_10_21105_joss_03419 crossref_primary_10_1103_PhysRevB_103_245111 crossref_primary_10_1140_epjp_s13360_024_04983_w crossref_primary_10_22331_q_2024_05_23_1358 crossref_primary_10_1103_PhysRevB_100_125124 crossref_primary_10_1088_1361_6382_ad84af crossref_primary_10_1103_PhysRevB_109_184422 crossref_primary_10_1038_s41467_024_53672_w crossref_primary_10_1103_PhysRevResearch_2_022060 crossref_primary_10_1103_PhysRevResearch_5_043084 crossref_primary_10_21468_SciPostPhys_18_1_011 crossref_primary_10_22331_q_2023_08_29_1096 crossref_primary_10_21468_SciPostPhys_15_6_229 |
Cites_doi | 10.1063/1.1604379 10.7566/JPSJ.86.093001 10.1103/PhysRevB.99.214306 10.1103/PhysRevLett.57.2607 10.1162/089976698300017746 10.1016/j.jmmm.2006.10.304 10.1103/PhysRevB.97.035116 10.1103/PhysRevLett.122.250501 10.1103/PhysRevA.64.052312 10.1016/j.patcog.2017.10.013 10.7566/JPSJ.87.014001 10.1103/PhysRevLett.122.250502 10.1088/1742-5468/2011/05/P05001 10.1126/science.aag2302 10.1063/1.1699114 10.1103/PhysRevB.55.2164 10.1103/PhysRevB.98.024311 10.1103/RevModPhys.63.1 10.1103/PhysRevLett.120.240503 10.1016/0021-9991(81)90056-5 10.1103/PhysRevB.97.195136 10.1038/srep00243 10.1103/PhysRevLett.80.4558 10.25080/Majora-4af1f417-011 10.1016/j.aop.2010.09.012 10.1126/science.1127647 10.1103/PhysRevLett.69.2863 10.1103/PhysRevLett.121.167204 10.1038/nature14539 10.1038/s41567-018-0048-5 10.1103/PhysRevLett.122.250503 |
ContentType | Journal Article |
Copyright | 2019 The Authors Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2019 The Authors – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 6I. AAFTH AAYXX CITATION 1XC VOOES DOA |
DOI | 10.1016/j.softx.2019.100311 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Physics |
EISSN | 2352-7110 |
ExternalDocumentID | oai_doaj_org_article_d09a9ec97b6d44d190c7e5f50486a66c oai_HAL_hal_02346742v1 10_1016_j_softx_2019_100311 S2352711019300974 |
GroupedDBID | 0R~ 0SF 457 5VS 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ IPNFZ IXB KQ8 M~E NCXOZ O9- OK1 RIG ROL SSZ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION 1XC VOOES |
ID | FETCH-LOGICAL-c448t-5385d9c24c63a7eb4105101bed7d1ff09aad44e052e005595e38bdfce12cde453 |
IEDL.DBID | DOA |
ISSN | 2352-7110 |
IngestDate | Wed Aug 27 01:23:35 EDT 2025 Fri Sep 12 12:32:23 EDT 2025 Tue Jul 01 02:31:32 EDT 2025 Thu Apr 24 22:55:53 EDT 2025 Wed May 17 00:17:11 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Neural-network quantum states Supervised learning Quantum state tomography Variational Monte Carlo Machine learning |
Language | English |
License | This is an open access article under the CC BY license. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c448t-5385d9c24c63a7eb4105101bed7d1ff09aad44e052e005595e38bdfce12cde453 |
ORCID | 0000-0003-0802-6128 0000-0003-3333-3648 0000-0002-4367-3438 |
OpenAccessLink | https://doaj.org/article/d09a9ec97b6d44d190c7e5f50486a66c |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d09a9ec97b6d44d190c7e5f50486a66c hal_primary_oai_HAL_hal_02346742v1 crossref_citationtrail_10_1016_j_softx_2019_100311 crossref_primary_10_1016_j_softx_2019_100311 elsevier_sciencedirect_doi_10_1016_j_softx_2019_100311 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July-December 2019 2019-07-00 2019-07 2019-07-01 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: July-December 2019 |
PublicationDecade | 2010 |
PublicationTitle | SoftwareX |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Jónsson, Bauer, Carleo (b11) 2018 James, Kwiat, Munro, White (b38) 2001; 64 Torlai, Mazzola, Carrasquilla, Troyer, Melko, Carleo (b4) 2018; 14 Abadi, Agarwal, Barham, Brevdo, Chen, Citro, Corrado, Davis, Dean, Devin, Ghemawat, Goodfellow, Harp, Irving, Isard, Jia, Jozefowicz, Kaiser, Kudlur, Levenberg, Mané, Monga, Moore, Murray, Olah, Schuster, Shlens, Steiner, Sutskever, Talwar, Tucker, Vanhoucke, Vasudevan, Viégas, Vinyals, Warden, Wattenberg, Wicke, Yu, Zheng (b50) 2015 Czischek, Gärttner, Gasenzer (b10) 2018; 98 Guennebaud, Jacob (b19) 2010 LeCun, Bengio, Hinton (b30) 2015; 521 PyPI – the Python package index. [Accessed 6 March 2019]. Jupyter P, Bussonnier M, Forde J, Freeman J, Granger B, Head T, Holdgraf C, Kelley K, Nalvarte G, Osheroff A, Pacer M, Panda Y, Perez F, Ragan-Kelley B, Willing C. Binder 2.0 - Reproducible, interactive, sharable environments for science at scale. In: Fatih Akici and David Lippa and Dillon Niederhut and M Pacer, editors, Proceedings of the 17th python in science conference. 2018. p. 113–20. White (b26) 1992; 69 Becca, Sorella (b25) 2017 Metropolis, Rosenbluth, Rosenbluth, Teller, Teller (b39) 1953; 21 McBrian K, Carleo G, Khatami E. Ground state phase diagram of the one-dimensional bose-Hubbard model from restricted Boltzmann machines. Cai, Liu (b3) 2018; 97 Saito, Kato (b9) 2018; 87 Jones, Oliphant, Peterson (b18) 2001 Kaubruegger, Pastori, Budich (b7) 2018; 97 . Choo, Carleo, Regnault, Neupert (b5) 2018; 121 LeCun, Bottou, Orr, Müller (b34) 2012 Glasser, Pancotti, August, Rodriguez, Cirac (b6) 2018; 8 Vieijra T, Casert C, Nys J, De Neve W, Haegeman J, Ryckebusch J, Verstraete F. Restricted Boltzmann machines for quantum states with nonabelian or anyonic symmetries. Rommer, Östlund (b27) 1997; 55 Nair V, Hinton GE. Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th international conference on machine learning. 2010. p. 807–14. URL Gu, Wang, Kuen, Ma, Shahroudy, Shuai, Liu, Wang, Wang, Cai, Chen (b32) 2018; 77 Schollwöck (b28) 2011; 326 Choo K, Neupert T, Carleo G. Study of the two-dimensional frustrated J1-J2 model with neural network quantum states. Manousakis (b24) 1991; 63 Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A. Automatic differentiation in PyTorch. In: NIPS-W. 2017. Sorella (b41) 1998; 80 Cullum, Willoughby (b55) 1985 URL Saito (b8) 2017; 86 Swendsen, Wang (b40) 1986; 57 Hartmann, Carleo (b12) 2019; 122 Hinton (b29) 2006; 313 Yoshioka, Hamazaki (b13) 2019; 99 Lohmann (b21) 2019 Carleo, Cirac, Cranmer, Daudet, Schuld, Tishby, Vogt-Maranto, Zdeborová (b1) 2019 Goodfellow, Bengio, Courville (b31) 2016 Bauer, Carr, Evertz, Feiguin, Freire, Fuchs, Gamper, Gukelberger, Gull, Guertler, Hehn, Igarashi, Isakov, Koop, Ma, Mates, Matsuo, Parcollet, Pawłowski, Picon, Pollet, Santos, Scarola, Schollwöck, Silva, Surer, Todo, Trebst, Troyer, Wall, Werner, Wessel (b52) 2011; 2011 Pilati S, Inack EM, Pieri P. Self-learning projective quantum Monte Carlo simulations guided by restricted Boltzmann machines. Cullum, Willoughby (b54) 1981; 44 Duchi, Hazan, Singer (b35) 2011; 12 Jakob, Rhinelander, Moldovan (b16) 2019 Amari (b43) 1998; 10 Choo K, Mezzacapo A, Carleo G. Quantum Chemistry with Neural-Network Quantum States [in preparation]. Carleo, Troyer (b2) 2017; 355 Kingma, Ba (b36) 2014 Reddi SJ, Kale S, Kumar S. On the convergence of adam and beyond. In: International conference on learning representations. 2018. URL Casula, Sorella (b42) 2003; 119 Carleo, Becca, Schiro, Fabrizio (b51) 2012; 2 Torlai, Melko (b17) 2018; 120 Vicentini, Biella, Regnault, Ciuti (b15) 2019; 122 Nagy, Savona (b14) 2019; 122 Oliphant (b20) 2006 Albuquerque, Alet, Corboz, Dayal, Feiguin, Fuchs, Gamper, Gull, Gürtler, Honecker, Igarashi, Körner, Kozhevnikov, Läuchli, Manmana, Matsumoto, McCulloch, Michel, Noack, Pawłowski, Pollet, Pruschke, Schollwöck, Todo, Trebst, Troyer, Werner, Wessel (b53) 2007; 310 Saito (10.1016/j.softx.2019.100311_b8) 2017; 86 Cullum (10.1016/j.softx.2019.100311_b55) 1985 Duchi (10.1016/j.softx.2019.100311_b35) 2011; 12 Metropolis (10.1016/j.softx.2019.100311_b39) 1953; 21 Jakob (10.1016/j.softx.2019.100311_b16) 2019 Nagy (10.1016/j.softx.2019.100311_b14) 2019; 122 Lohmann (10.1016/j.softx.2019.100311_b21) 2019 10.1016/j.softx.2019.100311_b22 10.1016/j.softx.2019.100311_b23 Oliphant (10.1016/j.softx.2019.100311_b20) 2006 Torlai (10.1016/j.softx.2019.100311_b17) 2018; 120 Manousakis (10.1016/j.softx.2019.100311_b24) 1991; 63 Albuquerque (10.1016/j.softx.2019.100311_b53) 2007; 310 Carleo (10.1016/j.softx.2019.100311_b1) 2019 Cai (10.1016/j.softx.2019.100311_b3) 2018; 97 Kingma (10.1016/j.softx.2019.100311_b36) 2014 Jónsson (10.1016/j.softx.2019.100311_b11) 2018 James (10.1016/j.softx.2019.100311_b38) 2001; 64 Carleo (10.1016/j.softx.2019.100311_b2) 2017; 355 Choo (10.1016/j.softx.2019.100311_b5) 2018; 121 Sorella (10.1016/j.softx.2019.100311_b41) 1998; 80 Glasser (10.1016/j.softx.2019.100311_b6) 2018; 8 Torlai (10.1016/j.softx.2019.100311_b4) 2018; 14 Bauer (10.1016/j.softx.2019.100311_b52) 2011; 2011 Kaubruegger (10.1016/j.softx.2019.100311_b7) 2018; 97 Goodfellow (10.1016/j.softx.2019.100311_b31) 2016 Gu (10.1016/j.softx.2019.100311_b32) 2018; 77 Guennebaud (10.1016/j.softx.2019.100311_b19) 2010 Schollwöck (10.1016/j.softx.2019.100311_b28) 2011; 326 10.1016/j.softx.2019.100311_b48 10.1016/j.softx.2019.100311_b47 Yoshioka (10.1016/j.softx.2019.100311_b13) 2019; 99 10.1016/j.softx.2019.100311_b49 Czischek (10.1016/j.softx.2019.100311_b10) 2018; 98 Vicentini (10.1016/j.softx.2019.100311_b15) 2019; 122 10.1016/j.softx.2019.100311_b44 Rommer (10.1016/j.softx.2019.100311_b27) 1997; 55 10.1016/j.softx.2019.100311_b46 10.1016/j.softx.2019.100311_b45 Jones (10.1016/j.softx.2019.100311_b18) 2001 Carleo (10.1016/j.softx.2019.100311_b51) 2012; 2 LeCun (10.1016/j.softx.2019.100311_b34) 2012 White (10.1016/j.softx.2019.100311_b26) 1992; 69 Amari (10.1016/j.softx.2019.100311_b43) 1998; 10 Becca (10.1016/j.softx.2019.100311_b25) 2017 10.1016/j.softx.2019.100311_b37 Swendsen (10.1016/j.softx.2019.100311_b40) 1986; 57 Casula (10.1016/j.softx.2019.100311_b42) 2003; 119 Abadi (10.1016/j.softx.2019.100311_b50) 2015 Saito (10.1016/j.softx.2019.100311_b9) 2018; 87 Hartmann (10.1016/j.softx.2019.100311_b12) 2019; 122 10.1016/j.softx.2019.100311_b33 Cullum (10.1016/j.softx.2019.100311_b54) 1981; 44 Hinton (10.1016/j.softx.2019.100311_b29) 2006; 313 LeCun (10.1016/j.softx.2019.100311_b30) 2015; 521 |
References_xml | – volume: 8 start-page: 011006 year: 2018 ident: b6 article-title: Neural-network quantum states, string-bond states, and chiral topological states publication-title: Phys. Rev. X – volume: 63 start-page: 1 year: 1991 end-page: 62 ident: b24 article-title: The spin- publication-title: Rev Modern Phys – volume: 44 start-page: 329 year: 1981 end-page: 358 ident: b54 article-title: Computing eigenvalues of very large symmetric matrices—An implementation of a lanczos algorithm with no reorthogonalization publication-title: J Comput Phys – volume: 97 start-page: 195136 year: 2018 ident: b7 article-title: Chiral topological phases from artificial neural networks publication-title: Phys. Rev. B – reference: . URL – reference: Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A. Automatic differentiation in PyTorch. In: NIPS-W. 2017. – reference: Jupyter P, Bussonnier M, Forde J, Freeman J, Granger B, Head T, Holdgraf C, Kelley K, Nalvarte G, Osheroff A, Pacer M, Panda Y, Perez F, Ragan-Kelley B, Willing C. Binder 2.0 - Reproducible, interactive, sharable environments for science at scale. In: Fatih Akici and David Lippa and Dillon Niederhut and M Pacer, editors, Proceedings of the 17th python in science conference. 2018. p. 113–20. – year: 2015 ident: b50 article-title: TensorFlow: Large-scale machine learning on heterogeneous systems – year: 1985 ident: b55 article-title: Lanczos Algorithms for Large Symmetric Eigenvalue Computations Vol. I Theory (Progress in Scientific Computing) (Volume 1) – start-page: 9 year: 2012 end-page: 48 ident: b34 article-title: Efficient BackProp publication-title: Neural Networks: Tricks of the Trade – volume: 10 start-page: 251 year: 1998 end-page: 276 ident: b43 article-title: Natural gradient works efficiently in learning publication-title: Neural Comput – year: 2010 ident: b19 article-title: Eigen v3 – volume: 55 start-page: 2164 year: 1997 end-page: 2181 ident: b27 article-title: Class of ansatz wave functions for one-dimensional spin systems and their relation to the density matrix renormalization group publication-title: Phys Rev B – volume: 69 start-page: 2863 year: 1992 end-page: 2866 ident: b26 article-title: Density matrix formulation for quantum renormalization groups publication-title: Phys Rev Lett – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b30 article-title: Deep learning publication-title: Nature – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: b29 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – volume: 326 start-page: 96 year: 2011 end-page: 192 ident: b28 article-title: The density-matrix renormalization group in the age of matrix product states publication-title: Ann Physics – volume: 98 start-page: 024311 year: 2018 ident: b10 article-title: Quenches near ising quantum criticality as a challenge for artificial neural networks publication-title: Phys. Rev. B – year: 2001 ident: b18 article-title: SciPy: Open source scientific tools for Python – year: 2017 ident: b25 article-title: Quantum Monte Carlo Approaches for Correlated Systems – year: 2014 ident: b36 article-title: Adam: A method for stochastic optimization – volume: 122 start-page: 250502 year: 2019 ident: b12 article-title: Neural-network approach to dissipative quantum many-body dynamics publication-title: Phys Rev Lett – volume: 2 start-page: 243 year: 2012 ident: b51 article-title: Localization and glassy dynamics of many-body quantum systems publication-title: Sci Rep – volume: 57 start-page: 2607 year: 1986 end-page: 2609 ident: b40 article-title: Replica Monte Carlo simulation of spin-glasses publication-title: Phys Rev Lett – volume: 99 start-page: 214306 year: 2019 ident: b13 article-title: Constructing neural stationary states for open quantum many-body systems publication-title: Phys Rev B – volume: 119 start-page: 6500 year: 2003 end-page: 6511 ident: b42 article-title: Geminal wave functions with Jastrow correlation: A first application to atoms publication-title: J Chem Phys – volume: 121 start-page: 167204 year: 2018 ident: b5 article-title: Symmetries and many-body excitations with neural-network quantum states publication-title: Phys Rev Lett – reference: Choo K, Mezzacapo A, Carleo G. Quantum Chemistry with Neural-Network Quantum States [in preparation]. – volume: 14 start-page: 447 year: 2018 end-page: 450 ident: b4 article-title: Neural-network quantum state tomography publication-title: Nat Phys – reference: McBrian K, Carleo G, Khatami E. Ground state phase diagram of the one-dimensional bose-Hubbard model from restricted Boltzmann machines. – year: 2019 ident: b16 article-title: Pybind11 – seamless operability between c++11 and python – volume: 2011 start-page: P05001 year: 2011 ident: b52 article-title: The ALPS project release 2.0: open source software for strongly correlated systems publication-title: J Stat Mech Theory Exp – reference: Pilati S, Inack EM, Pieri P. Self-learning projective quantum Monte Carlo simulations guided by restricted Boltzmann machines. – year: 2019 ident: b1 article-title: Machine learning and the physical sciences – volume: 64 start-page: 052312 year: 2001 ident: b38 article-title: Measurement of qubits publication-title: Phys. Rev. A – volume: 80 start-page: 4558 year: 1998 end-page: 4561 ident: b41 article-title: Green function Monte Carlo with stochastic reconfiguration publication-title: Phys Rev Lett – volume: 97 start-page: 035116 year: 2018 ident: b3 article-title: Approximating quantum many-body wave functions using artificial neural networks publication-title: Phys Rev B – reference: Choo K, Neupert T, Carleo G. Study of the two-dimensional frustrated J1-J2 model with neural network quantum states. – volume: 86 start-page: 093001 year: 2017 ident: b8 article-title: Solving the bose-hubbard model with machine learning publication-title: J Phys Soc Japan – volume: 21 start-page: 1087 year: 1953 end-page: 1092 ident: b39 article-title: Equation of state calculations by fast computing machines publication-title: J Chem Phys – volume: 122 start-page: 250501 year: 2019 ident: b14 article-title: Variational quantum monte carlo method with a neural-network ansatz for open quantum systems publication-title: Phys Rev Lett – volume: 77 start-page: 354 year: 2018 end-page: 377 ident: b32 article-title: Recent advances in convolutional neural networks publication-title: Pattern Recognit – reference: Nair V, Hinton GE. Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th international conference on machine learning. 2010. p. 807–14. URL – reference: PyPI – the Python package index. – year: 2016 ident: b31 article-title: Deep Learning – volume: 120 start-page: 240503 year: 2018 ident: b17 article-title: Latent space purification via neural density operators publication-title: Phys Rev Lett – reference: . – volume: 87 start-page: 014001 year: 2018 ident: b9 article-title: Machine learning technique to find quantum many-body ground states of bosons on a lattice publication-title: J Phys Soc Japan – reference: . [Accessed 6 March 2019]. – year: 2019 ident: b21 article-title: JSON for modern C++ publication-title: GitHub Repository – year: 2018 ident: b11 article-title: Neural-network states for the classical simulation of quantum computing – year: 2006 ident: b20 article-title: NumPy: A Guide to NumPy – reference: Vieijra T, Casert C, Nys J, De Neve W, Haegeman J, Ryckebusch J, Verstraete F. Restricted Boltzmann machines for quantum states with nonabelian or anyonic symmetries. – volume: 122 start-page: 250503 year: 2019 ident: b15 article-title: Variational neural-network ansatz for steady states in open quantum systems publication-title: Phys Rev Lett – reference: Reddi SJ, Kale S, Kumar S. On the convergence of adam and beyond. In: International conference on learning representations. 2018. URL – volume: 355 start-page: 602 year: 2017 end-page: 606 ident: b2 article-title: Solving the quantum many-body problem with artificial neural networks publication-title: Science – volume: 12 start-page: 2121 year: 2011 end-page: 2159 ident: b35 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: J Mach Learn Res – volume: 310 start-page: 1187 year: 2007 end-page: 1193 ident: b53 article-title: The ALPS project release 1.3: Open-source software for strongly correlated systems publication-title: J Magn Magn Mater – volume: 119 start-page: 6500 issue: 13 year: 2003 ident: 10.1016/j.softx.2019.100311_b42 article-title: Geminal wave functions with Jastrow correlation: A first application to atoms publication-title: J Chem Phys doi: 10.1063/1.1604379 – volume: 8 start-page: 011006 year: 2018 ident: 10.1016/j.softx.2019.100311_b6 article-title: Neural-network quantum states, string-bond states, and chiral topological states publication-title: Phys. Rev. X – ident: 10.1016/j.softx.2019.100311_b48 – volume: 86 start-page: 093001 issue: 9 year: 2017 ident: 10.1016/j.softx.2019.100311_b8 article-title: Solving the bose-hubbard model with machine learning publication-title: J Phys Soc Japan doi: 10.7566/JPSJ.86.093001 – volume: 99 start-page: 214306 issue: 21 year: 2019 ident: 10.1016/j.softx.2019.100311_b13 article-title: Constructing neural stationary states for open quantum many-body systems publication-title: Phys Rev B doi: 10.1103/PhysRevB.99.214306 – volume: 57 start-page: 2607 year: 1986 ident: 10.1016/j.softx.2019.100311_b40 article-title: Replica Monte Carlo simulation of spin-glasses publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.57.2607 – volume: 10 start-page: 251 issue: 2 year: 1998 ident: 10.1016/j.softx.2019.100311_b43 article-title: Natural gradient works efficiently in learning publication-title: Neural Comput doi: 10.1162/089976698300017746 – volume: 310 start-page: 1187 issue: 2 year: 2007 ident: 10.1016/j.softx.2019.100311_b53 article-title: The ALPS project release 1.3: Open-source software for strongly correlated systems publication-title: J Magn Magn Mater doi: 10.1016/j.jmmm.2006.10.304 – year: 2015 ident: 10.1016/j.softx.2019.100311_b50 – year: 2019 ident: 10.1016/j.softx.2019.100311_b16 – ident: 10.1016/j.softx.2019.100311_b44 – volume: 97 start-page: 035116 issue: 3 year: 2018 ident: 10.1016/j.softx.2019.100311_b3 article-title: Approximating quantum many-body wave functions using artificial neural networks publication-title: Phys Rev B doi: 10.1103/PhysRevB.97.035116 – volume: 122 start-page: 250501 issue: 25 year: 2019 ident: 10.1016/j.softx.2019.100311_b14 article-title: Variational quantum monte carlo method with a neural-network ansatz for open quantum systems publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.122.250501 – year: 2006 ident: 10.1016/j.softx.2019.100311_b20 – volume: 64 start-page: 052312 year: 2001 ident: 10.1016/j.softx.2019.100311_b38 article-title: Measurement of qubits publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.64.052312 – volume: 77 start-page: 354 year: 2018 ident: 10.1016/j.softx.2019.100311_b32 article-title: Recent advances in convolutional neural networks publication-title: Pattern Recognit doi: 10.1016/j.patcog.2017.10.013 – volume: 87 start-page: 014001 issue: 1 year: 2018 ident: 10.1016/j.softx.2019.100311_b9 article-title: Machine learning technique to find quantum many-body ground states of bosons on a lattice publication-title: J Phys Soc Japan doi: 10.7566/JPSJ.87.014001 – ident: 10.1016/j.softx.2019.100311_b49 – year: 2014 ident: 10.1016/j.softx.2019.100311_b36 – volume: 122 start-page: 250502 year: 2019 ident: 10.1016/j.softx.2019.100311_b12 article-title: Neural-network approach to dissipative quantum many-body dynamics publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.122.250502 – volume: 2011 start-page: P05001 issue: 05 year: 2011 ident: 10.1016/j.softx.2019.100311_b52 article-title: The ALPS project release 2.0: open source software for strongly correlated systems publication-title: J Stat Mech Theory Exp doi: 10.1088/1742-5468/2011/05/P05001 – volume: 355 start-page: 602 issue: 6325 year: 2017 ident: 10.1016/j.softx.2019.100311_b2 article-title: Solving the quantum many-body problem with artificial neural networks publication-title: Science doi: 10.1126/science.aag2302 – volume: 21 start-page: 1087 issue: 6 year: 1953 ident: 10.1016/j.softx.2019.100311_b39 article-title: Equation of state calculations by fast computing machines publication-title: J Chem Phys doi: 10.1063/1.1699114 – volume: 12 start-page: 2121 issue: Jul year: 2011 ident: 10.1016/j.softx.2019.100311_b35 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: J Mach Learn Res – volume: 55 start-page: 2164 issue: 4 year: 1997 ident: 10.1016/j.softx.2019.100311_b27 article-title: Class of ansatz wave functions for one-dimensional spin systems and their relation to the density matrix renormalization group publication-title: Phys Rev B doi: 10.1103/PhysRevB.55.2164 – ident: 10.1016/j.softx.2019.100311_b46 – volume: 98 start-page: 024311 year: 2018 ident: 10.1016/j.softx.2019.100311_b10 article-title: Quenches near ising quantum criticality as a challenge for artificial neural networks publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.024311 – volume: 63 start-page: 1 year: 1991 ident: 10.1016/j.softx.2019.100311_b24 article-title: The spin-12 heisenberg antiferromagnet on a square lattice and its application to the cuprous oxides publication-title: Rev Modern Phys doi: 10.1103/RevModPhys.63.1 – volume: 120 start-page: 240503 issue: 24 year: 2018 ident: 10.1016/j.softx.2019.100311_b17 article-title: Latent space purification via neural density operators publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.120.240503 – volume: 44 start-page: 329 issue: 2 year: 1981 ident: 10.1016/j.softx.2019.100311_b54 article-title: Computing eigenvalues of very large symmetric matrices—An implementation of a lanczos algorithm with no reorthogonalization publication-title: J Comput Phys doi: 10.1016/0021-9991(81)90056-5 – year: 2019 ident: 10.1016/j.softx.2019.100311_b1 – volume: 97 start-page: 195136 year: 2018 ident: 10.1016/j.softx.2019.100311_b7 article-title: Chiral topological phases from artificial neural networks publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.195136 – start-page: 9 year: 2012 ident: 10.1016/j.softx.2019.100311_b34 article-title: Efficient BackProp – ident: 10.1016/j.softx.2019.100311_b23 – volume: 2 start-page: 243 year: 2012 ident: 10.1016/j.softx.2019.100311_b51 article-title: Localization and glassy dynamics of many-body quantum systems publication-title: Sci Rep doi: 10.1038/srep00243 – ident: 10.1016/j.softx.2019.100311_b37 – ident: 10.1016/j.softx.2019.100311_b33 – volume: 80 start-page: 4558 year: 1998 ident: 10.1016/j.softx.2019.100311_b41 article-title: Green function Monte Carlo with stochastic reconfiguration publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.80.4558 – year: 1985 ident: 10.1016/j.softx.2019.100311_b55 – ident: 10.1016/j.softx.2019.100311_b45 doi: 10.25080/Majora-4af1f417-011 – ident: 10.1016/j.softx.2019.100311_b47 – volume: 326 start-page: 96 issue: 1 year: 2011 ident: 10.1016/j.softx.2019.100311_b28 article-title: The density-matrix renormalization group in the age of matrix product states publication-title: Ann Physics doi: 10.1016/j.aop.2010.09.012 – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 10.1016/j.softx.2019.100311_b29 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – year: 2016 ident: 10.1016/j.softx.2019.100311_b31 – volume: 69 start-page: 2863 issue: 19 year: 1992 ident: 10.1016/j.softx.2019.100311_b26 article-title: Density matrix formulation for quantum renormalization groups publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.69.2863 – year: 2018 ident: 10.1016/j.softx.2019.100311_b11 – volume: 121 start-page: 167204 year: 2018 ident: 10.1016/j.softx.2019.100311_b5 article-title: Symmetries and many-body excitations with neural-network quantum states publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.121.167204 – year: 2001 ident: 10.1016/j.softx.2019.100311_b18 – ident: 10.1016/j.softx.2019.100311_b22 – year: 2019 ident: 10.1016/j.softx.2019.100311_b21 article-title: JSON for modern C++ publication-title: GitHub Repository – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.softx.2019.100311_b30 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 14 start-page: 447 issue: 5 year: 2018 ident: 10.1016/j.softx.2019.100311_b4 article-title: Neural-network quantum state tomography publication-title: Nat Phys doi: 10.1038/s41567-018-0048-5 – year: 2017 ident: 10.1016/j.softx.2019.100311_b25 – year: 2010 ident: 10.1016/j.softx.2019.100311_b19 – volume: 122 start-page: 250503 issue: 25 year: 2019 ident: 10.1016/j.softx.2019.100311_b15 article-title: Variational neural-network ansatz for steady states in open quantum systems publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.122.250503 |
SSID | ssj0001528524 |
Score | 2.4995928 |
Snippet | We introduce NetKet, a comprehensive open source framework for the study of many-body quantum systems using machine learning techniques. The framework is built... |
SourceID | doaj hal crossref elsevier |
SourceType | Open Website Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 100311 |
SubjectTerms | Condensed Matter Machine learning Neural-network quantum states Physics Quantum state tomography Supervised learning Variational Monte Carlo |
SummonAdditionalLinks | – databaseName: ScienceDirect Free & Delayed Access Titles dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKT1ygQCu2LchCHIk2cex43RPbimrFoxeotDcrtidl-9j0ka3ov2fGcYr20gPHOH7EY2dmbH3zDWMfid8jL6XKGgdlJgWeWZ1q6swLJ7Q2VW1iurcfJ9XsVH6dq_kGOxpiYQhWmXR_r9Ojtk4l4yTN8fViMf4p0HfQaL3QBaFoBOIEpahSCuKbH_67Z1FiomJuW6qfUYOBfCjCvO5Q2_0hiJchwEBZFGsGKvL4r9mpZ7-HG9dogY632IvkOvJp_3Wv2AYsX7OXQ1oGnv7SN-zzCXTfoDvgU34VoZLAU26IM9617eXFouPoquLL5UPm2vDAb1Yo39UV72md77bZ6fGXX0ezLCVKyDyerroMlZYKxgvpq7LW4Ai6idNzEHQomiY3dR2khFwJIM4to6CcuNB4KIQPIFW5wzaX7RLeMl4XjXE6d0F5PMugrVKgKUXSxElZh7wYMTFIx_rEIk7JLC7tABc7t1GklkRqe5GO2KfHRtc9icbT1Q9J7I9ViQE7FrS3ZzZtARtwVga80a7CuQX0a7wG1SiiEKyryo9YNSyaXdtQ2NXi6dE_4BKvDT6bfrdUhv4NJWcR98Xu__a-x57TUw_43Web3e0K3qFb07n3cd_-BdZ78hY priority: 102 providerName: Elsevier |
Title | NetKet: A machine learning toolkit for many-body quantum systems |
URI | https://dx.doi.org/10.1016/j.softx.2019.100311 https://hal.science/hal-02346742 https://doaj.org/article/d09a9ec97b6d44d190c7e5f50486a66c |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUKXLgA5UMsbZFVcSQicex4zakLAm27hUNVxN6s2J4ALbsL3SyCf9-xnSD2AhcuOThO7DxPPDPR5D1C9jy_R5pzkVQG8oQzzFmNqMrEMsOkVEWpgtzb2XnRv-A_hmL4QurL14RFeuAI3IFLVanAKmkKx7lD_2UliEp4qriyKKzffVOVvkim4v_BrCuCoi3DCCOR6ORayqFQ3DXFPe7RF3YpXyaQZ9mcWwrs_XPeaeG6_c4a_M7pGllpAkbaixP9SD7AeJ2stmIMtHk3N8i3c6gHUB_SHh2FAkmgjSLEFa0nk9u_NzXFABVPjp8SM3FP9H6GqM5GNJI5TzfJxenJ7-N-0sgjJBZzqjrBrUo4ZRm3RV5KML5gEx_PgJMuqyrErUTEIBUMPNOWEpB3jassZMw64CLfIovjyRi2CS2zShmZGicsZjDooQRIL4zUNZyXLs06hLXoaNtwh3sJi1vdFon90QFS7SHVEdIO2X--6C5SZ7ze_cjD_tzV816HBrQG3ViDfssaOqRoF003IUQMDfBWN6-P_hWXeG7wfu-n9m0Y1XhJFvaQ7bzHFD-RZT9uLPn9TBbrfzP4goFNbXbJUm_w63KwG2wZj9-HR_8BeiP0Og |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZ4HNpLC32o20Kxqh4bbeLY8ZoTCypayrIXQNqbFT8C28KGQrYq_54ZxwHthQNXP-PxZGZsff6GkO_I75HmXCSV8XnCGZxZjajKxDLDpFRFqUK6t5NJMTrnv6ZiukIOurcwCKuMtr-16cFax5J-lGb_ZjbrnzKIHSR4LwhB8DUCXyXrEA2kqNpH0_2nixbBBiIkt8UOCfbo2IcCzusOzN1_xHgpRAzkWbbkoQKR_5KjWr3srlyDCzrcIG9i7EiH7edtkhU_f0fednkZaPxN35O9iW-OfbNLh_Q6YCU9jckhLmhT11d_Zg2FWBUq5_eJqd09_bsAAS-uacvrfPeBnB_-PDsYJTFTQmLheNUkYLWEU5ZxW-Sl9Aaxm7A84510WVWlqiwd5z4VzCPplhI-HxhXWZ8x6zwX-UeyNq_n_hOhZVYpI1PjhIXDDDgr4SXmSBoYzkuXZj3COuloG2nEMZvFle7wYr91EKlGkepWpD3y47HTTcui8XzzfRT7Y1OkwA4F9e2FjjqgHaxKeaukKWBtDgIbK72oBHIIlkVhe6ToNk0vaRQMNXt-9m-wxUuTj4ZjjWUQ4GB2FvYv-_zS0XfIq9HZyViPjybHX8hrrGnRv1tkrbld-G2IcRrzNejwAxMy9Tk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NetKet%3A+A+machine+learning+toolkit+for+many-body+quantum+systems&rft.jtitle=SoftwareX&rft.au=Giuseppe+Carleo&rft.au=Kenny+Choo&rft.au=Damian+Hofmann&rft.au=James+E.T.+Smith&rft.date=2019-07-01&rft.pub=Elsevier&rft.issn=2352-7110&rft.eissn=2352-7110&rft.volume=10&rft_id=info:doi/10.1016%2Fj.softx.2019.100311&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d09a9ec97b6d44d190c7e5f50486a66c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-7110&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-7110&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-7110&client=summon |